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Abstract

This work is deals with optimal control of batch processes in the presence of uncertainty.
An integrated two-time-scale control is proposed, whereby a run-to-run adaptation strategy
with adaptation of the terminal constraints is implemented at the slow time scale, and is
integrated with a neighbouring-extremal controller that operates at the fast time scale
and performs further on-line corrections. This control scheme is especially suitable for
repeatable batch processes with the fast changes in process dynamics. In addition, this
scheme can be easily realised in real batch processes as the required computational power is
low. Particularly, the only computation performed in real-time at each sampling time is a
solution of a linear two-point boundary value problem. By sacrificing a bit of accuracy, all
the required controlled designs and an accompanying computations might by done off-line.
In the presence of uncertainty, the necessary conditions of optimality no longer hold. The
core idea is to use the so called NCO-tracking approach that pushes the gradients caused
by an uncertainty to zero. Neighbouring-extremal controller is approximated controller,
i.e. it is based on linearisation of the nominal solution. Because of a lower performance
of such control solution in chemical applications, the need for a supplementary adaptation
is obvious. Our proposed control scheme thus corrects approximated control by another
control. Run-to-run adaptation strategy updates the model between batches according to
the latest constraints measurements and re-optimises the nominal solution. This solution
then provides the reference trajectories for neighbouring-extremal controller. The thesis
describes essentials to understand the basic building blocks of the proposed control scheme.
In particular, the first part introduces the nominal optimisation, i.e optimisation under ideal
circumstances without the influence of the uncertainty. Next part discusses the efficient
algorithms that deals with the uncertainty. The proposed control is verified on real process.
It is shown that the integrated two-time-scale control scheme has faster convergence rate
and better performance in comparison to the other tested approaches.





Abstrakt

Táto práca sa zaoberá optimálnym riadeńım vsádzkových procesov v pŕıtomnosti neurči-
tost́ı. Navrhuje kombinované riadenie, ktoré operuje v dvoch časových škálach tak, aby
koncové obmedzenia boli adaptované medzi jednotlivými vsádzkami (pomalá časová škála)
a aby riadenie samotného vsádzkového procesu bolo opravované aproximovaným regulá-
torom (rýchla časová škála). Takáto riadiaca schéma je obzvlášt’ vhodná pre vsádzkové
procesy, ktoré sa pravidelne opakujú a majú rýchle zmeny dynamiky. V neposlednom
rade, takéto riadenie je v praxi l’ahko realizovatel’né, ked’že náročnost’ na výpočet je malá.
V tomto pŕıpade je jediným výpočtom, ktorý sa poč́ıta v reálnom čase vo vzorkách periódy,
lineárny dvojbodový hraničný problém. Za cenu nižšej presnosti môže byt’ celé riadenie
navrhnuté a predpoč́ıtané vopred. V takom pŕıpade, dvojbodový problém sa skonvertuje na
maticový systém Ricattiho rovńıc. Ked’že v pŕıtomnosti neurčitost́ı nie sú splnené nevy-
hnutné podmienky optimality (NPO), hlavnou myšlienkou je použit’ pŕıstup sledovania
NPO. V tomto pŕıstupe sú gradienty vzniknuté neurčitost’ami usmerňované ku nule. Jeden
zo spôsobov ako to dosiahnút’, je aproximovat’ riadenie linearizáciou optimálného riešenia a
použit’ aktuálne merania stavových velič́ın. Avšak, takéto riadenie vykazuje nižšiu kvalitu
riadenia chemických procesov pre ich vel’mi nelineárne správanie. Nami navrhnutá riadiaca
schéma preto koriguje aproximované riadenie d’aľśım riadeńım. Konkrétne, adaptovańım
koncových obmedzeńı medzi jednotlivými vsádzkami podl’a ich merańı. Podl’a rozdielu
medzi skutočnými a očakávanými hodnotami koncových obmedzeńı sa uprav́ı model a vy-
poč́ıta sa nové optimálne riadenie. Toto optimálne riadenie zároveň slúži ako referencia
pre aproximovaný regulátor. Práca poskytuje teoretické minimum pre návrh a implemen-
táciu navrhovanej riadiacej schémy. Konkrétne, prvá čast’ definuje optimalizačný problem
a jeho riešenie za ideálnych okolnost́ı, t.j. bez vplyvu neurčitost́ı. Ďaľsia čast’ navrhuje
efekt́ıvne pŕıstupy na riadenie vsádzkových procesov v pŕıtomnosti neurčitost́ı. Záverečná
čast’ overuje kvalitu kombinovaného riadenia na reálnom zariadeńı. Kombinované riadenie
preukázalo, že rýchleǰsie konverguje a má lepšie vlastnosti ako ostatné študované pŕıstupy.
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Introduction

In general, controlled processes allow certain flexibility of operation within which the pro-
cess can be handled. A control policy can then be heuristic approach based on knowledge
and human observation, or more effective systematic approach based on feedback control
and optimisation techniques. For instance, a reactor can operate with varying flow rate,
temperature, current, heat duty, or pressure subject to physical constraints. The goal is to
choose the best set of operating conditions that satisfy desired production objectives (e.g.
steady-state, conversion rate, or final product concentration).

In addition, the controlled process is usually subject to large uncertainty during its
operation. Common sources of uncertainty include measurement noise, inaccurate kinetic
rate parameters, feed impurities, and fouling. These normally give a rise to a lower pro-
duction quality and quantity along with operational constraint violations. In such a case,
the optimal control has the ability not only to optimise the operating policy but as well as
to mitigate the effect of uncertainty on process performance, especially in the presence of
constraints (Kadam and Marquardt, 2007).

The solution of dynamic optimisation problem has been subject of interest centuries
ago. Johann Bernoulli posed first dynamic optimisation problem, the Brachystochrone
(greek quickest) problem (Tikhomirov, 1986), in 1696. The problem was to find the shape
of a frictionless wire that causes a bead, initially at rest, to move under the influence of
gravity to a specified point in minimum time. Bernoulli motivated the mathematicians of
Europe and the problems of dynamic optimisation earned their interest.

In order to control processes, one needs the proper mathematical description of their
behaviour. In general, mathematical models are usually inaccurate and they do not exactly
describe a behaviour of a real process as some model variables cannot be determined at
all. These unknown variables are considered as uncertainties and they may take a form
of model mismatch, variations of the process parameters, and of the process disturbances.
Hence, the optimal profiles (open-loop solution) computed for the modelled process lead
the actual process into non-optimal operating conditions and constraint violations.

As the optimisation of dynamic processes heavily relies on mathematical models that are
normally inaccurate, the need for a methodology that encompasses the lack of accuracy
in models has motivated the development of optimisation schemes that can operate in
presence of uncertainty.

Amongst the many approaches that have been proposed in the past, a popular one
consists of adjusting the model according to the most recent measurements. Controller is
then redesigned or optimisation is rerun in order to obtain input updates. Such optimisa-
tion is also called explicit since the model is used explicitly to compute the updated input.

1



2 Contents

The methodology can be observed in Linear-Quadratic-Gaussian (LGC) control (Zhou,
Doyle, et al., 1995), adaptive control (Äström and Wittenmark, 1983, 1989), robust H∞

loop-shaping (Doyle and Stein, 1981; McFarlane and Glover, 1989; Zhou, Doyle, et al.,
1995), non-linear model predictive control (NMPC) with polytopic invariant sets (Cannon,
Deshmukh, et al., 2003, 2004; Chen, Ballance, et al., 2001), and traditional NMPC (Abel
and Marquardt, 1998; Allgöwer and Zheng, 2000; Garcia, Prett, et al., 1989).

Traditional NMPC implements a re-optimisation strategy and uses measurements to
update the current state in the model. This strategy suffers from some important deficien-
cies: i) the re-optimisations may not be tractable in real-time; ii) the need of expensive
hardware and software setup. Clearly, the time needed to re-optimise the system depends
on both the problem complexity and the computing performance. A re-optimisation fre-
quency that is too small may lead to performance loss, or worse constraint violations and
instability, especially in chemical processes that exhibit fast process dynamic. These short-
comings have motivated development of advanced MPC techniques (Diehl, Bock, et al.,
2002; Diehl, Gerhard, et al., 2008; Würth, Hannemann, et al., 2009a).

Another technique is the so-called explicit MPC approach (Bemporad, Morari, et al.,
2002; Dominguez and Pistikopoulos, 2010; Kvasnica, 2009; Pistikopoulos, Georgiadis, et al.,
2007a,b). Multi-parametric programming is used to pre-compute off-line all possible control
actions for a given range of the state variables. The control inputs are then adjusted by
simply selecting the control law that corresponds to the actual state of the process, as given
by the latest measurements. Although this method can accommodate fast sampling times,
its foremost limitation comes from the curse of dimensionality and from the quality of the
linearisations. This currently limits the application of explicit MPC to problems having
no more than a few state variables as well as piecewise linear dynamics.

Therefore, alternative (implicit) approaches that do not rely on re-optimisation are
needed. The development of the calculus of variations, by many scientist of 18th and 19th
century, allowed the derivation of necessary and sufficient conditions for a dynamic opti-
misation problem (also optimal control). However, these conditions indicate if a solution
is optimal, but not necessarily how to find an optimal (or even improved) solution. In
restricted cases, they can be used for finding an analytical solution. Numerical solutions
were not attempted upon the advent of computers. In addition, an information about
actual state of (non-) optimality can be used to recover the optimality loss. The implicit
approach is known from the literature as a tracking of necessary conditions for optimality
(NCO-tracking) (François, Srinivasan, et al., 2007; Srinivasan and Bonvin, 2004a, 2007;
Srinivasan, Bonvin, et al., 2003b; Srinivasan, Visser, et al., 1997; Visser, Srinivasan, et al.,
1999). The problem of NCO tracking can be divided into two main sub-problems in which
it is associated with either active constraints or with sensitivities. Former research showed
that the tracking of active constraints can be done using standard control tools. In oppo-
site, the tracking of sensitivities is not so simple because the sensitivity part is not given
explicitly by the state of the system.

The very first methods of reference seeking called “extremal control” or “self-optimising
control” (Blackman, 1962; Morosanov, 1957; Ostrovskii, 1957; Pervozvanskii, 1960) were
developed back in the 1950–1960s. In the last decades, treating of the uncertainties regained
significant popularity. This renewed interest is possible due advances in instrumentation,
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i.e. through the availability of measurements and of a computational power.
This work presents a two-time-scale approach, where a run-to-run adaptation strat-

egy (Bonvin, Srinivasan, et al., 2006) with adaptation of the terminal constraint (Marchetti,
Chachuat, et al., 2007) is implemented at the slow time scale (outer loop) and is integrated
with a (constrained) neighbouring-extremal (NE) controller (Bryson and Ho, 1975) that
operates at the fast time scale (inner loop). A similar two-time-scale control was previ-
ously proposed by (Würth, Hannemann, et al., 2009a; Zavala and T. 2009) where NMPC is
implemented at slow time scale and a first-order sensitivity update is performed at the fast
time scale. (Gros, 2007) introduced the combination of NMPC and NE control. The NE
control provided fast input updates in inner loops, while the optimal control trajectories
are updated by NMPC in outer loops.

The novelty of this work is the development of a two-level scheme for batch processes.
Analogous to the adaptation of initial conditions for each receeding horizon in NMPC,
terminal constraints are adapted here between each batch based on the mismatch between
their predicted and measured values. Then, the entire batch operation is re-optimised
between the runs. In order to reject disturbances within each run and at the same time
to promote feasibility and optimality, a NE controller is considered here as the inner loop.
The theory of NE control, which has been developed over the last 4-5 decades to avoid the
costly re-optimisation of (fast) dynamic systems, is indeed well-suited for batch process
control. The integration between the outer- and inner-loops occurs naturally since the
NE controllers are recalculated after each run based on the solution to the outer-loop
optimisation problem. The resulting integrated two-time-scale optimisation scheme thus
offers promise to enhance performance and tractability.

Thesis Structure

Part I introduces the problem of dynamic optimisation under ideal conditions and its
various forms. This part also provides the overview of the current state in the liter-
ature. Chapter 2 postulates the necessary conditions of optimality for the problems
of dynamic optimisation. These conditions represent the foundation of the real-time
dynamic optimisation for the batch processes. Next, the computational principles of
nominal optimisation are explained, in particular, the direct and indirect numerical
methods are discussed in Chapter 3. Possible implementations of direct methods
have been published in:

— M. Čižniar, M. Podmajerský, T. Hirmajer, M. Fikar, M. A. Latifi (2009).
“Global optimization for parameter estimation of differential-algebraic systems”.
In: Chemical Papers 63(3), pp. 274–283

— M. Podmajerský, M. Čižniar, T. Hirmajer, M. Fikar, M. A. Latifi (2007).“Recent
Developments in Dynopt Package”. In: Proceedings of the 16th International
Conference Process Control ’07. Slovak University of Technology in Bratislava,
032f.pdf

Finally, the Chapter 4 demonstrates step-by-step procedure to obtain a nominal
solution.



4 Contents

Part II discusses the real-time optimisation scheme that uses separate controllers to meet
the optimality conditions and to deliver optimal control policy for real batch pro-
cesses. This part also presents the main contributions of the thesis. Chapter 5
explains the NCO-tracking control scheme that directly incorporates the NCO in the
control design. The following Chapter 6 and Chapter 7 are devoted to NCO-tracking
associated with active constraints and associated with sensitivities. Secondly, an ex-
tension of these two approaches results in NCO-tracking by two-time-scale control for
constrained problems and it is proposed in Chapter 8. The results in these chapters
correspond to those given as:

NCO-tracking by standard PID controllers. Published in:

– M. Podmajerský and M. Fikar (2008).“Measurement-based Run-to-run Op-
timisation of Hybrid Two-stage Reactor System”. In: Proceedings of the 8th
International Scientific - Technical Conference Process Control 2008. Kouty
nad Desnou, Czech Republic: University of Pardubice, C025a–1–C025a–11

NCO-tracking by NE controller. Published in:

– M. Podmajerský and M. Fikar (2009a). “On-Line Neighbouring-Extremal
Controller Design for Setpoint-Transition in Presence of Uncertainty”. In:
AT&P Journal Plus( 2), pp. 77–83

– M. Podmajerský and M. Fikar (2010).“Measurement-based Run-to-run Op-
timisation of Hybrid Two-stage Reactor System”. In: Selected Topics in
Modelling and Control. 6. Slovak University of Technology Press, pp. 44–51

NCO-tracking by two-time-scale control. Published in:

– M. Podmajerský, B. Chachuat, M. Fikar (2011a). “Integrated Two-Time-
Scale Scheme for Real-time Optimisation of Batch Processes”. In: Proc. of
the 18th IFAC World Congress. Milano, Italy

– M. Podmajerský and M. Fikar (2011). “Real-time Dynamic Optimisation
by Integrated Two-Time-Scale Scheme”. In: Proceedings of the 18th Inter-
national Conference on Process Control 11. Slovak University of Technology
in Bratislava. Štrbské Pleso, Slovakia

– M. Podmajerský, B. Chachuat, M. Fikar (2011b). “Measurement-based Op-
timisation of Batch Processes using an Integrated Two-Time-Scale Scheme”.
In: Optimization and Engineering. (Submitted)

– M. Podmajerský, B. Chachuat, M. Fikar (2011c). “Run-to-run Optimisa-
tion of Batch Processes with In-batch Controller”. In: Selected Topics on
Constrained and Nonlinear Control. Preprints. STU Bratislava - NTNU
Trondheim, pp. 337–342

Part III presents the application of the proposed control approaches introduced in the Part II
to a laboratory device. The level control of two connected tanks with liquid inter-
action is considered to illustrate the advantages of the proposed NCO-tracking con-
trol scheme with integrated controllers in comparison to NCO-tracking schemes with
standalone controllers. The results have been published in:
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— M. Podmajerský, B. Chachuat, M. Fikar (2011a). “Integrated Two-Time-Scale
Scheme for Real-time Optimisation of Batch Processes”. In: Proc. of the 18th
IFAC World Congress. Milano, Italy

— M. Podmajerský and M. Fikar (2011). “Real-time Dynamic Optimisation by
Integrated Two-Time-Scale Scheme”. In: Proceedings of the 18th International
Conference on Process Control 11. Slovak University of Technology in Bratislava.
Štrbské Pleso, Slovakia

— M. Podmajerský, B. Chachuat, M. Fikar (2011b). “Measurement-based Opti-
misation of Batch Processes using an Integrated Two-Time-Scale Scheme”. In:
Optimization and Engineering. (Submitted)

— M. Podmajerský, B. Chachuat, M. Fikar (2011c). “Run-to-run Optimisation of
Batch Processes with In-batch Controller”. In: Selected Topics on Constrained
and Nonlinear Control. Preprints. STU Bratislava - NTNU Trondheim, pp. 337–
342

Main Goals

The prime aim of this thesis is to develop and experimentally examine a control scheme that
is able to control batch processes with respect to the terminal requirements, in the optimal
way, and in the on-line fashion. It is also required that a such control scheme is model-
based and it respects the conditions of optimality, it is robust enough to deal with various
forms of an uncertainty (measurement noise, model mismatch, perturbations), it can handle
fast process dynamic and finally, with low implementation costs (without unnecessary re-
optimisations). This objective is exploited in the three phases: the optimisation of the
modelled process, the control design, and at last the practical application of the proposed
solution in laboratory conditions.

In detail, the objectives can be summarised as follows:

• Transform the open-loop nominal solution into a closed-loop control structure by
decoupling into several NCO parts that are further adapted by standalone control
schemes.

• Implement a simple NCO-tracking control for batch processes with the use of stan-
dard control tools, e.g. PID controllers.

• Extent the simple NCO-tracking control for unconstrained and constrained batch pro-
cesses via advanced self-optimising controllers. Where, in the presence of uncertainty,
the optimality loss of the unconstrained problems cancels out the neighbouring-
extremal control within the batch. The optimality loss of the constrained problems is
handled by the run-to-run controller that updates the variables between the batches.
In addition the optimality loss of the constrained problems can be also eliminated by
extended NE controller.

• Design the NCO-tracking control scheme that improves the control policy of the
constrained problems with lower complexity but with maximum of the performance.



6 Contents

• The intention of the practical part is to apply the proposed control scheme in labora-
tory conditions and to experimentally verify its performance. The results shall discuss
difficulties regarding an implementation, suitability, applicability, and performance
of the proposed methods.



Part I

Dynamic Optimisation under Ideal

Conditions
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Chapter 1

Nominal Optimisation

To comprehend the advanced control approach via real-time dynamic optimisation the
basic building blocks have to be recalled, first. This part briefly overviews mathematical
background around which is this work built. Particularly, the importance of the chapter
dedicated to the optimality conditions is accented throughout the thesis as it provides
methodology for real-time optimisation of batch processes.

Within this part, the following topics are reviewed:

• Nominal optimisation problem: objective function, constraints, and dynamic model;

• Nominal solution of the problem by: Optimal Control Theory, Pontryagin’s Maxi-
mum Principle (PMP), direct and indirect numerical optimisation methods;

• Necessary conditions of optimality.

1.1 Introduction

Dynamic optimisation of processes can generally be characterised as an optimisation of
time-varying functions. The goal is to find a continuous time-dependent function that fits
best some given criterion. Similarly, this can be expressed as a search for a continuous
control function that influences the evolution of a state function in each time instant in
such a way that it optimises the objectives. The former refers to calculus of variations and
the latter refers to optimal control problems.

In the calculus of variations, the main goal is to choose a set of continuously differen-
tiable functions x(t), t0 ≤ t ≤ t1 that optimise the following criterion:

min

∫ t1

t0

L(ẋ(t),x(t), t)dt

s.t. x(t0) = x0.

It refers to the problem of finding optimal trajectories, arcs and surfaces. These problems
came from physics and geometry and they have been posed by Newton, Galileo, Huygens,
and by the others. Later, the mathematicians such as Bernoulli, Leibnitz, Euler and
Lagrange, founded the solution for such problems.

9
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Optimal control refers to the problem where the evolution of the one set of variables
dictates the dynamic behaviour of the other set of variables through the set of ordinary
differential equations (ODE) or the set of differential-algebraic equations (DAE). Indeed,
in such problems, the unknown variables are separated into the states and controls. It
is obvious that current and future states evolve accordingly to chosen control actions.
The problem of optimal control is an extension of the calculus of variations and it can
be transformed into the comparable problem of choosing a set of continuously differential
functions u(t), t0 ≤ t ≤ t1 to satisfy the criterion and dynamic constraints:

min

∫ t1

t0

L(u(t),x(t), t)dt

s.t. ẋ(t) = F (u(t),x(t), t); x(t0) = x0.

A precise mathematical formulation of optimal control problems follows in Section 1.2.
A systematic approach to choose the best set of optimal operating conditions that lead

to a desired state in optimal manner and with respects the constraints, is as follows:

Step 1 to develop a mathematical model for the process under consideration

Step 2 to develop a mathematical realisation for the objective function that needs to be
minimised

Step 3 to run an optimisation in order to compute the best set of operating conditions
that minimise the performance index subject to the process constraints

Step 4 to implement the optimal operating condition to the real process

Clearly, optimal control relies heavily on process model. If the mathematical model is
accurate enough then the direct implementation of optimal solution steers the real process
in optimal way. To reduce the level of uncertainty in models, one tendency is to increase the
model complexity so as it predicts better evolution of the real process. The optimisation
of large models leads to large-scale optimisation schemes that might be difficult to solve
on the one side, on the other side, they require prohibitive amount of work to describe the
real dynamic within certain accuracy. If the process dynamic changes or if some process
variables varies, the model needs to be adjusted and re-optimised, accordingly. Second
tendency is to work with simple models, and to deal with the uncertainty by alternative
optimisation approach. This part is devoted to optimisation under ideal circumstances,
also known as nominal optimisation. The optimisation under uncertainty is explained in
the Part II.

At last, as regular optimal control problems are too complex to be solved analytically,
numerical methods provide solution of such problems. Several classes of algorithms are
presented in Chapter 3.

1.2 Optimisation Problem Statement

The formulation of an optimal control problem follows Bryson and Ho, 1975; Chachuat,
2007; Troutman, 1995; Vı́teček and Vı́tečková, 2002 and is closely presented in the following
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sections. In particular, the class of admissible controls is addressed in Section 1.2.1, the
mathematical representation of batch processes in Section 1.2.2, the objective criterion is
specified in Section 1.2.3. Finally, the constraints are stated in Section 1.2.4.

1.2.1 Admissible Controls

Let us assume that process exists and its dynamic behaviour is characterised at any time
instant by the state variables. Further, let us assume that this process can be controlled,
i.e. the future states of the process are affected by positions of controller. These controller
positions are represented by a finite number of points u = (u1, u2, . . . , unu) ∈ R

nu , nu ≥ 1,
specifically by the vector of control variables. The values that these variables can encompass
are usually restricted to certain control region U ∈ Rnu , in the majority of optimal control
problems. For example, the control region U may have a shape of hypercube:

uLi ≤ ui ≤ uRi , i = 1, . . . , nu. (1.1)

The physical meaning is obvious. The bounded control region represents real limitations,
e.g. actuator limitations, the fuel in the tank, the volume, voltage, temperature, etc.
Throughout the thesis, every function u(t), defined in time domain [t0, t1] and normally
also defined within the range of control region U , represents a continuous control.

1.2.2 Process Model Equations

In optimal control, the process model plays very important role. It is non-trivial work to
obtain the simplest mathematical representation of the process that accurately predicts
the physical system reaction to any control from a set of all admissible controls. This work
is restricted to the class of problems for which the dynamic constraints involve ordinary
differential equations (ODE). The problems in which dynamic behaviour is described by
differential-algebraic equations (DAE) are not treated here.

Consequently, a dynamical system is denoted by a set of ordinary differential equations
(ODE) of the form:

ẋ(t) = F (x(t),u(t), t); x(t0) = x0. (1.2)

Here, F ∈ Rnx is a smooth vector of differential equations with a priori known initial
conditions x0 ∈ R

nx . It is assumed that the gradient Fx(t) :=
∂f

∂x
(x(t),u(t), t) of F exists.

The initial conditions are constant and they are not function of any parameters. t ∈ R
represents the time (independent variable). If time t does not appear explicitly in F then
the system is so-called autonomous. The control (also input or manipulated) variables are
given by the control vector u(t) ∈ U . Dynamical behaviour of the process in whole time
domain is characterised by vector of state variables x(t) ∈ Rnx . The response of the system
x(x0,u(t), t) is then given by solving (1.2) for the initial condition x0 and corresponding
control signals.

1.2.3 Performance criterion

The performance criterion (also called cost functional, objective, optimisation criterion, or
simply cost) is a quantitative measure of system performance. It corresponds, for exam-
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ple, to achieving a desired product quality/quantity at the most economical cost, or to
maximising a product yield.

In general, the performance criterion J ∈ [t0, t1] is mathematically expressed in one of
the three forms:

Lagrange form

J :=

∫ t1

t0

L(x(t),u(t), t)dt (1.3a)

Mayer form

J := φ(x(t1), t1) (1.3b)

Bolza form

J := φ(x(t1), t1) +

∫ t1

t0

L(x(t),u(t), t)dt (1.3c)

where

J ∈ R represents the overall cost functional;

φ ∈ R represents the component of the performance criterion at the final time;

L ∈ R represents the Lagrangian;

x(t) ∈ Rnx represents the vector of state variables;

u(t) ∈ Rnu represents the vector of control variables.

It is assumed that the Lagrangian L(x(t),u(t), t) is defined, it is continuous as has con-
tinuous partial derivatives Lx. Moreover, the final time t1 may be considered as a fixed or
free variable in the optimisation problem.

Note that all the three forms of the cost functional are interchangeable and can be
derived one from another:

• Initially, Lagrange form can be reduced to Mayer form by introducing a new state
variable xL(t), by augmenting the state vector x̂(t) := (x1(t), x2(t), . . . , xn(t), xL(t))

T

and by a supplementary differential equation:

ẋL(t) = L(x(t),u(t), t); xL(t0) = 0. (1.4)

Subsequently, the cost functional (1.3a) takes the Mayer form (1.3b) with φ(x̂(t1), t1) :=
xL(t1).
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• Next, Mayer form can be reduced to Lagrange form by defining a new state variable
xL(t), the augmented state vector x̂(t) := (x1(t), x2(t), . . . , xn(t), xL(t))

T , and by an
additional differential equation

ẋL(t) = 0; xL(t0) =
φ(x(t1), t1)

t1 − t0
. (1.5)

The functional (1.3b) is transformed into Lagrange form (1.3a) with L(x̂(t),u(t), t) :=
xL(t).

• Finally, the previous two transformations can be used to rewrite Bolza form (1.3c) into
the one of Mayer or Lagrange form, respectively. See that Mayer form is a special
Bolza form with L(x̂(t),u(t), t) := 0. Additionally, Bolza form with component
φ(x̂(t1), t1) := 0 is equal to Lagrange form.

1.2.4 Constraints

The process is usually subject to several constraints given by physical properties that re-
strict the range of values assumed by both the control and state variables. They results
from safety, ecological, or operability requirements, such as limits on temperature, con-
centration, NOx and CO2 emissions, or re-prioritising of production. In optimal control
problems usually occur either point-wise or path constraints. Point-wise constraints arise
from selectivity or performance requirements. For instance, the concentration of a reactant
in the final product at the end of batch may be constrained to be at least as a required
value for its marketability or further usage in other reactions. Path constraints normally
arise from safety or actuator limitations. Flow rate, temperature, and concentration are
typical path constraints as they are limited by physical realisation, e.g. positive values of
temperature. All these constraints can be equalities or inequalities.

Point-wise Constraints The common form of these constraints in optimal control prob-
lems are terminal constraints, i.e. point-wise constraints defined at final time t1. An
inequality terminal constraint is of the form:

ψ(x(t1), t1) ≤ 0 (1.6)

Path Constraints This type of constraints restricts the range of values of control and
state variables over the entire time interval [t0, t1] or any time subinterval. Path
constraint could be of form:

ρ(x(t),u(t), t) ≤ 0; for t ∈ [t0, t1] (1.7)

In general, a distinction is made between path constraints depending explicitly on
the control variables:

uL ≤ u(t) ≤ uU ; for t ∈ [t0, t1] (1.8)

or depending only on the state variables:

xL ≤ x(t) ≤ xU ; for t ∈ [t0, t1] (1.9)



14 1 Nominal Optimisation

In general, the previous conditions are also referred as box constraints, i.e. the control or
state variables can take values between its given lower and upper bounds.

Note that only the path constraints for control variables ρ(u(t), t) ≤ 0 are considered
further.

1.2.5 Problem Formulation

Regrouping of previous parts posed from Section 1.2.1 to Section 1.2.4, the optimisation
problem becomes:

min
u
J = φ(x(t1)) +

∫ t1

t0

L(x,u)dt (1.10)

s.t. ẋ = F (x,u), t0 ≤ t ≤ t1 (1.11)

x(t0) = x0 (1.12)

ψ(x(t1), t1) ≤ 0 (1.13)

ρ(u(t), t) ≤ 0. (1.14)

Note that the problem of an optimal control (1.14) may not have a solution. Whether
this solution exists or not, one may investigate if an admissible control can be found in
such a way that it respects the constraints. This solution is then feasible and the system
is controllable, i.e. it express the ability of the system to move from any initial state at
initial time to any desired state at final time. Indeed, if the solution is not feasible, then
an admissible control for the optimisation problem does not exist.

To actually find an optimal control for a considered problem, one needs algebraic condi-
tions that are necessary or sufficient for optimality. These conditions are an instrument to
diminish a small number of candidates for an optimal control. In Chapter 2, applications
of variational methods are studied in order to obtain necessary and sufficient conditions of
optimality for problems with and without constraints.



Chapter 2

Necessary Conditions for Optimality

A set of conditions which have to be necessarily satisfied by any optimal control is closely
introduced in this chapter. In many cases, these conditions allow to sort out several control
profiles, often even a single control profile. It is clear that if exists an optimal control, there
is relevant chance to select one from plenty of candidates.

In the first section, the necessary conditions of optimality are exploited for optimal
control problems without restricted control and state variables. More general optimal
control problems with additional constraints are considered later, in the second section.

2.1 Problems without Constraints

Let us assume the simplest optimal control problem without path and end-point constraints
with fixed initial time t0 and fixed terminal time t1 as follows:

min
u
J =

∫ t1

t0

L(x,u)dt (2.1)

s.t. ẋ = F (x,u); x(t0) = x0 (2.2)

The response x(t), t0 ≤ t ≤ t1 to a control function u(t), t0 ≤ t ≤ t1 is provided by
solving the initial value problem (2.2) with initial condition x(t0) = x0 and in time domain
[t0, t1]. Remind that for sake of simplicity, further, the time functions (e.g. x(t)) will be
used without (t) notation after initial definition.

Subsequently, let us assume that there exists an optimal control u∗ and that for all
other controls u hold:

J [u] ≥ J [u∗] (2.3)

In some cases, the optimal control u∗ might not exist even though it satisfies condition (2.3).
It need to be emphasis that the proof of existence of an optimal control is difficult to find.
However, the necessary conditions may single out a non-empty set of candidates, but an
optimal control still might not exist for the problem.

In order to derive the conditions that must be necessarily satisfied at the optimal point,
it is assumed that the optimal control u∗ exists. These conditions follow from small changes
in functional (2.1) and from small changes δu in optimal control u∗. Then, the variation

15
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of state variables δx are implicitly related to variations of control variables δu through the
non-linear differential equations (2.2).

The system response related to the control:

u = u∗ + δu (2.4)

is then given by
x = x∗ + δx. (2.5)

The dynamic constraints (2.2) then vary accordingly

δẋ =
∂F ∗

∂x∗
δx+

∂F ∗

∂u∗
δu. (2.6)

Note that superscript ∗ indicates that the corresponding quantity is evaluated along the
extremal path u∗, t0 ≤ t ≤ t1, and corresponding states x∗, t0 ≤ t ≤ t1.

These variations cause variation of objective functional δJ . If this variation is con-
tinuous and variations of controls are unbounded (i.e. δu has a real positive or negative
values) then δJ := 0 is necessary condition for the extreme. The variation of the objective
functional can be also expressed as:

δJ =

∫ t1

t0

[(
∂L

∂x

)T

δx+

(
∂L

∂u

)T

δu

]

dt. (2.7)

Next, let us augment the functional variation δJ by encompassing the dynamic constraints
via a vector of non-determined adjoint variables λ ∈ Rnx . At first, let us define the adjoint
variable λ(t) and to rewrite (2.6) in the form:

λT δẋ = λT
∂F

∂x
δx+ λT

∂F

∂u
δu. (2.8)

Consequent integration of (2.8) within the interval [t0, t1] results in:
∫ t1

t0

[

λT δẋ+ λT
∂F

∂x
δx+ λT

∂F

∂u
δu

]

dt = 0. (2.9)

Combination of (2.9) and (2.7) thus provides another expression for δJ :

δJ =

∫ t1

t0

[(
∂L

∂x
+ λT

∂F

∂x

)

δx+

(
∂L

∂u
+ λT

∂F

∂u

)

δu

]

dt−

−

∫ t1

t0

(
λT δẋ

)
dt. (2.10)

Integral
∫ t1
t0

(
λT δẋ

)
dt by per-partes gives

[
λT δx

]t1

t0
−

∫ t1
t0

(

λ̇T δx
)

dt, so that (2.10) be-
comes:

δJ =

∫ t1

t0

[(
∂L

∂x
+ λT

∂F

∂x
+ λ̇T

)

δx+

(
∂L

∂u
+ λT

∂F

∂u

)

δu

]

dt+

+ λT δx

∣
∣
∣
∣
t=t0

− λT δx

∣
∣
∣
∣
t=t1

. (2.11)
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Further, it is more convenient to define the Hamiltonian H(x,λ,u, t):

H(x,λ,u, t) = L(x,u) + λTF (x,u). (2.12)

Incorporating Hamiltonian into (2.11), the variation of cost function is following:

δJ =

∫ t1

t0

[(
∂H

∂x
+ λ̇T

)

δx+

(
∂H

∂u

)

δu

]

dt+ λT δx

∣
∣
∣
∣
t=t0

− λT δx

∣
∣
∣
∣
t=t1

. (2.13)

NCO directly implies from (2.13). It is required that the first-time variation of the objective
functional δJ is zero at optimum. Therefore, all terms in brackets need to be zero.

The first bracket becomes zero when λ(t) is a result of the following ODE:

λ̇ = −
∂H

∂x
(2.14)

and the last term is zero if

λ(t1) = 0, (2.15)

Subsequently, the necessary condition for optimal control for zero initial variation of state
vector δx(t0) = 0 must satisfy:

δJ =

∫ t1

t0

[(
∂H

∂u

)

δu

]

dt = 0. (2.16)

Finally, the necessary conditions for optimality of unconstrained problems can be sum-
marised:

• the necessity for the optimal states is obtained by differentiation of (2.12):

ẋ =
∂H

∂λ
; ẋ = F (x,u), t0 ≤ t ≤ t1 (2.17a)

• the necessity for the optimal controls must satisfy (2.16):

0 =
∂H

∂u
; 0 =

∂L

∂u
+ λT

∂F

∂u
, t0 ≤ t ≤ t1 (2.17b)

• the necessity for the optimal adjoints reads:

– the adjoint variables:

λ̇ = −
∂H

∂x
; λ̇ = −

∂L

∂x
− λT

∂F

∂x
, t0 ≤ t ≤ t1 (2.17c)

– terminal condition for adjoint variables:

λ(t1) = 0 (2.17d)
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In the calculus of variations, the equations (2.17a), (2.17b), (2.17c), (2.17d) are also known
as the Euler-Lagrange equations. Note that the triple (x∗,λ∗,u∗) gives a local minimum of
J if u∗(t) is a stationary point of the Hamiltonian function evaluated at x∗(t) and λ∗(t),
at each t ∈ [t0, t1].

These equations also give necessary conditions both for a minimisation and for a max-
imisation problem. In a minimisation problem, u∗(t) minimises H(x∗(t),λ∗(t),u(t), t),
that the additional necessary condition Huu(x

∗(t),λ∗(t),u∗(t), t) ≥ 0 also holds. On the
other side, in a maximisation problem, u∗(t) maximises H(x∗(t),λ∗(t),u(t), t) in that way
that Huu(x

∗(t),λ∗(t),u∗(t), t) ≤ 0 holds as well. The positive definite matrix Huu de-
notes the second partial derivative of Hamiltonian H with respect to the control variables
(∂2H/∂u2).

2.2 Problems with Constraints

In the previous section, necessary conditions for unconstrained problems with fixed final
time were presented. However, common and real-world optimal control problems feature
end-point state conditions and also the control actions are limited on the whole time interval
t ∈ [t0, t1].

2.2.1 Terminal Constraints

In this section the problems with end-point constraints of the form ψ(x(t1), t1) ≤ 0 and
with specified terminal time t1 are considered. Besides end-point constraints, the terminal
cost φ(x(t1)) is considered to augment the original cost functional. In overall the problem
reads:

min
u
J =φ(x(t1)) +

∫ t1

t0

L(x,u)dt (2.18)

s.t. ẋ = F (x,u); x(t0) = x0 (2.19)

ψ(x(t1), t1) ≤ 0. (2.20)

To obtain necessary conditions of optimality for such problem, one needs to add the
terminal constraints into the cost functional via vector of Lagrange multipliers ν ∈ Rnψ ,
with nψ as a number of constraints, as follows:

J =Φ(x(t1),ν, t1) +

∫ t1

t0

[
L(x,u) + λT (F (x,u)− ẋ)

]
dt (2.21)

where

Φ(x(t1),ν, t1) = φ(x(t1)) + ν
T (ψ(x(t1), t1)). (2.22)

Similarly as in previous section, the first-time variation of the augmented cost func-
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tional (2.21) equal to zero gives necessary condition for extreme:

δJ =

(
∂Φ

∂x
− λ

) ∣
∣
∣
∣
t=t1

δx

∣
∣
∣
∣
t1

+

∫ t1

t0

[(
∂L

∂x
+ λT

∂F

∂x
+ λ̇

)

δx+

(
∂L

∂u
+ λT

∂F

∂u

)

δu

]

dt

=

(
∂Φ

∂x
− λ

) ∣
∣
∣
∣
t=t1

δx

∣
∣
∣
∣
t1

+

∫ t1

t0

[(
∂H

∂x
+ λ̇

)

δx+

(
∂H

∂u

)

δu

]

dt (2.23)

from which results following NCOs:

• the necessity for the optimal states:

ẋ =
∂H

∂λ
; ẋ = F (x,u), t0 ≤ t ≤ t1 (2.24)

• the necessity for the optimal controls:

0 =
∂H

∂u
; 0 =

∂L

∂u
+ λT

∂F

∂u
, t0 ≤ t ≤ t1 (2.25)

• the necessity for the optimal adjoints reads:

λ̇ = −
∂H

∂x
; λ̇ = −

∂L

∂x
− λT

∂F

∂x
, t0 ≤ t ≤ t1 (2.26)

with terminal condition:

λ(t1) =
∂Φ

∂x

∣
∣
∣
∣
t1

; λ(t1) =

(
∂φ

∂x
+ νT

∂ψ

∂x

) ∣
∣
∣
∣
t1

(2.27)

and conditions for Lagrange multipliers (KKT conditions):

0 = νkψk, k = 1, . . . , nψ (2.28)

0 ≤ νk, (2.29)

where Lagrange multiplier νk = 0, k ∈ {1, ..., nψ} denotes inactive terminal constraint
and νk > 0, k ∈ {1, ..., nψ} denotes active terminal constraint.

2.2.2 Path Constraints

Finally, in this section the last class of problems is considered. It is very common that
some real-world problems require to handle physical limits of the input actions while still
demanding certain state values at terminal time. The following problem is considered:

min
u
J =φ(x(t1)) +

∫ t1

t0

L(x,u)dt (2.30)

s.t. ẋ = F (x,u); x(t0) = x0 (2.31)

ψ(x(t1), t1) ≤ 0 (2.32)

ρ(u(t), t) ≤ 0; t0 ≤ t ≤ t1. (2.33)
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The path control constraints can be expressed in a form of functional:

ϕj(u(t), t) =

∫ t1

t0

ρj(u(t), t)dt (2.34)

where j = 1, . . . , nρ, and nρ is a number of path constraints. Next, they can be adjoined
to an original cost function through a vector of Lagrange multipliers µ ∈ Rnρ to form an
augmented Lagrange cost:

J = J +

nρ∑

j=1

µTj ϕj, j = 1, . . . , nρ. (2.35)

what equals to following:

J =Φ(x(t1),ν, t1)+

+

∫ t1

t0

[
L(x,u) + λT (F (x,u)− ẋ)

]
dt+

+

nρ∑

j=1

µTj

∫ t1

t0

ρj(u(t), t)dt (2.36)

with:

Φ(x(t1),ν, t1) = φ(x(t1)) + ν
T (ψ(x(t1), t1)). (2.37)

Accordingly, Hamiltonian reads:

H(x,λ,u,µ, t) = L(x,u) + λTF (x,u) + µTρ(u(t), t) (2.38)

Next, the necessary conditions of optimality can be derived analogically to previous prob-
lem, i.e. from the first-time variation of cost functional δJ :

δJ =

(
∂Φ

∂x
− λ

) ∣
∣
∣
∣
t=t1

δx

∣
∣
∣
∣
t1

+

+

∫ t1

t0

[(
∂L

∂x
+ λT

∂F

∂x
+ λ̇

)

δx+

(
∂L

∂u
+ λT

∂F

∂u
+ µT

∂ρ

∂u

)

δu

]

dt

=

(
∂Φ

∂x
− λ

) ∣
∣
∣
∣
t=t1

δx

∣
∣
∣
∣
t1

+

∫ t1

t0

[(
∂H

∂x
+ λ̇

)

δx+

(
∂H

∂u

)

δu

]

dt. (2.39)

Resulting NCOs then are following:

• the necessity for the optimal states:

ẋ =
∂H

∂λ
; ẋ = F (x,u), t0 ≤ t ≤ t1 (2.40)
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• the necessity for the optimal controls:

0 =
∂H

∂u
; 0 =

∂L

∂u
+ λT

∂F

∂u
+ µT

∂ρ

∂u
, t0 ≤ t ≤ t1 (2.41)

• the necessity for the optimal adjoints reads:

λ̇ = −
∂H

∂x
; λ̇ = −

∂L

∂x
− λT

∂F

∂x
, t0 ≤ t ≤ t1 (2.42)

with terminal condition:

λ(t1) =
∂Φ

∂x

∣
∣
∣
∣
t1

; λ(t1) =

(
∂φ

∂x
+ νT

∂ψ

∂x

) ∣
∣
∣
∣
t1

(2.43)

and conditions for Lagrange multipliers (KKT conditions):

0 = µjρj, j = 1, . . . , nρ (2.44)

0 = νkψk, k = 1, . . . , nψ (2.45)

0 ≤ µj, (2.46)

0 ≤ νk. (2.47)

Note that each Lagrange multiplier may have a zero value µj = 0, j ∈ {1, ..., nρ} along an
interior arc, or a non-zero value µj > 0, j ∈ {1, ..., nρ} along a boundary arc. Also note
that Lagrange multiplier νk = 0, k ∈ {1, ..., nψ} denotes inactive terminal constraint and
νk < 0, k ∈ {1, ..., nψ} denotes active terminal constraint.





Chapter 3

Numerical Optimisation Methods

Numerical optimisation methods for dynamic problems (Srinivasan, Bonvin, et al., 2003a;
Vemuri, 2004) address two major issues:

Solution of system equations – an initial value problem (IVP) can be solved by nu-
meric integration, or discretised at multiple time instants and converted to regular
non-linear programming (NLP).

Formulation of optimisation strategy – problem of constrained dynamic optimisation
is transformed into static NLP optimisation formulation which can be solved via
common NLP strategies; in addition, the gradients for NLP solver are obtained by
computing sensitivity or adjoint variables.

Most methods differ from the one to the other in the approach to address these two issues.
Two main methods can be distinguished based on solving strategy:

1. Direct optimisation methods

2. Indirect optimisation methods

These methods are discussed further.

3.1 Direct Optimisation Methods

In this class of methods, inputs are parametrised by a finite set of variables. The resulting
system is then coupled with optimisation algorithms such as Successive Quadratic Pro-
gramming (Agrawal and Fabien, 1999; Edgar, Soderstrom, et al., 2001; Jacoby, Kowalik,
et al., 1972; Ray and Szekely, 1973; Reklaitis, Ravindran, et al., 1983) to find the opti-
mal set of variables. Depending on a way used to solve IVP, two unique approaches have
been reported in the literature: the sequential approach and the simultaneous approach,
respectively. Both methods are explained in the two following sections.

23
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3.1.1 Sequential Approach

Sequential approach is also referred to Control Vector Parametrisation in literature (Edgar
and Himmelblau, 1988; Guntern, Keller, et al., 1998; Ray, 1981) and can be found in
a variety of chemical process applications (Ishikawa, Natori, et al., 1997; Mujtaba and
Macchietto, 1997; Sorensen, Macchietto, et al., 1996; Vassiliadis, Sargent, et al., 1994a,b).
The main idea behind it is to parametrise the continuous controls using a finite set of
decision variables. Typically, a piece-wise constant approximation over equally spaced
time intervals is chosen for the inputs (Vassiliadis, Sargent, et al., 1994a,b). Consequently,
the general NLP solver iteratively optimises an objective function by a choosing the control
variables and by respecting algebraic constraints. The sequential method is of the feasible
path type method, i.e. in every iteration, the solution of IVP problem remains feasible
while optimising performance index. This leads to a robust solution procedure if feasible
initial conditions for all variables are provided.

The gradient for the cost function and for constraints with respect to the all optimised
variable is estimated by the one of the following two: (i) by sensitivity equations of the
system which are integrated together with the process equations, or (ii) by adjoint variables
that have to be integrated backwards. The sensitivity equations are found by differentiating
of right sides of the process F with respect to the time invariant parameters and variables
from discretised inputs (Dovi and Reverberi, 1993; Storen and Hertzberg, 1995). The ob-
vious advantage of sequential approach is that it leads to a very efficient computation of
the gradient. The gradient computed by adjoint variables is less accurate over gradient
directly expressed by equations because the states are approximated during backward in-
tegration. In opposite, with increasing number of discretised intervals, the advantage lies
on the side of adjoints because of computing advantage over sensitivity equations: (i) in
case of sensitivity equations, large number of ODEs needs to be solved as every discretised
interval adds one differential equation to process ODEs; (ii) in case of adjoints, the num-
ber of integrated differential equations does not depend on number of discretised intervals,
simply it is two times process equations plus an additional equation per another optimised
variable and per the constraint, as reported in (Dovi and Reverberi, 1993). Several efficient
optimisation algorithms for sequential methods can be found in (Biegler and Hughes, 1983;
Lau and Ulrichson, 1992; Storen and Hertzberg, 1995). Majority of algorithms update cost
function according to the gradients and reformulate the original problem into a quadratic
program. The general algorithm for sequential approach can be described as follows:

Problem:

min
u
J (x,u)

s.t. ẋ = F (x,u), t0 ≤ t ≤ t1

x(t0) = x0

ψ(x(t1), t1) ≤ 0

ρ(u(t), t) ≤ 0 (3.1)

On one or more intervals:
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Step 1: Parametrise the inputs using a finite number of decision variables, i.e. piece-wise
using any standard collocation method (e.g. orthogonal collocation with Legendre
roots) or piece-wise constant

uK(t) =
k∑

i=1

= uiχi(t) where χi(t) =
K∏

k=1,j

(t− tk)

(ti − tk)
, uK(ti) = ui (3.2)

Step 2: Substitute the parametrised inputs from step 1 in process model (3.1)

ẋ = F (x,uK , t)

i = 1, . . . , K

x(t0) = x0 (3.3)

Step 3: Substitute the modified dynamic model given by (3.3) into the problem described
by (3.1). The updated problem statement of the sequential method reads:

min
uK
J (x,uK)

s.t. ẋ = F (x,uK , t), t0 ≤ t ≤ t1

x(t0) = x0

uK =
k∑

i=1

= uiχi where χi =
K∏

k=1,j

(t− tk)

(ti − tk)
, uK(ti) = ui

ψ(x(t1), t1) ≤ 0

ρ(uK(ti), ti) ≤ 0 (3.4)

Over time horizon:

Step 4: Choose ti using orthogonal collocation method and evaluate uK given by equa-
tion (3.2) at times ti.

Step 5: Choose an initial guess for decision variables uK on one or more time intervals
and solve IVP, given by (3.3) for the inputs obtained from (3.2) on each interval,
by employing any ODE solver (Gill, Murray, et al., 1981) (e.g. Runge-Kutta or
Newton-Raphson Methods).

Step 6: Evaluate the objective function (3.4) using state and control profiles obtained in
Step 5. Then update the values of decision variables uK via any standard optimisation
routine, e.g. a steepest descent or Quasi-Newton methods (Gill, Murray, et al., 1981).
Repeat Step 4 through Step 6 until the convergence is satisfied. Update the decision
variables according to gradients.

While the sequential approach is straightforward to implement, it tends to have slow con-
vergence rate due the fact that the feasible path methods require to solve repeatedly and
extensively a set of the differential equations. The most computationally intensive part of
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this approach is the step where ODEs are solved with higher accuracy, even though the
decision variables are far from the optimal solution. Furthermore, the quality of the solu-
tion strongly depends on quality of parametrisation of the controls. If a feasible solution
is provided as a starting guess, the solution converges quickly. However, it is a non-trivial
problem to find such feasible initial guess.

3.1.2 Simultaneous Approach

Although sequential methods guarantee an optimal solution by following a feasible path,
in opposite, they can be prohibitively expensive because they tend to converge slowly and
require solution of IVP at each iteration. In the simultaneous approach, the state pro-
files are approximated in addition to the control profiles, thus the dynamic optimisation
problem becomes a pure NLP problem expressed by a set of algebraic equations. This
NLP problem then simultaneously converges to the optimum even from infeasible starting
guess. The idea of orthogonal collocation coupled with Quasi-Newton method, introduced
by Hertzberg and Asbjornsen in (Hertzberg and Asbjornsen, 1977), was used to perform
simultaneous parameter estimation and integration of a non-linear system dynamics. Sen-
sitivity equations for the dependent variables with respect to the parameters along system
dynamics were also replaced by an approximated set of algebraic equations. So, the op-
timisation was performed in the subspace of the parameters. A low order polynomial
approximation was found to give good accuracy while keeping the dimension of the NLP
low. This method proved to be superior in computational efficiency to the other existing
parameter estimation algorithms.

A similar approach is discussed by Biegler (Biegler, 1984), in which orthogonal colloca-
tion is applied to the system of differential equations, too. The control and state profiles
are transformed into a set of algebraic equations. Then, the optimisation strategy solves
the transformed problem. The main improvement of the Biegler’s simultaneous algorithm
over Hertzberg and Asbjornsen algorithm is in different approximation of the time varying
independent variables. Biegler in (Biegler, 1984) approximated them by the Lagrange poly-
nomials instead of the constant independent variables used by Hertzberg and Asbjornsen
in (Hertzberg and Asbjornsen, 1977).

A generalisation of these two collocation methods is presented in (Renfro, Morshedi, et
al., 1987). The major difference in this approach is the application of collocation procedure
to convert the ODEs into an approximating set of algebraic equations. Global spline
collocation (Villadsen and Michaelsen, 1978) is chosen over ordinary global collocation
because of its ability to solve a wider spectrum of problems, e.g. stiff systems and boundary
value problems. This method is also labelled as collocation on finite elements (Carey
and B.A. 1975; Finlayson, 1980). The continuous independent variables are specified as
piecewise constant functions. Algorithm can specify the number and location of spline
points. This makes (Renfro, Morshedi, et al., 1987) algorithm slightly more complex and
dimensionally larger then Biegler’s method.

The simultaneous algorithms introduces an approximation of dynamic system equa-
tions in order to explicitly avoid of integration process. Hence, the optimisation is carried
out in the full space of approximated inputs and states. In general, ODEs are satisfied
only at the solution of optimisation problem (Vassiliadis, Sargent, et al., 1994a). So, this
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method is called the infeasible path approach. The approach can be found in several batch
applications (Cuthrell and Biegler, 1989; Eaton and Rawlings, 1990; Logsdon and Biegler,
1989; Ruppen, Benthack, et al., 1995).

Very general problems, such as boundary value problems or state constrained prob-
lems can be handled by simultaneous methodology. This versatility combined with the
super linear convergence is the strength of this methodology. The weaknesses are the
large problem size resulting from approximation on finite elements, and the need for effi-
cient non-linear large scale optimisation algorithms. With the development of Successive
Quadratic Programming (SQP), reduced space SQP, interior-point approach and the con-
jugate gradients methods, the NLPs resulting from the simultaneous method can be solved
efficiently (Biegler, 1984; Biegler, Cervantes, et al., 2002; Cervantes and Biegler, 1998;
Renfro, Morshedi, et al., 1987; Srinivasan, Bonvin, et al., 2003a).

This numerical approach has been implemented and developed as part of this work. We
have improved problem reformulations and convergence. Graphical user interface has been
developed in order to simplify the problem definition (Podmajerský, Čižniar, et al., 2007).
As the NLPs usually exhibit more local optima, the global optimisation frameworks, i.e.
multistart and αBB approach have been implemented to improve the performance and the
feasibility. The results were published in (Čižniar, Podmajerský, et al., 2009). In addition,
NMPC framework based on global optimisation that employs simultaneous approach has
been implemented and benchmarked in (Čižniar, Hirmajer, et al., 2008).

The basic procedure of simultaneous methods is as follows (Cuthrell and Biegler, 1989;
Srinivasan, Bonvin, et al., 2003a):

Problem:

min
u
J (x,u)

s.t. ẋ = F (x,u), t0 ≤ t ≤ t1

x(t0) = x0

ψ(x(t1), t1) ≤ 0

ρ(u, t) ≤ 0 (3.5)

On one or more intervals:

Step 1: Approximate the process states and inputs using any standard collocation method
(e.g. orthogonal collocation with ncp collocation points on finite number of ele-
ments/intervals ni). On an interval i with times t ∈ [ti, ti+1], the states and the
controls are approximated accordingly:

xKx(t) =
Kx∑

j=0

xijξj(t) where ξj(t) =
Kx∏

k=0,j

(t− tik)

(tij − tik)
, xKx(tij) = xij

uKu(t) =
Ku∑

j=1

uijχj(t) where χj(t) =
Ku∏

k=1,j

(t− tik)

(tij − tik)
, uKu(tij) = uij

for i = 1, . . . ni. (3.6)
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where xKx(t) represents the polynomial of degree (Kx + 1), and uKu(t) represents
the polynomial of degree Ku.

Step 2: Substitute approximated states and inputs into process equations and obtain the
algebraic expression for residuals.

R(tik) =
Kx∑

j=0

xij ξ̇j(ti)− F (xKx(tik),uK(tik), tik)

j = k = 1, . . . , Kx, i = 1, . . . ni

with xKx(t0) = x0 (3.7)

Step 3: Substitute the approximated dynamic model into the problem.

min
xKx (tik),uKu (tik)

J (x(t1),u(t1))

s.t. R(tik) =
Kx∑

j=0

xij ξ̇j(ti)− F (xKx(tik),uK(tik), tik)

xKx(t0) = x0

xKx(ti) = xKx(ti)

ψ(xKx(t1), t1) ≤ 0

ρ(uKu(ti), ti) ≤ 0

j = k = 1, . . . , Kx, i = 1, . . . ni. (3.8)

Over time horizon:

Step 4: Choose collocation points tij in each interval i using orthogonal collocation method
(e.g. Legendre collocation, Radau collocation) and evaluate uKu and xKx given by
equation (3.6) at times tik.

Step 5: Solve problem given by (3.8) in Step 3 at the tik chosen in Step 4 using any
non-linear programming solver available (e.g. Successive Quadratic Programming).

The main advantage of the simultaneous method is that optimal solution can be found
even by starting from a very poor initial guess. On the other hand, the main disadvantage of
the method is that the resulting non-linear problem becomes more complicated with rising
number of discretisation points, and it may have many local minima. Furthermore, the use
of simultaneous methods requires an awareness of the trade-off between approximation and
optimisation (Srinivasan, Myszkorowski, et al., 1995). It can turn out that a less accurate
approximation of the problem results in better cost. On the other hand, such solution
can correspond to an inadequate problem approximation. Then, the approximation can be
improved either by introducing accuracy as an additional constraint or by increasing the
number of collocation points. Especially, stiff problems require a fine grid of approximation
points what results in a larger number of decision variables (Terwiesch, Agarwal, et al.,
1994; Villadsen and Michaelsen, 1978).
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3.1.3 Other Direct Approaches

In addition to sequential and simultaneous methods alone, several other direct methods
are available in literature (Vemuri, 2004). The direct shooting method (Bock and Platt,
1984) is a hybrid methodology between the sequential and simultaneous methods. In this
methodology, the total time is divided into several stages. Except for the first stage, the ini-
tial conditions of the stages are considered as decision variables. Then is required that the
initial states of each stage should match the final ones of the proceeding stage. This proce-
dure belongs to an infeasible path methods as simultaneous methods while the integration
is accurate as in sequential methods (Srinivasan, Bonvin, et al., 2003a). Extensions of the
direct multiple shooting methods to differential-algebraic systems are described in (Schulz,
Bock, et al., 1998).

3.2 Indirect Optimisation Methods

This class of optimisation methods is based on the optimal control theory. Three basic
strategies are classified under optimal control theory: (i) calculus of variations developed
by Euler in 1744, (ii) minimum (maximum) principle developed by Pontryagin in 1962,
and (iii) dynamic programming developed by Bellman in 1957, are very closely related.
Under certain differentiability assumptions, one can be deduced from the other (Solheim,
1976). Pontryagin and his group were the first who give a rigorous proof of the most general
version of the optimal control theory (Pesch and Bulirsch, 1994).

3.2.1 Pontryagin’s Formulation

According to PMP, the problem of minimising the scalar objective function J in (1.3c)
subject to dynamic constraints (1.2) and static constraints (1.6) can be rephrased as a
minimisation of Hamiltonian function H(t) as follows:

min
u
H =L(x,u) + λTF (x,u, t) + µTρ(u, t)

s.t. ẋ = F (x,u, t), x(0) = x0

λ̇ = −
∂H

∂x
, λ(t1) =

∂φ

∂x

∣
∣
∣
∣
t1

+ νT
∂ψ

∂x

∣
∣
∣
∣
t1

µTρ = 0, νTψ = 0

λT
∂F

u
+ µT

∂ρ

u
= 0 (3.9)

where λ 6= 0 is the n-dimensional vector of adjoint variables (Lagrange multipliers for sys-
tem variables), and µ(t) ≥ 0 the p-dimensional vector of Lagrange multipliers for the path
constraints, ν ≥ 0 the q-dimensional vector of Lagrange multipliers for terminal constraints.
The Lagrange multipliers µ and ν are non-zero when the corresponding constraints are
active and zero otherwise so the following equations are always satisfied:

ρ(u, t) ≤ 0, ψ(x(t1), t1) = 0 (3.10)
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PMP formulation represented by (3.9) provides an indirect method for optimal solution.
One can see that to find optimal inputs for redefined problem, the state equations (ẋ =
F (x,u, t)) have to be solved in forward direction with initial conditions (x(0) = x0),
and subsequently the adjoint equations (λ̇ = −∂H

∂x
) in backward direction with terminal

conditions (λ(t1) =
∂φ

∂x
|t1 + ν

T ∂ψ

∂x
|t1). Thus, a two-point boundary value problems must be

solved numerically in order to obtain the optimal inputs u satisfying following NCO:

∂H

∂u
= λT

∂F

u
+ µT

∂ρ

∂u
= 0 (3.11)

3.2.2 Hamilton-Jacobi-Bellman Formulation

The Hamilton-Jacobi-Bellman formulation transforms the problem of direct formulation (1.14)
into the partial differential equations by utilising the following principle of optimality (Bryson
and Ho, 1975; Kirk, 1970):

∂V (x, t)

∂t
+ min
u,µ,ν

(
∂V (x, t)

∂x
F (x,u) + µTρ(u, t)

)

= 0

V (x(t1), t1) = φ(x(t1)) + ν
Tψ(x(t1)) (3.12)

where V (x, t) is the return function or, equivalently, the minimum cost if the system has
the state x at time t ≤ t1. The link between PMP and HJB formulations is that the
adjoints are the sensitivities of the cost (return function) with respect to the states:

λ =
∂V

∂x
(3.13)

The term to be minimised in (3.12) is the Hamiltonian H. Thus, the partial differential
equation (3.12) represents the time evolution of the adjoints:

λ̇ =
d

dt

∂V

∂x
=

∂

∂x

∂V

∂t
= −

∂Hmin

∂x
(3.14)

where Hmin is the minimum value of the Hamiltonian.

3.2.3 Boundary Condition Iteration – Single-Shooting

The basic algorithm to solve two-point boundary value problem (TPBVP) is very similar
for most of the methods. The algorithm for the intuitive solution strategy, single-shooting
method, is shown below:

Problem:

min
u
J (x,u)

s.t. ẋ = F (x,u, t), t0 ≤ t ≤ t1

x(t0) = x0

ψ(x(t1), t1) ≤ 0 ρ(u, t) ≤ 0 (3.15)
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Step 1: Apply PMP formulation to a given problem and transform it to given form (3.9).

Step 2: Parametrise the Lagrange multipliers µT using any standard collocation method,
e.g. orthogonal collocation and choose ti:

µK(t) =
k∑

i=1

= µiϕi(t) where ϕi(t) =
K∏

k=1,j

(t− tk)

(ti − tk)
, µK(ti) = µi, i = 1, . . . , K

(3.16)

Step 3: Substitute the parametrised Lagrange multipliers µK into the problem. The mod-
ified optimisation problem is then given as:

min
u
H =λTF (x,u, t) + µTKρ(u, t)

s.t. ẋ = F (x,u, t)

x(0) = x0

λ̇ = −
∂H

∂x

λ(t1) =
∂φ

∂x

∣
∣
∣
∣
t1

+ νT
∂ψ

∂x

∣
∣
∣
∣
t1

µTKρ = 0

νTψ = 0

λT
∂F

u
+ µTK

∂ρ

u
= 0 (3.17)

Step 4: Choose an initial guess for the vector of decision variables: λ(t0) and µK(t0) and
integrate the dynamics forward in time using x(0), λ(t0), and µK(t0). Compute
λ(t1).

Step 5: Check whether equations

ρ(u, t) = 0, ψ(x(t1), t1) = 0 (3.18)

and
∂H

∂u
= λT

∂F

u
+ µT

∂ρ

∂u
= 0 (3.19)

hold. The values of λ at final time obtained by integration in Step 3 should match
those specified by equation:

λ(t1) =
∂φ

∂x

∣
∣
∣
∣
t1

+ νT
∂ψ

∂x

∣
∣
∣
∣
t1

(3.20)

Step 6: Update the decision variables by optimisation method and repeat Step 3 through
Step 5 until the solution is found.
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In the single-shooting method, also called Boundary Condition Iteration (BCI), missing
interval values are guessed and updated according to numerical strategy as long as the
final value from IVP does not fit the final conditions. The optimal inputs are expressed
analytically as functions of the states and adjoints. They results from NCO (3.19). The
decision variables include the initial conditions λ(t0) that are chosen in order to satisfy
λ(t1).

There are several difficulties associated with the shooting method (Murthy, Gangiah,
et al., 1980). First, it can exhibit stability problems during forward integration of adjoints.
Furthermore, unless a good initial guess for the adjoints is available, it is computationally
expensive to find the optimum. The good initial guess is rarely the case hence the adjoints
represent sensitivities. Next, the method does not work when there are discontinuities in
the adjoint variables.

3.2.4 Multiple Shooting

In the multiple shooting method, the λ and µ values are guessed not only at the initial
time, but also at several time points in-between. The IVP is then restarted at guessed time
points. The difference between guessed and obtained values at time points are then reduced
by new guesses updated by optimisation routine. The shorter intervals in multiple shooting
lead to less non-linearity and less sensitivity to the guessed values than in single-shooting
methodology.

3.2.5 Quasi-Linearisation or discretisation

Quasi-Linearisation is Newton-Raphson’s method applied to a TPBVP, and is based on
a first-order Taylor expansion of differential equations. In this methodology, successive
linearisation (Bryson and Ho, 1975; Kirk, 1970; Lee and Markus, 1968) is applied to problem
described by (3.9). In the same way, a discretisation can be assess: the states and adjoints
are by time approximated functions. The basic procedure is as follows:

Step 1: Parametrise x, λ, and µ using finite number of decision variables.

Step 2: Choose an initial vector of guesses for the decision variables including ν.

Step 3: Linearise the process ODEs in (3.9) around the current guess or discretise them
on finite elements. In case of linearisation, the original dynamic problem described by
non-linear equations is transformed into a set of linear differential-algebraic equations.
In case of discretisation, the original dynamic problem described is transformed into
a set of non-linear differential-algebraic equations.

Step 4: Iteratively solve the optimal set of decision variables using appropriate optimisa-
tion method.

These methods works well if the solution is smooth and the unknown boundary condi-
tions are not particular sensitive to initialisation errors. Furthermore, a good initial guess
for the set of decision variables is needed as in shooting methods.
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3.2.6 Control Vector Iteration

Control Vector Iteration (CVI) is the gradient method in which the necessary condition for
optimality (3.11) provides the gradient along which are decision variables updated. The
basic procedure is as follows:

Step 1: Parametrise u, and µ using finite number of decision variables.

Step 2: Choose an initial vector of guesses for the decision variables including ν.

Step 3: Integrate the state equations in (3.9) forward in time from t0 to t1

Step 4: Integrate the adjoint equations in (3.9) backward in time from t1 to t0 and com-
pute the gradient ∂H/∂u expressed by (3.11).

Step 5: Use an optimisation algorithm to update the values of the decision variables.
Repeat Step 3 through Step 5 until H is minimised.

The main advantage of gradient method lies in the fact that a good initial guess for the
decision variables is beneficial but not crucial for convergence.

Despite the availability of all these solution methods, TPBVPs are demanding problems,
with limited robustness. In addition, the adjoint variables are not physically meaningful
quantities, which makes the first guess difficult. Another major obstacle for using the above
approaches, is the symbolic manipulation needed in deriving the TPBVP.





Chapter 4

Nominal Solution

The previous chapters discuss the definition of the optimisation problem, the necessary
conditions that indicate the optimality and single out the candidates of the nominal so-
lution. The last chapter discussed various numerical methods that calculate the nominal
solution. Note that direct optimisation methods deliver piece-wise continuous solution,
either for controls, or for both controls and states. In opposite, the indirect optimisation
methods delivers smooth continuous nominal solution as these methods are based on the-
ory of optimal control. The major drawback of indirect methods is the need of good initial
values for optimised variables, especially for complementary variables such as λ,µ,ν. In
order to overcome this, one may initially compute the nominal optimisation problem by
the one of the direct methods and then, to pass these results as the starting values for
optimised variables in indirect methods. A different approach is to compute the nominal
solution directly from conditions of optimality. Basic idea of numerical procedure that
computes such a solution follows next. This approach is also considered as the best option
for further computations.

Next, let us consider the general form of the nominal optimisation problem:

min
u
J (x,u)

s.t. ẋ = F (x,u, t), t0 ≤ t ≤ t1

x(t0) = x0

ψ(x(t1), t1) ≤ 0

uL ≤ u(t) ≤ uU . (4.1)

If u∗ provides an optimal solution for the problem (4.1), there must also exist sextuple
(u∗,x∗,λ∗,µ∗

L,µ
∗

U ,ν
∗) that satisfies the following Euler-Lagrange equations:

ẋ∗ = Hλ(x
∗,u∗,λ∗,µ∗

L,µ
∗

U , t); with x∗(t0) = x0 (4.2)

λ̇
∗

= −Hx(x
∗,u∗,λ∗, t); with λ∗(t1) = Φx(x

∗(t1), t1) (4.3)

0 = Hu(x
∗,u∗,λ∗,µ∗

L,µ
∗

U , t) (4.4)

(4.5)
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along with complementary conditions

0 = µjρj, j = 1, . . . , nρ (4.6)

0 = νkψk, k = 1, . . . , nψ (4.7)

and where

ψ(x(t1), t1) ≤ 0 (4.8)

Φ = φ+ ν∗Tψ (4.9)

H = L+ λ∗TF + µ∗T

L (uL − u) + µ∗T

U (u− uU). (4.10)

Note that it is non-trivial to obtain the precise nominal solution for previous problem (4.1)
that also satisfies every necessary condition of optimality represented by (4.2)–(4.4). The
main difficulty here is the instability of states in backward direction and of the adjoints
in forward direction. In addition, the Euler-Lagrange equations (4.2)–(4.4) represent the
system of a differential algebraic equations that need to be solved collectively. Direct and
indirect methods overcome this shortcoming by parametrising one or more of the variables,
i.e. some variables are transformed from infinite domain into finite domain. The accuracy
of such solution might be compromised as the parametrised solution may not absolutely
copy the original one. Partial differential equations represented by HJB equations (3.12)
are difficult to solve effectively. Furthermore, the nominal solution u∗ cannot be directly
exploited from a system of Euler-Lagrange equations (4.2)–(4.4), because of its constraints.
Without a prior knowledge of a character of the nominal solution, it is not precisely know
if the nominal solutions is constrained at the moment or if it is not. Similarly, the exact
values of Lagrange multipliers ν,µ needs to be determined.

Normally, the nominal solution u∗ can be characterised as a non-singular, singular,
constrained or unconstrained. When the nominal solution u∗ can be explicitly given from
the NCO (4.4), the problem is non-singular. The opposite situation is, when the u∗ cannot
be directly expressed from the NCO (4.4). In the this case, subsequent time derivatives of
the NCO (4.4) are required. The condition is differentiated until the nominal solution u∗

can be explicitly determine. Each of these solutions can be further function of (i) the states
and adjoints, (ii) the states alone, (iii) the adjoints alone, or (iv) neither of them in case of
constant control. Also, regard that this nominal solution holds only along an interior arc.
Along the boundary arc, the nominal solution is then given by the path constraints. A
continuity of all trajectories in nominal solution is required in the joints between the arcs.

Usually, the sequence of these arcs is unknown and needs to be determined by different
way. In this case, numerical methods can provide the sequence of an interior or a boundary
arcs, as well as, the values of unknown Lagrange multipliers. The switching times between
the arcs become additional undetermined variables. One may estimate the initial values of
the switching times by visual investigation of the piece-wise continuous solution or from the
Lagrange multipliers µ (for path constraints). The latter is provided by the conditions (4.7).
Observe that when the one of path or terminal constraints is active (satisfied) the equivalent
Lagrange multiplier becomes non-zero. Otherwise, the appropriate multiplier is equal to
zero, thus the concerned path or terminal constraint is inactive (violated). Afterwards,
the active path constraints (for controls) determine the structure of nominal solution and
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the analogous NCO. It is further assumed that such sequence is unchangeable by any
perturbation.

In detail, the procedure to obtain a continuous nominal solution is as follows:

Step 1: Solve the optimisation problem (4.1) by any numerical approach and obtain op-
timal values for controls u∗

0, for states x
∗
0, adjoints λ

∗
0, and Lagrange multipliers ν∗

0

and µ∗
0, respectively.

Step 2: Analyse the nominal solution u∗
0 by visual inspection. Determine the sequence of

arcs: (i) visually, or (ii) from Lagrange multipliers µ∗.

Step 3: Determine the initial values for switching times τ ∗
0, i.e. times where the one arc

become the different arc.

Step 4: Construct control sequence u of constrained and unconstrained arcs with initial
switching times τ ∗

0. Regard that the constrained arcs follows directly from box condi-
tion uL ≤ u(t) ≤ uU and the unconstrained arcs are given from necessary condition
for controls Hu = 0.

Step 5: If Hu is only a function of the states x:

• Solve IVP problem of (4.1) with u in forward direction. Obtain state variables
x.

• Then, obtain adjoints λ by solving (4.3) in backward direction.

If Hu is function of the both states x and adjoints λ:

• Solve the problem given by differential algebraic equations (DAE) (4.2)–(4.4)
with u. Obtain state variables x and adjoints λ.

• Note that the task to find solution of DAE becomes non-trivial when either one
of states or adjoints becomes unstable during integration in reverse direction.
One way to overcome this problem is to use adjoints from Step 1, and to solve
DAE problem with less precise adjoints that have been obtained by numerical
approach. The adjoints will be updated and improved during the iterations.

Step 6: Check whether x(t1) matches x∗
0(t1), and whether ψ(x(t1), t1) ≤ 0 holds.

Step 7: Use an optimisation algorithm to update the values of switching times τ and ν,
respectively. Iterate Step 5 through Step 7 until (4.1) is optimised.

It is need to be clarified that starting values of switching times τ 0, multiplier ν0, or adjoint
profiles λ0 must be as best as possible whereas only the sensitivities computed by finite-
differences are available for the optimiser routine.
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4.1 Batch Reactor Control

4.1.1 Unconstrained Case

Consider a problem of a batch reactor example according to Crescitelli and Nicoletti, 1973.

The series of reactions R
k1−−−−−→ P

k2−−−−−→ Q takes place in the reactor. The goal is
to maximise the production of P, whereas Q is an undesired by-product. The reactor is
initially loaded with the reactant R and some product P. The final time is set to t1 = 10.
The manipulated variable u(t) is related to the reactor temperature T (t) by

T = −
E1

R ln u
k1,0

. (4.11)

No bound constraints are imposed on the control variable in this case. The mathematical
model is derived based on material-balance considerations and together with objective
function, the dynamic optimisation problem reads:

max
T

J = cP(t1)

s.t. ċR = −u cR; cR(t0) = βR

ċP = u cR − C cP u
α; cP(t0) = βP. (4.12)

The model parameters and initial conditions are given in Table 4.1, below.

Table 4.1: Model parameters and initial conditions

k1,0 = 0.535e11
k2,0 = 0.461e18
E1 = 18 [kcalmol−1]
E2 = 30 [kcalmol−1]
R = 2 [calmol−1 K−1]
α = E1/E2

C = (k2,0/k1,0)
α

t1 = 10 [min]
βR = 0.53 [mol L−1]
βP = 0.43 [mol L−1]
cmin
R

= 0.2 [mol L−1]
umin = 0.09
umax = 0.11

For this problem, the necessary conditions of optimality can then be expressed together
as:

[
ċR
ċP

]

=

[
−u cR

u cR − C cP u
α

]

with

[
cR
cP

]

(t0) =

[
βR
βP

]

[
λ̇R
λ̇P

]

=

[
λR u− λP u
C λP u

α

]

with

[
λR
λP

]

(t1) =

[
0
0

]

0 = λP
(
cR − αC u

α−1 cP
)
− λR cR, (4.13)
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where λR and λP are adjoint variables.
The nominal solution for the problem (4.12) can then be obtained from the differential

algebraic equations (4.13). Note that the nominal solution consists of one unconstrained
arc only. In order to obtain initial guess for the state a control profiles, one at first can
solve the problem by direct numerical approach (CVP approach in this situation). The
solution obtained by CVP approach is depicted in Figure 4.1 by dotted red line. As only
one unconstrained arc is presented here, the continuous nominal solution can be directly
acquired from the NCO (4.13). So, DAE (4.13) are solved in backward direction. As the
algebraic equation Hu = 0 may produce more then one solution, the starting point for
DAE solver can then be the final value of the sequential control. In order to overcome the
instability of states produced by backward integration, it is advised to use the state profile
from CVP approach to approximate the states at the integration points. Such nominal
solution is then shown in Figure 4.1 via solid blue line. The comparison of the both
solutions is presented in Figure 4.1. Also, see that these solutions are in good agreement.

4.1.2 Constrained case

The constrained problem is an extension of the unconstrained problem. Here, the optimi-
sation objective is to maximise the concentration of product P at final time, cP(t1), while
keeping the residual concentration of reactant R at final time below the maximum threshold
cmin
R

. Also, box constraints are imposed on control variable. Essentially, the constrained
optimisation problem reads:

max
T

J = cP(t1)

s.t. ċR = −u cR; cR(t0) = βR

ċP = ucR − C cP u
α; cP(t0) = βP

cR(t1) ≤ cmin
R

umin ≤ u ≤ umax (4.14)

The correspondent NCO are moreover expressed as follows:
[
ċR
ċP

]

=

[
−u cR

u cR − C cP u
α

]

with

[
cR
cP

]

(t0) =

[
βR
βP

]

[
λ̇R
λ̇P

]

=

[
λR u− λP u
C λP u

α

]

with

[
λR
λP

]

(t1) =

[
ν
−1

]

0 = λP
(
cR − αC u

α−1 cP
)
− λR cR

0 = ν
(
cR(t1)− c

min
R

)
with 0 ≤ ν, (4.15)

Again, the control structure needs to be determined at first by visual inspection of the
solution that is obtained by direct numerical approach (CVP approach in this situation,
too). The sequential solution is depicted in Figure 4.2 by dotted red line and comprises
three arcs: an upper bound arc, an interior arc, and a lower bound arc. In addition, this
solution provides the value of Lagrange multiplier ν, the switching times τi of the arcs,
and the initials for next computations. Note that the terminal inequality constraint is
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active at the optimum. Thus the multiplier ν 6= 0. The continuous nominal solution is
then given by sequence of an upper bound arc, the interior arc provided by DAE (4.15),
and a lower bound arc. As in unconstrained case, the solution is obtained by backward
integration of DAE (4.15) with Lagrange multiplier ν taken from previous computation.
Note that during the backward integration the control u is initially set to its lower bound
until time reaches the switching point τ2, then it switches to interior arc that is computed
from the algebraic equation Hu = 0 till the switching time τ1. Finally, the control remains
on its upper bound until it enters the initial time t0. Similar to previous case, the algebraic
equation Hu = 0 produces more than one solution, so it is important to start from the
point provided by CVP approach. Further, the stability issues of states during backward
integration are addressed by approximating the pre-computed states (by CVP approach) at
the integration points. The nominal solution is represented by solid blue line in Figure 4.2.
The comparison of the both solutions is demonstrated in Figure 4.2. Indeed, these solutions
are compatible.
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Figure 4.1: Unconstrained case: Nominal solution vs. sequential solution of state (top
figure) and control (bottom figure) variables. Dotted line: Solution obtained via sequen-
tial approach. Solid line: Nominal solution.
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Figure 4.2: Constrained case: Nominal solution vs. sequential solution of state (top fig-
ure) and control (bottom figure) variables. Dotted line: Solution obtained via sequential
approach. Solid line: Nominal solution.
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Chapter 5

Tracking of Necessary Conditions for

Optimality

Previous part discussed a unified framework called nominal optimisation (also, dynamic
optimisation under ideal conditions) that improves control policy of a particular process.
In real-world applications, this case is very uncommon, as the process is usually subject
to disturbances, model mismatch and another forms of an uncertainty. Such changes in
process behaviour naturally affect the operational conditions that are no longer optimal
when controlled by nominal solution. In addition, the NCO as well are not satisfied. The
obvious limitation of standalone nominal optimisation comes from the fact that it is an
open-loop control scheme that leads to an optimality loss and violations of NCO in the
presence of an uncertainty.

A natural approach to control a perturbed process is to employ the measurements
that provides the feedback information. To satisfy the NCO also in perturbed process,
one way is to re-optimise the problem by taking the perturbations into account. Usually,
it is difficult to express an uncertainty mathematically. In such a case, some robust or
closed-loop control approach is clearly needed. The other way around is to enforce NCO
directly without re-optimisation. Since the control structure (given by successive sequence
of the arcs) is given by the nominal solution and if the sequence of arcs is not affected
by an uncertainty, the NCO can be easily checked at certain points and then they can be
pushed towards them. This approach is known as NCO-tracking and has been introduced
by (Srinivasan and Bonvin, 2004b; Srinivasan, Bonvin, et al., 2003a,b; Welz, Srinivasan,
et al., 2006).

In essence, the enforcement of the NCO in DOP can be described as the use of an
arbitrary control approach to meet four sets of necessities (Srinivasan and Bonvin, 2004b).
Subsequently, the measurements provide the fundamental information about the process
behaviour and the constraints. The problem of tracking NCO can be divided into two main
methodologies: (i) the NCO-tracking associated with tracking of active constraints, and
(ii) tracking of NCO associated with sensitivities. The relation between standalone NCO
parts and various control schemes found in literature is presented in Table 5.1.

We can see that path objectives in NCO can be handled by constrained control pre-
sented in (Srinivasan and Bonvin, 2004b; Srinivasan, Primus, et al., 2001) or by constraint
adaptation introduced in (Chachuat, Marchetti, et al., 2008; Marchetti, Chachuat, et al.,
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2007). A general idea here is to make the path constraints active and to optimise the length
of their intervals. The active terminal constraints can be enforced by pure run-to-run con-
straint control introduced in (Srinivasan and Bonvin, 2004b; Srinivasan, Primus, et al.,
2001), by constraint adaptation technique (CA) explained in (Chachuat, Marchetti, et al.,
2008; Marchetti, Chachuat, et al., 2007), or via integrated two-time-scale control described
in (Podmajerský, Chachuat, et al., 2011a; Podmajerský and Fikar, 2011). The first ap-
proach optimises the terminal objectives by I controller linked to an appropriate decision
variable. The second approach updates the constraints in a model in run-to-run fashion
and in such way that the real-world constraints are satisfied. Last approach implements
CA approach in the outer loop and NE control in the inner loop. The sensitivities along
unconstrained arcs are handled by NE control (Bryson and Ho, 1975; Gros, 2007; Pesch
and Bulirsch, 1994; Pesh, 1990; Ruppen, Benthack, et al., 1995) that uses actual measure-
ments to minimise the variations around nominal solution. Different approach is to use
NE control inside NMPC structure as proposed (Würth, Hannemann, et al., 2009b, 2011).
Terminal sensitivities can be addressed using static optimisation technique like extremum-
seeking control (Kristic and Wang, 2000) or via NE control proposed by (Bryson and Ho,
1975; Pesch and Bulirsch, 1994; Pesh, 1990) which updates path sensitivities to correct
inputs toward terminal objectives.

Table 5.1: Relation between the four NCO parts and various control schemes
Path objectives Terminal objectives

Constraints Constraint control 1 Run-to-run constraint control 1,2

Constraint adaptation 3,4 Integrated two-time-scale control 5,6

Sensitivities NE control 7,8 Extremum-seeking control 9

NE control for NMPC 10,11 NE control 12,13,14

1 B. Srinivasan and D. Bonvin (2004b). “Dynamic Optimization under Uncertainty via NCO Tracking: A Solution Model Approach”.
In: BatchPro Symposium. Plenary talk, pp. 17–35

2 B Srinivasan, C.J. Primus, et al. (2001). “Run-to-run Optimization of Batch Processes via Generalized Constraint Control”. In: Control

Eng. Practice 9, pp. 911–919

3 A. Marchetti, B. Chachuat, et al. (2007). “Batch process optimization via run-to-run constraints adaptation”. In: European Control

Conference. Kos, Greece

4 B. Chachuat, A. Marchetti, et al. (2008). “Process Optimization via Constraints Adaptation”. In: Journal of Process Control 18(3-4),
pp. 244–257

5 M. Podmajerský, B. Chachuat, et al. (2011a). “Integrated Two-Time-Scale Scheme for Real-time Optimisation of Batch Processes”.
In: Proc. of the 18th IFAC World Congress. Milano, Italy

6 M. Podmajerský and M. Fikar (2011). “Real-time Dynamic Optimisation by Integrated Two-Time-Scale Scheme”. In: Proceedings of

the 18th International Conference on Process Control 11. Slovak University of Technology in Bratislava. Štrbské Pleso, Slovakia

7 S. Gros (2007). “Neighboring Extremals in Optimization and Control”. PhD thesis. École Polytechnique Fédérale de Lausanne, Lau-
sanne

8 D. Ruppen, C. Benthack, et al. (1995). “Optimization of Batch Reactor Operation under Parametric Uncertainty – Computational
Aspects”. In: Journal of Process Control 5(4), pp. 235–240

9 M Kristic and H-H. Wang (2000). “Stability of Extremum Seeking Feedback for General Non-linear Dynamic Systems”. In: Automatica

36, pp. 595–601

10 L. Würth, R. Hannemann, et al. (2009b). “Neighboring-extremal updates for nonlinear model-predictive control and dynamic real-time
optimization”. In: Journal of Process Control 19(8), pp. 1277–1288

11 L. Würth, R. Hannemann, et al. (2011). “A two-layer architecture for economically optimal process control and operation”. In: Journal
of Process Control 21(3), pp. 311–321

12 A. E. Bryson and Yu-Chi Ho (1975). Applied Optimal Control – Optimization, Estimation and Control. Hemisphere publishing corpo-
ration

13 H. J. Pesh (1990). “The Accessory Minimum Problem and Its Importance for the Numerical Computation of Closed-Loop Controls”.
In: Conference on Decision and Control. Honolulu, HI, pp. 952–953

14 H.J. Pesch and R. Bulirsch (1994). “The Maximum Principle, Bellman’s Equation, and Caratheodory’s Work”. In: J. Optimization

Theory and Applications 80(2), pp. 199–225



Chapter 6

NCO-tracking Associated with

Active Constraints

The key idea behind NCO-tracking is that once the nominal solution is obtained, the
sequence of arcs can be linked to the correspondent NCO and then indirectly optimised to
satisfy NCO. Several tasks are involved in order to implement the methodology.

6.1 Switching Structure

The nominal solution, introduced in Chapter 4, embodies a sequence of constrained and
unconstrained arcs. This can be further converted into a control scheme, i.e. a switching
structure that comprises the sequence of arcs, their switching times, the active constraints
and the appropriate NCO linked to the switching times and to the arcs. The optimisation
problem then becomes a control problem. Note that sequence of arcs provided by the
nominal solution is a minimal parametrisation of a switching structure. Indeed, the nominal
solution can be parametrised by different switching structure. More on this topic can be
found in (Srinivasan, Bonvin, et al., 2003a).

6.2 Fixed and Free Input Elements

Previous section presented a control structure that consists of a set of elements. These
include time-functions (arcs) and time-invariant parameters (switching times, and possibly
final time). Some of these input elements are affected by perturbations (free variables)
and some are inherent (fixed variables). For example, constrained input arcs remain at its
minimal or maximal values and they do not change with changing perturbations. Thus,
these elements are considered as fixed. In opposite, the switching times of the input arcs
may vary. Such elements are therefore considered free to adjust.
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6.3 Linking the Variables to the NCO

The fixed input elements are known and they can be implemented directly without any
feedback. In contrast, the free variables requires to be further adjusted, according to
the amount of uncertainty, within the control framework. The active path and terminal
constraints are determined by a set of certain arcs and parameters. Some of the free or
additional parameters can be assigned to handle NCO. In particular, the objectives related
to the NCO are the following:

• The path constraint variables are adjusted by making the corresponding path con-
straint active.

• The terminal constraint variables are adjusted by making the corresponding terminal
constraint active.

• The path sensitivity variables need path sensitivity measurements or estimation for
adaptation.

• The terminal sensitivity variables need terminal sensitivity measurements or estima-
tion for adaptation.

Note that these control variables are part of the switching structure. They also ensure
a certain pairing between the control variables and the NCO. This assignment requires a
judgement of designer. We note that a different pairing policy implies different adaptation
strategy, thus different control structure. An important assumption for this assignment to
become effective is that the nominal solution is precise and the set of active constraints
does not change with uncertainty.

6.4 Two-stage Batch Reactor Control

The aim of NCO-tracking is to avoid a re-optimisation process and to drive the variations
to zero. This section reviews the design of controller that tracks NCO associated with
constraints straightforwardly using standard control tools. In the presence of uncertainty,
the resulting variations can be estimated explicitly from the measurements. The case study
with step-by-step control design follows.

6.4.1 Problem Definition

A connected two-stage batch reactors (Hirmajer and Fikar, 2006; Vassiliadis, Sargent, et al.,
1994a,b), non-linear in nature are considered. The first one is filled with diluted solution of
compound A with initial concentration cA(t0) up to volume V1 and some portion of catalyst.
The heating coil is a control variable during the first stage. In the first reactor, the chain
reaction

A
k1→ B

k2→ C (6.1)

takes place till an undetermined time tp. At this instant, the dynamic of the process will
change. The second batch reactor is filled with the products from the first reaction and an
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amount S of diluted solution of compound B with the concentration cs
B
is added. Three

parallel reactions at isothermal conditions take place in the reactor

B→ D (6.2)

B→ E (6.3)

2B→ F. (6.4)

The model of above-mentioned process is based under assumption of perfect mixing and
ideal liquid mixture behaviour. For detailed process information, please refer to (Srinivasan
and Bonvin, 2007).

6.4.2 Nominal Solution

The objective is to maximise an amount of compound D equal to V2cD subject to a mini-
mal desired concentration cw

D
of compound D at final time t1 and subject to process equa-

tions. The decision variables are the reactor temperature T at the first reaction stage, the
switching time tp between two stages, final time t1 and the amount of S. In overall, the
optimisation problem is given as follows:
objective function:

min
S,tp,T [0,t1]

V2cD(t1) (6.5a)

constraints:
path
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ċB
ċC
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t ∈ [tp, t1] (6.5c)

terminal

cD(t1)− c
w
D
≥ 0 (6.5d)

with kinetic rate constants defined as

k1(T ) = 0.0444 e
−2500
T (6.6a)

k2(T ) = 6889 e
−5000
T (6.6b)
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and mixing operations at the switching time tp are

V2 cA(t
+
p ) = V1 cA(t

−

p ) (6.7a)

V2 cB(t
+
p ) = V1 cB(t

−

p ) + S cs
B

(6.7b)

V2 cC(t
+
p ) = V1 cC(t

−

p ) (6.7c)

where V2 = V1 + S; cA(t
−
p ), cB(t

−
p ), cC(t

−
p ) are output concentrations of compounds A, B,

and C in the first stage; cA(t
+
p ), cB(t

+
p ), cC(t

+
p ) are initial input concentrations of compounds

A, B, and C in the second stage; S stands for an amount of addition of compound B at
switching time tp with fixed concentration cs

B
. The values of process parameters are the

following: V1 = 0.1m3, cA(t0) = 2000molm−3, cB−F(t0) = 0molm−3, cs
B
= 600molm−3,

cw
D
= 150molm−3. The final time is constrained by t1 ≤ 180min.
Numerical solution of the optimisation problem is obtained by simultaneous approach,

namely by orthogonal collocation method. Both control and state profiles are parametrised
and transformed from infinite time domain into finite time domain, i.e. continuous problem
becomes NLP. In the first stage, 4 intervals with 10 discretisation points are used for state
variable, 3 intervals with 4,5,3 collocation points are used for control variables, respectively.
In the second stage, single interval with 10 collocation points is used for state variables.
No control variable is presented here as the process operates at isothermal conditions. The
initial conditions are summarised as follows: interval lengths are fixed to ∆ti = 15min,
controls are initialised as Ti = 350K. The initial addition is considered as S = 0.1m3 and
bounds defined as Ti ∈ [298, 398], for t ∈ [0, tp], S ∈ [0, 0.1], ∆ti ∈ [1, 100]. Absolute and
relative tolerances of NLP solver are set to 10−6.

The optimal value of performance index is J = 25.56mol which is in good agreement
with (Hirmajer and Fikar, 2006). Also, value of the addition is reported S = 0.0702m3

which matches the amount reported in (Hirmajer and Fikar, 2006). Both constraints are sat-
isfied and active: the final concentration cD of compound D is equal to desired 150molm−3

and the final time t1 coincides with the maximum 180min. The resulting optimal switching
time takes value tp = 105.8min. The nominal solutions for control and state variables are
shown in Figure 6.1.

6.4.3 Proposed Control Structures

The nominal solution can be parametrised by the following function ℘(η[ts, t
′
s], π) where

η[ts, t
′
s] represents an input arc defined on particular interval [ts, t

′
s]. Next, the parameter

vector π represents switching times. For our problem of the two-stage batch reactor, there
exist two possible parametrisations of nominal solution that track the necessary condition
of optimality. In detail, the input structures Model 1 and Model 2 are as follows:

Model 1 The input profile begins with the sensitivity arc 1 ∂H
∂η1

(0, π1) that terminates

when concentration of compound B reaches an optimal value cB(π1) ≥ c∗
B
. This point

denotes the switching time in the input structure π1 as well as switching time between
the batches. At the time π1, the input profile becomes a constant arc 2 η2 (π1, π2) =
utp and terminates at the time π2. Time π2 is reached when the concentration of
compound D is greater or equal to desired value cD(π2) ≥ cw

D
. The corresponding
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Figure 6.1: Nominal solution for two-stage reactor. Top plot: optimal concentration
profiles of compounds A− C. Middle plot: optimal concentration profiles of compounds
E− F. Bottom plot: nominal control profile.
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Table 6.1: NCO corresponding to input Model 1
path objectives point-wise objectives

constraints Arc 2: - cB(π1) ≥ c∗
B

cD(π2) ≥ cw
D

sensitivities Arc 1: ∂H
∂η1

(0, π1) -

Table 6.2: NCO corresponding to input Model 2
path objectives point-wise objectives

constraints Arc 2: - cD(π1) ≥ cw
D

sensitivities Arc 1: ∂H
∂η1

(0, tp) -

NCO are summarised in Table 6.1. For Model 1, the switching structure involves
two continuous variables and two scalar variables. The schematic of this structure is
displayed in Figure 6.2.

u(t) = P(η1, η2, π1, π2) =

{
η1(t) (for 0 ≤ t ≤ π1)
η2(t) (for π1 ≤ t ≤ π2)

(6.8)

Model 2 The input profile begins with the sensitivity arc 1 ∂H
∂η1

(0, tp) and it ends at

switching time tp. Then, the control profile changes to a constant arc 2 η2 (tp, π1) =
utp and it finishes at the time π1 which is determined by desired concentration level
of compound D. It is required to achieve at least the desired value cD(π1) ≥ cw

D
. The

corresponding NCO are presented in detail in Table 6.2. The switching structure
then involves two continuous variables and one scalar variable. The schematic of this
structure is displayed in Figure 6.2.

u(t) = P(η1, η2, π1) =

{
η1(t) (for 0 ≤ t ≤ tp)
η2(t) (for tp ≤ t ≤ π1)

(6.9)

Control design for NCO-tracking scheme continues with following tasks:

Formulation of control problem – Next, the manipulated and controlled variables need
to be determined. For Model 1 formulated by equations (6.10), the initial concen-
tration cB0 of compound B is chosen as a manipulated variable. The switching time
tp, and amount of addition S are chosen as a manipulated variables for Model 2 for-
mulated by equations (6.11). Similarly, the final concentration cD(t1) of compound
D and the concentration of compound B at the switching time cB(tp) are chosen
as a controlled variables for Model 1, whereas only a final concentration cD(t1) of
compound D is a controlled variable for Model 2.

u(t) = P(η1, η2, π1, π2) =

[
η1(t) = Pc(c

nom
B
− cB(t)) (for 0 ≤ t ≤ π1)

η2(t) = utp (for π1 ≤ t ≤ π2)
(6.10)

u(t) = P(η1, η2, π1) =

[
η1(t) = Pc(c

nom
B
− cB(t)) (for 0 ≤ t ≤ tp)

η2(t) = utp (for tp ≤ t ≤ π1)
(6.11)
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Figure 6.2: NCO control schemes. Top plot: Model 1. Bottom plot: Model 2.
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Controller design – When the input (manipulated) and output (controlled) variables
are chosen, decentralisation and pairing process follows. Decentralisation is helpful,
because all manipulated variables are not adapted simultaneously. Pairing process
links manipulated variables to control variables. Specifically, cB0 is linked to c∗

B
, tp

to cD(t1) in Model 1, S is linked to cD(t1) in Model 2. In detail, the control schemes
are the following:

• on-line

Model 1 – On-line measurement of concentration cB is used to push NCO
variations to zero by PI controller in the arc 1. NCO are tracked alongside
the arc 1 until cB achieves optimal value of concentration c∗

B
. This point

determines the switching time tp.

Model 2 – Concentration cB is measured on-line in this control scheme, too.
Measurements are used to diminish NCO variations by PI controller, in the
first arc 1. Alongside this arc PI controller tracks NCO till the switching
time tp, where reactors changes dynamics.

• off-line (run-to-run)

Model 1 – Difficult on-line measurable variables can be updated off-line, in
run-to-run manner. The switching time tp is adapted by discrete I controller
using actual and previous measurement of final concentration cD(t1). In the
same way, measurements of compound at switching time cB(tp) are used to
adapt initial concentration cB0.

Model 2 – Here, measurements of final concentration cD(t1) are used to update
the amount of addition S at switching time tp.

The performance of these controllers is closely investigated in the next section. Addition-
ally, the obtained solutions for both models are discussed.

6.4.4 Results

Optimisation results for the problem (6.5) are discussed in this section. It is assumed that
uncertainty is presented in the form of time-invariant kinetic rates constants, activation
energies, initial conditions, an addition or a concentration of addition. Their influence on
process behaviour are studied separately as well as together. All uncertainties are positively
or negatively adjusted by 10% for simulation purposes and then compared with the nominal
solution for perturbed problem (further referred to as perturbed solution).

The contribution of particular perturbation on observed variables is discussed next:

activation energies Process model of the first dynamic contains two activation energies
that can be subject to perturbations. If both of them are changed positively then the
initial concentration cB0 of compound B rises, final t1 and switching tp times decrease
compared to the nominal solution. If both of them are changed negatively then only
final time t1 decreases and other variables stay identical with nominal solution. In the
case where one activation energy is bigger than the other one, behaviour is similar to
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previous scenarios depending on size of influence of each activation energy. For the
both switching structures the behaviour is the same in the presence of perturbations.

kinetic rate constants Kinetic rate constants are presented in both dynamics, so they
can be perturbed together or separately. It is assumed that they all are perturbed.
Negative perturbation results in a shorter final time t1, in the both control schemes.
Positive perturbations result in an infeasibility in the both control schemes. It is
caused by slow dynamic that cannot meet the active constraints at the perturbed
value.

initial conditions Perturbations of initial conditions can only be positive except concen-
tration of compound A which can be also negative. All tested possibilities are feasible
and result in shorter final times for both control schemes in direct comparison to the
nominal solution. In the case of Model 1 an initial concentration cB0 of compound B

may decrease the switching time tp as it is chosen as manipulated variable.

addition If an error in an amount of addition is positive, the final time t1 decreases. If
an error in an amount of addition is negative, optimisation becomes infeasible. Note
that in this particular case, the performance index varies according to an error in an
amount of addition. The second control scheme cannot be used in this scenario.

concentration of addition Positive perturbations in a concentration of an addition re-
sult in final time t1 decrease for both control schemes. Negative perturbations in a
concentration of the addition result in infeasibility for Model 1. They also result in
a decrease of the final time t1 and a smaller amount of addition S required in the
process opposite to the amount in the nominal solution.

Combinations of perturbations in all variables are assumed in order to verify a perfor-
mance of the control schemes. The amount of perturbation is randomly generated from 0
to 10% of the original values and with a random sign. Figure 6.3 and Figure 6.4 present
the resulting performance of Model 1 and Model 2. It is obvious that both control schemes
are feasible and that they manage to eliminate the influence of perturbations.
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Figure 6.3: Perturbed solution (dashed line) and solution after NCO-tracking (solid line)
for the switching structure of Model 1.
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Figure 6.4: Perturbed solution (dashed line) and solution after NCO-tracking (solid line)
for the switching structure of Model 2.





Chapter 7

NCO Associated with Sensitivities

The tracking of the sensitivity part of NCO is less straightforward in opposite to the track-
ing of NCO associated with constraints. In addition, unlike the constraints, the sensitivity
terms cannot be estimated explicitly from the state measurements. An estimation of their
values at a given time and for a given state of the system requires the known values of
adjoint variables. These variables are part of the nominal solution.

This chapter introduces an approach of neighbouring-extremal control that corrects the
nominal solution in a way that the variations between nominal and perturbed system are
minimal. In addition, no further re-optimisation is required. This methodology has been
subject of our research and it has been published in (Podmajerský, Chachuat, et al., 2011a;
Podmajerský and Fikar, 2009b, 2011).

7.1 Neighbouring-extremal Control for Non-singular

Problems without Terminal Constraints

7.1.1 Problem Formulation

Let us again consider the dynamic optimisation problem with simple input bound con-
straints:

min
u
J = φ(x(t1)) +

∫ t1

t0

L(x,u)dt

s.t. ẋ = F (x,u); x(t0) = x0

t0 ≤ t ≤ t1

uL ≤ u ≤ uU (7.1)

7.1.2 Neighbouring-extremal Control

Let us now consider a small disturbance in the model parameters. This will result in
the changes in the nominal solution u∗(t), t0 ≤ t ≤ t1. We will consider the first-order
approximation for augmented optimal trajectory of a perturbed control

u(t; ζ) = u∗(t) + ζδu(t) + o(ζ), (7.2)

59
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and use the theory of neighbouring-extremal (Bryson and Ho, 1975) for computing the cor-
rection δu in such a way that the first-order variation of necessary conditions for optimality
vanishes along the augmented control u∗(t) + ζδu(t). The correction of δu is computed
as the solution of the variational LQ minimum problem (Breakwell, Speyer, et al., 1963;
Kelley, Kopp, et al., 1963)

min δ2J(δu) =
1

2
δx(t1)

TΦ∗

xxδx(t1) +
1

2

∫ t1

t0

(
δx
δu

)T (
H∗
xx H

∗
xu

H∗
ux H

∗
uu

)(
δx
δu

)

dt

s.t.

δẋ = F ∗

xδx+ F ∗

uδu; (7.3)

δx(t0) = δx0 (7.4)

uL − u∗(t) ≤ δu(t) ≤ uU − u∗(t) (7.5)

that corresponds to minimisation of the second-order variation of the cost functional subject
to the linearised dynamics. A superscript ∗ (e.g. H∗

uu) means that the variable is evaluated
upon nominal trajectories u∗(t),x∗(t),λ∗(t), for t0 ≤ t ≤ t1. A perturbed optimal control
u(t; ζ) exists in a neighbourhood of ζ = 0, provided that the LQ problem (7.3)–(7.5) itself
has an optimal solution (Pesh, 1990). The control variation δu satisfying the strength-
ened Legendre-Clebsch condition of positive definiteness H∗

uu > 0 and for unconstrained
problems µLi = 0, µUi = 0, i ∈ {1, ..., nu} is then given by:

δu(t) = −(H∗

uu)
−1(H∗

uxδx(t) + F
∗T
u δλ(t)) (7.6)

where δx(t) and δλ(t) satisfy the following two-point boundary-value problem (TPBVP)

(
δẋ(t)

δλ̇(t)

)

=
(
T x T λ

)
(
δx(t)
δλ(t)

)

(7.7)

δx(t0) = δx0, δλ(t1) = Φ∗

xxδx(t1) (7.8)

where T x and T λ along unconstrained arcs are given by:

T x =

(
F ∗
x − F

∗
u(H

∗
uu)

−1H∗
ux

−H∗
xx +H

∗
xu(H

∗
uu)

−1H∗
ux

)

(7.9)

T λ =

(
−F ∗

u(H
∗
uu)

−1F ∗T
u

−(F ∗
x − F

∗
u(H

∗
uu)

−1H∗
ux)

T

)

(7.10)

and along constrained arc by:

T x =

(
F ∗
x

−H∗
xx

)

(7.11)

T λ =

(
0

−F ∗T
x

)

(7.12)
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7.1.3 Numerical Computation

The linear TPBVP (7.7)–(7.8) can be used to calculate the NE control correction δu(t),
t0 ≤ t ≤ t1, in one of two situations:

i. The variations δx0 are available continuously in time, in which case the backward
sweep method (Bryson and Ho, 1975) is used to derive an explicit feedback control
law.

ii. The initial state variations δx0 are available at discrete time instants, in which case
the discrete feedback control is obtained by re-solving of the TPBVP.

Backward Sweep Method

This methodology assumes a linear relation between the state and adjoint variables:

δλ(t) = S(t)δx(t) (7.13)

where S(t) ∈ Rnx×nx is a matrix time function with following terminal condition

S(t1) = Φ∗

xx. (7.14)

Further differentiation of (7.13) with respect to time gives

δλ̇(t) = Ṡ(t)δx(t) + S(t)δẋ(t). (7.15)

Equating the terms in (7.15) to those in (7.7)–(7.8) and in (7.13) results in the following
Riccati equation:

Ṡ(t) = −SF ∗

x − F
T∗
x S + SH∗

xxS. (7.16)

Next, the combination of (7.6) and (7.13) produces:

δu(t) = −K(t)δx(t). (7.17)

Putting (7.17) into (7.16), the system of Riccati equations becomes:

δu = −Kδx (7.18)

K = (H∗

uu)
−1(H∗

ux + F
∗T
u S) (7.19)

Ṡ = −H∗

xx − SF
∗

x − F
∗T
x S + (−H∗

xu + SF
∗

u)K (7.20)

S(t1) = Φ∗

xx
(7.21)

Shooting Method

The linear TPBVP (7.7)–(7.8) can be also rewritten as

(
δẋ(t)

δλ̇(t)

)

=

(
α(t) −β(t)
−γ(t) −α(t)

)

︸ ︷︷ ︸

=: ∆(t)

(
δx(t)
δλ(t)

)

, (7.22)
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with the boundary conditions:
(
I 0

0 0

)(
δx(t0)
δλ(t0)

)

+

(
0 0

− [φ∗
xx]t1 I

)(
δx(t1)
δλ(t1)

)

=

(
δx0

0

)

. (7.23)

The shooting approach proceeds by guessing the missing initial (or terminal) conditions
in (7.23), and adjusting them in such a way that the corresponding terminal (or initial)
conditions are satisfied (see, e.g., Pesch, 1989a; Pesch, 1989b). Given the guess δλ(0) = δλ0

for the adjoints variations at initial time t = t0, the (unique) solution to the linear ODE
system (7.22) is of the form:

(
δẋ(t; δλ0)

δλ̇(t; δλ0)

)

=

(
Υ1(t; t0) Υ2(t; t0)
Υ3(t; t0) Υ4(t; t0)

)

︸ ︷︷ ︸

=: Υ(t; t0)

(
δx0

δλ0

)

, (7.24)

where the transition matrix Υ(t; t0) is obtained as the solution to the initial value problem

∂

∂t
Υ(t; t0) = ∆(t)Υ(t; t0), t0 ≤ t ≤ t1; Υ(t0; t0) = I. (7.25)

Substituting (7.24) into (7.23) leads to the following linear system in the variable δλ(0):

[φ∗

xx]t1 Υ2(t1; t0)−Υ4(t1; t0)δλ(t0) = − [φ∗

xx]t1 Υ1(t1; t0)−Υ3(t1; t0)δx0. (7.26)

For given initial state δx0, the solution to the linear system (7.26) provides the correspond-
ing initial adjoint δλ(t0). Finally, the NE control variation can be calculated from (7.6)
as

δu(t) = −(H∗

uu)
−1

(
H∗
ux F ∗T

u

)
Υ(t; t0)

(
δx0

δλ(t0)

)

. (7.27)

Implementation Issues

It is implicitly assumed for constrained control sequence that the uncertainty is sufficiently
small for the perturbed optimal control to have the same sequence of constrained and
unconstrained arcs as the nominal solution. Clearly, at each switching point tk between an
unconstrained and a constrained arcs, a continuity of control, state and adjoint variables
must be preserved:

x∗(t+k ) = x
∗(t−k ), λ∗(t+k ) = λ

∗(t−k ), u∗(t+k ) = u
∗(t−k ) (7.28)

For example, at a switching point between a lower bound and an interior arc, the value of
control on lower bound matches the value of control in the interior arc uH = uL. Here, uH

represents the control obtained from solving the condition Hu = 0. Taking the previous
into account, NE control is obtained by solving either TPBVP or a set of Riccati equations
with possible discontinuities at junction times tk between constrained and unconstrained
arcs. In practice, this assumption does not cause an apparent performance loss. Also note
that control corrections along unconstrained arcs may take values out of their limits, hence
such controls need to be saturated.
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7.1.4 Van de Vusse Reaction

Plant Model

A chemical reactor of van de Vusse scheme (Vusse, 1964) is considered in this example.
In the reactor, side and follow-up reactions take place where desired cyclopentenol (B)
is produced from cyclopentadiene (A) by acid-catalysed electrophilic addition of water in
dilute solution. In addition, cyclopentanediol (C) is consecutive product of cyclopentenol
(B) and addition of another water molecule, and dicyclopentadiene (D) is a side product
of strong Diels-Alder reaction between the educt and the product.

The plant model presented in Klatt and Engell, 1993 consists of material balances of
the reactant (A) and the product (B) as well as energy balances of the plant and the cooling
jacket as follows:

ċA = −k1(T )cA − k2(T )c
2
A
+ (cin − cA)u1, (7.29a)

ċB = k1(T )(cA − cB)− cBu1, (7.29b)

Ṫ = hr(cA, cB, T ) + α(Tc − T ) + (Tin − T )u1, (7.29c)

Ṫc = β(T − Tc) + γu2 (7.29d)

with reaction enthalpy given as

hr(cA, cB, T ) = −σ[k1(T )(cA∆HAB + cB∆HBC) + k2(T )c
2
A
∆HAD] (7.30)

and kinetic rate constants are expressed as Arrhenius functions of temperature in ◦C.

ki(T ) = ki0e
−

Ei
R
T , i = 1, 2. (7.31)

Table 7.1: Model parameters and the main set-points values

α = 30.8285 [h−1] β = 86.688 [h−1]
γ = 0.1 [K kJ−1] σ = 3.556× 10−4 [m3 KkJ−1]
k10 = 1.287± 20%× 1012 [h−1] E1

R
= 9758.3

k20 = 9.043± 20%× 106 [m3 mol−1 h−1] E2

R
= 8560

∆HAB = 4.2 [kJmol−1] ∆HBC = −11 [kJmol−1]
∆HAD = −41.85 [kJmol−1] cin = 5100± 20% [molm−3]
Tin = 104.9 [K] cA,sp1 = 3517.5 [molm−3]
cB,sp1 = 740 [molm−3] Tsp1 = 87 [K]
Tc,sp1 = 79.8 [K] u1,sp1 = 8.256 [h−1]
u2,sp1 = −6239 [kJ h−1] cA,sp2 = 2985 [molm−3]
cB,sp2 = 960 [molm−3] Tsp2 = 106 [K]
Tc,sp2 = 100.7 [K] u1,sp2 = 18.037 [h−1]
u2,sp2 = −4556 [kJ h−1]

The model parameters are defined in Table 7.1, the state variables are x = [cA, cB, T, Tc]
T .

The controls are input flow rate q normalised by the volume of the plant VR and cooling
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system capacity Q̇. Both inputs are constrained as

u1 =
q

VR
, 5 h−1 ≤ u1 ≤ 35 h−1 (7.32a)

u2 = Q̇, −8500 kJ.h−1 ≤ u1 ≤ 0 kJ.h−1 (7.32b)

The product concentration and the plant temperature were chosen as controlled outputs

y1 = cB, y2 = T. (7.33)

The aim of the optimisation problem is to drive reactor’s operational conditions from the
original steady-state to another operational point. Note that we study set-point transition
only and we do not stabilise the process around final set-point. The particular numeric
values of states and inputs at the operational points are summarised in Table 7.1. The
transition is performed with several scenarios, whereby the desired final point is always
reached without violating input constraints. Thus, the performance index is defined as
finite time LQ integral functional where the normalised tracking error variations between
original and new stationary point are driven to zero in a finite time t1 = 20min. The cost
function then reads

min
u
J0 =

∫ tf

t0

(ŷTQI ŷ + ûTRIû)dt (7.34)

where

ŷ =

[
cB − cB,sp2
cB,sp2

T − Tsp2
Tsp2

]T

(7.35)

û =

[
u1 − u1,sp2
u1,sp2

u2 − u2,sp2
u2,sp2

]T

(7.36)

and matrices QI and RI are positive-definite and symmetric weights

QI =






q1 · · · 0
...

. . .
...

0 · · · qn




 , RI =






r1 · · · 0
...

. . .
...

0 · · · rn




 (7.37)

Open-loop Optimal Control

To find the optimal sequence of arcs, a numerical solution of dynamic optimisation prob-
lem (7.29)–(7.34) has been obtained. In-house dynamic optimisation package has been
employed that is based on CVP approach and implemented in MATLAB environment:
SUNDIALS toolbox (Hindmarsh, Brown, et al., 2005) for the forward and backward nu-
merical integrations and MATLAB version of IPOPT solver (Wächter and Biegler, 2006)
for NLP solutions. For this particular case study, the both control inputs has been piecewise
parametrised on 40 stages of equidistant width (30 s).

The nominal open-loop control solution of more aggressive control scenario is shown in
the bottom two plots of Figure 7.1 (dash-dotted line). The responses of perturbed process
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to the nominal control are displayed in top two plots in Figure 7.1. Observe that u1 starts
on upper bound and u2 on lower bound and then they are followed by an unconstrained
arc. Similarly, the nominal control solution of less aggressive control scenario is depicted in
the bottom two plots of Figure 7.2. See that upper bound of u1 and lower bound for u2 are
shorter in comparison to the more aggressive scenario. In both cases, the unconstrained
arcs are given by the necessary conditions (see (2.17b)):

Hu1 = 2

(
u1 − u1,sp2
u21,sp2

)

r1 + λcA(cin − cA)− λcBcB + λT (Tin − T ) = 0 (7.38)

Hu2 = 2

(
u2 − u2,sp2
u22,sp2

)

r2 + λTcγ = 0 (7.39)

One can express the nominal control solution from these equations as:

u∗1 =

2
u1,sp2r1

− λcA(cin − cA)

2r1
u21,sp2

+
λcBcB − λT (Tin − T )

2r1
u21,sp2

(7.40)

u∗2 =

2
u2,sp2r2

− λTcγ

2r2
u22,sp2

(7.41)

Note that nominal control trajectories u∗1 and u∗2 are computed iteratively as adjoints
become unstable during forward integration. The numerical procedure can be the following:
dynamic process (7.29)–(7.31) is solved in forward direction where the controls are explicitly
given from (7.40)–(7.41). The unknown adjoint variables λ∗

0 are taken from the CVP
solution and then they are approximated during forward integration. Subsequently, in
next iteration steps, the adjoint variables λ∗

k are corrected during backward integration.
In the final iteration, the final value of the computed adjoints λ∗

n(t1) must equal adjoints
given by the term λ(t1) = φ

∗
xx given by the optimal problem.

Neighbouring-extremal Feedback Control

The standard approach of the real-time optimisation consists of process model update using
available measurements and followed by numerical re-optimisation that provides updated
inputs to the plant. Instead of re-optimisation, the so called NCO-tracking approach is used
here. The main idea is based on the fact that optimality requires to meet the necessary
conditions for optimality. NCO-tracking provides almost optimal operation conditions
via precomputed state-feedback without re-solving of DOP. This approach cancels out the
residual variations around nominal solution caused by uncertainty. Note that the switching
times between arcs in the nominal solution are considered fixed. They do not vary with
uncertainty. Also note that the NE controller updates only interior arcs.

To test the performance of proposed NE controller two scenarios are studied: more and
less aggressive control. Performance is demonstrated on perturbed process with various
combination of parameter uncertainty in an inlet concentration cin, in a vector of initial
conditions x0, and in kinetic rate constants k10, k20 that may vary in range of ±20%. The
weight constants for controls are r1 = r2 = 1 and the state penalisation is q1 = q2 = 500
and q1 = q2 = 200 for more aggressive and for less aggressive scenario, respectively.
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The corresponding control updates and their responses for several perturbation scenar-
ios are plotted in Figure 7.1–Figure 7.3 for more aggressive, and in Figure 7.2–Figure 7.4
for less aggressive scenario, respectively. The open-loop implementation of the nominal
solution is clearly unable to deal with the perturbations. In addition, the desired set-
points are not reached in any perturbation case. In contrast, the proposed NE controller
recovers an influence of the perturbations. The reactor is controlled in almost optimal way
and it ends up in close proximity of the desired set-point. This can be observed in both
control scenarios. NE controller roughly copies the control actions of the optimal inputs
for perturbed problem. Similar performance of NE controller can be observed in the next
scenarios with various perturbations:

C1 : ∆cin = 20%,∆k10 = −20%,∆k20 = 10%,∆x0 = −20%

C2 : ∆cin = −10%,∆k10 = −20%,∆k20 = 10%

C3 : ∆cin = 10%,∆k10 = −10%,∆k20 = −20%

C4 : ∆cin = −20%,∆x0 = 10%.

7.2 Neighbouring-extremal Control for Non-singular

Problems with Terminal Constraints

7.2.1 Problem Formulation

Throughout this section, the following dynamic optimisation problem with terminal bound
constraints is considered:

min
u
J = φ(x(t1)) +

∫ t1

t0

L(x,u)dt (7.42)

s.t. ẋ = F (x,u); x(t0) = x0

t0 ≤ t ≤ t1

ψ(x(t1), t1) ≤ 0 (7.43)

uL ≤ u ≤ uU . (7.44)

All the functions in (7.42)–(7.44) are assumed to be two times continuously differentiable
with respect to all their arguments. Further, it is assumed that there exists an unique
nominal solution u∗(t), i.e. the problem is feasible.

7.2.2 Necessary Conditions for Optimality

Following Bryson and Ho, 1975, the Hamiltonian function H is defined as follows:

H(x,u,λ,µL,µU) = L(x,u) + F (x,u)Tλ+ µL
T

(uL − u) + µU
T

(u− uU), (7.45)
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Figure 7.1: More aggressive control with the perturbation scenario: ∆cin = −20%,∆k10 =
−20%,∆k20 = −20%. Dashed line: NE controller; Solid line: optimal inputs to the
perturbed problem; Dash-dotted line: open-loop.
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Figure 7.2: Less aggressive control with the perturbation scenario: ∆cin = −20%,∆k10 =
−20%,∆k20 = −20%. Dashed line: NE controller; Solid line: optimal inputs to the
perturbed problem; Dash-dotted line: open-loop.
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Figure 7.3: Performance of NCO-tracking with more aggressive control. Dashed line:

C1, solid line: C2, dash-dotted line: C3, dotted line: C4.



70 7 NCO Associated with Sensitivities

0 5 10 15 20

500

600

700

800

900

t [min]

c B
 [m

ol
.m

−
3 ]

0 5 10 15 20
70

80

90

100

t [min]

T
 [K

]

0 5 10 15 20

10

20

30

t [min]

u 1 [h
−

1 ]

0 5 10 15 20

−8000

−6000

−4000

−2000

0

t [min]

u 2 [k
J.

K
−

1 ]

Figure 7.4: Performance of NCO-tracking with less aggressive control. Dashed line: C1,
solid line: C2, dash-dotted line: C3, dotted line: C4.
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λ ∈ Rnx denotes the adjoints that satisfy:

λ̇ = −Hx = −F T
xλ− Lx, t0 ≤ t ≤ t1, (7.46)

with the terminal conditions given by:

λ(t1) =
[
φx + ν

Tψx
]

t=t1
, (7.47)

µL(t),µU(t) ∈ Rnu are Lagrange multiplier vector functions satisfying the following:

µL
T

k (t)(uLk − uk(t)) = 0; µLk (t) ≥ 0

µU
T

k (t)(uk(t)− u
U
k ) = 0; µUk (t) ≥ 0

}
for each k = 1, . . . , nu;

t0 ≤ t ≤ t1
(7.48)

and ν ∈ Rnψ are Lagrange multipliers for the terminal constraints such that

0 = νkψk, νk ≥ 0, for each k = 1, . . . , nψ. (7.49)

Provided that the optimal control problem is not abnormal, the first- and second-order
necessary conditions for optimality (NCO) read:

Hu = Lu + F
T
uλ− µ

L − µU = 0 (7.50)

Huu � 0 (7.51)

Equations in (7.46)–(7.51) determine the set of active terminal constraints at the optimum,
which is denoted by the vector ψ̄ of dimension nψ̄ and by complementary multiplier ν̄∗.
The constraints are inactive when the corresponding Lagrange multiplier is equal to zero.

7.2.3 Neighbouring-Extremal Control

Let us assume that u∗(t) is an optimal control for the optimisation problem (7.42)–(7.44),
which consists of a finite sequence of boundary and interior arcs. The optimal solution then
comprises u∗(t), x∗(t), λ∗(t), ν̄∗, µ∗L(t),µ∗U(t), t0 ≤ t ≤ t1. For the control sequence, it is
also assumed that the uncertainty is sufficiently small for the perturbed optimal control to
have the same sequence of boundary and interior arcs as the nominal solution u∗(t). The
constrained optimal control problem obtained with a small variation in the initial condition
x(t0) = x0 + δx0 and in active terminal constraints ψ̄(x(t1), t1) = δψ̄ produces variations
in the controls δu(t), states δx(t), adjoints δλ(t), Lagrange multipliers δν̄ (for the active
terminal constraints ψ̄) and multiplier functions δµL

T

(t), δµU
T

(t).
These variations can be calculated from the linearisation of the first-order NCO (7.46)–

(7.51) around the extremal path (Bryson and Ho, 1975). Along each arc composing u∗, a
control variable u∗i (t) may:

• belong to the interior of the control region uLi < u∗i (t) < uUi , in which case a
neighbouring-extremal solution is such that δµLi (t) = δµUi (t) = 0, and δui(t) is ob-
tained from the first variation of (7.50) as:

δHui = H
∗

uix
δx+ F ∗T

ui
δλ+H∗

uui
= 0; (7.52)
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• be at one of its boundaries uLi or uUi , in which case a NE control is simply given by
δui(t) = 0.

These nu conditions can be written collectively in the form :

A0δλ+B0δx+C0δu = 0, (7.53)

where A0(t),B0(t) ∈ R
nu×nx , C0(t) ∈ R

nu×nu , and

δẋ = F ∗

xδx+ F ∗

uδu (7.54)

δλ̇ = −F ∗T
x δλ−H

∗

xxδx−H
∗

xuδu (7.55)

with additional conditions:

δx(t0) = δx0 (7.56)

δλ(t1) =
[(
φ∗

xx + ν̄
∗T ψ̄∗

xx

)
δx+ ψ̄∗T

x δν̄
]

t=t1
(7.57)

δψ̄ =
[
ψ̄∗

xδx
]

t=t1
. (7.58)

A superscript ∗ indicates that the corresponding quantity is evaluated along the extremal
path u∗(t), t0 ≤ t ≤ t1, and corresponding states, adjoints and Lagrange multipliers. In
the case that the control problem is regular, C0 is invertible along t0 ≤ t ≤ t1, and a NE
control law can be readily obtained as:

δu(t) = −C−1
0 [A0δλ(t) +B0δx(t)] (7.59)

Note that this control law corresponds to the standard NE control law in the case where
no input constraint is active; that is:

A0 = F
∗T
u , B0 = H

∗

ux, C0 = H
∗

uu (7.60)

Overall, δx(t) and δλ(t) satisfy the following two-point boundary value problem (TPBVP):
(
δẋ(t)

δλ̇(t)

)

= ∆(t)

(
δx(t)
δλ(t)

)

,

δx(0) = δx0, δψ̄ =
[
ψ̄∗

xδx
]

t=t1
,

δλ(t1) =
[(
φ∗

xx + ν̄
∗T ψ̄∗

xx

)
δx+ ψ̄∗T

x δν̄
]

t=t1
(7.61)

where:

∆(t) =

(
α(t) −β(t)
−γ(t) −ω(t)

)

(7.62)

with:

α(t) := F ∗

x − F
∗

uC
−1
0 B0 (7.63)

β(t) := F ∗

uC
−1
0 A0 (7.64)

γ(t) := H∗

xx −H
∗

xuC
−1
0 B0 (7.65)

ω(t) := F ∗T
x −H

∗

xuC
−1
0 A0 (7.66)
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At a switching point between a lower bound and an interior arc, the value of control on
lower bound matches the value of control in the interior arc uH = uL, where uH represents
the control obtained from solving the condition Hu = 0. In addition, state, adjoint, and
control trajectories are continuous at this point, too:

x∗(t+k ) = x
∗(t−k ), λ∗(t+k ) = λ

∗(t−k ),u
∗(t+k ) = u

∗(t−k ). (7.67)

In general, the switching junction times between the various arcs that constitute the optimal
solution u∗(t), t0 ≤ t ≤ t1, vary when the initial conditions or terminal condition vary.
However, such switching time variations are difficult to determine and complicate the
calculation of the NE control. To make this implementable, we consider the fixed switching
points at their nominal values, and the control values are then updated between these fixed
times.

7.2.4 Numerical Computation of Neighbouring Feedback Con-

trol

The linear TPBVP (7.61) can be used to calculate the NE control corrections δu(t), 0 ≤
t ≤ tf , in either one of two situations:

i. The initial state and (active) terminal constraint variations δx0 and δψ̄ are avail-
able at discrete time instants, in which case the discrete feedback control can be
obtained by directly re-solving the TPBVP. This can be done via a shooting method
as described in Pesch, 1989a; Pesch, 1989b;

ii. The variations δx0 and δψ̄ are available continuously in time, in which case the
backward sweep method can be used to derive an explicit feedback control law. This
approach is closely explained in Bryson and Ho, 1975.

7.2.5 Shooting Method

The boundary value problem (7.61) can be rewritten in the form
(
δẋ(t)

δλ̇(t)

)

= ∆(t)

(
δx(t)
δλ(t)

)

, (7.68)

with the boundary conditions
(
I 0

0 0

)(
δx(t0)
δλ(t0)

)

+

(
0 0

B1 I

)(
δx(t1)
δλ(t1)

)

=

(
δx0

B2

)

, (7.69)

where

B1 = −
[
φ∗

xx + ν̄
∗T ψ̄∗

xx

]

t1

B2 =
[
ψ̄∗T
x

]

t1
δν̄.

The shooting approach proceeds by guessing the missing initial (or terminal) conditions
in (7.69), and adjusting them in such a way that the corresponding terminal (or initial)
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conditions are satisfied (see, e.g., Pesch, 1989a; Pesch, 1989b). Given the guess δλ(t0) = δλ0

for the adjoint variations at initial time t = t0, the (unique) solution to the linear ODE
system (7.68) is of the form:

(
δx(t)
δλ(t)

)

=

(
Υ1(t; t0) Υ2(t; t0)
Υ3(t; t0) Υ4(t; t0)

)

︸ ︷︷ ︸

=: Υ(t; t0)

(
δx0

δλ0

)

, (7.70)

where the transition matrix Υ(t; t0) is obtained as the solution to the initial value problem

∂

∂t
Υ(t; t0) = ∆(t)Υ(t; t0), t0 ≤ t ≤ t1; Υ(t0; t0) = I. (7.71)

Substituting (7.70) into (7.69) and (7.58) leads to the following linear system in the vari-
ables δλ0, δν̄:

(
Z1 Z2

Z3 0

)(
δλ0

δν̄

)

=

(
0

I

)

δψ̄ −

(
Z4

Z5

)

δx0, (7.72)

where

Z1 =
[
φ∗

xx + ν̄
∗T ψ̄∗

xx

]

t1
Υ2(t1; t0)−Υ4(t1; t0)

Z2 =
[
ψ̄∗T
x

]

t1

Z3 =
[
ψ̄∗

x

]

t1
Υ2(t1; t0)

Z4 =
[
φ∗

xx + ν̄
∗T ψ̄∗

xx

]

t1
Υ1(t1; t0)−Υ3(t1; t0)

Z5 =
[
ψ̄∗

x

]

t1
Υ1(t1; t0).

For given initial state and active terminal constraint variations δx0 and δψ̄, the solution to
the linear system (7.72) provides the corresponding initial adjoint and Lagrange multiplier
variations δλ0 and δν̄. Finally, the NE control variation can be calculated from (7.59) as

δu(t) = −C0(t)
−1

(
B0(t) A0(t)

)
Υ(t; t0)

(
δx0

δλ0

)

. (7.73)

Backward Sweep Method

The idea behind the sweep method consists in postulating a linear relationship between
the state, adjoint and Lagrange multiplier variations as follows:

δλ(t) = Σ(t)δx(t) +Π(t)δν̄ (7.74)

δψ̄ = ΠT (t)δx(t) +Ω(t)δν̄ (7.75)

where Σ(t) ∈ Rnx×nx , Π(t) ∈ Rnx×nψ̄ , Ω(t) ∈ Rnψ̄×nψ̄ are matrix functions of t. From the
terminal conditions (7.57) and (7.58), it is easily seen that

Σ(t1) =
[
φ̄∗

xx + ν̄
∗T ψ̄∗

xx

]

t=t1
(7.76)

Π(t1) =
[
ψ̄∗T
x

]

t=t1
(7.77)

Ω(t1) = 0. (7.78)
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A system of Riccati matrix differential equations can be obtained by differentiating (7.74)
and (7.75) with respect to time:

δλ̇(t) = Σ̇(t)δx(t) +Σ(t)δẋ(t) + Π̇(t)δν̄ (7.79)

0 = Π̇T (t)δx(t) +ΠT (t)δẋ(t) + Ω̇(t)δν̄, (7.80)

and then equating the various terms in (7.79),(7.80) to those in (7.61):

Σ̇(t) = −Σ(t)α(t)− ρ(t)Σ(t) +Σ(t)β(t)Σ(t)− γ(t) (7.81)

Π̇(t) = − [ρ(t)−Σ(t)β(t)]Π(t) (7.82)

Ω̇(t) = Π(t)Tβ(t)Π(t), (7.83)

with α, β, γ and ρ given by (7.63)–(7.66).
At this point, values for Σ(t0), Π(t0), Ω(t0) can be calculated by integrating (7.81)–

(7.83) backward in time to t = t0, from the terminal conditions (7.76)–(7.78); in other
words, the terminal conditions (7.76)–(7.78) are ‘swept back’ to the initial time.

Having solved (7.81)–(7.83), the variation δν̄ in the Lagrange multipliers that are
needed to counteract the variation δψ̄ in the active terminal constraints can be obtained
from (7.75) as

δν̄ = Ω−1(t)
[
δψ̄ −ΠT (t)δx(t)

]
. (7.84)

Note that the latter can be solved at any time t, provided that the square matrix Ω(t) in
non-singular. Clearly, (7.78) precludes the calculation of δν̄ at final time t1. In turn, the
adjoint variation δλ(t) can be calculated, at any t0 ≤ t ≤ t1 from the following equation:

δλ(t) =
[
Σ(t)−Π(t)Ω(t)−1Π(t)T

]
δx(t) +Π(t)Ω(t)−1δψ̄. (7.85)

Finally, substituting (7.74) and (7.85) into (7.59) yields the following explicit expression
of the control variation δu(t) as a function of the state and terminal constraint variations
δx(t) and δψ̄:

δu(t) = −Kx(t)δx(t)−Kψ̄(t)δψ̄ (7.86)

with:

Kx := (H∗

uu)
−1

[
H∗

ux + F
∗T
u

(
Σ−ΠΩ−1ΠT

)]
, Kψ̄ := (H∗

uu)
−1F ∗T

u ΠΩ−1

By construction, the continuous-time feedback law (7.86) enforces satisfaction of the first
variation of the NCO (7.46)–(7.51) in the presence of state and constraint variations δx(t)
and δψ.

7.3 Run-to-run Constraint Adaptation

Different approach that deals with terminal constraints in presence of uncertainty is Con-
straint Adaptation (CA). The principle behind run-to-run optimisation is similar to MPC.
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But instead of adapting the initial conditions and moving the control horizon as is done
in MPC, the adaptation is performed on the optimisation model (e.g., model parameters
or constraint biases) before re-running the optimiser. In run-to-run constraint adapta-
tion (Chachuat, Marchetti, et al., 2008; Marchetti, Chachuat, et al., 2007), more specif-
ically, it is the terminal constraints (7.43) in the optimisation model which are adapted
after each run as:

ψ(x(t1), t1) ≤ δψ, (7.87)

where δψ stands for the terminal constraint bias. Such a bias can be directly updated as
the difference between the available terminal constraint measurements, ψmeas, at the end
of each run and the predicted constraint values. This simple strategy can however lead to
excessive correction when operating far away from the optimum, and it may also exacerbate
the sensitivity of the adaptation scheme to measurement noise. A better strategy consists
of filtering the bias, e.g., with a first-order exponential filter:

δψk+1 = [I −W ] δψk +W [ψmeas
k −ψ(xk(t1), t1)] , (7.88)

with k the run index, and W a gain matrix—typically, a diagonal matrix with entries wi
such that 0 < wi ≤ 1, i = 1, ..., nψ.

u∗

k
[0, t1]

ψ(x∗

k
(t1), t1)

ψmeas
k

δψk

δψk+1

Figure 7.5: Run-to-run constraint adaptation scheme.

The run-to-run constraint-adaptation scheme is shown in Figure 7.5. The constrained
dynamic optimisation problem uses the available nominal process model. It is solved be-
tween each run, using a numerical procedure such as the sequential (Edgar and Himmelblau,
1988; Guntern, Keller, et al., 1998) or the simultaneous approach (Biegler, 1984; Renfro,
Morshedi, et al., 1987) of dynamic optimisation. The optimal control trajectory u∗

k(t),
t0 ≤ t ≤ t1, is computed and applied to the plant during the k-th run. The predicted
optimal response is denoted by x∗

k(t). The discrepancy between the measured terminal
constraint values ψmeas

k and the optimiser predictions ψ(x∗

k(t1), t1) is then used to adjust
the constraint bias as described earlier, before re-running the optimiser and so on.



Chapter 8

NCO-tracking by Two-time-scale

Control

Run-to-run constraint adaptation was shown to be a promising approach in Chachuat,
Marchetti, et al., 2008; Marchetti, Chachuat, et al., 2007. It provides a natural framework
for handling changes in active constraints in dynamic process systems and it is quite robust
towards model mismatch and process disturbances. Moreover, its practical implementation
is rather simple. Inherent limitations of this scheme, however, are that (i) it does not
perform any control corrections during the runs, and (ii) it typically leads to sub-optimal
performance since only the terminal constraints are adapted.

On the other hand, NE control is able to correct small deviations around the nominal
extremal path in order to deliver similar performance as with re-optimisation. Since no
costly on-line re-optimisation is needed, this approach is well suited for processes with fast
dynamics that require frequent updates. However, the performance of NE control typically
decreases dramatically in the presence of large model mismatch and process disturbances,
and it requires a full-state measurement. This leads to sub-optimality or, worse, infeasibility
when constraints are present or limited measurements are available.

The proposal is to combine the advantages of these two approaches: run-to-run con-
straint adaptation is applied at the slow time scale (outer loop) to handle large model
mismatch and changes in active constraints, based on run-end measurements only. Fur-
thermore, NE control is applied at the fast time scale (inner loop) and uses measurement
information available within each run, in order to enhance convergence speed and mitigate
sub-optimality. Another advantage is that the switching times between control arcs are
adapted in the outer loop, thereby reducing the fact that they are not adapted by the NE
controller itself (see Section 7.2).

A current limitation of the proposed scheme is that full-state measurement is required
by NE controller. In practice, this is rarely the case as the relation between measured
outputs and states is never known perfectly.

The results in this Chapter have been also published in (Podmajerský, Chachuat, et al.,
2011a,b,c; Podmajerský and Fikar, 2011).

The proposed integrated two-time-scale optimisation scheme is depicted in Figure 8.1.
The implementation procedure is as follows:

Initialisation:

77
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u∗

k
[0, t1]

x∗

k
[0, t1]

λ∗

k
[0, t1]

ν∗

k

µ∗L[0, t1]

µ∗U [0, t1]

ψ(x∗

k
(t1), t1)

ψmeas
k

δψk+1

δψk

u∗

k
[0, t1]

x∗

k
[0, t1]

λ∗

k
[0, t1]

ν∗

k

δuk(t)

u∗

k
(t) u∗

k
(t) + δuk(t) xmeas

k
(t)

x∗

k
(t)

δxk(t)

Figure 8.1: Two-times-scale optimisation scheme employing NE control in the inner loop
and run-to-run constraint adaptation in the outer loop.
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0. Initialise the constraint bias δψ = 0, select a gain matrix W and set the run
index to k = 1.

Outer Loop:

1. Determine u∗

k by solving the optimal control problem (7.42)–(7.44), then obtain
the corresponding states x∗

k and adjoints λ∗

k, with the active terminal constraints
ψ̄ and corresponding Lagrange multipliers ν̄∗

k, and the active input constraints
and corresponding multiplier functions µ∗L and µ∗U .

2. Design a NE controller around the extremal path u∗

k, either by using the back-
ward sweep approach (continuous measurements), or by applying the shooting
method (discrete measurements).

3. Inner Loop:

Implement the NE controller during the k-th run in order to calculate the cor-
rections δuk(t) to u

∗

k(t) based on the available (continuous or discrete) process
measurements.

4. Update the constraint bias δψk+1 as the filtered difference between the measured
values of the terminal constraints and their predicted counterparts.

5. Increment the run index k ← k + 1, and return to Step 1.

8.1 Batch Reactor Control

Consider again the batch reactor example from Section 4.1 to illustrate the proposed inte-
grated two-times-scale approach as well as pure NE control with terminal constraints and
pure run-to-run constraint adaptation.

8.1.1 Results

In order to illustrate the benefits of the proposed integrated scheme, two case studies are
considered where the initial conditions are changed by −40% with respect to the nominal
scenario,

δβR = −0.212, δβP = −0.172.

No measurement noise is presented in the ideal case and a measurement noise is presented
in the second case. Also note that NE controller can be designed and applied in two
different ways which are presented in Section 7.2.5. In this study, the NE controller in
the integrated run-to-run constraint-adaptation scheme is designed by backward sweep
method that requires presence of continuous state measurements. Within each case study,
two adaptation strategies are compared to reject these perturbations:

• Strategy 1: The original run-to-run constraint-adaptation scheme (run-end state mea-
surements are required) is applied;
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• Strategy 2: The integrated run-to-run constraint-adaptation and NE control scheme
(run-time continuous state measurements are required) is used.

Note that for the sake of comparison, the run-to-run adaptation is initialized with a con-
straint bias of δψ = 0 and considers a filter gain of W = 0.5 in both strategies. This filter
parameter was chosen so as to avoid oscillations during the adaptation process.

Case 1: No measurement noise

Figure 8.2 shows the evolution of the temperature profile during the runs 1, 2 and 20, for
both strategies. Observe that control profiles in Strategy 2 are almost identical during
the runs 1, 2 and 20. NE controller corrects all the perturbations during the runs such
that the constraint adaptation is minimal. Also note that run 20 is meant to represent
the adapted plant operation after convergence. Similarly, the evolution of the terminal
constraint ψ is depicted in Figure 8.3 for both strategies. It is clearly seen from these
plots that proposed integrated scheme exhibits a much faster convergence than the original
run-to-run constraint-adaptation scheme. In particular, the integrated scheme is found
to reach the same operation after just one run whereas the original scheme after seven
runs. The converged solution after 20 runs versus the perturbed optimal control is shown
in Figure 8.4, for both strategies. It is found that both approaches match the terminal
constraint and the objective with perturbed optimal control.

Case 2: Presence of measurement noise

Figure 8.5 depicts the evolution of temperature profile during the runs 1, 2 and 20, for
both strategies in presence of noisy measurements. Observe that the control profiles in
Strategy 2 reflect the correction of perturbations brought by continuous measurements
and by perturbed initial conditions. Only 2 runs are needed for Strategy 2 to get in
neighbourhood of terminal objectives, whereas Strategy 1 needed 12 runs. It is found
in Figure 8.6 that the terminal constraint in Strategy 1 approaches asymptotically the
reference and oscillates closely to the reference in Strategy 1. The converged solution after
20 runs against the perturbed optimal control is shown in Figure 8.7, for both strategies
in the presence of measurement noise. Note that the terminal constraints are met as well
as the performance index.

8.2 Semi-batch Reactor Control

A semi-batch reactor example considered in Chen and Hwang, 1990 illustrates the pro-
posed integrated two-times-scale approach and pure NE control as well as pure run-to-run
constraint adaptation. The goal is to maximise the yield of ethanol using the feed rate u(t)
as the control variable, while keeping the liquid volume below some maximum threshold.
Simple bound constraints are imposed on the feed rate.
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Figure 8.2: Evolution of the temperature profile in presence of no measurement noise. Left
plot: Strategy 1; Right plot: Strategy 2. Solid line: Control input in the last run. Dash-

dotted line: Control input in the first run. Dashed line: Control input in the second
run.
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Figure 8.3: Evolution of the terminal constraint ψ in presence of no measurement noise.
Left plot: Strategy 1; Right plot: Strategy 2.
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Figure 8.4: Converged solution after 20 runs compared to the perturbed optimal control
in presence of no measurement noise. Left plot: Strategy 1; Right plot: Strategy 2. Solid
line: System response of the proposed solution. Dashed line: System response of the
re-optimised solution.
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Figure 8.5: Evolution of the temperature profile in presence of measurement noise. Left
plot: Strategy 1; Right plot: Strategy 2. Solid line: Control input in the last run. Dash-

dotted line: Control input in the first run. Dashed line: Control input in the second
run.
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Figure 8.6: Evolution of the terminal constraint ψ in presence of measurement noise. Left
plot: Strategy 1; Right plot: Strategy 2.

0 2 4 6 8
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t [min]

c R
, c

P
 [m

ol
.d

m
−

3 ]

0 2 4 6 8
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t [min]

c R
, c

P
 [m

ol
.d

m
−

3 ]

Figure 8.7: Converged solution after 20 runs compared to the perturbed optimal control
in presence of measurement noise. Left plot: Strategy 1; Right plot: Strategy 2. Solid

line: System response of the proposed solution. Dashed line: System response of the
re-optimised solution.
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8.2.1 Problem Formulation

The mathematical formulation of this problem is to maximise:

J = cE(t1)V (t1)− 0.1

∫ t1

t0

[u(t)]2dt. (8.1)

The process model is given by:

ċMS(t) = p1(t)cMS(t)− u(t)
cMS(t)

V (t)
(8.2)

ċS(t) = −10p1(t)cMS(t) + u(t)
150− cS(t)

V (t)
(8.3)

ċE(t) = p2(t)cMS(t)− u(t)
cE(t)

V (t)
(8.4)

V̇ (t) = u(t) (8.5)

where:

p1(t) =

(
0.408

1 + cE
16

)(
cS

0.22 + cS

)

(8.6)

p2(t) =

(
1

1 + cE
71.5

)(
cS

0.44 + cS

)

. (8.7)

The state values cMS(t), cS(t), cE(t) and V (t) are the cell biomass, substrate, and ethanol
concentrations [g/L], and the volume [L]. The final time is set to t1 = 60 h. The reactor
container is initially loaded with V (t0) = 10L of reaction mixture with biomass and sub-
strate concentrations cMS(t0) = 1 g/L and cS(t0) = 150 g/L. No ethanol is initially present
in the reaction mixture. The feed rate [L/h] is bounded as:

0 ≤ u ≤ 12 [L/h]. (8.8)

The liquid volume is limited by V max = 200L, so the terminal condition reads:

V (t1) ≤ V max [L]. (8.9)

Note that the integral term
∫ t1
t0
[u(t)]2dt augments the original objective function in order

to make the control problem regular. This way Hu depends on the control variable and is
invertible.

8.2.2 Open-Loop Optimal Control

The optimisation problem (8.1)–(8.9) was solved using the sequential method (Edgar and
Himmelblau, 1988; Guntern, Keller, et al., 1998) with piecewise constant control. It is
seen in Figure 8.8 that the optimal control profile consists of three arcs: a lower bound; an
interior arc; and another short lower bound. Since the problem is regular, the control action
along interior arc can be explicitly determined from the conditions (7.46)–(7.51). Note that
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Figure 8.8: Optimal state trajectory of liquid volume (solid line) and maximum value
(dotted line) – the nominal solution

along boundary arcs, the control action is equal to the lower bound. The switching times
τ1 and τ2 between these arcs are not explicitly known and they need to be estimated
too. Good initial guess for these switching times can be estimated using e.g. a piecewise
constant control approximation. Overall, the optimal control solution is stated as:

ẋ = (8.2)–(8.7); x(t0) = x0 (8.10)

λ̇ = −Hx; λ(t1) =
[
φx + ν

Tψx
]

t=t1
(8.11)

0 =







uL(t), t0 ≤ t ≤ τ1
Hu(t), τ1 ≤ t ≤ τ2
uL(t), τ2 ≤ t ≤ t1

. (8.12)

(8.10)–(8.12) is a non-linear multi-point boundary value problem. The optimal control
profile is obtained by computing the switching times τ1 and τ2, the initial conditions for
adjoints λ0, and the Lagrange multiplier for terminal constraint ν, according to the indirect
shooting method (Bryson and Ho, 1975). It is found that the performance index J ∗ = 20689
matches the objective value obtained with the sequential method J = 20699. Figure 8.8
also shows that the terminal constraint (8.9) is active.

8.2.3 Closed-Loop Optimal Control

Full-state measurements and an addition of white noise with variance of 1% to the
measured states are considered. Moreover, the following variations in initial conditions
δx0 =

[
0.17 −6 0.9 0.8

]
is considered, too. These variations are chosen to cause a

performance loss and terminal constraint violation, when applying the open-loop control
profile. The measured outputs are taken with frequency of 0.1 s. Run-to-run constraint
adaptation is initialised with a constraint bias of δψ = 0 and considers a filter gain of
W = 0.2. This gain is chosen so as to meet the terminal constraint as quickly as possible
while avoiding oscillations during the adaptation.
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Figure 8.9: Dotted lines with circles: constraint adaptation alone, dash-dotted lines

with crosses: neighbouring extremal control alone, dashed lines: optimal solution for
perturbed system, solid lines with diamonds: integrated two-time-scale scheme control.
Left plot: evolution of the terminal constraint; Middle plot: evolution of the terminal
constraint bias; Right plot: evolution of the performance index.
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Figure 8.9 compares the evolution of the performance during the first 20 batches. The
evolution of the terminal constraint is presented in the upper left plot. Observe that pure
NE control satisfies the terminal constraint, but is rather conservative. In contrast, pure
constraint adaptation violates the terminal constraint in most of the batches. In the last
5 batches, the method almost reaches the terminal constraint. Note that this approach
also appears to be more sensitive to measurement noise than other two. The integrated
scheme remains in the neighbourhood of the terminal constraint for all batches. Due to the
fact that control corrections are applied during each batch as well, this approach is able
to correct the control profile with lower sensitivity to measurement noise. The upper right
plot of Figure 8.9 shows that the terminal constraint bias varies slightly for the integrated
scheme, because the NE controller in the inner loop is able to recover a large portion of the
potential constraint violation. In contrast, constraint adaptation requires much larger bias
adaptation since no correction is made within the batches. The lower plot of Figure 8.9
shows the evolution of the performance index. The worst average case is for pure NE
control. In contrast, pure constraint adaptation exhibits the highest performance, but this
is a direct consequence terminal constraint violation. The cost function of the proposed
integrated approach is very close to the optimal performance of the perturbed system.
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Figure 8.10: Performance with perturbed initial conditions after 20 runs of adaptation.
Left plot: control trajectory; Right plot: state trajectory of liquid volume; Solid line:
perturbed system with two-time-scale integrated scheme; Dashed line: optimal solution
for perturbed system.

The resulting control profile after 20 batches is shown in left plot of Figure 8.10. The
control still consists of the tree same arcs, but the switching times are now different from
the nominal solution displayed in Figure 8.8, as a result of the constraint adaptation. The
corresponding measured output of liquid volume is presented in the right plot of Figure 8.10.
It can be seen that the measured output of the perturbed process is in very good agreement
with the re-optimised solution.
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Chapter 9

Two-tanks Connected in Series

The level control of two connected tanks with liquid interaction is considered to illustrate
the integrated two-times-scale approach against a constraint adaptation control scheme and
a neighbouring-extremal controller alone. The various control methods are first tested using
numerical simulations and then validated experimentally. The experiments are carried out
on an Amira DTS200 device, which is shown in Figure 9.1. It consists of 3 connected
tube-shaped tanks connected through their bases and comprises six valves to regulate the
outflows and leakages. The levels are measured by pressure sensors situated at the bottom
of each tank. Also, two inlet flows are available, with pumps feeding the liquid to the first
and third tanks.

Only the first two tanks are used in this case study, as illustrated in Figure 9.2. The
objective is to control the transition from an initial level to specified level in the second
tank, by manipulating the inlet flow u(t) pumped into the first tank. Both the levels h1
and h2 are measured. The measurements are provided by pressure sensors. The outflow
from the second tank is regulated by the half-opened valve k22 and the two tanks interact
through the valve k11 at their bases.

9.1 Problem Formulation

The process model assumes a constant liquid density and vertical walls for the two tanks.
From material balances and Bernoulli’s equation, the resulting mathematical model is given
by:

ḣ1(t) =
u

F1

−
k11
F1

√

h1 − h2 (9.1)

ḣ2(t) =
k11
F2

√

h1 − h2 −
k22
F2

√

h2, (9.2)

where the state variables h1(t) and h2(t) are levels [cm] in the first tank and in the second
tank, respectively; the constants F1 and F2 define cross-sectional area of tank bases [cm2];
k11 and k22 are valve constants [cm2.5 s−1]; and the variable u represents the inlet flow in
the first tank [ml s−1].

The initial level values corresponds to a constant inlet flow of u = 25ml s−1 which are
h1(t) = 16 cm and h2(t) = 8 cm. The numerical values of the constants are F1 = F2 =

89
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Figure 9.1: Amira DTS200 – Process for level control of tanks.

154 cm2, k11 = 10.68 cm2.5 s−1, and k22 = 7.5 cm2.5 s−1. The final time is set to t1 = 500 s
and the inlet flow u is bounded as:

0 ≤ u ≤ 100 [ml s−1]. (9.3)

The terminal constraint reads:

h2(t1) = href2 . (9.4)

with the desired level in the second tank set to href2 = 25 cm. The objective function is
defined so as to minimise the LQ cost:

min
u
J =

∫ t1

t0

q[h2(t)− h
ref
2 ]2 + r[u(t)]2dt (9.5)

where weighting constants are r = 0.001 and q = 1000. Note r > 0 is needed in order to
make the control problem non-singular. This way Hu depends on the control variable and
the Hamiltonian H is regular.

9.2 Open-loop Optimal Control

The analysis of the solution of the optimisation problem (9.1)–(9.5) in Figure 9.3 (left
plot) indicates that the optimal control consists of an upper bound, a lower bound, and
an interior arc. Good initial guess for the switching times are obtained by application of
sequential approach with piecewise constant control parametrisation. The optimal control
profile is then obtained by determining the switching times τ1 and τ2, the initial conditions
for adjoints λ0, and the Lagrange multipliers for terminal constraints ν, using the indirect
shooting approach (Bryson and Ho, 1975).
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Figure 9.2: Configuration of two tanks connected in series.

9.3 Closed-loop Optimal Control

In order to simulate the real behaviour of the process, the valve constants are perturbed to
the following values: k11 = 10.08 cm2.5 s−1 and k22 = 8.82 cm2.5 s−1. The initial conditions
remain unchanged. The measured outputs are two states h1 and h2 with addition of white
noise of variance 1%, and the measurement frequency is every second. While the NE con-
troller is designed using the nominal mathematical model, the simulations are performed
for measured outputs from the perturbed model. The differences between the nominal and
perturbed models result in a performance loss and terminal constraint violation, when ap-
plying the open-loop control profile from Figure 9.3. The run-to-run constraint adaptation
is initialised with a constraint bias of δψ = 0 and a filter gain of W = 0.6. In the proposed
integrated scheme a filter gain of W = 0.4 is considered.

Figure 9.4 compares the performance of various approaches during the first 15 runs. The
evolution of the terminal constraint is presented in the left plot. Observe that in the first run
pure constraint adaptation starts far from the desired value compared to NE control. In the
subsequent runs, this constraint remains violated while it converges to the desired value href2

after about 5 runs. The integrated scheme starts quite close to the terminal constraint, and
converges to the desired value. Due to the fact that control corrections are applied during
each run as well, this approach is able to correct the control profile with lower sensitivity
to measurement noise than pure constraint adaptation. The right plot of Figure 9.4 shows
the evolution of the original terminal constraint plus constraint bias. This value only
varies slightly for the integrated scheme because the NE controller in the inner loop is able
to recover a large portion of the constraint violation. In contrast, constraint adaptation
approach requires larger adaptation since no correction is made during the runs.

The resulting control profile after 15 runs is shown in left plot of Figure 9.5. The
optimal control profile still consists of the same tree arcs, but the switching times have now
changed compared to nominal solution in Figure 9.3, as a result of the terminal constraint
adaptation. Figure 9.6 shows that the level in second tank meets the desired level with the
proposed integrated two-time-scale control approach.
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Figure 9.3: Left: Nominal control trajectory; Right: Simulated response for open-loop
implementation of nominal control with the nominal model, and bold dotted line: desired
level in the second tank.
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Figure 9.4: Evolution of the terminal constraint during 15 runs. Dashed line with
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extremal control, solid line with circles: integrated two-time-scale scheme control, bold
dotted line: desired level. Left plot: Evolution of the measured terminal constraint;
Right plot: Evolution of the modelled terminal constraint.
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Figure 9.5: Control trajectory of proposed scheme with perturbed valve constants in the 1st
and 15th runs. Left plot: Simulated results; Right plot: Experimental results; Dashed

line: 1st run; Solid line: 15th run.
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Figure 9.6: Plant response of proposed control scheme with perturbed valve constants
in 1st and 15th runs. Left plot: Simulated results; Right plot: Experimental results;
Dashed line: 1st run; Solid line: 15th run; and bold dotted line: desired level in the
second tank.
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Figure 9.7: Left: Nominal control trajectory; Right: Plant response for open-loop imple-
mentation of nominal control trajectory, solid line: obtained for nominal model, dashed
line: obtained for perturbed model, and bold dotted line: desired level in the second
tank.

9.4 Experimental Results

The nominal solution is first obtained for certain positions of the outflow valves (leakages).
In order to test the performance of the control approaches, the outflow is then increased.
This change also causes minor variations in the initial conditions. Both levels can be
measured on-line, with a sampling time of 1 s. The conversion between measured outputs
(in volts) and states (in centimetres) is considered as another perturbation. The mismatch
between the model and the process results in performance loss and terminal constraint
violation (see Figure 9.7).

The performance evolution of various control approaches over 15 runs is compared
in Figure 9.8. The left plot shows the evolution of the terminal constraint. A similar
behaviour as in numerical simulations can be observed. In the first run, NE control and
the proposed two-time-scale approach start closer to the desired value than constraint
adaptation. NE controller is able to recover some of the constraint violation but not all
of it. In the subsequent runs, the two-time-scale controller slowly increases the terminal
constraint to reach the desired level after about 6 runs. In contrast, pure run-to-run
constraint adaptation also takes 6 runs to come close to optimum, although with a higher
value of the filter gain. Moreover, the proposed two-time-scale approach exhibits a lower
sensitivity to measurement noise, due to the fact that control corrections are applied during
each run as well.

The evolution of the terminal constraint plus constraint bias is depicted in the right plot
of Figure 9.8. As previously, pure constraint adaptation approach needs heavier adaptation.

The right plot in Figure 9.5 displays the adapted control profile and Figure 9.6 shows
adapted plant response on such a control, after 1 run and 15 runs. Note that the un-
constrained arc is no longer constant due to the NE control corrections. Moreover, large
uncertainty may cause the NE controller to saturate, as in the case here in Figure 9.5.
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Figure 9.8: Evolution of the terminal constraint during 15 runs (experiment). Dashed

line with crosses: pure constraint adaptation, dotted line with diamonds: pure NE
control, solid line with circles: integrated two-time-scale control scheme, bold dotted

line: desired level. Left plot: Evolution of the measured terminal constraint; Right plot:
Evolution of the modelled terminal constraint.





Chapter 10

Conclusions

The thesis deals with the optimisation of the batch processes in the presence of uncer-
tainties. Theoretical as well as practical issues are addressed. The first part is devoted to
process optimisation under ideal circumstances. The optimisation problem, the necessary
conditions for optimal solution, and the numerical procedures that find the optimal solution
are presented here. Finally, the computational procedure to obtain the continuous nominal
solution that satisfies the necessary condition of optimality is provided. The second part is
devoted to real-time optimisation of the batch processes in the presence of uncertainties.
The closed-loop control framework is explained that incorporates the full-state measure-
ments and that tracks the NCO of the perturbed process. Design and the implementation
aspects of the NCO-tracking is discussed in detail. Finally, an integrated two-times-scale
control scheme for batch processes is proposed. The standalone contributions of the thesis
are summarised in the sequel.

The first contribution to this thesis is the overview of the numerical methods for prob-
lems of dynamic optimisation. It allows to choose the suitable method for the particular
problem. In particular, the orthogonal collocation (OC) approach alongside control vector
parametrisation (CVP) approach have widely been used in practice. CVP method is pre-
ferred for non-stiff problems with small number of constraints. In opposite, OC is more
suitable for stiff problems or for problems with higher number of constraints.

The second result is the implementation of the procedure that combines the direct
method with the indirect method to obtain continuous solution that satisfies the NCO and
the required constraints. This approach uses the direct method (mostly CVP or OC) to
find a good initial guess for the indirect method which is an extension of the optimal control
theory. Obviously, such a solution guarantees an optimal control policy of the process when
implemented open-loop.

The third result is the implementation of the NCO-tracking scheme for batch processes
in chemical industries. The approach proposes systematic algorithms for the design and the
implementation phase which have been verified in simulations. This control scheme recovers
most of the optimality loss caused by uncertainty and perturbation in the real process. We
use simple controllers to meet a set of control points where NCO must hold. Standard PID
controllers track both the active constraints and the sensitivities where the cheap solution
but less accurate is required for the real-time implementation. For more accurate solution,
run-to-run re-optimisation approach (CA) or the time-variant optimal feedback controller
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(NE) are used to track the active constraints or the sensitivities, respectively. Another
contribution here, is the numerical implementation of the NE controller with terminal
constraints. Traditional approach is to pre-compute a system of Ricatti equations and to
find gain matrix of the state-feedback controller. Our proposal is to resolve linear TPBVP
in every time instant and to apply small predicted horizon of the control variations and
the variations in the terminal constraints.

The main contribution, which has been experimentally tested, is the NCO-tracking
by two-time-scale control where two decoupled control approaches handle different NCO.
The combination of the run-to-run constraint adaptation and NE control with terminal
constraints allows to complement the benefits of each other, while mitigating some of
their deficiencies. With this control approach, sensitivities along unconstrained arcs are
handled by NE controller that corrects the control trajectory in-batch according to the
latest output measurements and by taking the terminal conditions into account. The
set of active constraints is then adapted via run-to-run re-optimisation that updates the
terminal constraints in the model according to the final measurements. The advantages of
the integrated scheme are demonstrated in the last part by the case study of a connected
two-tank system. The implementation aspects are discussed here, as well. As part of future
work, an extension of the current NE control to singular control problems is currently under
investigation (Gros, Srinivasan, et al., 2009a,b), as well as the ability to handle problems
with state path constraints (Pesch, 1989a; Pesch, 1989b).
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born in 10th of January 1983 in Malacky, Slovakia.

09/2007 — 09/2011 Doctorate study (PhD study), Slovak University of Technology in
Bratislava, Slovakia

09/2009 — 03/2010 Visiting researcher, McMaster University Hamilton, Canada
05/2008 — 08/2008 Visiting researcher, EPFL Lausanne, Switzerland
11/2006 — 05/2007 Visiting student, LSGC Nancy, France
09/2005 — 06/2007 Graduate study (MSc. study), Slovak University of Technology in

Bratislava, Slovakia
09/2001 — 06/2005 Undergraduate study (BSc. study), Slovak University of Technol-

ogy in Bratislava, Slovakia


	Introduction
	Thesis Structure
	Main Goals

	I Dynamic Optimisation under Ideal Conditions
	1 Nominal Optimisation
	1.1 Introduction
	1.2 Optimisation Problem Statement
	1.2.1 Admissible Controls
	1.2.2 Process Model Equations
	1.2.3 Performance criterion
	1.2.4 Constraints
	1.2.5 Problem Formulation


	2 Necessary Conditions for Optimality
	2.1 Problems without Constraints
	2.2 Problems with Constraints
	2.2.1 Terminal Constraints
	2.2.2 Path Constraints


	3 Numerical Optimisation Methods
	3.1 Direct Optimisation Methods
	3.1.1 Sequential Approach
	3.1.2 Simultaneous Approach
	3.1.3 Other Direct Approaches

	3.2 Indirect Optimisation Methods
	3.2.1 Pontryagin's Formulation
	3.2.2 Hamilton-Jacobi-Bellman Formulation
	3.2.3 Boundary Condition Iteration – Single-Shooting
	3.2.4 Multiple Shooting
	3.2.5 Quasi-Linearisation or discretisation
	3.2.6 Control Vector Iteration


	4 Nominal Solution
	4.1 Batch Reactor Control
	4.1.1 Unconstrained Case
	4.1.2 Constrained case



	II Dynamic Optimisation under Uncertain Conditions
	5 Tracking of Necessary Conditions for Optimality
	6 NCO-tracking Associated with Active Constraints
	6.1 Switching Structure
	6.2 Fixed and Free Input Elements
	6.3 Linking the Variables to the NCO
	6.4 Two-stage Batch Reactor Control
	6.4.1 Problem Definition
	6.4.2 Nominal Solution
	6.4.3 Proposed Control Structures
	6.4.4 Results


	7 NCO Associated with Sensitivities
	7.1 Non-singular NE Control without Terminal Constraints
	7.1.1 Problem Formulation
	7.1.2 Neighbouring-extremal Control
	7.1.3 Numerical Computation
	7.1.4 Van de Vusse Reaction

	7.2 Non-singular NE Control with Terminal Constraints
	7.2.1 Problem Formulation
	7.2.2 Necessary Conditions for Optimality
	7.2.3 Neighbouring-Extremal Control
	7.2.4 Numerical Computation of Neighbouring Feedback Control
	7.2.5 Shooting Method

	7.3 Run-to-run Constraint Adaptation

	8 NCO-tracking by Two-time-scale Control
	8.1 Batch Reactor Control
	8.1.1 Results

	8.2 Semi-batch Reactor Control
	8.2.1 Problem Formulation
	8.2.2 Open-Loop Optimal Control
	8.2.3 Closed-Loop Optimal Control



	III Application
	9 Two-tanks Connected in Series
	9.1 Problem Formulation
	9.2 Open-loop Optimal Control
	9.3 Closed-loop Optimal Control
	9.4 Experimental Results

	10 Conclusions
	References
	Publication List
	Curiculum Vitae


