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Abstrakt

Predkladaná práca sa zaoberá problematikou optimálneho riadenia procesov pri otvorenej

slučke. Prvá čast’ práce sa zaoberá defińıciou optimálneho riadenia procesov a definujú sa

všeobecné pŕıstupy k riešeniu problémov dynamickej optimalizácie. Druhá praktická čast’

práce je zameraná na riešenie konkrétnych úloh optimálneho riadenia. Pri riešeńı jednotlivých

pŕıkladov boli použité dve numerické metódy - ortogonálna kolokácia na konečných prvkoch

a parametrizácia vektora riadenia. Optimalizačné úlohy boli vyriešené pomocou MATLABu

a gPROMSu.

Kl’účové slová: Optimálne riadenie procesov pri otvorenej slučke, Dynamická optimalizá-

cia procesov, Ortogonálna kolokácia na konečných prvkoch, Parametrizácia vektora riadenia



Abstract

The present work deals with optimal control of processes in an open-loop. The first part

deals with optimal process control and several problem solving approaches. The second one,

practical part, focuses on concrete problem solving, where two numerical methods were used

- orthogonal collocation on finite elements and control vector parametrization. Optimization

problems were solved using MATLAB and gPROMS.

Keywords: Optimal control of processes in open-loop, Dynamic optimization of processes,

Orthogonal collocation on finite elements, Control vector parametrization



Contents

1 Introduction 12

I Theoretical Part 14

2 Dynamic Optimization 15

2.1 Mathematical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Physical Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Performance Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Necessary Conditions for the Extreme . . . . . . . . . . . . . . . . . . . . . . 18

3 Methods of Dynamic Optimization 22

3.1 Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Potryagin’s Principle of Minimum . . . . . . . . . . . . . . . . . . . . 24

3.1.3 Variational Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Direct Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Indirect Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Orthogonal Collocation 27

4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 NLP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Control Vector Parametrization 31

5.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Methods for Computing Gradients . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2.1 Method of Adjoint Variables . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.2 Method of Sensitivity Equations . . . . . . . . . . . . . . . . . . . . . 34

6



6 Parametric Sensitivities for Hybrid Systems 35

6.1 Mathematical Model of Hybrid Systems . . . . . . . . . . . . . . . . . . . . . 35

6.2 Sensitivities of Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3 Sensitivity Transfer at the Time of Transition . . . . . . . . . . . . . . . . . . 37

II Application Part 39

7 Hydrolysis of Sucrose by Invertase 40

7.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2 Hydrolysis of Sucrose in a Batch Reactor . . . . . . . . . . . . . . . . . . . . 41

7.2.1 Solving the parameter estimation problem in a batch reactor . . . . . 41

7.3 Hydrolysis of Sucrose in a Continuous Reactor . . . . . . . . . . . . . . . . . 42

7.3.1 Solving the parameter estimation problem in a continuous reactor . . 43

8 Catalytic Cracking of Gas Oil 46

8.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.2 Solving the parameter estimation problem . . . . . . . . . . . . . . . . . . . . 47

9 Batch Reactor 49

9.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9.2 Finding Optimal Control Using Orthogonal Collocation . . . . . . . . . . . . 50

9.3 Finding Optimal Control Using Sensitivity Equations . . . . . . . . . . . . . . 52

9.3.1 Solving the optimization problem using fmincon . . . . . . . . . . . . 52

9.3.2 Solving the optimization problem using CVP SS . . . . . . . . . . . . 54

10 Polymerization Process 56

10.1 Polymerization Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10.2 Kinetic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10.4 Solving the Optimization Problem Using SNOPT and CVP SS . . . . . . . . 60

11 Conclusion 63

12 Resumé 64
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Nomenclature

as surface area occupied by an emulsifier molecule [dm2]

cp product concentration [mol L−1]

cs medium concentration [mol L−1]

F volumetric flow [Lmin−1]

f initiator efficiency

fMS α–methylstyrene molar fraction in the initial load

J objective function

kd rate constant for initiator decomposition [s−1]

Ki inhibition coefficient [mol L−1]

Km Michaelis-Menten constant [mol L−1]

kp rate constant for propagation [dm3mol−1s−1]

kcm ate constant for initiator radical entry into micelles [dm3micelle−1s−1]

kcp rate constant for initiator radical entry into particles [dm3part−1s−1]

ktrM rate constant for transfer to monomer [dm3mol−1s−1]

L kinetic chain length [gmol−1]

L
(k)
j transition condition of switching from mode Sk to Sj

M global monomer concentration [mol dm−3]

m number of micelles per unit volume [micelle dm−3]
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MM monomer molecular weight [gmol−1]

Mp monomer concentration in particles [mol dm−3]

Mpc critical monomer concentration in particles [mol dm−3]

M̄n number–average molecular weight [gmol−1]

n̄ average number of radicals per particle

u control variable

x state vector

N number of inactive particles per unit volume [particle dm−3]

N• number of active particles per unit volume [particle dm−3]

Np total number of particles per unit volume [particle dm−3]

NA Avogadro’s number [mol−1]

ns aggregation number of micelles

NI number of intervals

P dead polymer concentration [mol dm−3]

P (k) set of all possible descendant modes of mode Sk

r reaction rate [mol L−1min−1]

R• initiator radical concentration [mol dm−3]

Ra initiator decomposition rate [mol dm−3s−1]

Ri initiation rate [mol dm−3s−1]

Rn particle formation rate [mol dm−3s−1]

Rp polymerization rate [mol dm−3s−1]

Rt termination rate [mol dm−3s−1]

RtrM transfer to monomer rate [mol dm−3s−1]

S emulsifier concentration [mol dm−3]

Si ith mode of the process

T reactor temperature [K]

10



11

t time [s]

V volume [L]

vm maximum reaction velocity [mol L−1min−1]

ẋ vector of state derivatives

Pj number of polymers with chain length j

X monomer conversion

Xc critical monomer conversion

Greek Symbols

ε constant describing the efficiency of the particles relative to the micelles in collecting

an initiator radical

ρM monomer density [g dm−3]

ρp polymer particle density [g dm−3]

ρP polymer density [g dm−3]

ωP polymer weight fraction in the particles

Subscripts

0 initial

f final

Superscripts

L lower bound

U upper bound



Chapter 1
Introduction

Finding the optimal solution is something what we have to deal with in everyday life. Each

day we are solving problems and trying to find the best solution to this problem. In general,

we can say that optimal solution is the best solution to the given problem under the given

conditions.

Finding the best solution stands for finding the mathematical solution of an optimization

problem. In chemical industry we can often encounter with optimization problems, where

our goal is not only simply the production of the required product. Our aim is to produce

the maximum amount of this required product, but also to minimize the total costs, to

minimize the consumption of raw materials, consumption of energy and other factors. These

problems are solved by dynamic optimization. More concretely, dynamic optimization stands

for finding such an optimal control profile, which will minimize or maximize the value of

the given objective function without violating the constraints. Dynamic optimization is used

for finding the solution of optimal process control problems which are described by a set of

ordinary differential equations (ODE) or by differential algebraic equations (DAE).

Solving dynamic optimization problems consists of several steps. The first step is the

problem definition. In other words, we have to specify what our aim is, what we are going to

minimize or maximize, under what conditions and limits. When the problem is well defined

and described, the next step is to describe the process as good as possible. Thus, the second

step is the process model formation. In general rules, the better is the process description, the

better solution we are able to find. The last step consists of using the optimization algorithm

for solving the optimization problem.

Recently, there are several approaches for solving dynamic optimization problems. In

general they can be divided into analytical and numerical methods. Dynamic programming,

Pontryagin’s minimum principle and variational calculus belong to analytical methods. Ana-

lytical approaches are mainly used for simple problems and often ensure important properties

such as global optimality. Numerical methods can be subdivided into direct and indirect
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ones. The group of direct numerical methods includes several manners such as sequential

or simultaneous ones. The group of indirect numerical methods includes approaches such as

boundary condition iteration or control vector iteration. The main difference between direct

and indirect ones is that the direct numerical methods consider the discretization of dynamic

variables which are directly involved in the problem, while the indirect ones are discretizing

the optimality conditions.

The presented work is divided into two parts - theoretical and application one. In theo-

retical part, we define the dynamic optimization problem in general and we explain dynamic

programming, Pontryagin’s minimum principle and variational calculus from the group of

analytical methods and orthogonal collocation, together with control vector parametrization

from the numerical ones. The second part is dedicated to particular examples which are

solved by numerical methods.



Part I

Theoretical Part



Chapter 2
Dynamic Optimization

This chapter deals with the general formulation of dynamic optimization problem, also called

open-loop optimal control problem, with constraints on state and control variables. Our aim

is to define the time-varying forms of systems (Fikar 2007).

First, it is useful to explain the difference between closed-loop and open-loop optimal

control (Fig.2.1).

Closed-Loop Optimal Control Function ω is called closed-loop optimal control, if for

u∗(t) = ω (t,x(t)) (2.1)

we are able to find the optimal control value at time t (Chachuat et al. 2006).

Open-Loop Optimal Control If the optimal control law is characterized as a function of

time for a specified initial value as follows

u∗(t) = ω (t, x(t0)) (2.2)

then it is called open-loop control law.

CONTROLLER PROCESS
x(t)u∗(t)

(a) Closed-Loop Optimal Control

CONTROLLER PROCESS
x(t)u∗(t)

t0

(b) Open-Loop Optimal Control

Figure 2.1: Optimal Control Loops

Notice that an open-loop optimal control is optimal only for one particular initial state,

but if we know the optimal control law, we are able to formulate the optimal control history

for any initial value (Chachuat et al. 2006).

15
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Solving any problem requires a sufficient problem description which consists of

1. Mathematical description or model of the controlled process

2. Constraints definition

3. Performance criterion.

2.1 Mathematical Description

The definition of process model is the non-trivial part of solving any optimal control problem.

Our main objective during modelling a physical system is to derive the simplest mathematical

description that adequately predicts the response of this system at all expected inputs (Kirk

1970). Assume the process state variables (or simply states) xi, (i = 1, . . . , n) and the

controlled inputs uj , (j = 1, . . . ,m) at the time t

x1(t), x2(t), . . . , xn(t) (2.3)

u1(t), u2(t), . . . , um(t) (2.4)

Afterwards, the system can be described by n first order equations

ẋ1(t) = f1 (x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t), t)

ẋ2(t) = f2 (x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t), t) (2.5)

...

ẋn(t) = fn (x1(t), x2(t), . . . , xn(t), u1(t), . . . , um(t), t)

Next, define the vector of state variables and the vector of controlled variables

x(t) =















x1(t)

x2(t)
...

xn(t)















(2.6)

u(t) =















u1(t)

u2(t)
...

um(t)















(2.7)

Thus, the non-linear and time varying system can be expressed as follows (Kirk 1970)

ẋ(t) = f(x(t),u(t), t) (2.8)

here the definition of f results from Eq. 2.5.
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2.2 Physical Constraints

While solving an optimization problem, we have to think about some physical constraints

which keep the state and control variables within boundaries. For example, if we are deriving

a model of a heat exchanger, we must bear in mind that the temperature inside the exchanger

can not exceed the metallurgical temperature as the material of the heat exchanger is made

of. There are three basic groups of constraints - point, path and isoperimetric constraints.

All of them can be expressed in a form of equality or inequality.

1. Point Constraints are usually used in optimal control problems as terminal constraints,

end-point constraints (point constraints expressed in the final time)

l (tf , x (tf )) ≤ 0 (2.9a)

ĺ (tf , x (tf )) = 0 (2.9b)

2. Isoperimetric Constraints are constraints containing the integral of a given objective

function over the entire time period [t0, tf ]

∫ tf

to

h (t,x(t),u(t)) dt ≤ C (2.10)

here C stands for real number (Chachuat et al. 2006).

3. Path Constraints are the most commonly used in optimal control. Path constraints can

be characterized by ambivalent functions of the control and state variables and over the

time [t0, tf ] too (Chachuat et al. 2006).

g (t,x(t),u(t)) ≤ 0, ∀t ∈ [t0, tf ] (2.11)

Next, it will be useful to define the term of feasible control: an admissible control ū(·) ∈

U [t0, tf ] is called feasible, if

(i) the response x̄(·, x0,u(·)) is characterized on the entire time t0 ≤ t ≤ tf and if

(ii) ū and x̄(·, x0,u(·)) are satisfying all physical constraints.

Then the pair (ū(·), x̄(·)) are said to be feasible pair and the set of feasible controls Ω[t0, tf ]

is characterized as follows (Chachuat et al. 2006)

Ω [t0, tf ] = {u(·) ∈ U [t0, tf ] : u(·) is feasible} (2.12)

2.3 Performance Criterion

Performance criterion, or also called objective function, is a predictive function, which assigns

a real number to the function. Generally, it can be written in three basic forms (Čižniar 2005)
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• Bolza form

J = G(x(tf ), tf ) +

∫ tf

t0

F (x(t),u(t), t)dt (2.13)

• Lagrange form

J =

∫ tf

t0

F (x(t),u(t), t)dt (2.14)

• Mayer form

J = G(x(tf ), tf ) (2.15)

where J denotes optimization criterion, G(·) stands for a part of objective function eval-

uated at final conditions, F (·) stands for a part of the objective function evaluated over the

entire time period, x(t) denotes state variable profile vector, and u(t) means control profile

vector.

2.4 Necessary Conditions for the Extreme

The aim of dynamic optimization is to find an optimal control u(t), t ∈ [t0, tf ] which mini-

mizes the objective function Eq. 2.13. In practice, we encounter problems on which different

requirements and constraints are set. Some of these cases are shown on Fig. 2.2. Fig. 2.2(a)

demonstrates the case of fixed final time tf and free final state x(tf ). Case of fixed final time

and state is shown on Fig. 2.2(b) while Fig. 2.2(c) demonstrates the case of free final time

and state. The last Fig. 2.2(d) presents the case of free final time tf and fixed final state

x(tf ).

We assume that u?(t) is the optimal control that exists. For each control u(t) we can say

that

J [u(t)] ≥ J [u?(t)] (2.16)

Eq. 2.16 rules in general. First, we derive the necessary optimality condition so that the

control variable is changed according to optimal control u?. If u? is optimal control then x?

is the response to this system, thus we can write

x(t) = x?(t) + δx(t) (2.17)

u(t) = u?(t) + δu(t) (2.18)

where δx(t) is the response to the control variation δu(t) (Fikar 2007). After approximation

using the Taylor’s series in the optimum vicinity we can say that

f(x,u) = f(x?,u?) +

(

∂f

∂x

)?

δx+

(

∂f

∂u

)?

δu (2.19)
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x1(tf )

x2(tf )

x3(tf )

xn(tf )

tf

tf

tf

tf

(a) Fixed tf , free x(tf ).

x(tf )
tf

tf

tf

tf

(b) Fixed tf , fixed x(tf ).

tf,1

tf,2

tf,3

tf,n

x1(tf,1)

x2(tf,2)
x3(tf,3)

xn(tf,n)

(c) Free tf , free x(tf).

tf,1
tf,2

tf,3

tf,n

x(tf )

(d) Free tf , fixed x(tf ).

Figure 2.2: Different possible cases of final time and state.

Matrices (·)? are Jacobi matrices for the optimal trajectories of x? and u? (Fikar 2007). If

we consider only the linear elements and if Eq. 2.20 is valid

δ

(

dx

dt

)

=
dx

dt
−

dx?

dt
=

=
dx?

dt
+

d(δx)

dt
−

dx?

dt
=

=
d(δx)

dt
(2.20)

then the Eq. 2.19 can be rearranged in the following way

d(δx)

dt
=

(

∂f

∂x

)

δx+

(

∂f

∂u

)

δu (2.21)

Functional J(u) reaches the absolute minimum for the function u? = u?(t) from the class of

permissible functions, if for any feasible function u(t) the inequality Eq. 2.16 is valid. The

necessary condition for extreme will be (Fikar 2007)

δJ = 0 (2.22)

We can express the variation of the objective function Eq. 2.13 as follows

δJ =

(

∂G

∂x(tf )

)T

δx(tf ) +

∫ tf

t0

[

(

∂F

∂x

)T

δx+

(

∂F

∂u

)T

δu

]

dt (2.23)
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Eq. 2.23 is the case of fixed final time tf and free final state x(tf ) (Fig. 2.2(a)). If we define

the vector of adjoint variables as λ(t) then we can rearrange the Eq. 2.21 in the following

way

λT d(δx)

dt
= λT

(

∂f

∂x

)

δx+ λT

(

∂f

∂u

)

δu (2.24)

Next, integrate the Eq. 2.24 on the time interval from t = t0 to t = tf in the following way

∫ tf

t0

[

λT d(λx)

dt
− λT

(

∂f

∂x

)

δx− λT

(

∂f

∂u

)

δu

]

dt = 0 (2.25)

The summation of the Eqs. 2.23 and 2.25 is expressed as in Fikar (2007)

δJ =

(

∂G

∂x(tf )

)T

δx(tf )−

∫ tf

t0

λT d(δx)

dt
dt

+

∫ tf

t0

([

(

∂F

∂x

)T

+ λT

(

∂f

∂x

)

]

λx+

[

(

∂F

∂u

)T

+ λT

(

∂f

∂u

)

]

λu

)

dt (2.26)

If the Hamiltonian function is defined as

H = F + λTf(x,u) (2.27)

and if the vector of adjoint variables λ(t) satisfies the differential equation

dλ

dt
= −

∂H

∂x
(2.28)

Then the necessary extremum condition will be fulfilled if the following equation holds for an

arbitrary variation δu(t)

∂H

∂u
= 0 (2.29)

From Eqs.2.27 and 2.28 accrue the following findings (Fikar 2007)

∂H

∂λ
=f(x,u) (2.30)

∂H

∂λ
=
dx

dt
(2.31)

∂H

∂x
=
∂F

∂x
+

(

λT ∂f

∂x

)T

(2.32)

dλ

dt
=−

∂F

∂x
−

(

λT ∂f

∂x

)T

(2.33)

dλ

dt
=−

∂H

∂x
(2.34)

Next, derive the Hamiltonian function as follows

dH

dt
=

(

∂H

∂x

)T dx

dt
+

(

∂H

∂u

)T du

dt
+

(

∂H

∂λ

)T dλ

dt
(2.35)
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The following equation results from Eqs. 2.28 and 2.31

(

∂H

∂x

)T dx

dt
+

(

∂H

∂λ

)T dλ

dt
= 0 (2.36)

Because the Eq. 2.29 have the value of zero, the righthand side of Eq. 2.36 will be also equal

to zero

dH

dt
= 0 (2.37)

is valid for an unbounded control or for a control which never reaches the boundaries. From

Eq. 2.37 results that the function H remains constant during the optimal response.



Chapter 3
Methods of Dynamic Optimization

This chapter deals with several approaches used for solving dynamic optimization problems.

These approaches can be separated into two basic groups - analytical and numerical methods.

3.1 Analytical Methods

There are several analytical methods but the most known and used ones are (Hirmajer 2007):

• Dynamic programming

• Pontryagin’s principle of minimum

• Variational calculus

3.1.1 Dynamic Programming

Dynamic programming is based on the Bellman’s principle of optimality, which says (Fikar

2007): the optimal path depends on the initial conditions and of the goal and not on the

path the goal was achieved with. Assume an optimal trajectory and a point x(t◦) which

subdivides this trajectory into two parts as shown in Fig. 3.1. The optimality principle says,

that the trajectory between x(t◦) and x(tf ) is an optimal trajectory too. It means that the

trajectory from initial state x(t◦) to final state x(tf ) is optimal, regardless of how it reached

this initial state.

Assume the following optimal control problem expressed in Bolza form (Čižniar 2005)

J = G(x(tf ), tf ) +

∫ tf

t0

F (x(t),u(t), t)dt (3.1a)

ẋ(t) =f(x(t),u(t), t) x(t0) = x0 (3.1b)

22
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x(t0)

x(tf )

x(t◦)

x

t

Figure 3.1: Bellman’s principle of optimality

Further we suppose, that this problem has its solution. Next, define a function called Bell-

man’s function

ν(x(t), t) = min
u(t)

[

G(x(tf ), tf ) +

∫ tf

t0

F (x(t),u(t), τ)dτ

]

(3.2)

After differentiating Eq. 3.2 we obtain Bellman’s partial differential equation in the fol-

lowing form

−
∂ν

∂t
= min

u(t)

[

F (x,u, t) +

(

∂ν

∂x

)T

f(x,u, t)

]

(3.3)

Which has to fulfill the following boundary condition

ν(xf , tf ) = G(xf , tf ) (3.4)

Eqs. 3.3 and 3.4 define the necessary conditions for minimum of the optimization prob-

lem (Čižniar 2005). After replacing u(t) with u∗(t) in Bellman’s partial differential equation,

we will obtain the following partial differential equation, also known as Hamilton-Jacobi-

Bellman’s equation

−
∂ν

∂t
= F (x,u∗, t) +

(

∂ν

∂x

)T

f(x,u, t) (3.5)

Next, define Hamiltonian function in the following form

H

(

x,u,
∂ν

∂x
, t

)

= F (x,u, t) +

(

∂ν

∂x

)T

f(x,u, t) (3.6)

By replacing the Eq. 3.6 into Eq. 3.3 we obtain the modified form of the Bellman’s partial

differential equation

−
∂ν

∂t
= min

u(t)
H

(

x,u,
∂ν

∂x
, t

)

(3.7)
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3.1.2 Potryagin’s Principle of Minimum

Pontryagin’s principle of minimum is similar to dynamic programming. This analytical

method can be used for solving difficult problems with constraints to the state and con-

trol variables. Assume the same optimization problem as mentioned above (Eq. 3.1) and

replace ∂ν
∂x by λ(t) adjoint variable. Then the Hamiltonian function takes the form as follows

H(x,u,p, t) = F (x,u, t) + λTf(x,u, t) (3.8)

After a substitution in Bellman’s partial differential equation (Eq. 3.7) it will take the fol-

lowing form (Čižniar 2005)

−
∂ν

∂t
= min

u(t)
H(x,u,λ, t) (3.9)

If we differentiate the left- and the right-hand side of λ(t) = ∂ν
∂x we will obtain the

following equations

−
∂2ν

∂x∂t
=

∂H

∂x
+

∂2ν

∂x2

∂H

∂λ
(3.10a)

λ̇ =
∂2ν

∂x2
ẋ+

∂2ν

∂t∂x
(3.10b)

Assume the following canonical differential equations (Čižniar 2005)

ẋ =
∂H

∂λ
(3.11)

λ̇ = −
∂H

∂x
(3.12)

Thus, the necessary conditions according to Potryagin’s principle of minimum are (Čižniar

2005)

• Control variable optimality conditions

0 =
∂H

∂u
∀t ∈ [t0, tf ] (3.13)

• Adjoint variables

λ̇ = −
∂H

∂x
∀t ∈ [t0, tf ] (3.14)

• Adjoint variables final conditions

λ(tf ) =
∂G

∂x

∣

∣

∣

∣

tf

(3.15)
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3.1.3 Variational Calculus

Variational calculus is based on the Bellman’s partial differential equation (Eq. 3.3). First,

we define variational calculus problem as follows

∂Γ

∂x
−

d

dt

(

∂Γ

∂ẋ

)

= 0 (3.16)

where the Lagrange function Γ is defined as follows

Γ(x, ẋ,u,λ, t) = F (x,u, t) + λT [f(x,u, t)− ẋ] (3.17)

Assume the optimal control problem already mentioned above Eq. 3.1. For this problem we

are going to express the necessary conditions (Hirmajer 2007)

• Control variable optimality condition

Γ

u
= 0 ∀t ∈ [t0, tf ] (3.18)

• Adjoint variables

−
∂Γ

∂x
= λ̇ ∀t ∈ [t0, tf ] (3.19)

• Adjoint variable final conditions

λ(tf ) =
∂G

∂x

∣

∣

∣

∣

tf

(3.20)

3.2 Numerical Methods

Numerical methods are used in cases, when it is too complicated to find the optimal solution

by the analytical ones. Numerical methods can be divided into two main groups, namely

direct and indirect methods.

3.2.1 Direct Numerical Methods

Direct numerical methods are based on transformation of the formal infinite dimensional

problem into finite dimensional problem of nonlinear programming (NLP). Direct numerical

methods can be subdivided into sequential and simultaneous methods (Paulen et al. 2010).

Sequential method, also known as control vector parametrization (CVP), is based

on the control trajectory approximation by a function of only few parameters (Čižniar

2005).The former continuous control trajectory is divided into few piece-wise polyno-

mial (usually constant) parts, thus the former infinite dimensional problem is trans-

formed into finite dimensional NLP problem, which can be easily solved by any gradient

method (Hirmajer 2007).

Simultaneous method, known as complete parametrization, means total state

and control variables discretization using polynomials. Order of these polynomials

decide about cardinality of the NLP problem (Čižniar 2005).



CHAPTER 3. METHODS OF DYNAMIC OPTIMIZATION 26

3.2.2 Indirect Numerical Methods

The main aim of these methods is to solve the two point boundary value problem

(TPBVP) and thus indirectly solve the problem of dynamic optimization.

Boundary condition iteration is an indirect numerical method based on finding

the missing boundary conditions λ(t0) by minimizing the errors between the boundary

conditions (Ševč́ık 2005).

Control vector iteration is method based on finding the control trajectory by

fulfilling the optimality conditions.



Chapter 4
Orthogonal Collocation

This chapter is dedicated to a numerical method called orthogonal collocation on fi-

nite elements. This method is based on complete parametrization of both control and

state profiles (Čižniar 2005). Thus, the former control and state trajectories are ap-

proximated by linear combination of some basis functions. Our aim is to find optimal

control by optimizing the coefficients of these functions (Ševč́ık 2005).

4.1 Problem Definition

The objective function describing the optimization problem is expressed in Bolza form

as follows

J (u(t),p) = G (x(tf),p, tf) +

∫ tf

t0

F (x(t),u(t), t) dt (4.1)

Our goal is to minimize the objective function J according to the control vector u(t)

and to the vector of parameters p.

We assume that the dynamic model is expressed by a set of ordinary differential

equations (ODE)

ẋ(t) = f (x(t),u(t),p, t) x(t0) = x0(p) (4.2)

Path constraints, which are limiting this system can be expressed in both equality and

inequality form

ǵ (x(t),u(t),p, t) = 0 (4.3a)

g (x(t),u(t),p, t) ≤ 0 (4.3b)

27



CHAPTER 4. ORTHOGONAL COLLOCATION 28

And the upper U and the lower L bounds can be defined as follows (Fikar 2007)

x(t)L ≤ x(t) ≤ x(t)U (4.4a)

u(t)L ≤ u(t) ≤ u(t)U (4.4b)

pL ≤ p ≤ pU (4.4c)

4.2 NLP Formulation

We consider the element i, (i = 1, . . . , NI), where NI stands for number of time ele-

ments, with times t ∈ [ξi, ξi+1] as it is shown on Fig. 4.1. The solution is approximated

by Lagrange polynomials φj and θj over element i (Fikar 2007)

xK+1(t) =

K
∑

j=0

xijφj(t), φj(t) =

K
∏

k=0,k 6=j

t− tik
tij − tik

(4.5)

uK(t) =

K
∑

j=1

uijθj(t), θj(t) =

K
∏

k=1,k 6=j

t− tik
tij − tik

(4.6)

xi−1,0 xi−1,1 xi−1,2 xi,0 xi,1 xi,2 xi+1,0 xi+1,1 xi+1,2 xi+2

ξi−1

ξ ξi+1

ξi+2
∆ξ

ui−1,1 ui−1,2 ui,1 ui,2 ui+1,1 ui+1,2

Figure 4.1: Finite element collocation for state and control variables

where K is the number of collocation points, j denotes the order of the collocation

point at the given time tk (k = 0, . . . , j). Polynomial xK+1(t) is of (K + 1)th order,

while polynomial uK(t) is of Kth degree. This degree difference results from the fact,

that the initial condition of the control variable is dismissed. Points tik are calculated

as Legendre’s polynomials roots. A considerable property of Lagrange polynomials is

xK+1(tij) = xij (4.7)

And due to φk(tj) = δkj we are able to directly define the state and control bound-

aries. Here δkj is the Kronecker delta, which is in case of k = j equal to one, otherwise

it is equal to zero. If we use K collocation points on finite elements (Fig. 4.1) , we can
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define basic functions normalized over each element

∆ξir(tik) =
K
∑

j=0

xi,jφ̇(τk)−∆ξiF (tik,xik,uik) (4.8)

i = 1, . . . , NI j = 0, . . . , K k = 1, . . . , K

where function φ̇j(τk) = dφj/dτ can be calculated off-line and for tik = ξi+∆ξiτk rules

τ ∈ [0, 1]. The continuity condition will be fulfilled by the following equation

xi
K+1(ξi) = xi−1

K+1(ξi), i = 2, . . . , NI (4.9)

Or in the form of

xi0 =

K
∑

j=0

xi−1,jφj(τ = 1) (4.10)

i = 2, . . . , NI j = 0, . . . , K

Points defined in Eq. 4.10 determine the initial conditions for the next time element

(Ševč́ık 2005). Control profiles are bounded only at collocation points. These control

boundaries can be defined in the following way

uL
i ≤ ui

K(ξi) ≤ uU
i i = 1, . . . , NI (4.11a)

uL
i ≤ ui

K(ξi+1) ≤ uU
i i = 1, . . . , NI (4.11b)

These ones are enforced by polynomial extrapolation of the endpoints of each element

as follows

ui
K(ξi) =

K
∑

j=1

uijθj(τ = 0) i = 1, . . . , NI (4.12a)

ui
K(ξi+1) =

K
∑

j=1

uijθj(τ = 1) i = 1, . . . , NI (4.12b)

Complementing these conditions will ensure that the control final values will be in

the range of [uL
i ,u

U
i ]. Then the NLP formulation of Eq. 4.1 has the following form

min
xij ,uij ,∆ξi

[

G (xf , tf) +

NI
∑

i=1

K
∑

j=1

ωF (xij,uij,∆ξi)

]

(4.13)
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With the following presumptions

x10 − x0 = 0 (4.14)

xi0 − xi−1
K+1(ξi) = 0 i = 2, . . . , NI (4.15)

xf − xNI

K+1(ξNI+1) = 0 (4.16)

xL
ij ≤ xK+1(τj) ≤ xU

ij i = 1, . . . , NI j = 0, . . . , K (4.17)

uL
i ≤ ui

K(ξi) ≤ uU
i i = 1, . . . , NI (4.18)

uL
i ≤ ui

K(ξi+1) ≤ uU
i i = 1, . . . , NI (4.19)

uL
ij ≤ uK(τj) ≤ uU

ij i = 1, . . . , NI j = 1, . . . , K (4.20)

pL ≤ p ≤ pU (4.21)

∆ξi
L ≤ ∆ξi ≤ ∆ξUi i = 1, . . . , NI (4.22)

∆ξir = ẋk+1(τj)−∆ξiF (tik,xik,uik) i = 1, . . . , NI j = 1, . . . , K (4.23)

NI
∑

i=1

∆ξi = ξTOTAL (4.24)

h(xij,uij, tij , p) = 0 (4.25)

g(xij,uij, tij , p) ≤ 0 (4.26)

ǵf(xf) = 0 (4.27)

gf(xf) ≤ 0 (4.28)

Here i denotes the time interval, j stands for the collocation point, ∆ξi defines the

finite element lengths (i = 1, . . . , NI), xf denotes the state variable at the final time tf ,

h and g express the equality and inequality constraints and finally xij and uij denotes

the state and control profiles collocations coefficients (Ševč́ık 2005).



Chapter 5
Control Vector Parametrization

Control vector parametrization (CVP) is a numerical method based on the replacing

the former continuous control trajectory by another one, which can be described by a

finite set of parameters (Fikar 2007). In other words, the primary continuous dynamic

optimization problem is replaced by a static problem of nonlinear programming. As

shown in Fig. 5.1, the former continuous trajectory (Fig. 5.1(a)) is approximated by

piece-wise linear control trajectory (Fig. 5.1(b)).

5.1 Problem Formulation

Assume the following set of ordinary differential equations (ODE)

ẋ = f (x,u,p, t) x(t0) = x0(p) (5.1)

here t stands for the time t ∈ [t0, tf ]. Further, we assume that initial conditions can

be functions of the parameters.We also presume, that the former continuous control

trajectory is approximated by piece-wise constant trajectory (Fikar 2007) as it is shown

in Fig. 5.1

u(t) = uj tj−1 ≤ t < tj (5.2)

Define ∆tj as a length of a time interval ∆tj = tj − tj−1. The objective function, which

has to be minimized, is expressed in the Bolza form (Eq. 2.13) (Fikar 2007). Next,

define the upper and lower boundaries

uj ∈[u
L
j ,u

U
j ]

p ∈[pL,pU ] (5.3)

∆tj ∈[∆tLj ,∆tUj ]
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u(t)

∆t1 ∆t2 ∆t3
t

(a) Continuous control trajectory.

u(t)

∆t1 ∆t2 ∆t3
t

(b) Discretized control trajectory.

Figure 5.1: Illustration of control parameterization (discretization) into piece-wise constant

polynomial.
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5.2 Methods for Computing Gradients

Gradients used for solving dynamic optimization problems can be calculated by three

different deterministic approaches (Hirmajer 2007)

• Finite differences is a method based on recurrent system integration with a small

change of value of one of the optimized parameters (Hirmajer 2007). Gradients

to the objective function are then computed as follows

∇piJ =
J(p1, . . . , pi +∆pi, . . . , pnp

)− J(p)

∆pi
(5.4)

here np stands for the number of optimized parameters. Gradients of constraints

can be emanated in the same way.The main advantage of this finite differences

method is, that it does not require addition of any other differential equations.

Beyond that, the entire system has to be integrated np–times for every small

change of each parameter. This method is often used with another gradient

method for gradient accuracy comparison.

• Adjoint variables method is based on backward system integration, thus is useful

for systems with small number of differential equations and constraints (Petzold

et al. 2006).The biggest asset of this method is that the adjoint system has to

be integrated only once irrespective of the number of optimized parameters. The

size of the adjoint system is equal to (nx×nc), where nx stands for the number of

state variables and nc denotes the number of constraints. Equations describing the

system are integrated separately from the adjoint variables because the system’s

equations are integrated forward, while the adjoint system is integrated backward

in time.

• Sensitivity equations method is useful for systems, which consist of a large number

of differential equations with small number of optimized parameters, because the

sensitivity equations system consists of (nx×np) equations. The biggest benefit of

this method lies in the fact, that the system of sensitivity equations is linear, and

the Jacobian matrices are the same for the sensitivity and the original system, so

the entire system can be integrated together.
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5.2.1 Method of Adjoint Variables

According to Potryagin’s minimum principle we are able to define the adjoint variables

λ as

λ̇ =−
∂H

∂x
(5.5)

λ(tf) =
∂G

∂x

∣

∣

∣

∣

t=tf

(5.6)

here Hamiltonian function H is defined in Eq. 3.8. If we take into account the rest of

the optimality conditions (Hull 2003), then the gradients to the objective function can

be expressed as

∂J

∂tf
= H(tf) +

∂G

∂tf
(5.7)

∂J

∂tj
= H(t−j )−H(t+j ) j = 1, . . . , NI − 1 (5.8)

∂J

∂uj
= Ju(tj−1)− Ju(tj) j = 1, . . . , NI − 1 (5.9)

∂J

∂pT
=

∂G

∂pT
+ Jp(t0) + λT

t0

∂x0

∂pT
(5.10)

and also

J̇u =
∂H

∂uT
Ju(t0) = 0 (5.11)

J̇p =
∂H

∂pT
Jp(t0) (5.12)

5.2.2 Method of Sensitivity Equations

Sensitivity functions are defined as partial derivatives of the variable system with regard

to the parameters (Feehery 1998). Thus the sensitivity coefficients can be expressed as

si =
∂x

∂p
si = 0 (5.13)

where i = 1, . . . , np. Or after differentiation

ṡi =
∂si
∂t

=
∂

∂t

(

∂x

∂p

)

=
∂

∂p

(

∂x

∂t

)

=
∂ẋ

∂p
(5.14)

Then the gradients to the objective function can be characterized as the partial deriva-

tives of the objective function, with respect to the optimized parameters

∇pJ =
∂G

∂x

∣

∣

∣

∣

tf

sx(tf ) +
∂G

∂tf

∂tf
∂p

+

∫ tf

t0

(

∂F

∂x
sx +

∂F

∂u

∂u

∂p

)

dt (5.15)

Gradients of constraints can be derived in the same way.



Chapter 6
Parametric Sensitivities for Hybrid

Continuous Systems

This chapter copes with sensitivity equations for hybrid systems. The main difference

between simple systems as mentioned in previous chapters and hybrid systems is that

the dynamic properties of a simple system are not changing, while properties of an hy-

brid system are changing according to the phase in which they are situated. Parametric

sensitivities are used to observe the influence of parameters variance of the model on

its solution (Feehery 1998).

6.1 Mathematical Model of Hybrid Systems

Assume a process characterized by the following set of differential equations

ẋ(t) = f (x(t),u(t),p, t) ∀t ∈ [t0, tf ] (6.1)

where the function f belongs to Rnx×R
nu×R

np×[t0, tf ] → R
nx and initial conditions

x(t0,p) = x0(p) are such that x0 : Rnp → R
nx . We can rewrite Eq. 6.1 into following

autonomous form

ẋ = f (x,u,p) ∀t ∈ [t0, tf ] (6.2)

Next, study a system defined by a phase-space S =
⋃nk

k=1 Sk where every single mode

Sk is identified by

1. List of variables: {ẋ(k),x(k),u(k),p, t}, where x(k) ∈ R
n
(k)
x represents differential

state-variables, u(k) ∈ R
n
(k)
u represents the controls, p ∈ R

np stands for the time-

invariant parameter and t denotes the time.
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2. List of equations: f (k)(ẋ(k),x(k),u(k),p, t) = 0, for f (k) : Rnx
(k)

×R
nx

(k)
×R

nu
(k)

×

R
np ×R → R

nx
(k)
. Parameters p determined in mode Sk must be joined with the

following initial conditions determining the system change during [t0
(k), tf

(k)]:

Tk(ẋ
(k),x(k),u(k),p, t) = 0 at t = t0

(k).

3. List of transitions J (k) from mode Sk to mode Sj . These obtainable transitions

are characterized by

(a) Transition conditions: L
(k)
j (ẋ(k),x(k),u(k), ẋ(j),x(j),u(j),p, t), j ∈ J (k) ruling

the switching time from mode k to mode j.

(b) Transition functions: T
(k)
j (ẋ(k),x(k),u(k), ẋ(j),x(j),u(j),p, t) are pointing out

the possible discontinuity in model. Different case represent the initial con-

ditions T
(1)
0 for the 1th mode:

T
(0)
1 (ẋ(1),x(1),u(1),p, t0) = 0 ⇒ x(1)(t

(1)
0 ) = x

(1)
0 (6.3)

6.2 Sensitivities of Hybrid Systems

Sensitivity functions are defined as partial derivatives of the variable system with regard

to the parameters (Feehery 1998). Assume the following system with independent

variables p and t

[

∂f (k)

∂ẋ(k)

∂f (k)

∂x(k)

]

[

∂ẋ(k)

∂p
∂ẋ(k)

∂t
∂x(k)

∂p
∂x(k)

∂t

]

= −

[

∂f (k)

∂u(k)

∂u(k)

∂p
+

∂f (k)

∂p

∂f (k)

∂u(k)

∂u(k)

∂t
+

∂f (k)

∂t

]

(6.4)

Now, we are able to define sensitivities as follows

s(k)x =
∂x(k)

∂p
(6.5)

ṡ(k)x =
∂s

(k)
x

∂t
=

∂

∂t

(

∂x(k)

∂p

)

=
∂

∂p

(

∂x(k)

∂t

)

=
∂ẋ(k)

∂p
(6.6)

From which results the formulation of sensitivity trajectories (Feehery 1998)

[

∂f (k)

∂ẋ(k)

∂f (k)

∂x(k)

]

[

ṡ
(k)
x

s
(k)
x

]

= −

[

∂f (k)

∂u(k)

∂u(k)

∂p
+

∂f (k)

∂p

]

(6.7)
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6.3 Sensitivity Transfer at the Time of Transition

To evaluate sensitivities the discontinuity system is differentiated with the only de-

grees of freedom, time-invariant parameters. The discontinuity function is expressed

as g
(k)
ij

(

ẋ(k),x(k),u(k),p, t
)

for i = 1, ..., n
(k)
j . If the following system exists later in the

new mode k + 1 (Feehery 1998)

ẋ(k) =ẋ(k)(p, t) x(k) = x(k)(p, t) (6.8)

g
(k)
k+1(ẋ

(k),x(k),u(k),p, t) = 0 (6.9)

Tk(ẋ
(k),x(k),u(k),p, t) = 0 (6.10)

f (k+1)(ẋ(k+1),x(k+1),u(k+1),p, t) = 0 (6.11)

we can easily use the chain rule









































∂T
(k)
k+1
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Now, by rearranging according to the known and unknown variables, we obtain
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If we assume a transition function in the form of T
(k)
k+1 =

[

x(k+1) − x(k)
](k)

k+1
then the
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Eq. 6.13 will take the following form
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Eq. 6.14 can be easily simplified as follows
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(6.15)

After some smaller rearrangements we can rewrite the Eq. 6.15 in the form of

[

s
(k+1)
x

ṡ
(k+1)
x − ∂f (k+1)

∂x(k+1)s
(k+1)
x

]

=

[

s
(k)
x

∂f (k+1)

∂u(k+1)
∂u(k+1)

∂p
+ ∂f (k+1)

∂p

]

(6.16)

The first row of Eq. 6.16 proves the continuity of sensitivity equations over each

stage. The second row defines the sensitivities over the stage (k + 1).
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Chapter 7
Hydrolysis of Sucrose by Invertase

The sucrose hydrolysis is an enzymatically catalyzed reaction during which the sucrose

is hydrolyzed into glucose and fructose by invertase obtained from Saccharomyces cere-

visiae. This irreversible reaction can be expressed as

sucrose+H2O
r
−→ D− glucose+D− fructose (7.1)

here r stands for the reaction rate.

7.1 Problem Formulation

Assume the above mentioned chemical reaction 7.1. The velocity of this chemical

reaction r is a function of the sucrose concentration cs

r =
vmcs

Km + cs

(

1 + cs
Ki

) (7.2)

here vm denotes the maximal reaction velocity, Km stands for Michaelis-Menten con-

stant and Ki defines the inhibition coefficient. We distinguish the batch and the contin-

uous reactor. In both cases we assume a constant reactor volume V = 0.9[L].Volumetric

feed-flow is equal F = 0 for batch process and F = 1.02× 10−3[L.min−1] for the con-

tinuous process. Our task is to find the optimal kinetic parameters. First of all, we

have to generate pseudo-experimental data for cs with random error. To generate the

experimental data we used the following values of kinetic parameters

vm = 0.0026[molL−1min−1] Km = 0.0417[molL−1] Ki = 0.3916[molL−1]

(7.3)
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7.2 Hydrolysis of Sucrose in a Batch Reactor

We assume the following reaction taking place in a batch reactor

S → P (7.4)

For simplicity, we also assume that an equimolar amount of glucose and fructose

is produced, which is denoted as product P. Further, we assume that the mixture is

thoroughly mixed during the reaction and there is no enzyme deactivation. Then the

initial value problem can be expressed as follows

• Medium

dcs
dt

=
F

V
(cs,f − cs)−

vmcs

Km + cs

(

1 + cs
Ki

) cs(0) = cs0 (7.5)

• Product

dcp
dt

=−
F

V
cp +

F

V
(cs,f − cs)−

vmcs

Km + cs

(

1 + cs
Ki

) cp(0) = cp0 (7.6)

As we assume that the chemical reactor is a batch reactor, thus the volumetric flow

F will be equal to zero. Then the Eqs. 7.5 and 7.6 can be altered in the following way

• Medium

dcs
dt

=−
vmcs

Km + cs

(

1 + cs
Ki

) cs(0) = cs0 (7.7)

• Product

dcp
dt

=−
vmcs

Km + cs

(

1 + cs
Ki

) cp(0) = cp0 (7.8)

From Eqs. 7.7 and 7.8 is clear that the medium and the product concentration has the

same value with a different sign.

7.2.1 Solving the parameter estimation problem in a batch reactor

Our aim is to find the optimal values of the kinetic parameters vm, Km and Ki and to

minimize the value of the following objective function

J = min
vm,Km,Ki

20
∑

j=1

(cs (tj)− cexps (tj))
2 (7.9)



CHAPTER 7. HYDROLYSIS OF SUCROSE BY INVERTASE 42

For the initial medium concentration of cs0 = 1.5[molL−1]. The dynamic optimization

problem was solved by using the method of control vector parametrization and the

gradients were computed by finite differences and by sensitivity equations.

To solve this optimization problem we used the method of control vector parametriza-

tion with two different approaches of gradient computing. Obtained results are shown

and compared in Tab. 7.1. Our aim was to minimize the value of the objective function

J. As we can see the value of the objective was slightly smaller finite differences, than

for sensitivity equations. The yielded values of the first kinetic parameter vm were the

same. More obvious is the difference between the optimal values of the second kinetic

parameter Km. The parameter value obtained by using the first method was much

closer to the given value. And finally, the obtained value of the third parameter Ki

was closer to the given value by using sensitivity equations. Optimal values obtained

by using the finite differences approach showed to be more appropriate in this case

because optimal values were reached after 12 iterations and were more accurate. Sen-

sitivity equations approach achieved the optimal values after 6 iterations but were less

accurate. This results from the fact, that this problem is strongly nonlinear, thus it

has several local extremes.

Table 7.1: Comparison of computational aspects for different methods for computing gradi-

ents.

Finite differences Sensitivity Equations

J 0.0094 0.0096

vm [mol L−1 min−1] 0.0300 0.0030

Km [mol L−1] 0.0405 0.0428

Ki [mol L−1] 0.3145 0.3194

Graphical comparison of optimal state trajectories, obtained by using different

methods of computing gradients, is shown in Fig. 7.1. As we can see there are only

minor differences between the optimal state trajectory obtained by method of finite

differences Fig. 7.1(a) and state trajectory obtained by using method of sensitivity

equations Fig. 7.1(a). The final concentration of the medium was equal to zero in both

cases, that means that all medium was converted into product during the reaction.

7.3 Hydrolysis of Sucrose in a Continuous Reactor

In the next case we assume a continuous reactor as shown on Fig. 7.2. This continuous

reactor includes an outer membrane which is fully permeable to the medium but im-
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(b) Sensitivity equations method

Figure 7.1: Experimental points and optimal state variables trajectories for different methods

of computing gradients.

cs,f

S → P

Figure 7.2: Continuous reactor

permeable to the enzyme. We presume an equal input and output flow and a constant

volume V. We also assume that the mixture is thoroughly mixed during the reaction

and there is no enzyme deactivation.

7.3.1 Solving the parameter estimation problem in a continuous reactor

We consider the same initial value problem as in the previous case described by

Eqs. (7.5) and (7.6). We also assume that the concentration of the input stream will

be constant with the following initial estimates cs,0 = 3[molL−1] for the medium and

cp,0 = 0.2645[molL−1] for the product. Our aim is to find optimal values of kinetic

parameter vm, Km and Ki and fulfil the end-point constraint cs,f = 1.5[molL−1]. The

objective function is expressed as

J = min
vm,Km,Ki

20
∑

j=1

2
∑

i=1

(xi(t = tj, vm, Km, Ki)− xexp
i (tj))

2
(7.10)

Gained results are gathered in Tab. 7.2. Needed gradients were computed by finite
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differences and by sensitivity equations. Obtained values of the objective function J

and the first kinetic parameter vm had the same values. Conspicuous differences are in

values of the last two kinetic parameters. For both of these parameters, the method of

finite differences shown to be more accurate, because finite differences approach reached

the optimal value of the objective function within 24 iterations, while the sensitivity

equations approach needed 33 iterations. And also optimal values of kinetic parameters

were closer to the given ones.

Table 7.2: Comparison of computational aspects for different methods for computing gradi-

ents.

Finite differences Sensitivity Equations

J 0.0405 0.0405

vm [mol L−1 min−1] 0.0026 0.0026

Km [mol L−1] 0.0411 0.0404

Ki [mol L−1] 0.3812 0.3809

Graphical comparison is shown on Fig. 7.3. As we can see there are only minor

differences between the optimal state trajectories obtained by using finite differences

Fig. 7.3(a) and sensitivity equations Fig. 7.3(b). The final concentrations of the medium

and product were cs = 0.6792[molL−1], cp = 0.8206[molL−1] for the case of finite

differences and cs = 0.6793[molL−1], cp = 0.8209[molL−1].
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Figure 7.3: Experimental points and optimal state variables trajectories for different methods

of computing gradients.



Chapter 8
Catalytic Cracking of Gas Oil

Crude oil is a brown liquid which consists of a mixture of hydrocarbons. Catalytic

cracking is the most common way of crude oil processing, during which long hydrocar-

bon chains are broken down into shorter ones.

8.1 Problem Formulation

Catalytic cracking is an example of parameter estimation where three parameters are

going to be optimized. This process is described by two differential equations with

constraints. We assume simplified reaction of gas oil (A) to gasoline (Q) and other

products (S) (Paulen 2008)

A
k1−→ Q

Q
k2−→ S

A
k3−→ S

Differential equations which are describing the process are defined as follows

ẋ1 =− (k1 + k3)x
2
1 ∀t ∈ [0, 1] (8.1)

ẋ2 =k1x
2
1 − k2x2 ∀t ∈ [0, 1] (8.2)

with the following initial conditions a constraints

x1(t = 0,k1, k2, k3) = 1

x2(t = 0,k1, k2, k3) = 0

0 ≤k1 ≤ 20 (8.3)

0 ≤k2 ≤ 20

0 ≤k3 ≤ 20
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here x1 and x2 are the molar fractions of constituents A and Q (Paulen 2008) and

constants k1, k2 and k3 are the rate constants of single reaction. The objective of

dynamic optimization problem can be then expressed as

min
k1,k2,k3

20
∑

j=1

2
∑

i=1

(xi (t = tj , k1, k2, k3)− xexp
i (tj))

2 (8.4)

here xi(tj) is an experimental point for the variable i at time tj (Paulen 2008).

8.2 Solving the parameter estimation problem

Problem of dynamic optimization was solved by using the method of control vector

parametrization. Our aim is to find the optimal values of parameters k1, k2 and k3 and

to minimize the objective function 8.4. We generated the pseudo-experimental data

with a 5% error.

Obtained results are summarized in Tab. 8.1. The first method used was the method

of finite differences. The optimal value of the objective function J was reached after

21 iterations. The second one were the sensitivity equations. We achieved the same

value of the objective function within the same number of iterations. If we compare

the values of each parameter, we can see that there are only small differences in their

values.

Table 8.1: Comparison of computational aspects for different methods for computing gradi-

ents.

Finite differences Sensitivity Equations

J 0.0108 0.0108

k1 10.6472 10.6488

k2 6.7322 6.7331

k3 1.4469 1.4458

The experimental points and the optimal state variables trajectories for different

gradient computing approaches are shown on Fig. 8.1. Fig. 8.1(a) depicts the optimal

state trajectory obtained by finite differences while Fig. 8.1(b) shows the optimal state

trajectory obtained by using sensitivity equations. As it can be seen, there are only

minor differences between these trajectories, what is expected, because the obtained

results are almost the same.
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Figure 8.1: Experimental points and optimal state variables trajectories for the process of

catalytic cracking.



Chapter 9
Batch Reactor

9.1 Problem Formulation

We consider a batch reactor with the following consecutive reactions

A
k1−→ B

k2−→ C

Our aim is to find such an optimal temperature trajectory inside the reactor that

maximizes the concentration of the intermediate product B at the end of the entire

process. Hence the optimization problem can be defined as follows

max
T (t)

J = x2(tf) (9.1)

The system is described by the following ODE system

ẋ1 =− k1x
2
1 x1(0) = 1 (9.2)

ẋ2 =k1x
2
1 − k2x2 x2(0) = 0 (9.3)

0 =k1 − 4000e(−
2500
T

) (9.4)

0 =k2 − 620000e(−
5000
T

) (9.5)

here the state variables x1 stands for the concentration of reactant A and x2 denotes the

concentration of product B. The control variable is the temperature inside the reactor

T. We also consider the following initial conditions and constraints

T ∈ [298, 398]

x1(t0) =1

x2(t0) =0

tf =1
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where tf stands for the final time. We are going to solve this optimization problem

using two different numerical methods - orthogonal collocation and sensitivity equa-

tions. In both cases we consider a time period t ∈ [t0, tf ] subdivided into four different

time intervals which lengths ∆ti are optimized too.

9.2 Finding Optimal Control Using Orthogonal Collocation

Orthogonal collocation was the first method used. We used five collocation points for

state variables and two collocation points for control variable. The optimization prob-

lem was solved by NLP solver fmincon using three different algorithms. Optimization

toolbox fmincon is based on finding constrained minimum of a scalar function. The

first used was the algorithm of trust-region-reflective. This algorithm is based on the

approximation of the former function with a simpler function, which accurately reflects

the behavior of the former function. The second tested algorithm was the sequential

quadratic programming or SQP, based on Newton’s method, which is based on finding

the places, where the gradient is equal to zero. And the last used algorithm was the

algorithm of interior point which belongs to barrier methods.

Table 9.1: Orthogonal collocation: Comparison of resulting objective function values for

different algorithms of piece-wise linear control.

Trust-region-reflective SQP Interior point

Optimal value 0.6091 0.6108 0.6108

Number of iterations 771 397 8890

CPU-time [s] 51.5169 19.8568 334.4820

Obtained results are shown and compared in Tab. 9.1. We used the same initial

guess for each algorithm and the same end-point constraint tf = 1. Our aim was

to find such an optimal temperature trajectory, which maximizes the value of the

objective function in the final time. This optimization problem was solved by (Logsdon

and Biegler 1989) and (Rajesh et al. 2001). (Logsdon and Biegler 1989) reached the

optimal value 0.6108 while (Rajesh et al. 2001) obtained the optimum value 0.6105.

We reached the same optimal values by SQP and by interior point. With respect to

this criterion the worst was the algorithm of trust-region-reflective. If we compare

the number of iterations and the computing time, SQP algorithm proved to be the

fastest. If we compare the iteration velocity [iteration/CPUtime], the fastest is the

trust-region-reflective algorithm with the value of 14.5 [iteration/s]. The second is the
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SQP algorithm with 20 [iteration/s] and the slowest is the interior point algorithm with

26.6 [iteration/s]. After the overall comparison we can say, that the most suitable is

the SQP algorithm because the same optimal value was reached in shorter time.
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Figure 9.1: Orthogonal collocation: Comparison of the optimal control trajectories for the

case of 4 time intervals with optimized lengths.

Graphical comparison of optimal temperature trajectories obtained using different

algorithms are shown on Fig. 9.1. As we can see there is only minor difference in tem-

perature trajectories in Figs. 9.1(b) and 9.1(c). Temperature trajectory obtained using

trust-region-reflective shown on Fig. 9.1(a) is apparently different, thus this method

proved to be inappropriate for this kind of optimization problem.
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9.3 Finding Optimal Control Using Sensitivity Equations

9.3.1 Solving the optimization problem using fmincon

We assumed the same chemical reactor described by Eq. 9.5. First, we defined the

sensitivity equations as partial derivatives of state variables according to the parame-

ters. We obtained 6 (nx ×np) sensitivity equations for each time period. Optimization

problem was solved by the same NLP solver fmincon using three algorithms - trust-

region-reflective, SQP and interior point. We used the same initial estimates and same

end-point constraint.

Table 9.2: Sensitivity equations: Comparison of resulting objective function values for differ-

ent algorithms of piece-wise linear control.

Trust-region-reflective SQP Interior point

Optimal value 0.6084 0.6108 0.6108

Number of iterations 9 115 135

CPU-time [s] 3.3481 29.0953 17.5581

Tab. 9.2 shows the results obtained using sensitivity equations. If we compare the

values of objective functions, we can see that the worst result was obtained by using

trust-region-reflective algorithm despite the fact, that this algorithm needed only 9 iter-

ations to get the optimal value. Comparing the iteration velocity [iteration/CPUtime]

it can be seen, that the fastest is the trust-region-reflective with the value of 2.7 [it-

eration/s]. Next is the SQP algorithm with 3.9 [iteration/s] and the slowest is the

algorithm of interior point with 7.7 [iteration/s]. After comparing the same criteria as

in the previous case, we can say that the most appropriate was the solution obtained

by using SQP algorithm.

Graphical comparison of optimal control trajectories obtained by using three dif-

ferent algorithms are shown in Fig. 9.2. As we can see, optimal control trajectories

obtained by SQP Fig. 9.2(b) and by interior point Fig. 9.2(c) have almost the same

profile. Optimal control profile shown in Fig. 9.2(a), obtained by using the trust region

reflective algorithm, shown to be inaccurate.

The results clearly show, that the SQP algorithm is the most appropriate for both

methods. The comparison of these numerical methods is shown in Tab. 9.3. As we can

see, both of them reached the same value of the objective function, but with a different

number of iterations and different CPU-time. The optimization problem solved by the

method of orthogonal collocation reached the optimum value in 397 iterations within
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Figure 9.2: Sensitivity equations: Comparison of the optimal control trajectories for the case

of 4 time intervals with optimized lengths.
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20[s]. In contrast, the optimum value for the method of sensitivity equations was

reached after 115 iterations within 30[s].In this case, the method of sensitivity equations

shown to be more suitable, because it reached the same value of the objective function

with less iterations and within shorter time.

Table 9.3: Comparison of resulting chosen criteria for two different numerical methods.

Orthogonal collocation CVP(Sensitivity equations)

Optimal value 0.6108 0.6108

Number of iterations 397 115

CPU-time [s] 19.8568 29.0953

[iteration/s] 20 4

9.3.2 Solving the optimization problem using CVP SS

gPROMS is a platform used for process modeling. Solving dynamic optimization prob-

lems is based on the sensitivity equations method. We have used the CVP SS solver,

which implements the algorithm of control vector parametrization via single shooting.

Comparison of results obtained by two different solvers is shown in Tab. 9.4. In both

cases the method of sensitivity equations was used. We used the same initial estimates

and the same end-point constraint tf = 1 as previously. The value of the objective

function obtained using fmincon shown to be a little better than the value obtained by

CVP SS. On the other side CVP SS needed only 10 iterations to reach the optimum

while fmincon needed 115. If we compare the iteration velocity, fmincon is iterating

faster then CVP SS. After comparing all criteria we can say, that CVP SS solver is

more suitable, even it had little bit worse objective value, because the difference be-

tween reached optimal values is small, but it was achieved in a shorter time within less

iterations.

Table 9.4: Results comparison of different NLP solvers.

fmincon CVP SS

Optimal value 0.6108 0.6106

Number of iterations 115 10

CPU-time [s] 29.0953 10.265

[iteration/s] 4 0.7
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Graphical solutions are shown on Fig. 9.3. The entire time interval was subdivided

into 4 time elements, which lengths were optimized. We can observe significant differ-

ences in these two trajectories. The first 2 time intervals counted by fmincon are small

(10−2order), while the rest 2 intervals are 10−1order. Each time interval obtained by

CVP SS has the same rank(10−1).
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Figure 9.3: Sensitivity equations: Comparison of the optimal control trajectories obtained

using different NLP solvers.



Chapter 10
Polymerization Process

The emulsion polymerization is a procedure in which, an aqueous dispersion of monomer

(or a mixture of monomer) is transformed by radical polymerization in a stable dis-

persion of polymer particles. The reaction medium is mainly composed of (Fournier

1998)

• Dispersing medium (water in general).

• Monomer (which must be insoluble in the dispersing medium).

• Initiator (which is soluble in the dispersing medium, and insoluble in the monomer).

Choice of the initiator depends on the temperature field. For moderate to high

temperature initiators such as potassium persulfate and sodium are commonly

used. For polymerizations conducted at lower temperatures redox initiators are

usually used.

• Emulsifier. The emulsifier molecules have a hydrophilic end and a hydropho-

bic hydrocarbon skeleton. Due to the forces between the hydrophobic ends, the

molecules of emusifiant will form aggregates, called micelles, starting from a crit-

ical concentration, also called the critical micelle concentration. A micelle is a set

of 50 to 100 molecules of emulsifier having their hydrophilic end oriented towards

the aqueous phase.

Sometimes it may include transfer agents and other additives too.

At the beginning of the polymerization, the emulsifier can be found in three forms

- dissolved in the dispersing medium, micelles form and adsorbed on the surface of

monomer droplets.
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10.1 Polymerization Mechanism

The mechanisms of emulsion polymerization reactions are described in three stages

1. Step 1: The polymer particles are nucleated. The overall rate of polymerization

increases with time as and as the number of particles increases.

2. Step 2: This step is the stage of particles growth. Their amount is now constant

until the end of the polymerization. Because of the rapid diffusion of the monomer

droplets to particles, they are saturated as long as monomer droplets exist, and

consequently the concentration of particles in monomer remains constant. At the

end of Step 2, the monomer droplets have disappeared.

3. Step 3: The particles are no longer supplied with monomer, concentration of

monomer decreases regularly.

In general, radical polymerization can be divided into four stages

Initiator decomposition: A −→ 2R• Ra = 2fkdA

Particle formation: R• +m −→ N• Rn = kcmmR•

Initiation: N + R• −→ N• Ri = kcpNR•

Termination: N• + R• −→ N Rt = kcpN
•R•

Propagation: P•
j +M −→ P•

j+1 Rp = kpMpN
•

Transfer to monomer: P•
j +M −→ M• + P•

j RtrM = ktrMMpN
•

Where A denotes the concentration of initiator, R• denotes the initiator radical

concentration, f represents initiator efficiency, M is monomer concentration and m

denotes the number of micelles per unit volume.

10.2 Kinetic Model

Material balance is composed of monomer and particles balance.

The assumption of quasi-stationary state applied to radicals decomposed from the

initiator in the aqueous phase allows to write

Ṅp = kcmmR•NA = kcmm
RaNA

1 +
εNp

SNA

(10.1)

Where NA denotes Avogadro’s number and ε is a factor linked to the efficiency

of particles with respect to micelles capturing radicals from the decomposition of the

initiator.

ε =
kcpns

kcm
(10.2)
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ns is the number of aggregation of micelles characterized as

ns =
SNA

m
(10.3)

Now, the concentration of the emulsifier can be expressed as

S = So − kv(XMo)
2/3N1/3

p (10.4)

where So announces initial emulsifier concentration, Mo announces initial monomer

concentration and X refers to monomer conversion. Along with

kv =

[

36πM2
M

ω2
P(asNA)3ρ2P

]1/3

(10.5)

where MM is referring to monomer molecular weight, ωP to polymer weight fraction

in particles, variable as to surface area occupied by an emulsifier molecule and ρP is

referring to polymer particle density. The monomer disappears during the propagation

within the particles and the transfer rate to monomer is negligible at the speed of

propagation. This relation is expressed as

Ṁ = −Rp = −kpMp
Np

NA

n̄ (10.6)

Where n̄ is the average number of radicals per particle (n̄ = 0.5) and the constant of

overall propagation speed is formulates as

kp = k′
pexp(−a.fMS) (10.7)

where fMS denotes molar fraction of α–methylstyrene at the beginning of a reaction,

k′
p denotes the propagation rate constant for styrene homopolymerization and a is a

constant (Fournier 1998). To complete the model it is necessary to express the monomer

concentration in particles Mp

Mp = Mpc =
(1−Xc)ρM

[(1−Xc) +XcρM/ρP]MM
X ≤ Xc (10.8a)

Mp =
(1−X)ρM

[(1−X) +XρM/ρP]MM
X > Xc (10.8b)

where Mpc stands for critical monomer concentration in particles, Xc represents crit-

ical monomer conversion and finally ρM denotes monomer density. Macromolecules

formulation occurs in two processes: during the initiator decomposition and during

the radical attempting Rt and transferring to the monomer RtrM . Velocities of these

processes are defined as

Rt =
Ran̄Np

Np +
S
ε

(10.9)

RtrM = ktrMMp
Np

NA
n̄ (10.10)
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Hence we are able to define the total polymer formation velocity as follows

Ṗ = Rt +RtrM =
Ran̄Np

Np +
S
ε

+ ktrMMp
Np

NA

n̄ (10.11)

here the monomer transfer velocity constant is defined as

ktrM = ktrM0 exp

(

−
EtrM

RT

)

exp(bfMS) (10.12)

10.3 Problem Formulation

At this stage, a model of the copolymerization reaction of emulsion styrene and α–

methylstyrene in batch reactor has been developed. This is a simple model, which will

be easily used in the steps of optimization and control of the reactor, but retains good

predictive ability of the most important variables.

The emulsion polymerization reaction is divided into three stages (Fournier 1998)

• Nucleation:

ẋ1 = −Rp(T, x2) (10.13)

ẋ2 =
Ra(T )NA

1 + εx2

S(x1,x2)

(10.14)

ẋ3 = Rt(T, x1, x2) +RtrM(T, x2) (10.15)

Where the propagation velocity stands forRp(T, x2) = kp(T )Mpc
x2

NA
n̄ and monomer

transfer velocity denotes RtrM = ktrM(T )Mpc
x2

NA
n̄.

• Particles growth is same as first step except:

ẋ2 = 0 (10.16)

• The concentration decrease

ẋ1 = −Rp(T, x1, x2) (10.17)

ẋ2 = 0 (10.18)

ẋ3 = Rt(T, x1, x2) +RtrM(T, x1, x2) (10.19)

Propagation velocity stands for Rp(T, x1, x2) = kp(T )Mp(x1)
x2

NA
n̄, monomer con-

centration is expressed as Mp(x1) =
(1−X)ρM

[(1−X) +XρM/ρP ]MM
and monomer

transfer velocity is characterized as RtrM = ktrM(T )Mp(x)1)
x2

NA
n̄.
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The initial conditions are given by the composition of the reactor at t0

x1(t0) = M0

x2(t0) = 0

x3(t0) = 0

Our aim is to reach the desired final state that is characterized by conversion Xf

(which characterizes the amount of formed polymer) and by final number average

molecular weight Mn(tf) which are defined as

X(tf ) = 1−
x1(tf )

M0

(10.20)

Mn(tf ) = MM
M0 −M(tf )

P (tf)
(10.21)

Assume a model described by the Eqs. 10.1 and 10.6. Our aim is to find such

an optimal control trajectory which minimizes the final time of the reaction thus the

optimization problem can be expressed as

min
u(t)

J = tf (10.22)

With respect to the following limit

0 ≤tf ≤ 10000

313.15K≤T≤343.15K

10.4 Solving the Optimization Problem Using SNOPT and

CVP SS

The optimization problem was solved by using SNOPT and CVP SS. SNOPT(Sparse

Nonlinear Optimizer) is a NLP solver based on sparse sequential quadratic program-

ming (SQP)(see K.Holmstrom (2008)) used in MATLAB. Integration was provided by

ode45 integrator based on 4th order Runge-Kutta method. The second used solver

was CVP SS which stands for control vector parametrization - single shooting al-

gorithm used in gPROMS. To solve this problem we used the method of control

vector parametrization, where the needed gradients where computed by sensitivity

equations with same initial estimates and same end-point constraints Xf = 0.6 and

Mnf = 3 × 10−6[g.mol−1] for both cases. Obtained results are summarized and com-

pared in Tab. 10.1. Here NI stands for the number of control intervals. Our aim was

to minimize the value of the objective function, in which case it meant to minimize the
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final time. As we can see an increasing number of time intervals caused the decrease

of the objective function. This is natural, because the increase of optimized time in-

tervals caused an increase in number of degrees of freedom, and thus enabled a better

approximation. We can also see that the best value was reached by using the CVP SS

solver. Further increase in number of intervals caused only minor differences in the

value of the objective function.

Table 10.1: Comparison of resulting objective function for different numbers of intervals of

piece-wise constant control and different NLP solvers.

NI Xf Mnf × 10−6 SNOPT: tf [s] CVP SS: tf [s]

1 0.6 3.0 7924.10 7924.09

2 0.6 3.0 5158.10 5158.10

3 0.6 3.0 5156.90 5158.06

4 0.6 3.0 5147.83 5146.70

5 0.6 3.0 5146.10 5146.56

6 0.6 3.0 5144.30 5143.84

7 0.6 3.0 5144.11 5143.27

In Tab. 10.2 we compare other proprieties such as computing time CPU and number

of NLP iterations #it. If we compare the computing time we can see that CVP SS

solver reached the optimal values much faster than SNOPT. Further, if we compare

number of iterations it can be seen that for the higher number of iterations SNOPT

less iterations that CVP SS. In conclusion we can say that for this case CVP SS solver

seemed to be more appropriate because it reached smaller value of the objective function

within shorter time.

Graphical comparison of optimal control trajectories, obtained by using different

NLP solvers for the case of NI = 6 is shown in Fig. 10.1. As we can see there are

only minor differences between optimal control trajectory obtained by using SNOPT

(Fig. 10.1(a)) and trajectory obtained by CVP SS (Fig. 10.1(b)).



CHAPTER 10. POLYMERIZATION PROCESS 62

Table 10.2: Comparison of computational aspects for different numbers of intervals of piece-

wise constant control and different methods for computing gradients.

SNOPT CVP SS

NI CPU [s] #it CPU [s] #it

1 42.3963 22 3.6660 78

2 596.0426 16 5.5540 13

3 1552.2000 45 20.9510 44

4 1013.7000 168 37.9710 79

5 1825.1000 46 40.0210 80

6 1014.5000 48 36.0670 73

7 823.8831 40 51.8700 95
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Figure 10.1: Optimal control trajectories for NI = 6 using different NLP solvers.



Chapter 11
Conclusion

The aim of this diploma thesis was to study dynamic optimization of processes. Sev-

eral analytical and numerical methods were presented. We explained the base of Pon-

tryagin’s minimum principle, dynamic programming and variational calculus. Fur-

ther, we explained two numerical methods - orthogonal collocation and control vector

parametrization. Within control vector parametrization we defined three gradient com-

puting approaches. The last section of the theoretical part was dedicated to hybrid

processes.

In the second part we discussed concrete problems. The first discussed problem was

the sucrose hydrolysis, where the dynamic optimization problem was solved separately

for batch and for continuous system. Control vector parametrization was the used as

problem-solving method. Needed gradients were computed by finite differences and

also by sensitivity equations. The second mentioned process was the catalytic cracking

of gas oil. The optimization problem was solved by control vector parametrization,

where the gradients were computed by finite differences approach and also by sensi-

tivity equations. The method of orthogonal collocation was explained for the case of

simple batch reactor. This optimization problem was also solved by control vector

parametrization. Here the method of sensitivity equations shown to be more accurate.

The last considered problem was an emulsion polymerization reaction. In this case

we had to keep in mind that this process is a hybrid process, thus there may occur

discontinuities. The optimization problem was solved by using the method of control

vector parametrization and the needed gradients were computed by sensitivity equa-

tions. The problem was implemented in MATLAB and gPROMS too. All results are

summarized and discussed at the end of each chapter.
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Chapter 12
Resumé

Každý deň riešime problémy, na ktoré sa snaž́ıme nájst’ optimálne riešenie. Vo všeo-

becnosti môžeme povedat’, že optimálne riešenie je najlepšie riešenie daného problému

za daných podmienok.

Nájst’ najlepšie riešenie znamená nájst’ matematické riešenie optimalizačného prob-

lému. V chemickom priemysle sa bežne stretávame s optimalizačnými úlohami, kde

naš́ım ciel’om nie je iba vyrobit’ maximálne množstvo požadovaného produktu, ale aj

minimalizovat’ celkové náklady, minimalizovat’ spotrebu surového materiálu a energíı a

rôzne iné faktory. Takéto problémy rieši dynamická optimalizácia. Presneǰsie, dynam-

ická optimalizácia sa snaž́ı nájst’ taký optimálny priebeh riadenia, ktorý by minimali-

zoval alebo maximalizoval hodnotu danej účelovej funkcie pri dodržańı obmedzeńı.

Riešenie problémov dynamickej optimalizácie pozostáva z niekol’kých krokov. Pr-

vým krokom je defińıcia problému. K tomu, aby sme mohli hocijaký problém vyriešit’,

muśıme presne vymedzit’ náš ciel’, teda čo budeme minimalizovat’ resp. maximalizovat’

a za akých podmienok a obmedzeńı. Ďaľśım krokom je opis procesu. Vo všeobecnosti

plat́ı, že č́ım je model procesu lepš́ı, tým lepšie riešenie vieme nájst’. Posledným krokom

je použitie optimalizačného algoritmu na daný optimalizačný problém.

V súčasnosti existuje niekol’ko metód použ́ıvaných pri riešeńı problémov dynamic-

kej optimalizácie. Vo všeobecnosti ich môžeme rozdelit’ do dvoch skuṕın - do skupiny

analytických a do skupiny numerických metód. Medzi analytické metódy rad́ıme Pon-

tryaginov prinćıp minima, dynamické programovanie a variačný počet. Skupinu nu-

merických metód d’alej rozdel’ujeme na priame a nepriame numerické metódy. Do

skupiny priamych numerických metód rad́ıme sekvenčnú a simultánnu metódy, zatial’

čo do skupiny tých nepriamych patŕı iterácia hraničnej podmienky a parametrizácia

vektora riadenia.
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Táto diplomová práca je rozdelená do dvoch čast́ı. Prvá čast’ je venovaná teoretickým

poznatkom, kým v druhej, aplikačnej časti sa venujeme riešeniu konkrétnych optima-

lizačných problémov.

Prvá kapitola teoretickej časti pojednáva o dynamickej optimalizácii. K tomu, aby

sme mohli vyriešit’ problém dynamickej optimalizácie, alebo aj problém optimálneho

riadenia pri otvorenej slučke, muśıme najprv vytvorit’ matematický model riadeného

procesu, definova v t obmedzenia a účelovú funkciu. Pri vytvárańı modelu procesu,

by sme mali snažit’ o vytvorenie čo najjednoduchšieho matematického opisu, ktorý by

adekvátne predpovedal odozvu systému na všetky predpokladané vstupy. Pri hl’adańı

optimálneho riešenia muśıme mat’ na mysli aj obmedzenia, ktoré dané systém nejakým

spôsobom limitujú. Účelová funkcia je predikt́ıva, na základe ktorej sa inej funkcii pri-

rad́ı reálne č́ıslo. Môže byt’ vyjadrená v troch základných tvaroch - Bolzov, Mayerov a

Langrangeov tvar.

Druhá kapitola je venovaná analytickým a numerickým metódam použ́ıvaných pri

riešeńı optimalizačných problémov. Prvou analytickou metódou, ktorej sa venujeme,

je dynamické programovanie. Táto metóda je založená na Bellmanovom prinćıpe op-

timality, ktorý hovoŕı,že optimálna trajektória záviśı len od počiatočných podmienok

a od ciel’a a nie od cesty, ktorou sme tento ciel’ dosiahli. Vel’mi podobnou metódou

je Pontryaginov prinćıp minima, ktorá sa použ́ıva na riešenie komplexneǰśıch problé-

mov s obmedzeniami na stavové a riadiace veličiny. Poslednou študovanou analytickou

metódou je variač ný počet, ktorý je v tejto práci odvodený z Bellmanovho prinćıpu

optimality. Medzi priame numerické metódy rad́ıme sekvenčnú metódu, známu aj pod

názvom parametrizácia vektora riadenia a simultánnu metódu, známu aj ako kompletná

parametrizácia. Metódy ako iterácia hraničnej podmienky a iterácia vektora riadenia

rad́ıme do skupiny nepriamych numerických metód.

V tretej teoretickej kapitole sa zaoberáme metódou ortogonálnej kolokácie na konečných

prvkoch. Táto metóda je založená na kompletnej parametrizácii stavových aj riadiacich

profilov. To znamená, že pôvodná stavová a riadiaca trajektória je aproximovaná

lineárnou kombináciou bázických funkcíı. Naš́ım ciel’om je potom nájst’ optimálne

riadenie optimalizáciou koeficinetov týchto funkcíı.

Druhou skúmanou numerickou metódou je parametrizćia vektora riadenia, ktorá je

založená na nahradeńı pôvodnej spojitej trajektórie riadenia inou trajektóriou, ktorá

sa dá oṕısat’ konečným počtom parametrov. To znamená, že pôvodne spojitý prob-
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lém dynamickej optimalizácie bude nahradený statickým problémom nelineárneho pro-

gramovania. Gradienty potrebné pre riešenie problémov dynamickej optimalizácie

môžeme vypoč́ıtat’ niekol’kými spôsobmi. Prvou metódou je metóda konečných di-

ferencíı. Podtstatou tejto metódy je rekurentná integrácia systému so zmenou hod-

noty niektorého z optimalizovaných parametrov. Najväčšou výhodou tejto metódy

je, že nevyžaduje pridanie d’aľsej diferenciálnej rovnice, na druhú stranu, celý systém

muśı byt’ pri každej zmene každého parametra integrovaný np–krát, kde np označuje

počet parametrov. Druhou metódou vhodnou na výpočet gradientov, je metóda ad-

jungovaných premenných. Podstata tejto metódy spoč́ıva vo vytvoreńı adjungovaného

systému, ktorý sa potom integruje spätne, zatial’ čo pôvodný systém sa integruje do-

predne. Poslednou analyzovanou gradientovou metódou je metóda citlivostných rovńıc.

Tá to metóda sa použ́ıva najmä pre systémy, ktoré sú oṕısané vel’kým počtom difer-

enciálnych rovńıc, avšak s malým počtom opimalizovaných premenných, pretože počet

citlivostných rovńıv záviśı nielen od počtu stavových premenných, ale aj od počtu op-

timalizovaných parametrov.

Poslednou kapitolou teoretickej časti sú parametrické citlivosti hybridných systémov.

Dôležitou charakteristikou hybridných systémov je, že ich dynamické vlastnosti sa me-

nia v závislosti od fázy, v ktorej sa práve nachádzajú. Citlivostné funkcie sú definované

ako parciálne derivácie premenných systému s ohl’adom na optimalizované parametre.

Parametrické citlivosti sa použ́ıvajú na sledovanie vplyvu zmeny parametrov na rieše-

nie.

V druhej časti diplomovej práce sa venujeme riešeniu konkrétnych optimalizačných

problémov. Prvým pŕıkladom odhadu parametrov je hydrolýza sacharócy pomocou in-

vertázy. Budeme rozlǐsovat’ vsádzkový a prietokový režim. Našou úlohou bude v oboch

pŕıpadoch hl’adat’ optimálne hodnoty kinetických parametrov a minimalizovat’ hodnotu

účelovej funkcie, teda minimalizovat’ sumu štvorcov rozdielov nameraných koncentrácíı

a koncentrácíı predikovaných modelom. Tento optimalizačný problém sme riešili po-

mocou parametrizácie vektora riadenia. Potrebné gradienty sme vypoč́ıtali pomocou

metódy konečných diferencíı a aj pomocou citlivostných rovńıc. Výsledky źıskané po-

mocou konečných diferencíı boli o niečo lepšie ako tie, ktoré sme vypoč́ıtali pomocou

citlivostných rovńıc. Toto mohlo byt’ spôsobené tým, že daný systém je nelineárny, a

teda vykazuje niekol’ko lokálnych extrémov.

Druhým riešeným pŕıkladom bolo katalytické krakovanie. V tomto pŕıpade je systém

oṕısaný dvoma diferenciálnymi rovnicami. Našou úlohou bolo nájst’ také optimálne
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hodnoty troch kinetických parametrov, ktoré by minimalizovali sumu štvorcov rozdielov

nameraných a modelom predikovaných molárnych frakcíı reaktanta a medziproduktu.

Na vyriešenie problému odhadu parametrov sme použili parametrizáciu vektora ria-

denia a potrebné parametre sme vypoč́ıtali najprv metódou konečných diferencíı a

potom pomocou citlivostnćych rovńıc. Hodnota účelovej funkcie bola rovnaká v oboch

pŕıpadoch a aj medzi optimálnymi hodnotami kinetických parametrov boli len malé

rozdiely. Tieto malé rozdiely optimálnych hodnôt boli vd’aka tomu, že v tomto pŕıpade

sa jednalo o relat́ıvne jednoduchý pŕıklad, a teda aj metóda konečných diferencíı bola

postačujúca.

Tret́ı pŕıklad riešil problém optimálneho riadenia v sádzkovom reaktore s následnou

reakciou. Našou úlohou je nájst’ taký optimálny teplotný profil vo vnútry reaktora,

ktorý by maximalizoval koncentráciu medziproduktu na konci celého procesu. Opti-

malizačný problém sme najprv riešili pomocou ortogonálnej kolokácie. V tomto pŕı-

pade sme hl’adali hodnoty piatich kolokačných bodov pre riadiacu veličinu a dvoch

kolokačných bodov pre stavové veličiny. Druhou použitou metódou bola parametrizá-

cia vektora riadenia, kde sme potrebné gradienty vypoč́ıtali pomocou citlivostných

rovńıc. Metóda citlivostných rovńıc sa v tomto pŕıpade ukázala byt’ vhodneǰsou, pre-

tože optimálne hodnoty dosiahla s menš́ım počtom iterácíı.

Posledným študovaým procesom bola emulzná polymerizácia styrénu a α–metylstyrénu.

V tomto pŕıpade sa jedná o hybridný systém, pretože celá reakcia prebieha v troch

etapách - nukleácia, rast čast́ıc a pokles koncentrácie. Každá jedna fáza je oṕısaná

troma diferenciálnymi rovnicami, avšak pravé strany týchto rovńıc sa menia podl’a

fázy, v ktorej sa práve nachádzajú. Našou úlohou je nájst’ takú optimálnu trajektóriu

riadenia, ktorá by minimalizovala hodnotu koncového času. Problém bol riešený pomo-

cou citlivostných rovńıc pomocou dvoch odlǐsných NLP solverov - SNOPT a CVP SS.

CVP SS solver sa v tomto pŕıpade ukázal byt’ vhodneǰśım, pretože dosiahol lepšie hod-

noty účelovej funkcie, a to v kratšom čase.

Ciel’om tejto diplomovej práce bolo oboznámit’ sa s problematikou dynamickej op-

timalizácie. V teoretickej rovine sme vysvetlili podstatu dynamického programovania,

Pontryaginovho prinćıpu minima a variačného počtu. Čo sa týka numerických metód,

bližšie sme si vysvetlili ortogonálnu kolokáciu na konečných prvkoch a parametrizáciu

vektora riadenia. V druhej časti práce sme si ukázali aplikáciu týchto dvoch numeric-

kých metód na niekol’kých pŕıkladoch.



Bibliography

B. Chachuat, A. B. Singer, and P. I. Barton. Global methods for dynamic optimization

and mixed-integer dynamic optimization. Ind. Eng. Chem. Res., 45(25):8373–8392,

2006.

W. F. Feehery. Dynamic Optimization with Path Constraints. PhD thesis, Mas-

sachusetts Institute of Technology, June 1998.
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