Position:
Deputy of institute
Head of department
Lecturer
Department:
Department of Mathematics (DM)
Room:
NB 615
eMail:
Phone:
0918 674 296 , kl. 296
Fax:
.
Availability:

Selected publications

Article in journal

  1. H. Bustince – C. Marco-Detchart – J. Fernandez – C. Wagner – J. Garibaldi – Z. Takáč: Similarity between interval-valued fuzzy sets taking into account the width of the intervals and admissible orders. Fuzzy Sets and Systems, vol. 390, pp. 23–47, 2020.
  2. A. H. Altalhi – J. I. Forcén – M. Pagola – E. Barrenechea – H. Bustince – Z. Takáč: Moderate deviation and restricted equivalence functions for measuring similarity between data. Information Sciences, vol. 501, pp. 19–29, 2019.
  3. H. Santos – I. Couso – B. Bedregal – Z. Takáč – M. Minárová – A. Asiain – E. Barrenechea – H. Bustince: Similarity measures, penalty functions, and fuzzy entropy from new fuzzy subsethood measures. International Journal of Intelligent Systems, vol. 34, pp. 1281–1302, 2019.
  4. Z. Takáč – H. Bustince – J. M. Pintor – C. Marco-Detchart – I. Couso: Width-Based Interval-Valued Distances and Fuzzy Entropies. IEEE Access, vol. 7, pp. 14044–14057, 2019.
  5. M. J. Asiain – H. Bustince – R. Mesiar – A. KolesárováZ. Takáč: Negations With Respect to Admissible Orders in the Interval-Valued Fuzzy Set Theory. IEEE Transactions on Fuzzy Systems, no. 2, vol. 26, pp. 556–568, 2018.
  6. M. Minárová – D. Paternain – A. Jurio – J. Ruiz-Aranguren – Z. Takáč – H. Bustince: Modifying the gravitational search algorithm: A functional study. Information Sciences, vol. 430-431, pp. 87–103, 2018.
  7. Z. Takáč – M. Minárová – J. Montero – E. Barrenechea – J. Fernandez – H. Bustince: Interval-valued fuzzy strong S-subsethood measures, interval-entropy and P-interval-entropy. Information Sciences, vol. 451-452, pp. 97–115, 2018.
  8. H. Zapata – H. Bustince – S. Montes – B. Bedregal – G. P. Dimuro – Z. Takáč – M. Baczyński – J. Fernandez: Interval-valued implications and interval-valued strong equality index with admissible orders. International Journal of Approximate Reasoning, vol. 88, pp. 91–109, 2017.
  9. Z. Takáč: Subsethood measures for interval-valued fuzzy sets based on the aggregation of interval fuzzy implications. Fuzzy Sets and Systems, vol. 283, pp. 120–139, 2016.
  10. Z. Takáč: OWA operator for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making. Kybernetika, no. 3, vol. 52, pp. 379–402, 2016.
  11. V. Kleňová – Z. Takáč: Condicio supervacua and related conditions in Roman law. Tijdschrift voor Rechtsgeschiedenis, no. 1-2, vol. 83, pp. 77–106, 2015.
  12. Z. Takáč: Aggregation of fuzzy truth values. Information Sciences, vol. 271, pp. 1–13, 2014.
  13. Z. Takáč: On some properties of alpha -planes of type-2 fuzzy sets. Kybernetika, no. 1, vol. 49, pp. 149–163, 2013.
  14. Z. Takáč: Inclusion and subsethood measure for interval-valued fuzzy sets and for continuous type-2 fuzzy sets. Fuzzy Sets and Systems, vol. 224, pp. 106–120, 2013.
Facebook / Youtube

Facebook / Youtube

RSS