Pracovné zaradenie:
Zástupca riaditeľa ústavu
Vedúci oddelenia
Pedagogický pracovník
Oddelenie:
Oddelenie matematiky (OM)
Miestnosť:
NB 615
eMail:
Telefón:
+421 918 674 296, +421 259 325 296
Dostupnosť:

Vybrané publikácie

Článok v časopise

  1. A. F. Roldán López de Hierro – C. Roldán – M. Á. Tíscar – Z. Takáč – R. H. N. Santiago – G. P. Dimuro – J. Fernandez – H. Bustince: Type-(2,k) Overlap Indices. IEEE Transactions on Fuzzy Systems, č. 3, zv. 31, str. 860–874, 2023.
  2. L. De Miguel – R. H. N. Santiago – C. Wagner – J. Garibaldi – Z. Takáč – A. F. Roldán López de Hierro – H. Bustince: Extension of Restricted Equivalence Functions and Similarity Measures for Type-2 Fuzzy Sets. IEEE Transactions on Fuzzy Systems, č. 9, zv. 30, str. 4005–4016, 2022.
  3. J. Fumanal – Z. Takáč – J. Fernandez – J. A. Sanz – H. Goyena – C. Lin – Y. Wang – H. Bustince: Interval-Valued Aggregation Functions Based on Moderate Deviations Applied to Motor-Imagery-Based Brain–Computer Interface. IEEE Transactions on Fuzzy Systems, str. 2706–2720, 2022.
  4. R. H. N. Santiago – M. Sesma-Sara – J. Fernandez – Z. Takáč – R. Mesiar – H. Bustince: F-homogeneous functions and a generalization of directional monotonicity. International Journal of Intelligent Systems, zv. 37, str. 5949–5970, 2022.
  5. A. Saranti – M. Hudec – E. Mináriková – Z. Takáč – U. Großschedl – C. Koch – B. Pfeifer – A. Angerschmid – A. Holzinger: Actionable Explainable AI (AxAI): A Practical Example with Aggregation Functions for Adaptive Classification and Textual Explanations for Interpretable Machine Learning. Machine Learning and Knowledge Extraction, zv. 4, str. 924–953, 2022.
  6. Z. Takáč – M. Uriz – M. Galar – D. Paternain – H. Bustince: Discrete IV dG-Choquet integrals with respect to admissible orders. Fuzzy Sets and Systems, zv. 448, str. 169–195, 2022.
  7. H. Bustince – R. Mesiar – J. Fernandez – M. Galar – D. Paternain – A. H. Altalhi – G. P. Dimuro – B. Bedregal – Z. Takáč: d-Choquet integrals: Choquet integrals based on dissimilarities. Fuzzy Sets and Systems, zv. 414, str. 1–27, 2021.
  8. N. Krivoňáková – A. Šoltýsová – M. Tamáš – Z. Takáč – J. Krahulec – A. Ficek – M. Gál – M. Gall – M. Fehér – A. Krivjanská – I. Horáková – N. Belišová – A. Butor Škulcová – P. Bímová – T. Mackuľak: Mathematical modeling based on RT‑qPCR analysis of SARS‑CoV‑2 in wastewater as a tool for epidemiology. Scientific Reports, č. art. no. 19456, zv. 11, str. 1–10, 2021.
  9. B. Pekala – U. Bentkowska – D. Kosior – Z. Takáč – A. Castillo – M. Sesma-Sara – J. Fernandez – J. Lafuente – H. Bustince: Interval‐valued equivalence measures respecting uncertainty in image processing. International Journal of Intelligent Systems, zv. 36, str. 2767–2796, 2021.
  10. I. Vajová – K. Vizárová – R. Tiňo – N. KrivoňákováZ. Takáč – S. Katuščák: Determination of pH distribution through pH-related properties in deacidified model paper. The European Physical Journal Plus, č. 5, zv. 136, str. 1–8, 2021.
  11. K. Vizárová – I. Vajová – N. Krivoňáková – R. Tiňo – Z. Takáč – Š. Vodný – S. Katuščák: Regression Analysis of Orthogonal, Cylindrical and Multivariable Color Parameters for Colorimetric Surface pH Measurement of Materials. Molecules, č. 12, zv. 26, str. 1–9, 2021.
  12. H. Bustince – C. Marco-Detchart – J. Fernandez – C. Wagner – J. Garibaldi – Z. Takáč: Similarity between interval-valued fuzzy sets taking into account the width of the intervals and admissible orders. Fuzzy Sets and Systems, zv. 390, str. 23–47, 2020.
  13. A. H. Altalhi – J. I. Forcén – M. Pagola – E. Barrenechea – H. Bustince – Z. Takáč: Moderate deviation and restricted equivalence functions for measuring similarity between data. Information Sciences, zv. 501, str. 19–29, 2019.
  14. H. Santos – I. Couso – B. Bedregal – Z. Takáč – M. Minárová – A. Asiain – E. Barrenechea – H. Bustince: Similarity measures, penalty functions, and fuzzy entropy from new fuzzy subsethood measures. International Journal of Intelligent Systems, zv. 36, str. 1281–1302, 2019.
  15. Z. Takáč – H. Bustince – J. M. Pintor – C. Marco-Detchart – I. Couso: Width-Based Interval-Valued Distances and Fuzzy Entropies. IEEE Access, zv. 11, str. 14044–14057, 2019.
  16. M. J. Asiain – H. Bustince – R. Mesiar – A. KolesárováZ. Takáč: Negations With Respect to Admissible Orders in the Interval-Valued Fuzzy Set Theory. IEEE Transactions on Fuzzy Systems, č. 2, zv. 26, str. 556–568, 2018.
  17. M. Minárová – D. Paternain – A. Jurio – J. Ruiz-Aranguren – Z. Takáč – H. Bustince: Modifying the gravitational search algorithm: A functional study. Information Sciences, zv. 430-431, str. 87–103, 2018.
  18. Z. Takáč – M. Minárová – J. Montero – E. Barrenechea – J. Fernandez – H. Bustince: Interval-valued fuzzy strong S-subsethood measures, interval-entropy and P-interval-entropy. Information Sciences, zv. 451-452, str. 97–115, 2018.
  19. H. Zapata – H. Bustince – S. Montes – B. Bedregal – G. P. Dimuro – Z. Takáč – M. Baczyński – J. Fernandez: Interval-valued implications and interval-valued strong equality index with admissible orders. International Journal of Approximate Reasoning, zv. 88, str. 91–109, 2017.
  20. Z. Takáč: Subsethood measures for interval-valued fuzzy sets based on the aggregation of interval fuzzy implications. Fuzzy Sets and Systems, zv. 283, str. 120–139, 2016.
  21. Z. Takáč: OWA operator for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making. Kybernetika, č. 3, zv. 52, str. 379–402, 2016.
  22. V. Kleňová – Z. Takáč: Condicio supervacua and related conditions in Roman law. Tijdschrift voor Rechtsgeschiedenis, č. 1-2, zv. 83, str. 77–106, 2015.
  23. Z. Takáč: Aggregation of fuzzy truth values. Information Sciences, zv. 271, str. 1–13, 2014.
  24. Z. Takáč: On some properties of alpha -planes of type-2 fuzzy sets. Kybernetika, č. 1, zv. 49, str. 149–163, 2013.
  25. Z. Takáč: Inclusion and subsethood measure for interval-valued fuzzy sets and for continuous type-2 fuzzy sets. Fuzzy Sets and Systems, zv. 224, str. 106–120, 2013.
Facebook / Youtube

Facebook / Youtube

RSS