# Institute of Information Engineering, Automation, and Mathematics

Course unit code:
N428S1_4B
Course unit title:
Seminar in Physics
Mode of completion and Number of ECTS credits:
Class req (2 credits)
Course contents:
1. Physical quantities and physical units. (allowance 0/2)

 a. Physical quantities, dimensions and units. The International System of Units SI. b. Units conversion. Dimensional analysis. c. Greek alphabet. Algebraic equations. Function of the line and the parabola. Volumes and surfaces of selected objects. d. Planar angles and their units in degrees and radians. Trigonometric functions. Sums and differences of trigonometric functions.

2. Measurement and presentation of physical quantities. (allowance 0/2)

 a. Principles and methods of measurement of physical quantities. b. Confidence interval and the maximum absolute error of measurement. Standard uncertainty. Law of propagation of errors. Validity numbers. Rounding numbers. c. Tables and graphs. Method of least squares.

3. Scalar and vector quantities. (allowance 0/2)

 a. Scalar. Vector. Coordinate system. Cartesian coordinate system. The coordinates of the two- and three-dimensional space. b. Graphic / algebraic addition and subtraction of vectors. Graphic / algebraic multiplication of vectors. c. Scalar product of vectors and its geometric interpretation.

4. Scalar and vector quantities (continued). (allowance 0/2)

 a. Vector product of vectors graphic / algebraic and geometric interpretation. b. Angle between two vectors. The angle between two planes. Lwa of cosines. c. Unit vector. Mixed product of vectors and its geometric interpretation.

5. Kinematics of mass point. (allowance 0/2)

 a. Position, time, instantaneous velocity and speed. The path trajectory. Velocity as a vector quantity. b. The time dependence of the position and velocity for the selected types of linear motions. Examples. c. Free fall.

6. Kinematics of mass point (continued). (allowance 0/2)

 a. Motion in the plane. Elevation angle. Balistic trajectory. b. Uniform circular motion.

7. Dynamics of mass point. (allowance 0/2)

 a. Newton's laws of motion. b. Vector addition of forces. Inclined plane. c. Law of gravity, the gravity forces. Gravitational field.

8. Dynamics of mass point (continued). (allowance 0/2)

 a. Work, power, efficiency. Conservative and non-conservative forces. Kinetic and potential energy and their connection to work. b. The law of conservation of mechanical energy in the motion of a particle - the pendulum, fall / litter of mass point, hand catapult.

9. Electrostatics. (allowance 0/2)

 a. Electric charge. Coulomb's law. Electric field, electric field intensity. Comparison with the gravity force. b. Electric potential, electric voltage. c. Electrical capacity, electrical capacitor, series and parallel connection of electrical capacitors.

10. Dynamics of mass points and rigid body. (allowance 0/2)

 a. The law of conservation of momentum, angular momentum. Elastic and inelastic collisions. b. Rigid body. Moment of inertia. Kinetic energy of a rotating rigid body.

11. Mechanics of fluids. (allowance 0/2)

 a. Hydrostatics. Density. Pressure. b. Hydrostatic pressure, Pascal's Law, hydraulic press. c. Archimedes. Density measurement.

12. Oscillations and waves. (allowance 0/4)

 a. Harmonic vibration, mechanical linear harmonic oscillator. b. Harmonická vlna. Huygensov princíp. Zákon lomu a odrazu. Skladanie vlnenia. Stojaté vlnenie. c. Wave propagation, wave interference. Polarization of waves.