Pracovné zaradenie:
Tajomník ústavu
Tajomník oddelenia
Pedagogický pracovník
Oddelenie:
Oddelenie matematiky (OM)
Miestnosť:
NB 619
eMail:
Telefón:
+421 259 325 344
Vedecká činnosť:
kvantová chémia; programovanie: C/C++, python; paralelné a GPU programovanie v HPC prostredí; aplikovaná matematika; neurónové siete
Dostupnosť:

Citácie

  • Celkový počet citácií       140

M. Malček – K. Čermáková – P. Rapta – M. Gall – L. Bučinský: Tailoring the hydrogen storage performance of the Cr-, Mn-, and Fe-doped circumcoronenes by the presence of N and B co-dopants: Computational study. International Journal of Hydrogen Energy, č. 47, zv. 81, 2022.
  • Počet citácií       2
  • Belkhiria, S. – Briki, C. – Almoneef, M. – Dhaou, M.H. – Alresheedi, F. – Mbarek, M. – Jemni, A.: Experimental and numerical study of hydrogen absorption in the MmNi5−xMx compound. International Journal of Hydrogen Energy, zv. 51, str. 29-40, 2024.
  • Sánchez-Rodríguez, E.P. – Santos-López, G. – Cruz-Martínez, H. – Calaminici, P. – Medina, D.I.: Pd2 and CoPd dimers/N-doped graphene sensors with enhanced sensitivity for CO detection: A first-principles study. Journal of Molecular Modeling, č. 8, zv. 29, 2023.
M. Jablonský – M. Štekláč – V. Majová – M. Gall – J. Matúška – M. Pitoňák – L. Bučinský: Molecular docking and machine learning affinity prediction of compounds identified upon softwood bark extraction to the main protease of the SARS-CoV-2 virus Slovenský názov:. Biophysical Chemistry, č. 106854, zv. 288, 2022.
  • Počet citácií       3
  • Wang, H. – Wang, W. – Zhang, S. – Hu, Z. – Yao, R. – Hadiatullah, H. – Li, P. – Zhao, G.: Identification of novel umami peptides from yeast extract and the mechanism against T1R1/T1R3. Food Chemistry, č. 136807, zv. 429, 2023.
  • Song, D. – Zhao, H. – Wang, L. – Wang, F. – Fang, L. – Zhao, X.: Ethanol extract of Sophora japonica flower bud, an effective potential dietary supplement for the treatment of hyperuricemia. Food Bioscience, č. 102457, zv. 52, 2023.
  • Zhang, J. – Zhang, J. – Liang, L. – Sun, B. – Zhang, Y.: Identification and virtual screening of novel umami peptides from chicken soup by molecular docking. Food Chemistry, č. 134414, zv. 404, 2023.
L. Bučinský – D. Bortňák – M. Gall – J. Matúška – V. Milata – M. Pitoňák – M. Štekláč – D. Végh – D. Zajaček: Machine learning prediction of 3CL(pro) SARS-CoV-2 docking scores. Computational Biology and Chemistry, č. 107656, zv. 98, 2022.
  • Počet citácií       4
  • Xiong, Y. – Wang, Y. – Wang, Y. – Li, C. – Yusong, P. – Wu, J. – Wang, Y. – Gu, L. – Butch, C.J.: Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation. Journal of Computer-Aided Molecular Design, č. 11, zv. 37, str. 507-517, 2023.
  • Kidambi Raju, S. – Ramaswamy, S. – Eid, M.M. – Gopalan, S. – Karim, F.K. – Marappan, R. – Khafaga, D.S.: Evaluation of Mutual Information and Feature Selection for SARS-CoV-2 Respiratory Infection. Bioengineering, č. 7, zv. 10, 2023.
  • Tropsha, A. – Isayev, O. – Varnek, A. – Schneider, G. – Cherkasov, A.: Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR. Nature Reviews Drug Discovery, 2023.
  • Zhang, W. – Huang, W. – Tan, J. – Guo, Q. – Wu, B.: Heterogeneous catalysis mediated by light, electricity and enzyme via machine learning: Paradigms, applications and prospects. Chemosphere, č. 136447, zv. 308, 2022.
N. Krivoňáková – A. Šoltýsová – M. Tamáš – Z. Takáč – J. Krahulec – A. Ficek – M. Gál – M. Gall – M. Fehér – A. Krivjanská – I. Horáková – N. Belišová – A. Butor Škulcová – P. Bímová – T. Mackuľak: Mathematical modeling based on RT‑qPCR analysis of SARS‑CoV‑2 in wastewater as a tool for epidemiology. Scientific Reports, č. art. no. 19456, zv. 11, str. 1–10, 2021.
  • Počet citácií       28
  • Kilaru, Pruthvi – Hill, Dustin – Anderson, Kathryn – Collins, Mary B. – Green, Hyatt – Kmush, Brittany L. – Larsen, David A.: Wastewater Surveillance for Infectious Disease: A Systematic Review. American Journal of Epidemiology, 2022.
  • Lin, T. – Karthikeyan, S. – Satterlund, A. – Schooley, R. – Knight, R. – De Gruttola, V. – Martin, N. – Zou, J.: Optimizing campus-wide COVID-19 test notifications with interpretable wastewater time-series features using machine learning models. Scientific Reports, č. 1, zv. 13, 2023.
  • Acosta, N. – Dai, X. – Bautista, M.A. – Waddell, B.J. – Lee, J. – Du, K. – McCalder, J. – Pradhan, P. – Papparis, C. – Lu, X. – Chekouo, T. – Krusina, A. – Southern, D. – Williamson, T. – Clark, R.G. – Patterson, R.A. – Westlund, P. – Meddings, J. – Ruecker, N. – Lammiman, C. – Duerr, C. – Achari, G. – Hrudey, S.E. – Lee, B.E. – Pang, X. – Frankowski, K. – Hubert, C.R.J. – Parkins, M.D.: Wastewater-based surveillance can be used to model COVID-19-associated workforce absenteeism. Science of the Total Environment, č. 165172, zv. 900, 2023.
  • Torabi, F. – Li, G. – Mole, C. – Nicholson, G. – Rowlingson, B. – Smith, C.R. – Jersakova, R. – Diggle, P.J. – Blangiardo, M.: Wastewater-based surveillance models for COVID-19: A focused review on spatio-temporal models. Heliyon, č. 11, zv. 9, 2023.
  • Phan, T. – Brozak, S. – Pell, B. – Oghuan, J. – Gitter, A. – Hu, T. – Ribeiro, R.M. – Ke, R. – Mena, K.D. – Perelson, A.S. – Kuang, Y. – Wu, F.: Making waves: Integrating wastewater surveillance with dynamic modeling to track and predict viral outbreaks. Water Research, č. 120372, zv. 243, 2023.
  • Mattei, M. – Pintó, R.M. – Guix, S. – Bosch, A. – Arenas, A.: Analysis of SARS-CoV-2 in wastewater for prevalence estimation and investigating clinical diagnostic test biases. Water Research, č. 120223, zv. 242, 2023.
  • Polcz, P. – Tornai, K. – Juhász, J. – Cserey, G. – Surján, G. – Pándics, T. – Róka, E. – Vargha, M. – Reguly, I.Z. – Csikász-Nagy, A. – Pongor, S. – Szederkényi, G.: Wastewater-based modeling, reconstruction, and prediction for COVID-19 outbreaks in Hungary caused by highly immune evasive variants. Water Research, č. 120098, zv. 241, 2023.
  • Belmonte-Lopes, R. – Barquilha, C.E.R. – Kozak, C. – Barcellos, D.S. – Leite, B.Z. – da Costa, F.J.O.G. – Martins, W.L. – Oliveira, P.E. – Pereira, E.H.R.A. – Filho, C.R.M. – de Souza, E.M. – Possetti, G.R.C. – Vicente, V.A. – Etchepare, R.G.: 20-Month monitoring of SARS-CoV-2 in wastewater of Curitiba, in Southern Brazil. Environmental Science and Pollution Research, č. 31, zv. 30, str. 76687-76701, 2023.
  • Ciannella, S. – González-Fernández, C. – Gomez-Pastora, J.: Recent progress on wastewater-based epidemiology for COVID-19 surveillance: A systematic review of analytical procedures and epidemiological modeling. Science of the Total Environment, č. 162953, zv. 878, 2023.
  • Kilaru, P. – Hill, D. – Anderson, K. – Collins, M.B. – Green, H. – Kmush, B.L. – Larsen, D.A.: Wastewater Surveillance for Infectious Disease: A Systematic Review. American Journal of Epidemiology, č. 2, zv. 192, str. 305-322, 2023.
  • Phan, T. – Brozak, S. – Pell, B. – Gitter, A. – Xiao, A. – Mena, K.D. – Kuang, Y. – Wu, F.: A simple SEIR-V model to estimate COVID-19 prevalence and predict SARS-CoV-2 transmission using wastewater-based surveillance data. Science of the Total Environment, č. 159326, zv. 857, 2023.
  • Hopkins, L. – Persse, D. – Caton, K. – Ensor, K. – Schneider, R. – McCall, C. – Stadler, L.B.: Citywide wastewater SARS-CoV-2 levels strongly correlated with multiple disease surveillance indicators and outcomes over three COVID-19 waves. Science of the Total Environment, č. 158967, zv. 855, 2023.
  • Sridhar, J. – Parit, R. – Boopalakrishnan, G. – Rexliene, M.J. – Praveen, R. – Viswananathan, B.: Importance of wastewater-based epidemiology for detecting and monitoring SARS-CoV-2. Case Studies in Chemical and Environmental Engineering, č. 100241, zv. 6, 2022.
  • Reynolds, L.J. – Gonzalez, G. – Sala-Comorera, L. – Martin, N.A. – Byrne, A. – Fennema, S. – Holohan, N. – Kuntamukkula, S.R. – Sarwar, N. – Nolan, T.M. – Stephens, J.H. – Whitty, M. – Bennett, C. – Luu, Q. – Morley, U. – Yandle, Z. – Dean, J. – Joyce, E. – O\\\'Sullivan, J.J. – Cuddihy, J.M. – McIntyre, A.M. – Robinson, E.P. – Dahly, D. – Fletcher, N.F. – Carr, M. – De Gascun, C. – Meijer, W.G.: SARS-CoV-2 variant trends in Ireland: Wastewater-based epidemiology and clinical surveillance. Science of the Total Environment, č. 155828, zv. 838, 2022.
  • Xiao, A. – Wu, F. – Bushman, M. – Zhang, J. – Imakaev, M. – Chai, P.R. – Duvallet, C. – Endo, N. – Erickson, T.B. – Armas, F. – Arnold, B. – Chen, H. – Chandra, F. – Ghaeli, N. – Gu, X. – Hanage, W.P. – Lee, W.L. – Matus, M. – McElroy, K.A. – Moniz, K. – Rhode, S.F. – Thompson, J. – Alm, E.J.: Metrics to relate COVID-19 wastewater data to clinical testing dynamics. Water Research, č. 118070, zv. 212, 2022.
  • Cluzel, N. – Courbariaux, M. – Wang, S. – Moulin, L. – Wurtzer, S. – Bertrand, I. – Laurent, K. – Monfort, P. – Gantzer, C. – Guyader, S.L. – Boni, M. – Mouchel, J.-M. – Maréchal, V. – Nuel, G. – Maday, Y.: A nationwide indicator to smooth and normalize heterogeneous SARS-CoV-2 RNA data in wastewater. Environment International, č. 106998, zv. 158, 2022.
  • Bartha, Istvan – Maher, Cyrus – Lavrenko, Victor – Chen, Yi-Pei – Tao, Qiqing – di Iulio, Julia – Boundy, Keith – Kinter, Elizabeth – Yeh, Wendy – Corti, Davide – Telenti, Amalio: Morbidity of SARS-CoV-2 in the evolution to endemicity and in comparison with influenza. Communications Medicine, č. 1, zv. 4, 2024.
  • Chen, Chen – Wang, Yunfan – Kaur, Gursharn – Adiga, Aniruddha – Espinoza, Baltazar – Venkatramanan, Srinivasan – Warren, Andrew – Lewis, Bryan – Crow, Justin – Singh, Rekha – Lorentz, Alexandra – Toney, Denise – Marathe, Madhav: Wastewater-based epidemiology for COVID-19 surveillance and beyond: A survey. Epidemics, č. 100793, zv. 49, 2024.
  • Chakraborty, Suman: Democratizing nucleic acid-based molecular diagnostic tests for infectious diseases at resource-limited settings - from point of care to extreme point of care. Sensors & Diagnostics, č. 4, zv. 3, str. 536-561, 2024.
  • Cuadros, D.F. – Chen, X. – Li, J. – Omori, R. – Musuka, G.: Advancing Public Health Surveillance: Integrating Modeling and GIS in the Wastewater-Based Epidemiology of Viruses, a Narrative Review. Pathogens, č. 8, zv. 13, 2024.
  • Rashid, S.A. – Rajendiran, S. – Nazakat, R. – Mohammad Sham, N. – Khairul Hasni, N.A. – Anasir, M.I. – Kamel, K.A. – Muhamad Robat, R.: A scoping review of global SARS-CoV-2 wastewater-based epidemiology in light of COVID-19 pandemic. Heliyon, č. 9, zv. 10, 2024.
  • Robotto, A. – Olivero, C. – Pozzi, E. – Strumia, C. – Crasà, C. – Fedele, C. – Derosa, M. – Di Martino, M. – Latino, S. – Scorza, G. – Civra, A. – Lembo, D. – Quaglino, P. – Brizio, E. – Polato, D.: Efficient wastewater sample filtration improves the detection of SARS-CoV-2 variants: An extensive analysis based on sequencing parameters. PLoS ONE, č. 5 May, zv. 19, 2024.
  • Laicans, J. – Dejus, B. – Dejus, S. – Juhna, T.: Precision and Accuracy Limits of Wastewater-Based Epidemiology—Lessons Learned from SARS-CoV-2: A Scoping Review. Water (Switzerland), č. 9, zv. 16, 2024.
  • Sthapit, N. – Malla, B. – Tandukar, S. – Thakali, O. – Sherchand, J.B. – Haramoto, E.: Evaluating acute gastroenteritis-causing pathogen reduction in wastewater and the applicability of river water for wastewater-based epidemiology in the Kathmandu Valley, Nepal. Science of the Total Environment, č. 170764, zv. 919, 2024.
  • Parkins, M.D. – Lee, B.E. – Acosta, N. – Bautista, M. – Hubert, C.R.J. – Hrudey, S.E. – Frankowski, K. – Pang, X.-L.: Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clinical Microbiology Reviews, č. 1, zv. 37, 2024.
  • Mendoza, D. – Perozo, M. – Garaboto, M.A. – Galatro, D.: An integrated data analysis and machine learning approach to track and monitor SARS-CoV-2 in wastewater treatment plants. International Journal of Environmental Science and Technology, č. 5, zv. 21, str. 4727-4738, 2024.
  • Xiao, Y. – Yuan, S. – Luo, R. – Tang, Y. – Wang, X. – Xiang, P. – Di, B.: Monitoring of ketamine-based emerging contaminants in wastewater: a direct-injection method and fragmentation pathway study. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, č. 8, zv. 59, str. 389-402, 2024.
  • Baz Lomba, J.A. – Pires, J. – Myrmel, M. – Arnø, J.K. – Madslien, E.H. – Langlete, P. – Amato, E. – Hyllestad, S.: Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. Journal of Water and Health, č. 1, zv. 22, str. 197-234, 2024.
M. Malček – B. Vénosová – I. Jelemenská – J. Kožíšek – M. Gall – L. Bučinský: Coordination bonding in dicopper and dichromium tetrakis(mu-acetato)-diaqua complexes: Nature, strength, length, and topology. Journal of Computational Chemistry, č. 7, zv. 41, str. 698–714, 2020.
  • Počet citácií       2
  • Dong, Z.-Q. – Yang, J.-H. – Liu, B.: Chromous carbonates containing a square-grid layer of {Cr2(CO3)4}: N 4 n -Based on a dichromium(ii,ii) paddlewheel core. Dalton Transactions, č. 7, zv. 50, str. 2387-2392, 2021.
  • Liu, X. – Zhang, M. – Liu, Y. – Wu, S. – Su, Z.: A supported Cr-Cr sextuple bond in an all-metal cluster. Dalton Transactions, č. 7, zv. 51, str. 2664-2668, 2022.
T. Csanádi – M. Gall – M. Vojtko – A. Kovalčíková – M. Hnatko – J. Dusza – P. Šajgalík: Micro scale fracture strength of grains and grain boundaries in polycrystalline La-doped β-Si3N4 ceramics. Journal of the European Ceramic Society, č. 14, zv. 40, str. 4783–4791, 2020.
  • Počet citácií       8
  • Lee, C.-E. – Kim, M.-J. – Park, Y.-J. – Ko, J.-W. – Kim, H.-N. – Bae, S.: The effect of silicon particle size on the characteristics of porous sintered reaction bonded silicon nitride. International Journal of Refractory Metals and Hard Materials, č. 105647, zv. 101, 2021.
  • Yang, P. – Wu, S. – Wu, H. – Lu, D. – Zou, W. – Chu, L. – Shao, Y. – Wu, S.: Prediction of bending strength of Si3N4 using machine learning. Ceramics International, č. 17, zv. 47, str. 23919-23926, 2021.
  • Emdadi, A. – Asle Zaeem, M.: Phase-field modeling of crack propagation in polycrystalline materials. Computational Materials Science, č. 110057, zv. 186, 2021.
  • Hirshikesh, H. – Alankar, A.: On the interplay of elastic anisotropy and fracture toughness anisotropy in fracture of single and multiphase polycrystals. Engineering Fracture Mechanics, č. 108696, zv. 273, 2022.
  • Mollaei, Z. – Kermani, F. – Moosavi, F. – Kargozar, S. – Khakhi, J.V. – Mollazadeh, S.: In silico study and experimental evaluation of the solution combustion synthesized manganese oxide (MnO2) nanoparticles. Ceramics International, č. 2, zv. 48, str. 1659-1672, 2022.
  • Tanabe, M. – Tatami, J. – Iijima, M. – Yahagi, T. – Takahashi, T. – Nakano, H. – Ohji, T.: Deformation behaviors and fracture strength of -Si3N4 single crystals. Journal of the American Ceramic Society, č. 9, zv. 106, str. 5431-5439, 2023.
  • Yan, S. – Men, S. – Zou, H. – Wang, H. – Zhang, Z. – Wang, C. – Sui, T. – Lin, B.: Carbon fiber cannot always reduce the wear of PEEK for orthopedic implants under DPPC lubrication. Friction, č. 3, zv. 11, str. 395-409, 2023.
  • Kuwabara, A. – Gao, X. – Riedel, R. – Ionescu, E. – Ikuhara, Y.: Defect structures and dopant solution states of Hf-doped Si3N4 ceramics. International Journal of Applied Ceramic Technology, č. 1, zv. 20, str. 190-196, 2023.
P. Herich – L. Bučinský – M. Breza – M. Gall – M. Fronc – V. Petříček – J. Kožíšek: Electronic structure of two isostructural “paddle-wheel” complexes: a comparative study.. Acta Crystallographica Section B-Structural Science, č. 6, zv. 74, str. 681–692, 2018.
  • Počet citácií       14
  • Scatena, R. – Guntern, Y.T. – Macchi, P.: Electron Density and Dielectric Properties of Highly Porous MOFs: Binding and Mobility of Guest Molecules in Cu3(BTC)2 and Zn3(BTC)2. Journal of the American Chemical Society, č. 23, zv. 141, str. 9382-9390, 2019.
  • Scatena, R. – Johnson, R.D. – Manuel, P. – Macchi, P.: Formate-mediated magnetic superexchange in the model hybrid perovskite [(CH3)2NH2]Cu(HCOO)3. Journal of Materials Chemistry C, č. 37, zv. 8, str. 12840-12847, 2020.
  • Sarmah, N. – Baruah, S. – Malakar, A. – Chakrabortty, M. – Banik, B. – Das, B.K.: Synthesis, characterization and antimicrobial properties of [Cu2(μ-O2CC9H19)4(4-CNpy)2]. Asian Journal of Chemistry, č. 2, zv. 33, str. 453-458, 2021.
  • Torubaev, Y.V. – Skabitsky, I.V.: A new supramolecular heterosynthon [C-IOC(carboxylate)] at work: Engineering copper acetate cocrystals. CrystEngComm, č. 40, zv. 22, str. 6661-6673, 2020.
  • Scatena, R. – Johnson, R.D. – Manuel, P. – Macchi, P.: Formate-mediated magnetic superexchange in the model hybrid perovskite [(CH3)2NH2]Cu(HCOO)3. Journal of Materials Chemistry C, č. 37, zv. 8, str. 12840-12847, 2020.
  • Healy, C. – Patil, K.M. – Wilson, B.H. – Hermanspahn, L. – Harvey-Reid, N.C. – Howard, B.I. – Kleinjan, C. – Kolien, J. – Payet, F. – Telfer, S.G. – Kruger, P.E. – Bennett, T.D.: The thermal stability of metal-organic frameworks. Coordination Chemistry Reviews, č. 213388, zv. 419, 2020.
  • Scatena, R. – Guntern, Y.T. – Macchi, P.: Electron Density and Dielectric Properties of Highly Porous MOFs: Binding and Mobility of Guest Molecules in Cu3(BTC)2 and Zn3(BTC)2. Journal of the American Chemical Society, č. 23, zv. 141, str. 9382-9390, 2019.
  • Chen, B. – Zeng, X. – Liu, Y. – Xiao, F. – Huang, M. – Bing Tan, K. – Cai, D. – Huang, J. – Zhan, G.: Thermal decomposition kinetics of M−BTC (M = Cu, Co, Zn, and Ce) and M−BTC/Pt composites under oxidative and reductive environments. Chemical Engineering Journal, č. 138470, zv. 450, 2022.
  • Pinto, C.B. – Dos Santos, L.H.R. – Rodrigues, B.L. – Nangia, A.: Experimental charge density and topological analysis of tetra­aquabis(hydrogenmaleato)nickel(II): a comparison with Hirshfeld atom refinement. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, zv. 79, str. 281-295, 2023.
  • Khan, M.S. – Ansari, M.A.H. – Khalid, M. – Shahid, M. – Ahmad, M.: Synthesis, characterization, single-crystal X-ray study and sensing properties of a designed dinuclear Cu(II) system. Inorganic and Nano-Metal Chemistry, 2023.
  • Stepanenko, I. – Mizetskyi, P. – Orlowska, E. – Bučinský, L. – Zalibera, M. – Vénosová, B. – Clémancey, M. – Blondin, G. – Rapta, P. – Novitchi, G. – Schrader, W. – Schaniel, D. – Chen, Y.-S. – Lutz, M. – Kožíšek, J. – Telser, J. – Arion, V.B.: The Ruthenium Nitrosyl Moiety in Clusters: Trinuclear Linear μ-Hydroxido Magnesium(II)-Diruthenium(II), μ3-Oxido Trinuclear Diiron(III)-Ruthenium(II), and Tetranuclear μ4-Oxido Trigallium(III)-Ruthenium(II) Complexes. Inorganic Chemistry, č. 2, zv. 61, str. 950-967, 2022.
  • Reinholdt, A. – Staples, O. – Mindiola, D.J.: Chromium(II) complexes, zv. 1-9, 2021.
  • Koziskova, J.A. – Breza, M. – Valko, M. – Herich, P. – Bucinsky, L. – Kozisek, J.: Electronic structure of Schiff-base peroxo{2,2′-[1,2-phenylenebis(nitrilomethanylylidene)]bis(6-methoxyphenolato)}titanium(IV) monohydrate: A possible model structure of the reaction center for the theoretical study of hemoglobin. IUCrJ, zv. 8, str. 295-304, 2021.
  • Vénosová, B. – Koziskova, J. – Kozísek, J. – Herich, P. – Luspai, K. – Petricek, V. – Hartung, J. – Muller, M. – Hubschle, C.B. – Van Smaalen, S. – Bucinsky, L.: Charge density of 4-methyl-3-[(tetrahydro-2Hpyran- 2-yl)oxy]thiazole-2(3H)-thione. A comprehensive multipole refinement, maximum entropy method and density functional theory study. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, zv. 76, str. 450-468, 2020.
A. Soroceanu – M. Cazacu – S. Shova – C. Turta – J. Kožíšek – M. Gall – M. Breza – P. Rapta – T. Mac Leod – A. Pombeiro – J. Telser – A. Dobrov – V. Arion: Copper(II) Complexes with Schiff Bases Containing a Disiloxane Unit: Synthesis, Structure, Bonding Features and Catalytic Activity for Aerobic Oxidation of Benzyl Alcohol. European Journal of Inorganic Chemistry, str. 1458–1474, 2013.
  • Počet citácií       35
  • Zhang, G. – Li, L. – Yang, C. – Liu, E. – Golen, J.A. – Rheingold, A.L.: Copper(II) complexes derived from bidentate N,O-ligands for catalytic aerobic oxidation. Inorganic Chemistry Communications, zv. 51, str. 13-16, 2015.
  • Zhang, G. – Proni, G. – Zhao, S. – Constable, E.C. – Housecroft, C.E. – Neuburger, M. – Zampese, J.A.: Chiral tetranuclear and dinuclear copper(ii) complexes for TEMPO-mediated aerobic oxidation of alcohols: Are four metal centres better than two?. Dalton Transactions, č. 32, zv. 43, str. 12313-12320, 2014.
  • Guan, J. – Liu, J.: A Copper(II) Schiff base complex immobilized onto SBA-15 silica for selective oxidation of benzyl alcohol. Transition Metal Chemistry, č. 2, zv. 39, str. 233-238, 2014.
  • Guan, J. – Liu, J.: Bis(8-quinolinolato)copper(II) immobilized onto amino-modified SBA-15 for the selective oxidation of benzyl alcohol. Reaction Kinetics, Mechanisms and Catalysis, č. 2, zv. 111, str. 751-761, 2014.
  • Freitag, L. – Knecht, S. – Keller, S.F. – Delcey, M.G. – Aquilante, F. – Bondo Pedersen, T. – Lindh, R. – Reiher, M. – González, L.: Orbital entanglement and CASSCF analysis of the Ru-NO bond in a Ruthenium nitrosyl complex. Physical Chemistry Chemical Physics, č. 22, zv. 17, str. 14383-14392, 2015.
  • Gaona, M.A. – Montilla, F. – Álvarez, E. – Galindo, A.: Synthesis, characterization and structure of nickel and copper compounds containing ligands derived from keto-enehydrazines and their catalytic application for aerobic oxidation of alcohols. Dalton Transactions, č. 14, zv. 44, str. 6516-6525, 2015.
  • Chen, T. – Cai, C.: Selective Oxidation of Benzyl Alcohols to Aldehydes with a Salophen Copper(II) Complex and tert-Butyl Hydroperoxide at Room Temperature. Synthetic Communications, č. 11, zv. 45, str. 1334-1341, 2015.
  • Das, O. – Paine, T.K.: Copper catalysts for aerobic oxidation of alcohols. RSC Green Chemistry, č. 28, zv. 2015-January, str. 40-69, 2015.
  • Han, S. – Wang, Y.: Synthesis, structural characterization and catalytic oxidation property of schiff base copper(II) complexes. Journal of the Chilean Chemical Society, č. 4, zv. 59, str. 2753-2755, 2015.
  • Lu, P. – Yu, Y.-H. – Chen, Z.-J. – Hou, G.-F. – Chen, Y.-M. – Ma, D.-S. – Gao, J.-S. – Gong, X.-F.: Syntheses, structures, catalytic and antitumor activities of a series of pyrimidine derivatives coordination complexes. Synthetic Metals, zv. 203, str. 164-173, 2015.
  • Huidobro-Meezs, I.L. – Segovia-Poncelis, M. – Barquera-Lozada, J.E.: The Role of Bulkiness in Haptotropic Shifts of Metal–Cumulene Complexes. European Journal of Inorganic Chemistry, č. 26, zv. 2016, str. 4226-4233, 2016.
  • Novak, M.S. – Büchel, G.E. – Keppler, B.K. – Jakupec, M.A.: Biological properties of novel ruthenium- and osmium-nitrosyl complexes with azole heterocycles. Journal of Biological Inorganic Chemistry, č. 3, zv. 21, str. 347-356, 2016.
  • Castellarin, A. – Zorzet, S. – Bergamo, A. – Sava, G.: Pharmacological activities of ruthenium complexes related to their NO scavenging properties. International Journal of Molecular Sciences, č. 8, zv. 17, 2016.
  • del Mar Conejo, M. – Cantero, J. – Pastor, A. – Álvarez, E. – Galindo, A.: Synthesis, structure and properties of nickel and copper complexes containing N,O-hydrazone Schiff base ligand. Inorganica Chimica Acta, zv. 470, str. 113-118, 2018.
  • Antony, R. – Marimuthu, R. – Vishnoi, P. – Murugavel, R.: Ethoxysilane appended M(II) complexes and their SiO2/MCM-41 supported forms as catalysts for efficient oxidation of secondary alcohols. Inorganica Chimica Acta, zv. 469, str. 173-182, 2018.
  • Clarke, R.M. – Herasymchuk, K. – Storr, T.: Electronic structure elucidation in oxidized metal–salen complexes. Coordination Chemistry Reviews, zv. 352, str. 67-82, 2017.
  • Racles, C. – Zaltariov, M.-F. – Iacob, M. – Silion, M. – Avadanei, M. – Bargan, A.: Siloxane-based metal–organic frameworks with remarkable catalytic activity in mild environmental photodegradation of azo dyes. Applied Catalysis B: Environmental, zv. 205, str. 78-92, 2017.
  • Conejo, M.D.M. – Ávila, P. – Álvarez, E. – Galindo, A.: Synthesis and structure of nickel and copper complexes containing the N-allyl-o-hydroxyacetophenoniminato ligand and the application of copper complex as catalyst for aerobic alcohol oxidations. Inorganica Chimica Acta, zv. 455, str. 638-644, 2017.
  • Chaudhary, N.K. – Mishra, P.: Metal Complexes of a Novel Schiff Base Based on Penicillin: Characterization, Molecular Modeling, and Antibacterial Activity Study. Bioinorganic Chemistry and Applications, č. 6927675, zv. 2017, 2017.
  • Benferrah, N. – Hammadi, M. – Philouze, C. – Berthiol, F. – Thomas, F.: Copper(II) complex of a Schiff base of dehydroacetic acid: Characterization and aerobic oxidation of benzyl alcohol. Inorganic Chemistry Communications, zv. 72, str. 17-22, 2016.
  • do Pim, W.D. – Ribeiro-Santos, T.A. – Jardim, I.S. – de Castro, M.C.M. – Braga, A.H. – do Nascimento, G.M. – Binatti, I. – Stumpf, H.O. – Lorençon, E. – Araujo, M.H. – Pereira, C.L.M.: Bistable copper(II) metallosurfactant as molecular machine for the preparation of hybrid silica-based porous materials. Materials and Design, zv. 160, str. 876-885, 2018.
  • Mohapatra, R.K. – Das, P.K. – Pradhan, M.K. – Maihub, A.A. – El-ajaily, M.M.: Biological aspects of Schiff base–metal complexes derived from benzaldehydes: an overview. Journal of the Iranian Chemical Society, č. 10, zv. 15, str. 2193-2227, 2018.
  • Saxena, P. – Murugavel, R.: Bulky 2,6-dibenzhydryl-4-methylphenyl β-diiminato derived complexes of Pd(II) and Cu(II): Efficient catalysts for Suzuki coupling and alcohol oxidation. Journal of Organometallic Chemistry, zv. 868, str. 76-85, 2018.
  • Mahmoud, W.H. – Mohamed, G.G. – El-Sayed, O.Y.: Coordination compounds of some transition metal ions with new Schiff base ligand derived from dibenzoyl methane. Structural characterization, thermal behavior, molecular structure, antimicrobial, anticancer activity and molecular docking studies. Applied Organometallic Chemistry, č. 2, zv. 32, 2018.
  • Miller, S.A. – Bisset, K.A. – Leadbeater, N.E. – Eddy, N.A.: Catalytic Oxidation of Alcohols Using a 2,2,6,6-Tetramethylpiperidine-N-hydroxyammonium Cation. European Journal of Organic Chemistry, č. 6, zv. 2019, str. 1413-1417, 2019.
  • Beyramabadi, S.A. – Saadat-Far, M. – Faraji-Shovey, A. – Javan-Khoshkholgh, M. – Morsali, A.: Synthesis, experimental and computational characterizations of a new quinoline derived Schiff base and its Mn(II), Ni(II) and Cu(II) complexes. Journal of Molecular Structure, č. 127898, zv. 1208, 2020.
  • Yavari, M. – Beyramabadi, S.A. – Morsali, A. – Reza Bozorgmehr, M.: (E)-4-(((2-Amino-5-chlorophenyl)imino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol and its Cu(II) complex: Synthesis, DFT calculations and AIM analysis. Journal of the Serbian Chemical Society, č. 8, zv. 85, str. 1033-1046, 2020.
  • Barma, A. – Bhattacharjee, A. – Roy, P.: Dinuclear Copper(II) Complexes with N,O Donor Ligands: Partial Ligand Hydrolysis and Alcohol Oxidation Catalysis. European Journal of Inorganic Chemistry, č. 23, zv. 2021, str. 2284-2292, 2021.
  • Salih, K.S.M. – Shraim, A.M. – Al-Mhini, S.R. – Al-Soufi, R.E. – Warad, I.: New tetradentate Schiff base Cu(II) complexes: synthesis, physicochemical, chromotropism, fluorescence, thermal, and selective catalytic oxidation. Emergent Materials, č. 2, zv. 4, str. 423-434, 2021.
  • Bracci, M. – Bruzzese, P.C. – Famulari, A. – Fioco, D. – Guidetti, A. – Liao, Y.-K. – Podvorica, L. – Rezayi, S.F. – Serra, I. – Thangavel, K. – Murphy, D.M.: Paramagnetic species in catalysis research: A unified approach towards (the role of EPR in) heterogeneous, homogeneous and enzyme catalysis. Electron Paramagnetic Resonance, zv. 27, str. 1-46, 2021.
  • Kargar, H. – Ashfaq, M. – Fallah-Mehrjardi, M. – Behjatmanesh-Ardakani, R. – Munawar, K.S. – Tahir, M.N.: Synthesis, crystal structure, spectral characterization, theoretical and computational studies of Ni(II), Cu(II) and Zn(II) complexes incorporating Schiff base ligand derived from 4-(diethylamino)salicylaldehyde. Inorganica Chimica Acta, č. 120878, zv. 536, 2022.
  • Vibhute, B.T. – Aghav, B.D. – More, B.P. – Bellamkonda, R.O. – Patil, S.K.: Antimicrobial, Cytotoxicity and Molecular Docking Study of New Quinoline Schiff Base and its Metal(II) Complexes. Asian Journal of Chemistry, č. 3, zv. 34, str. 685-694, 2022.
  • Goshisht, M.K. – Patra, G.K. – Tripathi, N.: Fluorescent Schiff base sensors as a versatile tool for metal ion detection: strategies, mechanistic insights, and applications. Materials Advances, č. 6, zv. 3, str. 2612-2669, 2022.
  • Larbi, K.S. – Bouchoucha, A. – Bourouai, M.A. – Djebbar, S.: Novel metal (II) complexes with 2, 2’- bithiophene ligands as promising antibacterial agents: Spectral investigation, electrochemical behavior, DFT studies, in vitro and in silico biological properties. Journal of Molecular Structure, č. 135901, zv. 1291, 2023.
  • Kumar, M. – Singh, A.K. – Singh, A.K. – Yadav, R.K. – Singh, S. – Singh, A.P. – Chauhan, A.: Recent advances in 3d-block metal complexes with bi, tri, and tetradentate Schiff base ligands derived from salicylaldehyde and its derivatives: Synthesis, characterization and applications. Coordination Chemistry Reviews, č. 215176, zv. 488, 2023.
L. Bučinský – G. Büchel – R. Ponec – P. Rapta – M. Breza – J. Kožíšek – M. Gall – S. Biskupič – M. Fronc – K. Schiessl – O. Cuzan – D. Prodius – C. Turta – S. Shova – D. Zajac – V. Arion: On the electronic structure of mer,trans-[RuCl3(1H-indazole)2(NO)], a hypothetical metabolite of the antitumor drug sandidate KP1019: an experimental and DFT study. European Journal of Inorganic Chemistry, str. 2505–2519, 2013.
  • Počet citácií       8
  • Freitag, L. – Knecht, S. – Keller, S.F. – Delcey, M.G. – Aquilante, F. – Bondo Pedersen, T. – Lindh, R. – Reiher, M. – González, L.: Orbital entanglement and CASSCF analysis of the Ru-NO bond in a Ruthenium nitrosyl complex. Physical Chemistry Chemical Physics, č. 22, zv. 17, str. 14383-14392, 2015.
  • Oszajca, M. – Mrugała, B. – Brindell, M.: Aqueous behavior and reactivity towards nitric oxide of NAMI-A type complexes bearing bulky N-heterocyclic ligands. Inorganica Chimica Acta, zv. 460, str. 119-126, 2017.
  • Castellarin, A. – Zorzet, S. – Bergamo, A. – Sava, G.: Pharmacological activities of ruthenium complexes related to their NO scavenging properties. International Journal of Molecular Sciences, č. 8, zv. 17, 2016.
  • Oszajca, M. – Kuliś, E. – Stochel, G. – Brindell, M.: Interaction of the NAMI-A complex with nitric oxide under physiological conditions. New Journal of Chemistry, č. 8, zv. 38, str. 3386-3394, 2014.
  • Li, H. – Wang, D. – Zhao, X. – Lu, L.-N. – Liu, C. – Gong, L.-D. – Zhao, D.-X. – Yang, Z.-Z.: Reaction mechanism of NO with hydrolysates of NAMI-A: an MD simulation by combining the QM/MM(ABEEM) with the MD-FEP method. Journal of Computational Chemistry, 2018.
  • Li, H. – Wang, D. – Zhao, X. – Lu, L.-N. – Liu, C. – Gong, L.-D. – Zhao, D.-X. – Yang, Z.-Z.: Reaction mechanism of NO with hydrolysates of NAMI-A: an MD simulation by combining the QM/MM(ABEEM) with the MD-FEP method. Journal of Computational Chemistry, č. 10, zv. 40, str. 1141-1150, 2019.
  • Freitag, L. – Lindenbauer, L. – Oppel, M. – González, L.: A Density Matrix Renormalization Group Study of the Low-Lying Excited States of a Molybdenum Carbonyl-Nitrosyl Complex. ChemPhysChem, č. 22, zv. 22, str. 2371-2377, 2021.
  • Kucuk, C. – Celik, S. – Yurdakul, S. – Cotelı, E. – Erdem, B.: Synthesis, characterization, thermal, DFT study, antioxidant and antimicrobial in vitro investigations of indazole and its Ag(I) complex. Polyhedron, č. 116469, zv. 241, 2023.
  • Počet citácií       5
  • Stewart, Frederick F.: Phosphazenes. V Organophosphorus Chemistry, Vol 43, str. 366-412, 2014.
  • Nikovskii, I.A. – Chistyakov, E.M. – Tupikov, A.S.: Phosphazene-Containing Ligands and Complexes on Their Base. Russian Journal of General Chemistry, č. 3, zv. 88, str. 474-494, 2018.
  • Kaviani, S. – Shahab, S. – Sheikhi, M. – Khaleghian, M. – Al Saud, S.: Characterization of the binding affinity between some anti-Parkinson agents and Mn2+, Fe3+ and Zn2+ metal ions: A DFT insight. Inorganic Chemistry Communications, č. 108582, zv. 128, 2021.
  • Vidal, A. – Battistin, F. – Milani, B. – Balducci, G. – Alessio, E.: Stereoisomeric Control in [RuCl2(PTA)2(2L)] Complexes (2L=2py or bpy): From Theoretical Calculations to a 2+2 Metallacycle of Pyridylporphyrins. European Journal of Inorganic Chemistry, č. 4, zv. 2021, str. 321-334, 2021.
  • Arumugham, M.N. – Gopinathan, H. – Sumithra, M. – Baskaran, S. – Kumar, R. – Kaviani, S.: New cobalt(III) complex with triethylenetetramine and 2,2′-bipyridine: synthesis, crystal structure, DNA interaction, hirshfeld surface, DFT analysis, and cytotoxicity. Inorganic and Nano-Metal Chemistry, 2022.
  • Počet citácií       26
  • Khatri, P.K. – Jain, S.L.: Multiple oxo-vanadium schiff base containing cyclotriphosphazene as a robust heterogeneous catalyst for regioselective oxidation of naphthols and phenols to quinones. Catalysis Letters, č. 8, zv. 142, str. 1020-1025, 2012.
  • Yang, Y.: Metal-ligand coordination in subphthalocyanines and phthalocyanines: DFT, AIM and ELF analyses. Polyhedron, č. 1, zv. 33, str. 310-318, 2012.
  • Uslu, A. – Güvenaltin, S.: The investigation of structural and thermosensitive properties of new phosphazene derivatives bearing glycol and amino acid. Dalton Transactions, č. 44, zv. 39, str. 10685-10691, 2010.
  • Uslu, A. – Kiliç, A. – Güvenaltin, Ş.: The investigation of structural and thermosensitive properties of new phosphazene derivative bearing glycol and aminoalcohol. Inorganica Chimica Acta, č. 14, zv. 363, str. 3721-3726, 2010.
  • Sedaghat, T. – Tarassoli, A. – Mojaddami, A.: New organotin(IV) complexes with a potentially multi-site ligand based on the cyclotriphosphazene platform: Synthesis and spectral studies. Journal of the Iranian Chemical Society, č. 2, zv. 7, str. 371-375, 2010.
  • Davidson, R.J. – Ainscough, E. – Brodie, A.M. – Harrison, J.A. – Waterland, M.R.: The nature of the phosphazene nitrogen-metal bond: DFT calculations on 2-(Pyridyloxy)cyclophosphazene complexes. European Journal of Inorganic Chemistry, č. 11, str. 1619-1625, 2010.
  • Baryshnikov, G.V. – Minaev, B.F. – Minaeva, V.A. – Nenajdenko, V.G.: Single crystal architecture and absorption spectra of octathio[8]circulene and sym-tetraselenatetrathio[8]circulene: QTAIM and TD-DFT approach. Journal of Molecular Modeling, č. 10, zv. 19, str. 4511-4519, 2013.
  • Uslu, A. – Ün, Ş.Ş. – Kiliç, A. – Yilmaz, Ş. – Yuksel, F. – Hacivelioǧlu, F.: The synthesis and characterization of 4-isopropylanilino derivatives of cyclotriphosphazene. Inorganica Chimica Acta, zv. 405, str. 140-146, 2013.
  • Zoghaib, W.M. – Husband, J. – Soliman, U.A. – Shaaban, I.A. – Mohamed, T.A.: Analysis of UV and vibrational spectra (FT-IR and FT-Raman) of hexachlorocyclotriphosphazene based on normal coordinate analysis, MP2 and DFT calculations. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, zv. 105, str. 446-455, 2013.
  • Turkyilmaz, M. – Genc, F.: Multistep synthesis of phosphazene derivative of chenodeoxycholicacid (CDCA). Phosphorus, Sulfur and Silicon and the Related Elements, č. 11, zv. 189, str. 1723-1731, 2014.
  • Elmas, Gamze – Okumus, Aytug – Sevinc, Pelin – Kilic, Zeynel – Acik, Leyla – Atalan, Mustafa – Turk, Mustafa – Deniz, Gokberk – Hokelek, Tuncer: Phosphorus-nitrogen compounds. Part 37. Syntheses and structural characterizations, biological activities of mono and bis(4-fluorobenzyl)spirocyclotetraphosphazenes. New Journal of Chemistry, č. 13, zv. 41, str. 5818-5835, 2017.
  • Stewart, Frederick F.: Phosphazenes. V Organophosphorus Chemistry, Vol 40, str. 316-355, 2011.
  • Davarcı, D.: Design and construction of one-dimensional coordination polymers based on the dispiro-dipyridyloxy-cyclotriphosphazene ligand. Polyhedron, zv. 146, str. 99-107, 2018.
  • Nikovskii, I.A. – Chistyakov, E.M. – Tupikov, A.S.: Phosphazene-Containing Ligands and Complexes on Their Base. Russian Journal of General Chemistry, č. 3, zv. 88, str. 474-494, 2018.
  • Davarcı, D. – Şenkuytu, E. – Zorlu, Y.: Mercury(II) coordination polymers based on aniline-substituted tetra pyridyloxy cyclotriphosphazene: Syntheses, characterizations and UV–Vis absorption properties. Polyhedron, č. 114138, zv. 173, 2019.
  • Davarcı, D. – Tümay, S.O. – Şenkuytu, E. – Wörle, M. – Zorlu, Y.: New one-dimensional mercury(II) coordination polymers built up from dispiro-dipyridyloxy-cyclotriphosphazene: Structural, thermal and UV–Vis absorption properties. Polyhedron, zv. 161, str. 104-110, 2019.
  • Alkorta, I. – Elguero, J.: Theoretical calculations of the chemical shifts of cyclo[n]phosphazenes for n = 2, 3, 4 and 5 (X2PN)n with X = CH3, F, Cl and Br: the effect of relativistic corrections. Phosphorus, Sulfur and Silicon and the Related Elements, 2019.
  • Cabacı, İ. – Davarcı, D. – Zorlu, Y.: Ligand effects on the dimensionality of cyclophosphazene-based mercury(II) coordination polymers: Structures, UV–Visible absorption and thermal properties. Polyhedron, č. 114823, zv. 192, 2020.
  • Alkorta, I. – Elguero, J.: Theoretical calculations of the chemical shifts of cyclo[n]phosphazenes for n = 2, 3, 4 and 5 (X2PN)n with X = CH3, F, Cl and Br: the effect of relativistic corrections. Phosphorus, Sulfur and Silicon and the Related Elements, č. 4, zv. 195, str. 307-313, 2020.
  • da Silva, F.D. – Cabral, B.N. – Hennemann, A.L. – Pineda, N.R. – Burrow, R.A. – Piquini, P.C. – Lang, E.S. – dos Santos, S.S.: Synthesis and structural characterization of two exotic examples of aryltellurolate cluster compounds: [Ag4Hg(µ-TeoPy-κTe)3(µ3-TeoPy-κTe)2(µ3-TeoPy-κN,Te)(PPh3)2] and [{Cu(phen)}3(µ3-TePh)3(CuCl)]⋅0.5C2H6O. Inorganic Chemistry Communications, č. 109024, zv. 134, 2021.
  • Mirzaeva, I.V.: Large relativistic effects in 119Sn NMR parameters: A case study of complex anions [Cp*M(SnCl3)nCl3−n]−, where M = Rh, Ir; n = 1, 2, 3. Computational and Theoretical Chemistry, č. 113432, zv. 1205, 2021.
  • Yarovoy, S.S. – Mirzaeva, I.V. – Mironov, Y.V. – Pervukhina, N.V. – Brylev, K.A.: The Cluster Polyazide Complexes: Synthesis, Crystal Structures, and 14N NMR Studies of [{Re3(μ-X)3}(N3)9]3-(X = Br or I). Inorganic Chemistry, č. 31, zv. 61, str. 12442-12448, 2022.
  • Ma, J. – Zhu, M. – Wang, Y. – Liu, M. – Wang, B.: Insight into the dual action mechanism of 3V-PPh3 polymers as carriers and ligands in the Rh/3V-PPh3 heterogeneous catalytic hydroformylation of ethylene to propionaldehyde. Physical Chemistry Chemical Physics, č. 16, zv. 24, str. 9673-9684, 2022.
  • Ebenezer, C. – Vijay Solomon, R.: Do nitrate ions preferentially bind to Ln/An ion in nuclear waste treatment? – Answers from DFT calculations. Polyhedron, č. 115691, zv. 215, 2022.
  • Davarcı, D. – Doğan, N. – Cabacı, İ. – Zorlu, Y.: Manganese(II), cobalt(II) and nickel(II) complexes constructed from a pyridyloxy-functionalized hexapodal cyclophosphazene ligand: Structural and magnetic studies. Polyhedron, č. 115557, zv. 211, 2022.
  • Ebenezer, C. – Solomon, R.V.: Exploring the solvation of water molecules around radioactive elements in nuclear waste water treatment, zv. 2, 2023.
M. Gall – M. Breza: On electronic structure of tris(dimethylamino)sulphonium heptafluoro-oxocyclotetraphosphazenate. Journal of Molecular Structure: THEOCHEM, zv. 894, str. 32–35, 2009.
  • Počet citácií       3
  • Naseh, M. – Sedaghat, T. – Tarassoli, A. – Shakerzadeh, E.: DFT studies of ONO Schiff bases, their anions and diorganotin(IV) complexes: Tautomerism, NBO and AIM analysis. Computational and Theoretical Chemistry, zv. 1005, str. 53-57, 2013.
  • Huidobro-Meezs, Isaac L. – Segovia-Poncelis, Midori – Enrique Barquera-Lozada, Jose: The Role of Bulkiness in Haptotropic Shifts of Metal-Cumulene Complexes. European Journal of Inorganic Chemistry, č. 26, str. 4226-4233, 2016.
  • Stewart, Frederick F.: Phosphazenes. V Organophosphorus Chemistry, Vol 40, str. 316-355, 2011.
M. Gall – M. Breza: On the structure of hexahydroxocyclotriphosphazene. Journal of Molecular Structure: THEOCHEM, zv. 861, str. 33–38, 2008.
  • Počet citácií       2
  • Zhang, J. – Zheng, H. – Zhang, T. – Wu, M.: Theoretical study for high-energy-density compounds derived from cyclophosphazene. IV. DFT studies on 1,1-diamino-3,3,5,5,7,7- hexaazidocyclotetraphosphazene and its isomers. International Journal of Molecular Sciences, č. 8, zv. 10, str. 3502-3516, 2009.
  • Salmon, C. – Xue, Y. – Gogonea, V.: Formation Mechanism of the Unsubstituted Chlorophosphazene Cl3P═NH: A Theoretical Study via Quantum Mechanical Calculations. Inorganic Chemistry, č. 48, zv. 62, str. 19412-19420, 2023.
Facebook / Youtube

Facebook / Youtube

RSS