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Abstrakt

Predkladana praca sa zaoberd problematikou optimélneho riadenia procesov pri otvorenej
slucke. Prva cast’ prace sa zaobera definiciou optimalneho riadenia procesov a definuji sa
v8eobecné pristupy k rieSeniu problémov dynamickej optimalizacie. Druhd praktickd cast’
prace je zamerand na rieSenie konkrétnych tloh optiméalneho riadenia. Pri rieSeni jednotlivych
prikladov boli pouzité dve numerické metddy - ortogonalna kolokacia na koneénych prvkoch
a parametrizdcia vektora riadenia. Optimaliza¢né tdlohy boli vyrieSené pomocou MATLABu
a gPROMSu.

KUlicové slova: Optimélne riadenie procesov pri otvorenej slucke, Dynamickd optimaliza-

cia procesov, Ortogonalna kolokacia na konecnych prvkoch, Parametrizacia vektora riadenia



Abstract

The present work deals with optimal control of processes in an open-loop. The first part
deals with optimal process control and several problem solving approaches. The second one,
practical part, focuses on concrete problem solving, where two numerical methods were used

- orthogonal collocation on finite elements and control vector parametrization. Optimization
problems were solved using MATLAB and gPROMS.

Keywords: Optimal control of processes in open-loop, Dynamic optimization of processes,

Orthogonal collocation on finite elements, Control vector parametrization
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Nomenclature

as surface area occupied by an emulsifier molecule [dm?|
Cp product concentration [mol L ~}]

Cs medium concentration [mol L ™!]

F volumetric flow [L min~!]

f initiator efficiency

fms  a—methylstyrene molar fraction in the initial load

J objective function
kq rate constant for initiator decomposition [s7?]
K;  inhibition coefficient [mol L™!]

K,  Michaelis-Menten constant [mol L™1]

k, rate constant for propagation [dm3mol~!s™!]

kem  ate constant for initiator radical entry into micelles [dm3micelle™s™!]
kep rate constant for initiator radical entry into particles [dmgpart_ls_l]
kia  rate constant for transfer to monomer [dm3mol~!s™1]

L kinetic chain length [gmol™!]

Lg-k) transition condition of switching from mode Sj to S;

M global monomer concentration [mol dm 3]

m number of micelles per unit volume [micelle dm 3]



My monomer molecular weight [gmol™!]

M,  monomer concentration in particles [mol dm 3]
My, critical monomer concentration in particles [mol dm=3]
[, number-average molecular weight [gmol ~!]
n average number of radicals per particle
U control variable
x state vector
N number of inactive particles per unit volume [particledm 3]

N*®  number of active particles per unit volume [particledm 3]
Np total number of particles per unit volume [particle dm—3]
Na  Avogadro’s number [mol~!]

Ng aggregation number of micelles

NI number of intervals

P dead polymer concentration [mol dm~3]

P®) get of all possible descendant modes of mode S,

r reaction rate [mol L™ 'min™!]

R*  initiator radical concentration [mol dm ™3]
R,  initiator decomposition rate [moldm=3s~!]
R; initiation rate [mol dm=3s~!]

R,  particle formation rate [mol dm3s™!]

R,  polymerization rate [moldm 3s™!]

R, termination rate [mol dm3s71]
Ry transfer to monomer rate [mol dm=3s7!]
S emulsifier concentration [mol dm 3]

S; ith mode of the process

T reactor temperature [K]

10



11

time [s]

volume [L]

maximum reaction velocity [mol L™'min1]
vector of state derivatives

number of polymers with chain length j
monomer conversion

critical monomer conversion

Greek Symbols

€ constant describing the efficiency of the particles relative to the micelles in collecting
an initiator radical

pyM monomer density [gdm ™3

Pp polymer particle density [gdm 3]

PP polymer density [gdm ™3]

wp polymer weight fraction in the particles

Subscripts

0 initial

f final

Superscripts

L lower bound

U upper bound



Chapter

Introduction

Finding the optimal solution is something what we have to deal with in everyday life. Each
day we are solving problems and trying to find the best solution to this problem. In general,
we can say that optimal solution is the best solution to the given problem under the given
conditions.

Finding the best solution stands for finding the mathematical solution of an optimization
problem. In chemical industry we can often encounter with optimization problems, where
our goal is not only simply the production of the required product. Our aim is to produce
the maximum amount of this required product, but also to minimize the total costs, to
minimize the consumption of raw materials, consumption of energy and other factors. These
problems are solved by dynamic optimization. More concretely, dynamic optimization stands
for finding such an optimal control profile, which will minimize or maximize the value of
the given objective function without violating the constraints. Dynamic optimization is used
for finding the solution of optimal process control problems which are described by a set of
ordinary differential equations (ODE) or by differential algebraic equations (DAE).

Solving dynamic optimization problems consists of several steps. The first step is the
problem definition. In other words, we have to specify what our aim is, what we are going to
minimize or maximize, under what conditions and limits. When the problem is well defined
and described, the next step is to describe the process as good as possible. Thus, the second
step is the process model formation. In general rules, the better is the process description, the
better solution we are able to find. The last step consists of using the optimization algorithm
for solving the optimization problem.

Recently, there are several approaches for solving dynamic optimization problems. In
general they can be divided into analytical and numerical methods. Dynamic programming,
Pontryagin’s minimum principle and variational calculus belong to analytical methods. Ana-
lytical approaches are mainly used for simple problems and often ensure important properties

such as global optimality. Numerical methods can be subdivided into direct and indirect

12



CHAPTER 1. INTRODUCTION 13

ones. The group of direct numerical methods includes several manners such as sequential
or simultaneous ones. The group of indirect numerical methods includes approaches such as
boundary condition iteration or control vector iteration. The main difference between direct
and indirect ones is that the direct numerical methods consider the discretization of dynamic
variables which are directly involved in the problem, while the indirect ones are discretizing
the optimality conditions.

The presented work is divided into two parts - theoretical and application one. In theo-
retical part, we define the dynamic optimization problem in general and we explain dynamic
programming, Pontryagin’s minimum principle and variational calculus from the group of
analytical methods and orthogonal collocation, together with control vector parametrization
from the numerical ones. The second part is dedicated to particular examples which are

solved by numerical methods.



Part 1

Theoretical Part



Chapter

Dynamic Optimization

This chapter deals with the general formulation of dynamic optimization problem, also called
open-loop optimal control problem, with constraints on state and control variables. Our aim
is to define the time-varying forms of systems (Fikar 2007).

First, it is useful to explain the difference between closed-loop and open-loop optimal
control (Fig.2.1).

Closed-Loop Optimal Control Function w is called closed-loop optimal control, if for
u'(t) = w (t,=(t)) (2.1)

we are able to find the optimal control value at time ¢ (Chachuat et al. 2006).
Open-Loop Optimal Control If the optimal control law is characterized as a function of

time for a specified initial value as follows
u*(t) = w(t,z(to)) (2.2)

then it is called open-loop control law.

CONTROLLER | % (®) PROCESS =)
(a) Closed-Loop Optimal Control
u*(t) x(t)

—| CONTROLLER PROCESS

to

(b) Open-Loop Optimal Control

Figure 2.1: Optimal Control Loops

Notice that an open-loop optimal control is optimal only for one particular initial state,
but if we know the optimal control law, we are able to formulate the optimal control history

for any initial value (Chachuat et al. 2006).

15



CHAPTER 2. DYNAMIC OPTIMIZATION 16

Solving any problem requires a sufficient problem description which consists of
1. Mathematical description or model of the controlled process
2. Constraints definition

3. Performance criterion.

2.1 Mathematical Description

The definition of process model is the non-trivial part of solving any optimal control problem.
Our main objective during modelling a physical system is to derive the simplest mathematical

description that adequately predicts the response of this system at all expected inputs (Kirk

1970). Assume the process state variables (or simply states) x;, (i = 1,...,n) and the
controlled inputs u;, (j =1,...,m) at the time ¢
() 2a(), .zt (23)
uy (t), uz(t), U () (2.4)
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xn(t) = fn (xl(t)’lé(t)v s axn(t)’ul(t)v s aum(t)>t)

Next, define the vector of state variables and the vector of controlled variables

xl(t)
() = xQ:(t) (2.6)

Zn(t)

(75} (t)
ul(t) = u2:(t) (2.7)

U (1)

Thus, the non-linear and time varying system can be expressed as follows (Kirk 1970)

i(t) = f(o(t), u(t),t) (2.8)

here the definition of f results from Eq. 2.5.
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2.2 Physical Constraints

While solving an optimization problem, we have to think about some physical constraints
which keep the state and control variables within boundaries. For example, if we are deriving
a model of a heat exchanger, we must bear in mind that the temperature inside the exchanger
can not exceed the metallurgical temperature as the material of the heat exchanger is made
of. There are three basic groups of constraints - point, path and isoperimetric constraints.

All of them can be expressed in a form of equality or inequality.

1. Point Constraints are usually used in optimal control problems as terminal constraints,

end-point constraints (point constraints expressed in the final time)

L(tg,x(ty)) <0
[(tr,(tr) =0

2. Isoperimetric Constraints are constraints containing the integral of a given objective

function over the entire time period [to, t¢]

ts
/ h(t,z(t),u(t))dt < C (2.10)
to
here C' stands for real number (Chachuat et al. 2006).

3. Path Constraints are the most commonly used in optimal control. Path constraints can
be characterized by ambivalent functions of the control and state variables and over the

time [to,tf] too (Chachuat et al. 2006).

g(tz(t),ult) <0,  Vte [ty ts] (2.11)

Next, it will be useful to define the term of feasible control: an admissible control u(-) €

Ulto, ty] is called feasible, if
(i) the response (-, zo,u(-)) is characterized on the entire time to <t <ty and if
(ii) w and &(-, zp,u(-)) are satisfying all physical constraints.

Then the pair (@(-),Z(-)) are said to be feasible pair and the set of feasible controls Q[to, ¢ ¢]
is characterized as follows (Chachuat et al. 2006)

Qto,ty] = {u(-) € Ulto, ty] : u(-) is feasible} (2.12)

2.3 Performance Criterion

Performance criterion, or also called objective function, is a predictive function, which assigns

a real number to the function. Generally, it can be written in three basic forms (Cizniar 2005)
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e Bolza form

J=Gla(ty) tr) + t:f Fa(t), u(t), t)dt (2.13)
e Lagrange form
J— t:f Fa(t), u(t), t)dt (2.14)
e Mayer form
7= Gla(ty). ty) (2.15)

where J denotes optimization criterion, G(-) stands for a part of objective function eval-
uated at final conditions, F'(-) stands for a part of the objective function evaluated over the
entire time period, x(t) denotes state variable profile vector, and w(t) means control profile

vector.

2.4 Necessary Conditions for the Extreme

The aim of dynamic optimization is to find an optimal control w(t),t € [to,tf] which mini-
mizes the objective function Eq. 2.13. In practice, we encounter problems on which different
requirements and constraints are set. Some of these cases are shown on Fig. 2.2. Fig. 2.2(a)
demonstrates the case of fixed final time ¢ and free final state 2(¢;). Case of fixed final time
and state is shown on Fig. 2.2(b) while Fig. 2.2(c) demonstrates the case of free final time
and state. The last Fig. 2.2(d) presents the case of free final time ¢; and fixed final state
x(ty).

We assume that w*(¢) is the optimal control that exists. For each control u(t) we can say

that
Ju(t)] > J[u*(t)] (2.16)

Eq. 2.16 rules in general. First, we derive the necessary optimality condition so that the
control variable is changed according to optimal control w*. If w* is optimal control then x*

is the response to this system, thus we can write

where dx(t) is the response to the control variation du(t) (Fikar 2007). After approximation

using the Taylor’s series in the optimum vicinity we can say that

flz,u) = f(z*, u*) + (g—ic)*am + <g—£>*5u (2.19)
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z1(tr)
a(tr)
z3(t) — 2(ty)
Tn(ty)
(a) Fixed ty, free (). (b) Fixed ty, fixed z(ty).

(c) Free ty, free z(ty). (d) Free ty, fixed z(ty).

Figure 2.2: Different possible cases of final time and state.

Matrices (-)* are Jacobi matrices for the optimal trajectories of * and uw* (Fikar 2007). If

we consider only the linear elements and if Eq. 2.20 is valid

5 (42 _de _dat
dt ) dt dt

de* d(éx) da*

T
d(dx)
= 2.20
& (2.20)
then the Eq. 2.19 can be rearranged in the following way
d(éx) (Of of
% - <8_ac> ox + <8_u ou (2.21)

Functional J(u) reaches the absolute minimum for the function w* = w*(¢) from the class of
permissible functions, if for any feasible function w(t) the inequality Eq. 2.16 is valid. The

necessary condition for extreme will be (Fikar 2007)
5J =0 (2.22)

We can express the variation of the objective function Eq. 2.13 as follows

= (g2) sstn [ (55) se (G) ou] 0 m
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Eq. 2.23 is the case of fixed final time ¢; and free final state z(ts) (Fig. 2.2(a)). If we define
the vector of adjoint variables as A(t) then we can rearrange the Eq. 2.21 in the following

way

ATd(gtm) — AT <§—£> sz + AT (g—u> Su (2.24)

Next, integrate the Eq. 2.24 on the time interval from ¢ = tg to ¢t = t; in the following way

b rd(\z) r(Of r(Of _
[ [ (28 s () ] o 25

The summation of the Eqgs. 2.23 and 2.25 is expressed as in Fikar (2007)

5 = <8jgf)>T5$(tf) _ /:f AT%dt
G ()

If the Hamiltonian function is defined as

Ax +

(g_f;)T + AT (g—u>] Au) dt (2.26)

H=F+ A\ f(x,u) (2.27)

and if the vector of adjoint variables A(t) satisfies the differential equation

dA  9H

Then the necessary extremum condition will be fulfilled if the following equation holds for an
arbitrary variation dw(t)
o _
ou
From Eqs.2.27 and 2.28 accrue the following findings (Fikar 2007)

0 (2.29)

OH

N =f(z,u) (2.30)
OH dzx

OH OF FOf\"

5 —om <>\ 8:13) (2.32)
A\ 9F 0\

dX OH

== A (2.34)

Next, derive the Hamiltonian function as follows

i _ (oH\"dz  (OH\"du (OH)"dA (2.35)
dt  \ oz ) dt ou ) dt oX ) dt '
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The following equation results from Eqgs. 2.28 and 2.31

o\ da o\ T ax
(a_w) 5+<8—A) Ay (2.36)

Because the Eq. 2.29 have the value of zero, the righthand side of Eq. 2.36 will be also equal

to zero

dH
— =0 2.37
P (2.37)

is valid for an unbounded control or for a control which never reaches the boundaries. From

Eq. 2.37 results that the function H remains constant during the optimal response.



Chapter

Methods of Dynamic Optimization

This chapter deals with several approaches used for solving dynamic optimization problems.

These approaches can be separated into two basic groups - analytical and numerical methods.

3.1 Analytical Methods

There are several analytical methods but the most known and used ones are (Hirmajer 2007):
e Dynamic programming
e Pontryagin’s principle of minimum

e Variational calculus

3.1.1 Dynamic Programming

Dynamic programming is based on the Bellman’s principle of optimality, which says (Fikar
2007): the optimal path depends on the initial conditions and of the goal and not on the
path the goal was achieved with. Assume an optimal trajectory and a point @(¢°) which
subdivides this trajectory into two parts as shown in Fig. 3.1. The optimality principle says,
that the trajectory between x(t°) and x(t;) is an optimal trajectory too. It means that the
trajectory from initial state x(t°) to final state x(t¢) is optimal, regardless of how it reached
this initial state.

Assume the following optimal control problem expressed in Bolza form (Cizniar 2005)

ty
J=G(x(ty), ty) +/t F(x(t),u(t), t)dt (3.1a)
®(t) =f(x(t),u®),t)  x(to) = w0 (3.1b)

22
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Figure 3.1: Bellman’s principle of optimality

Further we suppose, that this problem has its solution. Next, define a function called Bell-
man’s function

v(x(t),t) = min [G(w(tf),tf) N f

u(t) F(x(t), u(t), T)dT} (3.2)

to
After differentiating Eq. 3.2 we obtain Bellman’s partial differential equation in the fol-

lowing form

ov .
—— = min

ot wu(t)

F(z,u,t) + ((%)Tf(m,u,t)] (3.3)

Which has to fulfill the following boundary condition

v(zys,ty) = G(xys,ty) (3.4)

Egs. 3.3 and 3.4 define the necessary conditions for minimum of the optimization prob-
lem (Cizniar 2005). After replacing w(t) with w*(¢) in Bellman’s partial differential equation,
we will obtain the following partial differential equation, also known as Hamilton-Jacobi-
Bellman’s equation

ov

oz

ov .
~ 5 =F(z,u ,t)—|—<

T
> f(x,u,t) (3.5)

Next, define Hamiltonian function in the following form

H W ) = Pla,ut) + (2 Tf( ) (3.6)
T, u, — =F(xz,u — T, u .

b b 8:13 ) ) ) 8:13 ) )
By replacing the Eq. 3.6 into Eq. 3.3 we obtain the modified form of the Bellman’s partial
differential equation

v ) ov
5 = gl(ltl)lH (m,u, a—w,t> (3.7)
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3.1.2 Potryagin’s Principle of Minimum

Pontryagin’s principle of minimum is similar to dynamic programming. This analytical
method can be used for solving difficult problems with constraints to the state and con-
trol variables. Assume the same optimization problem as mentioned above (Eq. 3.1) and

replace g—; by A(t) adjoint variable. Then the Hamiltonian function takes the form as follows
H(z,u,p,t) = F(z,u,t) + X f(2,u,t) (3.8)

After a substitution in Bellman’s partial differential equation (Eq. 3.7) it will take the fol-
lowing form (Cizniar 2005)

—% = gl(ltl)lH(m,u, A t) (3.9)

If we differentiate the left- and the right-hand side of A(t) = g—; we will obtain the

following equations

0% OH 9% OH

- =— 4+ ——=— 1
9zdl 0w | 0z OX (3.102)
% v
= 4 - 1
A 922" + ETER (3.10b)
Assume the following canonical differential equations (Cizniar 2005)
0H
= — 3.11
T = (3.11)
‘ 0H
A= ——— 12
ox (3:12)

Thus, the necessary conditions according to Potryagin’s principle of minimum are (Cizniar
2005)

e Control variable optimality conditions

OH
_ 1
0 T Vt € [to,ty] (3.13)
e Adjoint variables
. OH
- 14
e Adjoint variables final conditions
oG
= — 1
Alty) = 52 (315)
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3.1.3 Variational Calculus

Variational calculus is based on the Bellman’s partial differential equation (Eq. 3.3). First,

we define variational calculus problem as follows

or d /or

(=) =0 3.16

Oox dt (8:1:) (3.16)
where the Lagrange function I' is defined as follows

L(x,2,u,At) = F(z,u,t) + AT [f(@,u,t) - @] (3.17)

Assume the optimal control problem already mentioned above Eq. 3.1. For this problem we
are going to express the necessary conditions (Hirmajer 2007)

e Control variable optimality condition
r

w 0 Vt € [to, ty] (3.18)
e Adjoint variables
—g—z =X VtE [ty t] (3.19)
e Adjoint variable final conditions
Aty) = g—i ., (3.20)

3.2 Numerical Methods

Numerical methods are used in cases, when it is too complicated to find the optimal solution
by the analytical ones. Numerical methods can be divided into two main groups, namely

direct and indirect methods.

3.2.1 Direct Numerical Methods

Direct numerical methods are based on transformation of the formal infinite dimensional
problem into finite dimensional problem of nonlinear programming (NLP). Direct numerical
methods can be subdivided into sequential and simultaneous methods (Paulen et al. 2010).

Sequential method, also known as control vector parametrization (CVP), is based
on the control trajectory approximation by a function of only few parameters (Cizniar
2005).The former continuous control trajectory is divided into few piece-wise polyno-
mial (usually constant) parts, thus the former infinite dimensional problem is trans-
formed into finite dimensional NLP problem, which can be easily solved by any gradient
method (Hirmajer 2007).

Simultaneous method, known as complete parametrization, means total state
and control variables discretization using polynomials. Order of these polynomials
decide about cardinality of the NLP problem (Cizniar 2005).
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3.2.2 Indirect Numerical Methods

The main aim of these methods is to solve the two point boundary value problem
(TPBVP) and thus indirectly solve the problem of dynamic optimization.

Boundary condition iteration is an indirect numerical method based on finding
the missing boundary conditions A(Zy) by minimizing the errors between the boundary
conditions (Sevéik 2005).

Control vector iteration is method based on finding the control trajectory by

fulfilling the optimality conditions.
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Orthogonal Collocation

This chapter is dedicated to a numerical method called orthogonal collocation on fi-
nite elements. This method is based on complete parametrization of both control and
state profiles (CiZniar 2005). Thus, the former control and state trajectories are ap-
proximated by linear combination of some basis functions. Our aim is to find optimal

control by optimizing the coefficients of these functions (Sevéik 2005).

4.1 Problem Definition

The objective function describing the optimization problem is expressed in Bolza form

as follows

J(u(t),p) = G (x(ts), p,ty) + / f F(x(t), u(t),t) dt (4.1)

to

Our goal is to minimize the objective function J according to the control vector w(t)
and to the vector of parameters p.

We assume that the dynamic model is expressed by a set of ordinary differential
equations (ODE)

&(t) = f (x(t),u(t),p,t)  x(to) = zo(P) (4.2)

Path constraints, which are limiting this system can be expressed in both equality and

inequality form

27
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And the upper Y and the lower © bounds can be defined as follows (Fikar 2007)

() <zt) <=z®)V (4.4a)
u(t)" < ult) < u(t)’ (4.4b)
p" <p<p’ (4.4c)
4.2 NLP Formulation
We consider the element i, (i = 1,..., Ny), where N; stands for number of time ele-

ments, with times ¢ € [;, & 11] as it is shown on Fig. 4.1. The solution is approximated

by Lagrange polynomials ¢; and 6; over element i (Fikar 2007)

K K PR
— Lik
Tryi(t) = Zwij¢j(t)> ¢;(t) = P (4.5)
=0 k=0kj 0 Uik
K K PR
— lik
ur(t) =Y wuy0;(t),  0;(t)= ][] — (4.6)
=1 k=1kzj 0 ik
Ui—1,1 Ui—1,2 Uq,1 Uj,2 Ui41,1 Uj4-1,2
Ti—1,0  Ti-1,1 Ti—1,2 Zi0 Zi1 T2 Tit1,0  Tit1,1 Zit1,2 Tit2
| l l |
| |
i1 §it2
¢ AL Eint

Figure 4.1: Finite element collocation for state and control variables

where K is the number of collocation points, j denotes the order of the collocation
point at the given time ¢ (kK = 0,...,7). Polynomial ®(t) is of (K + 1)th order,
while polynomial uk(t) is of Kth degree. This degree difference results from the fact,
that the initial condition of the control variable is dismissed. Points ¢;; are calculated

as Legendre’s polynomials roots. A considerable property of Lagrange polynomials is
T (tij) = T (4.7)

And due to ¢y (t;) = di; we are able to directly define the state and control bound-
aries. Here 0y; is the Kronecker delta, which is in case of £ = j equal to one, otherwise

it is equal to zero. If we use K collocation points on finite elements (Fig. 4.1) , we can
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define basic functions normalized over each element

A& (tiy szﬁb Te) — A& F (tig, Tig, Wir) (4.8)
z':l,...,NI J=0,.. K k=1, K

where function qﬁj (1x) = d¢pj/d7 can be calculated off-line and for ;, = & + A&7y, rules
7 € [0,1]. The continuity condition will be fulfilled by the following equation

wé{ﬂ(&) wK+1(£Z) i=2,..., Ny (4.9)
Or in the form of
K
;0 — Zwi_l,jqﬁj(T = 1) (410)
j=0

i=2...,Ny j=0,....K

Points defined in Eq. 4.10 determine the initial conditions for the next time element
(Sevéik 2005). Control profiles are bounded only at collocation points. These control

boundaries can be defined in the following way

(&) <uf i=1,...,N; (4.11a)

These ones are enforced by polynomial extrapolation of the endpoints of each element

as follows

(&) :Zuijej(Tz()) i=1,...,N; (4.12a)

i (Civ) = Zum (r=1) i=1,...,N; (4.12b)

Complementing these conditions will ensure that the control final values will be in
the range of [ul, uY]. Then the NLP formulation of Eq. 4.1 has the following form

i ui, A
17 Wij gz i=1 j=1
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With the following presumptions

Ty —xog=0 (4.14)
Tio — Ty y (&) =0 i=2,...,N; (4.15)
xzr— Ty (Eny41) =0 (4.16)
x < xpi(1j) < i=1,....,N; j=0,....,K  (4.17)
uf < ui(&) <uf i=1,...,N; (4.18)
ul <ui(&y1) <dY i=1,...,N; (4.19)
ul; < ug(ry) < ul i=1,....,N; j=1,...,K  (4.20)
pl<p<pY (4.21)
AL < AG < AEY i=1,...,N; (4.22)
A& = Ty (15) — AGF (tik, Tk, Wik 1=1,....N; j=1,...,K (4.23)
Ni
ZAfi = {roraL (4.24)
=1
h(xz;;, w;;,ti;,p) =0 (4.25)
g(xij, uij, tij,p) <0 (4.26)
gs(xy) =0 (4.27)
gr(xzy) <0 (4.28)

Here i denotes the time interval, j stands for the collocation point, A&; defines the
finite element lengths (i = 1,..., N;), s denotes the state variable at the final time ¢y,
h and g express the equality and inequality constraints and finally x;; and w;; denotes

the state and control profiles collocations coefficients (Sevéik 2005).
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Control Vector Parametrization

Control vector parametrization (CVP) is a numerical method based on the replacing
the former continuous control trajectory by another one, which can be described by a
finite set of parameters (Fikar 2007). In other words, the primary continuous dynamic
optimization problem is replaced by a static problem of nonlinear programming. As
shown in Fig. 5.1, the former continuous trajectory (Fig. 5.1(a)) is approximated by

piece-wise linear control trajectory (Fig. 5.1(b)).

5.1 Problem Formulation

Assume the following set of ordinary differential equations (ODE)

= f(x,u,p,t) x(to) = zo(p) (5.1)

here ¢ stands for the time ¢ € [to,tf]. Further, we assume that initial conditions can
be functions of the parameters.We also presume, that the former continuous control
trajectory is approximated by piece-wise constant trajectory (Fikar 2007) as it is shown
in Fig. 5.1

’Lb(t) = Uy tj—l <t< tj (52)

Define At; as a length of a time interval At; = ¢; —t;_;. The objective function, which
has to be minimized, is expressed in the Bolza form (Eq. 2.13) (Fikar 2007). Next,
define the upper and lower boundaries
Uu; E[uf , 'u,gj]
p €[p",p"] (5.3)
At; €[AtE, AtY]
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u(t)
/ \\\ B
\/
4
Aty Aty Atg
(a) Continuous control trajectory.
u(t)
t

Aty Atgy Ats

(b) Discretized control trajectory.

Figure 5.1: Illustration of control parameterization (discretization) into piece-wise constant

polynomial.
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5.2 Methods for Computing Gradients

Gradients used for solving dynamic optimization problems can be calculated by three

different deterministic approaches (Hirmajer 2007)

e Finite differences is a method based on recurrent system integration with a small
change of value of one of the optimized parameters (Hirmajer 2007). Gradients

to the objective function are then computed as follows

Jp1,.. 0+ Apiy ... pn,) — J(D)

J =
sz Ap;

(5.4)

here n, stands for the number of optimized parameters. Gradients of constraints
can be emanated in the same way.The main advantage of this finite differences
method is, that it does not require addition of any other differential equations.
Beyond that, the entire system has to be integrated n,-times for every small
change of each parameter. This method is often used with another gradient

method for gradient accuracy comparison.

e Adjoint variables method is based on backward system integration, thus is useful
for systems with small number of differential equations and constraints (Petzold
et al. 2006).The biggest asset of this method is that the adjoint system has to
be integrated only once irrespective of the number of optimized parameters. The
size of the adjoint system is equal to (n, X n.), where n, stands for the number of
state variables and n. denotes the number of constraints. Equations describing the
system are integrated separately from the adjoint variables because the system’s
equations are integrated forward, while the adjoint system is integrated backward

in time.

e Sensitivity equations method is useful for systems, which consist of a large number
of differential equations with small number of optimized parameters, because the
sensitivity equations system consists of (n, xn,) equations. The biggest benefit of
this method lies in the fact, that the system of sensitivity equations is linear, and
the Jacobian matrices are the same for the sensitivity and the original system, so

the entire system can be integrated together.
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5.2.1 Method of Adjoint Variables

According to Potryagin’s minimum principle we are able to define the adjoint variables
A as

. oH
oG
Aty) =% (5.6)
t=ts

here Hamiltonian function H is defined in Eq. 3.8. If we take into account the rest of
the optimality conditions (Hull 2003), then the gradients to the objective function can

be expressed as

oJ oG

o, = Hity) + 3, (5.7)
o0J _ n .
a—zfj:H(tj)_H(tj) g=1...,N,—1 (5.8)
oJ .
oJ 15,6 oxy
8’7 = w + Jp(to) -+ A%w (510)
and also
. o0H
. o0H
Jp = apT Jp(to) (5.12)

5.2.2 Method of Sensitivity Equations

Sensitivity functions are defined as partial derivatives of the variable system with regard

to the parameters (Feehery 1998). Thus the sensitivity coefficients can be expressed as

where i = 1,...,n,. Or after differentiation
Js; 0 (Ox 0 (Ox ox
ST T ot (ap) op (8t) op (5.14)

Then the gradients to the objective function can be characterized as the partial deriva-
tives of the objective function, with respect to the optimized parameters

9G +8G%+/ (aF +6F6'u,) y (5.15)
to

ty

Gradients of constraints can be derived in the same way:.
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Parametric Sensitivities for Hybrid

Continuous Systems

This chapter copes with sensitivity equations for hybrid systems. The main difference
between simple systems as mentioned in previous chapters and hybrid systems is that
the dynamic properties of a simple system are not changing, while properties of an hy-
brid system are changing according to the phase in which they are situated. Parametric
sensitivities are used to observe the influence of parameters variance of the model on
its solution (Feehery 1998).

6.1 Mathematical Model of Hybrid Systems
Assume a process characterized by the following set of differential equations

&(t) = f(x(t),u(t),p,t) Ve to, ] (6.1)

where the function f belongs to R™* x R™ xR™ x [t¢, tf] — R"* and initial conditions
x(to, p) = xo(p) are such that zy : R™ — R". We can rewrite Eq. 6.1 into following

autonomous form

= f(x,u,p) Vt € [to, ty] (6.2)

Next, study a system defined by a phase-space S = [J,*, Sy where every single mode
Sk is identified by

1. List of variables: {&®) z® u® p ¢}, where x®) ¢ R represents differential
. ( .
state-variables, u®) € R represents the controls, p € R™ stands for the time-

invariant parameter and ¢ denotes the time.
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2. List of equations: f® (&®) z® 4® p 1) =0, for F® : R=" x R x Rre™ x
R™ x R — R™" . Parameters p determined in mode Sy must be joined with the
following initial conditions determining the system change during [to®*), ¢ ;(*)]:
Tp(z®, x® u®) p t)=0at t =t,".

3. List of transitions J® from mode Sy to mode S;. These obtainable transitions

are characterized by

(a) Transition conditions: Lg-k)(d:(k),w(k),u(k),ab(j),m(j),u(j),p, t),7 € J® ruling

the switching time from mode k to mode j.

(b) Transition functions: Tj(k) (™), 2® u®) @) £0) 40) p t)are pointing out
the possible discontinuity in model. Different case represent the initial con-
ditions 7." for the 1% mode:

T 2® W ptg) = 0= 2O ) = 2V (6.3)

6.2 Sensitivities of Hybrid Systems

Sensitivity functions are defined as partial derivatives of the variable system with regard
to the parameters (Feehery 1998). Assume the following system with independent

variables p and ¢

{aﬂ’f) 8f(’f)} rg_;f) 8@1“] {af(m Ju®  f®  9FE gy gF®

+
o (k k oz 9x®) k k
ox® oz S ou®) Op op ouk) ot ot
(6.4)
Now, we are able to define sensitivities as follows
ox*)
(k) — 6.5
s =2 (65)
(k) (k) (k) i (k)
s — 0sq _ 0 (0 _ 0 [(Ox _ ox (6.6)
ot ot \ Op op \ ot op
From which results the formulation of sensitivity trajectories (Feehery 1998)
of®  gfw7 [s¥ Of® gu®)  gf®)
{83‘3(“ aa;<k>] R0 e [8u(k) o op } (6.7)
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6.3 Sensitivity Transfer at the Time of Transition

To evaluate sensitivities the discontinuity system is differentiated with the only de-

grees of freedom, time-invariant parameters. The discontinuity function is expressed
as gl-(f) (dz(k), x® u® p t) fore=1,..., ng-k). If the following system exists later in the
new mode k + 1 (Fechery 1998)

% =¥ (p, 1)

(k)
k1

T(@W, 2™, u® p,t) = 0

w’(k-i-l)’ a,;(k-i-l)7 'U/(k+1),p, t) — 0

we can easily use the chain rule

Now, by rearranging according to the known and unknown variables, we obtain

f(k-l—l)(
- k _T
or™, 0
oa(k) B
k
8T1£+)1 0
am((k))
k
aTk+l 0
Ou(k)
ar? gt
ox(k+1)  gg(k+1)
O gty
am(k+1) am(k+1)
aTlgi)l af (k+1)
8u(k+1) 8u(k+1)
8T]£i)l afk+1)
0 op
oty g | L
ot ot |

2 = 2 (p,1)

or™®)

8T,£k) 9 fk+1) 5 (k+1) ; iﬂ
41 f oz Oaz(k+1)
ozFTD  9p(k+D) op — | o,
aT,Ei)l o (k+1) oxFtl YRS
ozt 9pRtD op
ol
oz (k)
g
Oz (k)
EA
_ ou (k)
aTéi)l o f(k+1)
8u(k+1) 8u(k+1)
art gt
o0 op
aTgf)?l afk+D)
| Ot ot

If we assume a transition function in the form of T,"), = [2FD — 2]

e A
o © o
_ — O T

(6.12)

(6.13)

then the
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Eq. 6.13 will take the following form

B k 1T
Cr’TIE+)1 O _ 6 T
o (k) ok
oT*) op
k41 O am(k)
T ox (k) op
O, apt 9 (k1) or"), 0 o)
Oa(k+1) ox(k+1) dp _ Ju®) op
OLL)  aftth o+l o, pptet) Dy (t+1) (6.14)
D g (D) op dulktl) Gy FtD op
ort) gty I
1%} Op
8T§j_)1 f (B+1) | 0 ]
ot ot |
Eq. 6.14 can be easily simplified as follows
_ -T -~ -
- (k
0 0 s
-1 0 S;k)
0 1 T S(k+1) 0 0 du(k)
1 _8f(k+1) 8(k+1) - 0 _af(kJrl) Hulk+1) (615)
Oz (k+1) z JukTD “op
0 _M T
Op
0 0 0

After some smaller rearrangements we can rewrite the Eq. 6.15 in the form of

k+1 k

s+ s
J(k+1)  ofHD (k1) | T [ 9fkFD gyt | gpktD) (6.16)
Sz~ gD Sz qutTD  op T op

The first row of Eq. 6.16 proves the continuity of sensitivity equations over each

stage. The second row defines the sensitivities over the stage (k + 1).
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Chapter

Hydrolysis of Sucrose by Invertase

The sucrose hydrolysis is an enzymatically catalyzed reaction during which the sucrose
is hydrolyzed into glucose and fructose by invertase obtained from Saccharomyces cere-

visiae. This irreversible reaction can be expressed as
sucrose + HyO = D — glucose + D — fructose (7.1)

here r stands for the reaction rate.

7.1 Problem Formulation

Assume the above mentioned chemical reaction 7.1. The velocity of this chemical

reaction r is a function of the sucrose concentration c
UmCs

K, + ¢ <1+%>

r =

(7.2)

here v, denotes the maximal reaction velocity, K,, stands for Michaelis-Menten con-
stant and K; defines the inhibition coefficient. We distinguish the batch and the contin-
uous reactor. In both cases we assume a constant reactor volume V' = 0.9[L].Volumetric
feed-flow is equal F' = 0 for batch process and F' = 1.02 x 1073[L.min~'] for the con-
tinuous process. Our task is to find the optimal kinetic parameters. First of all, we
have to generate pseudo-experimental data for ¢y with random error. To generate the

experimental data we used the following values of kinetic parameters

Uy = 0.0026[mol L 'min~'] K, = 0.0417[molL™']  K; = 0.3916[mol L]
(7.3)

40
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7.2 Hydrolysis of Sucrose in a Batch Reactor

We assume the following reaction taking place in a batch reactor
S—P (7.4)

For simplicity, we also assume that an equimolar amount of glucose and fructose
is produced, which is denoted as product P. Further, we assume that the mixture is
thoroughly mixed during the reaction and there is no enzyme deactivation. Then the

initial value problem can be expressed as follows

o Medium
A Loy~ - - Cm<1 ) 0. o

e Product
% =— gcp + g(cs,f —C) — e p(0)=c  (76)

Ky, + ¢ <1+§<—>

As we assume that the chemical reactor is a batch reactor, thus the volumetric flow

F will be equal to zero. Then the Eqs. 7.5 and 7.6 can be altered in the following way

o Medium
d S m*+s
G Um® es(0) = cs0 (7.7)
W Ko (14 3)
e Product
d mv“s
% _ _ Ym© cy(0) = ch0 (7.8)
di Ko + ¢4 <1 + §<—>

From Egs. 7.7 and 7.8 is clear that the medium and the product concentration has the

same value with a different sign.

7.2.1 Solving the parameter estimation problem in a batch reactor

Our aim is to find the optimal values of the kinetic parameters v,,, K,, and K; and to

minimize the value of the following objective function

20

J= min (e (1) — 7 (1)° (7.9)
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For the initial medium concentration of ¢sg = 1.5[molL~!]. The dynamic optimization
problem was solved by using the method of control vector parametrization and the
gradients were computed by finite differences and by sensitivity equations.

To solve this optimization problem we used the method of control vector parametriza-
tion with two different approaches of gradient computing. Obtained results are shown
and compared in Tab. 7.1. Our aim was to minimize the value of the objective function
J. As we can see the value of the objective was slightly smaller finite differences, than
for sensitivity equations. The yielded values of the first kinetic parameter v,, were the
same. More obvious is the difference between the optimal values of the second kinetic
parameter K,,. The parameter value obtained by using the first method was much
closer to the given value. And finally, the obtained value of the third parameter K;
was closer to the given value by using sensitivity equations. Optimal values obtained
by using the finite differences approach showed to be more appropriate in this case
because optimal values were reached after 12 iterations and were more accurate. Sen-
sitivity equations approach achieved the optimal values after 6 iterations but were less
accurate. This results from the fact, that this problem is strongly nonlinear, thus it

has several local extremes.

Table 7.1: Comparison of computational aspects for different methods for computing gradi-

ents.
Finite differences | Sensitivity Equations
J 0.0094 0.0096
U [mol L™ min™!] 0.0300 0.0030
Ky, [mol L1 0.0405 0.0428
K; [mol L™1] 0.3145 0.3194

Graphical comparison of optimal state trajectories, obtained by using different
methods of computing gradients, is shown in Fig. 7.1. As we can see there are only
minor differences between the optimal state trajectory obtained by method of finite
differences Fig. 7.1(a) and state trajectory obtained by using method of sensitivity
equations Fig. 7.1(a). The final concentration of the medium was equal to zero in both

cases, that means that all medium was converted into product during the reaction.

7.3 Hydrolysis of Sucrose in a Continuous Reactor

In the next case we assume a continuous reactor as shown on Fig. 7.2. This continuous

reactor includes an outer membrane which is fully permeable to the medium but im-
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(a) Finite differences method (b) Sensitivity equations method

Figure 7.1: Experimental points and optimal state variables trajectories for different methods

of computing gradients.

Figure 7.2: Continuous reactor

permeable to the enzyme. We presume an equal input and output flow and a constant
volume V. We also assume that the mixture is thoroughly mixed during the reaction

and there is no enzyme deactivation.

7.3.1 Solving the parameter estimation problem in a continuous reactor

We consider the same initial value problem as in the previous case described by
Egs. (7.5) and (7.6). We also assume that the concentration of the input stream will
be constant with the following initial estimates c¢s9 = 3[molL~!] for the medium and
cpo = 0.2645[molL~!] for the product. Our aim is to find optimal values of kinetic
parameter v,,, K,, and K; and fulfil the end-point constraint ¢, y = 1.5[mol L. The

objective function is expressed as

20 2

S = 2; 21: (it = b, vm, Ko, 1) — 2 (1)) (7.10)
j=1 i=

Gained results are gathered in Tab. 7.2. Needed gradients were computed by finite
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differences and by sensitivity equations. Obtained values of the objective function .J
and the first kinetic parameter v,, had the same values. Conspicuous differences are in
values of the last two kinetic parameters. For both of these parameters, the method of
finite differences shown to be more accurate, because finite differences approach reached
the optimal value of the objective function within 24 iterations, while the sensitivity
equations approach needed 33 iterations. And also optimal values of kinetic parameters

were closer to the given ones.

Table 7.2: Comparison of computational aspects for different methods for computing gradi-

ents.
Finite differences | Sensitivity Equations
J 0.0405 0.0405
U [mol L~ min~1] 0.0026 0.0026
Ky, [mol L1 0.0411 0.0404
K; [mol L71] 0.3812 0.3809

Graphical comparison is shown on Fig. 7.3. As we can see there are only minor
differences between the optimal state trajectories obtained by using finite differences
Fig. 7.3(a) and sensitivity equations Fig. 7.3(b). The final concentrations of the medium
and product were ¢s = 0.6792[molL ], ¢, = 0.8206[molL '] for the case of finite
differences and ¢y = 0.6793[molL™"], ¢, = 0.8209[mol L™1].
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Figure 7.3: Experimental points and optimal state variables trajectories for different methods

of computing gradients.
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Catalytic Cracking of (GGas Oil

Crude oil is a brown liquid which consists of a mixture of hydrocarbons. Catalytic
cracking is the most common way of crude oil processing, during which long hydrocar-

bon chains are broken down into shorter ones.

8.1 Problem Formulation

Catalytic cracking is an example of parameter estimation where three parameters are
going to be optimized. This process is described by two differential equations with
constraints. We assume simplified reaction of gas oil (A) to gasoline (Q) and other
products (S) (Paulen 2008)

AL Q
Q55
Al g
Differential equations which are describing the process are defined as follows

T = — (k)l + kg)]}% YVt € [0, 1] (81)
.I"Q :kll’% — ]CQ.TQ Vit S [0, 1] (82)
with the following initial conditions a constraints
.Tl(t = O,k’l, ]{?2, ]{?3) =1
.Tg(t = O,k’l, ]{?2, ]{?3) =0
0 <k; <20 (8.3)
0 <ky <20
0 <k3 <20
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here x; and x are the molar fractions of constituents A and @ (Paulen 2008) and
constants ki, ko and ks are the rate constants of single reaction. The objective of

dynamic optimization problem can be then expressed as

20 2

min Y N (@i (t = ty, ky, ko, ks) — 2 (1)) (8.4)
=1

K1,k k:
1,R2 szl

here z;(t;) is an experimental point for the variable i at time ¢; (Paulen 2008).

8.2 Solving the parameter estimation problem

Problem of dynamic optimization was solved by using the method of control vector
parametrization. Our aim is to find the optimal values of parameters k1, ks and k3 and
to minimize the objective function 8.4. We generated the pseudo-experimental data
with a 5% error.

Obtained results are summarized in Tab. 8.1. The first method used was the method
of finite differences. The optimal value of the objective function J was reached after
21 iterations. The second one were the sensitivity equations. We achieved the same
value of the objective function within the same number of iterations. If we compare
the values of each parameter, we can see that there are only small differences in their

values.

Table 8.1: Comparison of computational aspects for different methods for computing gradi-

ents.
Finite differences | Sensitivity Equations
J 0.0108 0.0108
k1 10.6472 10.6488
ko 6.7322 6.7331
ks 1.4469 1.4458

The experimental points and the optimal state variables trajectories for different
gradient computing approaches are shown on Fig. 8.1. Fig. 8.1(a) depicts the optimal
state trajectory obtained by finite differences while Fig. 8.1(b) shows the optimal state
trajectory obtained by using sensitivity equations. As it can be seen, there are only
minor differences between these trajectories, what is expected, because the obtained

results are almost the same.
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time

(a) Finite differences method

time

(b) Sensitivity equations method

Figure 8.1: Experimental points and optimal state variables trajectories for the process of

catalytic cracking.



Chapter

Batch Reactor

9.1 Problem Formulation

We consider a batch reactor with the following consecutive reactions

Al BB

Our aim is to find such an optimal temperature trajectory inside the reactor that

maximizes the concentration of the intermediate product B at the end of the entire

process. Hence the optimization problem can be defined as follows

J = a5(t
max 2 (ty)

The system is described by the following ODE system

jjl = — ]{311'% .731(0) =1

.fg :k’liﬂf — k’g.ﬁEQ .CEQ(O) =0

2500)

0 =k; —4000e'™ 7

5000 )

0 =k9 — 620000e'™ 7

here the state variables z; stands for the concentration of reactant A and zs denotes the

concentration of product B. The control variable is the temperature inside the reactor

T. We also consider the following initial conditions and constraints

T € [298, 308]
x1(tg) =1
xo(tg) =0

t; =1
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where t; stands for the final time. We are going to solve this optimization problem
using two different numerical methods - orthogonal collocation and sensitivity equa-
tions. In both cases we consider a time period ¢ € [to, t¢] subdivided into four different

time intervals which lengths At; are optimized too.

9.2 Finding Optimal Control Using Orthogonal Collocation

Orthogonal collocation was the first method used. We used five collocation points for
state variables and two collocation points for control variable. The optimization prob-
lem was solved by NLP solver fmincon using three different algorithms. Optimization
toolbox fmincon is based on finding constrained minimum of a scalar function. The
first used was the algorithm of trust-region-reflective. This algorithm is based on the
approximation of the former function with a simpler function, which accurately reflects
the behavior of the former function. The second tested algorithm was the sequential
quadratic programming or SQP, based on Newton’s method, which is based on finding
the places, where the gradient is equal to zero. And the last used algorithm was the

algorithm of interior point which belongs to barrier methods.

Table 9.1: Orthogonal collocation: Comparison of resulting objective function values for

different algorithms of piece-wise linear control.

Trust-region-reflective | SQP | Interior point

Optimal value 0.6091 0.6108 0.6108
Number of iterations 771 397 8890
CPU-time [s] 51.5169 19.8568 334.4820

Obtained results are shown and compared in Tab. 9.1. We used the same initial
guess for each algorithm and the same end-point constraint ¢y = 1. Our aim was
to find such an optimal temperature trajectory, which maximizes the value of the
objective function in the final time. This optimization problem was solved by (Logsdon
and Biegler 1989) and (Rajesh et al. 2001). (Logsdon and Biegler 1989) reached the
optimal value 0.6108 while (Rajesh et al. 2001) obtained the optimum value 0.6105.
We reached the same optimal values by SQP and by interior point. With respect to
this criterion the worst was the algorithm of trust-region-reflective. If we compare
the number of iterations and the computing time, SQP algorithm proved to be the
fastest. If we compare the iteration velocity [iteration/CPUtime|, the fastest is the

trust-region-reflective algorithm with the value of 14.5 [iteration/s]. The second is the
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SQP algorithm with 20 [iteration/s| and the slowest is the interior point algorithm with
26.6 [iteration/s]. After the overall comparison we can say, that the most suitable is

the SQP algorithm because the same optimal value was reached in shorter time.
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(c) Interior point

Figure 9.1: Orthogonal collocation: Comparison of the optimal control trajectories for the

case of 4 time intervals with optimized lengths.

Graphical comparison of optimal temperature trajectories obtained using different
algorithms are shown on Fig. 9.1. As we can see there is only minor difference in tem-
perature trajectories in Figs. 9.1(b) and 9.1(c). Temperature trajectory obtained using
trust-region-reflective shown on Fig. 9.1(a) is apparently different, thus this method

proved to be inappropriate for this kind of optimization problem.
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9.3 Finding Optimal Control Using Sensitivity Equations

9.3.1 Solving the optimization problem using fmincon

We assumed the same chemical reactor described by Eq. 9.5. First, we defined the
sensitivity equations as partial derivatives of state variables according to the parame-
ters. We obtained 6 (n, X n,) sensitivity equations for each time period. Optimization
problem was solved by the same NLP solver fmincon using three algorithms - trust-
region-reflective, SQP and interior point. We used the same initial estimates and same

end-point constraint.

Table 9.2: Sensitivity equations: Comparison of resulting objective function values for differ-

ent algorithms of piece-wise linear control.

Trust-region-reflective | SQP | Interior point

Optimal value 0.6084 0.6108 0.6108
Number of iterations 9 115 135
CPU-time [s] 3.3481 29.0953 17.5581

Tab. 9.2 shows the results obtained using sensitivity equations. If we compare the
values of objective functions, we can see that the worst result was obtained by using
trust-region-reflective algorithm despite the fact, that this algorithm needed only 9 iter-
ations to get the optimal value. Comparing the iteration velocity [iteration/CPUtime]
it can be seen, that the fastest is the trust-region-reflective with the value of 2.7 [it-
eration/s|. Next is the SQP algorithm with 3.9 [iteration/s| and the slowest is the
algorithm of interior point with 7.7 [iteration/s]. After comparing the same criteria as
in the previous case, we can say that the most appropriate was the solution obtained
by using SQP algorithm.

Graphical comparison of optimal control trajectories obtained by using three dif-
ferent algorithms are shown in Fig. 9.2. As we can see, optimal control trajectories
obtained by SQP Fig. 9.2(b) and by interior point Fig. 9.2(c) have almost the same
profile. Optimal control profile shown in Fig. 9.2(a), obtained by using the trust region
reflective algorithm, shown to be inaccurate.

The results clearly show, that the SQP algorithm is the most appropriate for both
methods. The comparison of these numerical methods is shown in Tab. 9.3. As we can
see, both of them reached the same value of the objective function, but with a different
number of iterations and different CPU-time. The optimization problem solved by the

method of orthogonal collocation reached the optimum value in 397 iterations within
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Figure 9.2: Sensitivity equations: Comparison of the optimal control trajectories for the case

of 4 time intervals with optimized lengths.
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20[s]. In contrast, the optimum value for the method of sensitivity equations was
reached after 115 iterations within 30[s].In this case, the method of sensitivity equations
shown to be more suitable, because it reached the same value of the objective function

with less iterations and within shorter time.

Table 9.3: Comparison of resulting chosen criteria for two different numerical methods.

Orthogonal collocation | CVP(Sensitivity equations)
Optimal value 0.6108 0.6108
Number of iterations 397 115
CPU-time [s] 19.8568 29.0953
[iteration/s] 20 4

9.3.2 Solving the optimization problem using CVP_SS

gPROMS is a platform used for process modeling. Solving dynamic optimization prob-
lems is based on the sensitivity equations method. We have used the CVP_SS solver,
which implements the algorithm of control vector parametrization via single shooting.
Comparison of results obtained by two different solvers is shown in Tab. 9.4. In both
cases the method of sensitivity equations was used. We used the same initial estimates
and the same end-point constraint t; = 1 as previously. The value of the objective
function obtained using fmincon shown to be a little better than the value obtained by
CVP_SS. On the other side CVP_SS needed only 10 iterations to reach the optimum
while fmincon needed 115. If we compare the iteration velocity, fmincon is iterating
faster then CVP_SS. After comparing all criteria we can say, that CVP_SS solver is
more suitable, even it had little bit worse objective value, because the difference be-
tween reached optimal values is small, but it was achieved in a shorter time within less

iterations.

Table 9.4: Results comparison of different NLP solvers.

fmincon | CVP_SS

Optimal value 0.6108 0.6106
Number of iterations 115 10
CPU-time [s] 29.0953 10.265

[iteration /s 4 0.7
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Graphical solutions are shown on Fig. 9.3. The entire time interval was subdivided
into 4 time elements, which lengths were optimized. We can observe significant differ-
ences in these two trajectories. The first 2 time intervals counted by fmincon are small
(10~%order), while the rest 2 intervals are 10~ 'order. Each time interval obtained by
CVP_SS has the same rank(107').
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Figure 9.3: Sensitivity equations: Comparison of the optimal control trajectories obtained

using different NLP solvers.



Chapter

Polymerization Process

The emulsion polymerization is a procedure in which, an aqueous dispersion of monomer
(or a mixture of monomer) is transformed by radical polymerization in a stable dis-
persion of polymer particles. The reaction medium is mainly composed of (Fournier
1998)

e Dispersing medium (water in general).
e Monomer (which must be insoluble in the dispersing medium).

e Initiator (which is soluble in the dispersing medium, and insoluble in the monomer).
Choice of the initiator depends on the temperature field. For moderate to high
temperature initiators such as potassium persulfate and sodium are commonly
used. For polymerizations conducted at lower temperatures redox initiators are

usually used.

e Emulsifier. The emulsifier molecules have a hydrophilic end and a hydropho-
bic hydrocarbon skeleton. Due to the forces between the hydrophobic ends, the
molecules of emusifiant will form aggregates, called micelles, starting from a crit-
ical concentration, also called the critical micelle concentration. A micelle is a set
of 50 to 100 molecules of emulsifier having their hydrophilic end oriented towards

the aqueous phase.

Sometimes it may include transfer agents and other additives too.
At the beginning of the polymerization, the emulsifier can be found in three forms
- dissolved in the dispersing medium, micelles form and adsorbed on the surface of

monomer droplets.
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10.1 Polymerization Mechanism

The mechanisms of emulsion polymerization reactions are described in three stages

1. Step 1: The polymer particles are nucleated. The overall rate of polymerization

increases with time as and as the number of particles increases.

2. Step 2: This step is the stage of particles growth. Their amount is now constant
until the end of the polymerization. Because of the rapid diffusion of the monomer
droplets to particles, they are saturated as long as monomer droplets exist, and
consequently the concentration of particles in monomer remains constant. At the

end of Step 2, the monomer droplets have disappeared.

3. Step 3: The particles are no longer supplied with monomer, concentration of

monomer decreases regularly.

In general, radical polymerization can be divided into four stages

Initiator decomposition: A — 2R® R, =2fk4A
Particle formation: R*+m — N*® R, = k.ymR°®
Initiation: N+ R* — N°* R, =k, NR®
Termination: N*+R*— N Ry = k,N*R*®
Propagation: P?+M — P}, R, = k,M,N*

Transfer to monomer: PS4+ M — M*+PS  Ryay = ks MpN®

Where A denotes the concentration of initiator, R® denotes the initiator radical
concentration, f represents initiator efficiency, M is monomer concentration and m

denotes the number of micelles per unit volume.

10.2 Kinetic Model

Material balance is composed of monomer and particles balance.
The assumption of quasi-stationary state applied to radicals decomposed from the

initiator in the aqueous phase allows to write

. RN,
Ny = kemmB Ny = Komm—"——
1 p

TSN,

Where N, denotes Avogadro’s number and ¢ is a factor linked to the efficiency

(10.1)

of particles with respect to micelles capturing radicals from the decomposition of the
initiator.
Eepris

10.2
o (10.2)
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n, is the number of aggregation of micelles characterized as

SN
n, = 24 (10.3)
m
Now, the concentration of the emulsifier can be expressed as
S =8, — k(X M,)*PN}/? (10.4)

where S, announces initial emulsifier concentration, M, announces initial monomer
concentration and X refers to monomer conversion. Along with
1/3
y { 36m M2, ] /
LI ) 2
wp(asNa)?pp

where My is referring to monomer molecular weight, wp to polymer weight fraction

(10.5)

in particles, variable a, to surface area occupied by an emulsifier molecule and pp is
referring to polymer particle density. The monomer disappears during the propagation
within the particles and the transfer rate to monomer is negligible at the speed of
propagation. This relation is expressed as
M=-R, = —k;,,Mpﬁﬁ (10.6)
Ny
Where 7 is the average number of radicals per particle (n = 0.5) and the constant of

overall propagation speed is formulates as
ky, = k,exp(—a. fus) (10.7)

where fyg denotes molar fraction of a—methylstyrene at the beginning of a reaction,
k;, denotes the propagation rate constant for styrene homopolymerization and a is a
constant (Fournier 1998). To complete the model it is necessary to express the monomer

concentration in particles M,

(1 - XC)pM
M, =M, = X < X. 10.8a
P = Mo SR T Koo /e M (10-8a)
1- X
M, = (1= Opu X > X, (10.8b)

[(1 = X) + Xpwm/pp] M
where M, stands for critical monomer concentration in particles, X, represents crit-
ical monomer conversion and finally py; denotes monomer density. Macromolecules
formulation occurs in two processes: during the initiator decomposition and during
the radical attempting R; and transferring to the monomer R;.;;. Velocities of these

processes are defined as

R,nN,
R, = Lﬁ (10.9)
Np+ £
N,
Ry = ktrMMp—n (1010)

Na
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Hence we are able to define the total polymer formation velocity as follows

: R,AN, N, _
P =R+ Ryy = N+ g + ktrMMpN—Zn (10.11)

here the monomer transfer velocity constant is defined as

By
Kirst = Ftraz, €xXp (— é;‘f ) exp(bfurs) (10.12)

10.3 Problem Formulation

At this stage, a model of the copolymerization reaction of emulsion styrene and a—
methylstyrene in batch reactor has been developed. This is a simple model, which will
be easily used in the steps of optimization and control of the reactor, but retains good
predictive ability of the most important variables.

The emulsion polymerization reaction is divided into three stages (Fournier 1998)

e Nucleation:

jfl = —RP(T, l’g) (1013)
R,(T)N

iy = LMA (10.14)
L+ S(z1,22)

1’3 = Rt(T, xIy, 1’2) -+ RtrM(T, $2) (1015)

Where the propagation velocity stands for Ry, (T, z2) = ky(T') Mpc 127 and monomer

transfer velocity denotes R\ = ki, M(T)Mpcjf,—iﬁ.

e Particles growth is same as first step except:

To =0 (10.16)
e The concentration decrease
I.'l == —RP(T, xy, l’g) (1017)
To =0 (10.18)
ig = Rt(T, 1’1,1’2) + RtrM(T, $1,$2) (1019)

Propagation velocity stands for R, (T, 1, z2) = k(1) Mp(z1) 5% 7, monomer con-
(1= X)pum

[(1 = X) + Xpn/pp] My

transfer velocity is characterized as Ry = ki, M(T)Mp(x)l)]f,—iﬁ.

and monomer

centration is expressed as M,(x;) =
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The initial conditions are given by the composition of the reactor at %

.Tl(to) = MO
332(150) = O
l’g(to) = 0

Our aim is to reach the desired final state that is characterized by conversion X
(which characterizes the amount of formed polymer) and by final number average

molecular weight M, (¢f) which are defined as

X(t)=1- %tof) (10.20)
M, (ts) = My MO;(?;(”) (10.21)

Assume a model described by the Egs. 10.1 and 10.6. Our aim is to find such
an optimal control trajectory which minimizes the final time of the reaction thus the
optimization problem can be expressed as

min J =t (10.22)
u(t

With respect to the following limit

0 <t; < 10000
313.15 K<T<343.15K

10.4 Solving the Optimization Problem Using SNOPT and
CVP_SS

The optimization problem was solved by using SNOPT and CVP_SS. SNOPT(Sparse
Nonlinear Optimizer) is a NLP solver based on sparse sequential quadratic program-
ming (SQP)(see K.Holmstrom (2008)) used in MATLAB. Integration was provided by
ode45 integrator based on 4th order Runge-Kutta method. The second used solver
was CVP_SS which stands for control vector parametrization - single shooting al-
gorithm used in gPROMS. To solve this problem we used the method of control
vector parametrization, where the needed gradients where computed by sensitivity
equations with same initial estimates and same end-point constraints Xy = 0.6 and
M,; = 3 x 107%[g.mol™!] for both cases. Obtained results are summarized and com-
pared in Tab. 10.1. Here N; stands for the number of control intervals. Our aim was

to minimize the value of the objective function, in which case it meant to minimize the
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final time. As we can see an increasing number of time intervals caused the decrease
of the objective function. This is natural, because the increase of optimized time in-
tervals caused an increase in number of degrees of freedom, and thus enabled a better
approximation. We can also see that the best value was reached by using the CVP_SS
solver. Further increase in number of intervals caused only minor differences in the

value of the objective function.

Table 10.1: Comparison of resulting objective function for different numbers of intervals of

piece-wise constant control and different NLP solvers.

N; || Xp | Myy x 1076 | SNOPT: t/[s] | CVP_SS: t/[s]
1 || 0.6 3.0 7924.10 7924.09

2 | 0.6 3.0 5158.10 5158.10

3 |06 3.0 5156.90 5158.06

4 |06 3.0 5147.83 5146.70

5 | 0.6 3.0 5146.10 5146.56

6 | 0.6 3.0 5144.30 5143.84

7 | 0.6 3.0 5144.11 5143.27

In Tab. 10.2 we compare other proprieties such as computing time CPU and number
of NLP iterations #it. If we compare the computing time we can see that CVP_SS
solver reached the optimal values much faster than SNOPT. Further, if we compare
number of iterations it can be seen that for the higher number of iterations SNOPT
less iterations that CVP_SS. In conclusion we can say that for this case CVP_SS solver
seemed to be more appropriate because it reached smaller value of the objective function
within shorter time.

Graphical comparison of optimal control trajectories, obtained by using different
NLP solvers for the case of Ny = 6 is shown in Fig. 10.1. As we can see there are
only minor differences between optimal control trajectory obtained by using SNOPT
(Fig. 10.1(a)) and trajectory obtained by CVP_SS (Fig. 10.1(b)).
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Table 10.2: Comparison of computational aspects for different numbers of intervals of piece-

wise constant control and different methods for computing gradients.

SNOPT CVP_SS
Nr || CPU[s] | #it | CPU [s] | #it
1 || 42.3963 | 22 || 3.6660 | 78
2 || 596.0426 | 16 | 5.5540 | 13
3 || 1552.2000 | 45 | 20.9510 | 44
4 || 1013.7000 | 168 | 37.9710 | 79
5 || 1825.1000 | 46 | 40.0210 | 80
6 || 1014.5000 | 48 | 36.0670 | 73
7 || 823.8831 | 40 | 51.8700 | 95

Mo e me  ws  ww  ww e e o me o @ ww
(a) SNOPT (b) CVP_SS

6000

Figure 10.1: Optimal control trajectories for Ny = 6 using different NLP solvers.
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Conclusion

The aim of this diploma thesis was to study dynamic optimization of processes. Sev-
eral analytical and numerical methods were presented. We explained the base of Pon-
tryagin’s minimum principle, dynamic programming and variational calculus. Fur-
ther, we explained two numerical methods - orthogonal collocation and control vector
parametrization. Within control vector parametrization we defined three gradient com-
puting approaches. The last section of the theoretical part was dedicated to hybrid
processes.

In the second part we discussed concrete problems. The first discussed problem was
the sucrose hydrolysis, where the dynamic optimization problem was solved separately
for batch and for continuous system. Control vector parametrization was the used as
problem-solving method. Needed gradients were computed by finite differences and
also by sensitivity equations. The second mentioned process was the catalytic cracking
of gas oil. The optimization problem was solved by control vector parametrization,
where the gradients were computed by finite differences approach and also by sensi-
tivity equations. The method of orthogonal collocation was explained for the case of
simple batch reactor. This optimization problem was also solved by control vector
parametrization. Here the method of sensitivity equations shown to be more accurate.

The last considered problem was an emulsion polymerization reaction. In this case
we had to keep in mind that this process is a hybrid process, thus there may occur
discontinuities. The optimization problem was solved by using the method of control
vector parametrization and the needed gradients were computed by sensitivity equa-
tions. The problem was implemented in MATLAB and gPROMS too. All results are

summarized and discussed at the end of each chapter.
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Resumé

Kazdy den riesime problémy, na ktoré sa snazime najst’ optimalne riesenie. Vo vseo-
becnosti mozeme povedat’, ze optimélne riesenie je najlepsie rieSenie daného problému
za danych podmienok.

N4jst’ najlepsie rieSenie znamend najst’ matematické riesenie optimalizacného prob-
lému. V chemickom priemysle sa bezne stretavame s optimalizacnymi ilohami, kde
nasim cielom nie je iba vyrobit’ maximalne mnozstvo pozadovaného produktu, ale aj
minimalizovat’ celkové néklady, minimalizovat’ spotrebu surového materialu a energii a
rozne iné faktory. Takéto problémy riesi dynamickd optimalizécia. Presnejsie, dynam-
ickd optimalizacia sa snazi najst’ taky optimalny priebeh riadenia, ktory by minimali-
zoval alebo maximalizoval hodnotu danej ucelovej funkcie pri dodrzani obmedzeni.

Riesenie problémov dynamickej optimalizacie pozostava z niekol'kych krokov. Pr-
vym krokom je definicia problému. K tomu, aby sme mohli hocijaky problém vyriesit’,
musime presne vymedzit’ nas ciel’, teda ¢o budeme minimalizovat’ resp. maximalizovat’
a za akych podmienok a obmedzeni. Dalsim krokom je opis procesu. Vo vieobecnosti
plati, ze ¢im je model procesu lepsi, tym lepsie riesenie vieme néjst’. Poslednym krokom
je pouzitie optimaliza¢ného algoritmu na dany optimaliza¢ny problém.

V sucasnosti existuje niekol'’ko metdéd pouzivanych pri rieSeni problémov dynamic-
kej optimalizacie. Vo vSeobecnosti ich mozeme rozdelit’ do dvoch skupin - do skupiny
analytickych a do skupiny numerickych metéd. Medzi analytické metddy radime Pon-
tryaginov princip minima, dynamické programovanie a variacny pocet. Skupinu nu-
merickych metéd d’alej rozdel'ujeme na priame a nepriame numerické metédy. Do
skupiny priamych numerickych metdéd radime sekvenéni a simultannu metédy, zatial
¢o do skupiny tych nepriamych patri iteracia hrani¢nej podmienky a parametrizacia

vektora riadenia.
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Tato diplomova préca je rozdelend do dvoch casti. Prva cast’ je venovana teoretickym
poznatkom, kym v druhej, aplikacnej casti sa venujeme rieSeniu konkrétnych optima-

lizacnych problémov.

Prva kapitola teoretickej ¢asti pojednava o dynamickej optimalizacii. K tomu, aby
sme mohli vyriesSit’ problém dynamickej optimalizacie, alebo aj problém optimélneho
riadenia pri otvorenej slucke, musime najprv vytvorit’ matematicky model riadeného
procesu, definova v t obmedzenia a tcelovi funkciu. Pri vytvarani modelu procesu,
by sme mali snazit’ o vytvorenie ¢o najjednoduchsicho matematického opisu, ktory by
adekvatne predpovedal odozvu systému na vsetky predpokladané vstupy. Pri hl'adani
optimélneho rieSenia musime mat’ na mysli aj obmedzenia, ktoré dané systém nejakym
sposobom limituji. Ugelovd funkcia je prediktiva, na zaklade ktorej sa inej funkeii pri-
radi realne ¢islo. Moze byt’ vyjadrena v troch zédkladnych tvaroch - Bolzov, Mayerov a

Langrangeov tvar.

Druhd kapitola je venovand analytickym a numerickym metédam pouzivanych pri
rieSeni optimalizacnych problémov. Prvou analytickou metédou, ktorej sa venujeme,
je dynamické programovanie. Tato metdda je zalozend na Bellmanovom principe op-
timality, ktory hovori,ze optimalna trajektoria zavisi len od pociatoénych podmienok
a od ciel'a a nie od cesty, ktorou sme tento ciel' dosiahli. Vel'mi podobnou metédou
je Pontryaginov princip minima, ktord sa pouziva na rieSenie komplexnejsich problé-
mov s obmedzeniami na stavové a riadiace veli¢iny. Poslednou studovanou analytickou
metodou je varia¢ ny pocet, ktory je v tejto praci odvodeny z Bellmanovho principu
optimality. Medzi priame numerické metoédy radime sekvenéni metédu, zndmu aj pod
nazvom parametrizacia vektora riadenia a simultannu metodu, znamu aj ako kompletna
parametrizacia. Metody ako iterdcia hrani¢nej podmienky a iteracia vektora riadenia

radime do skupiny nepriamych numerickych metéd.

V tretej teoretickej kapitole sa zaoberame metédou ortogonalnej kolokacie na koneénych
prvkoch. Tato metdda je zalozend na kompletnej parametrizacii stavovych aj riadiacich
profilov. To znamend, ze povodnda stavova a riadiaca trajektoria je aproximovana
linedrnou kombinaciou béazickych funkcii. NaSim cielom je potom ndajst’ optimalne

riadenie optimalizaciou koeficinetov tychto funkcii.

Druhou skiimanou numerickou metodou je parametrizéia vektora riadenia, ktord je
zalozena na nahradeni povodnej spojitej trajektérie riadenia inou trajektoriou, ktord

sa da opisat’ konecnym poc¢tom parametrov. To znamenad, ze povodne spojity prob-
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lém dynamickej optimalizacie bude nahradeny statickym problémom nelinearneho pro-
gramovania. Gradienty potrebné pre riesenie problémov dynamickej optimalizacie
mozeme vypocitat’ niekol'kymi sposobmi. Prvou metdédou je metéda koneénych di-
ferencii. Podtstatou tejto metddy je rekurentna integrécia systému so zmenou hod-
noty niektorého z optimalizovanych parametrov. Najvacsou vyhodou tejto metddy
je, ze nevyzaduje pridanie d’alSej diferencialnej rovnice, na druhu stranu, cely systém
musi byt’ pri kazdej zmene kazdého parametra integrovany n,-krat, kde n, oznacuje
pocet parametrov. Druhou metédou vhodnou na vypocet gradientov, je metoda ad-
jungovanych premennych. Podstata tejto metdédy spociva vo vytvoreni adjungovaného
systému, ktory sa potom integruje spatne, zatial ¢o povodny systém sa integruje do-
predne. Poslednou analyzovanou gradientovou metédou je metoda citlivostnych rovnic.
Ta to metdda sa pouziva najma pre systémy, ktoré su opisané velkym poctom difer-
encialnych rovnic, avsak s malym poc¢tom opimalizovanych premennych, pretoze pocet
citlivostnych rovniv zavisi nielen od poc¢tu stavovych premennych, ale aj od poctu op-

timalizovanych parametrov.

Poslednou kapitolou teoretickej ¢asti si parametrické citlivosti hybridnych systémov.
Dolezitou charakteristikou hybridnych systémov je, Ze ich dynamické vlastnosti sa me-
nia v zavislosti od fazy, v ktorej sa prave nachddzaju. Citlivostné funkcie st definované
ako parcialne derivacie premennych systému s ohl'adom na optimalizované parametre.
Parametrické citlivosti sa pouzivaji na sledovanie vplyvu zmeny parametrov na riese-

nie.

V druhej casti diplomovej prace sa venujeme rieSeniu konkrétnych optimalizaénych
problémov. Prvym prikladom odhadu parametrov je hydrolyza sacharécy pomocou in-
vertazy. Budeme rozlisovat’ vsadzkovy a prietokovy rezim. NaSou ulohou bude v oboch
pripadoch hl'adat’ optimalne hodnoty kinetickych parametrov a minimalizovat’ hodnotu
ucelovej funkcie, teda minimalizovat’ sumu Stvorcov rozdielov nameranych koncentracii
a koncentracii predikovanych modelom. Tento optimalizaé¢ny problém sme riesili po-
mocou parametrizacie vektora riadenia. Potrebné gradienty sme vypocitali pomocou
metédy konecnych diferencii a aj pomocou citlivostnych rovnic. Vysledky ziskané po-
mocou konecnych diferencii boli o nieco lepsie ako tie, ktoré sme vypocitali pomocou
citlivostnych rovnic. Toto mohlo byt’ sposobené tym, ze dany systém je nelinearny, a

teda vykazuje niekol’ko lokalnych extrémov.

Druhym riesenym prikladom bolo katalytické krakovanie. V tomto pripade je systém

opisany dvoma diferencialnymi rovnicami. Nasou tlohou bolo najst’ také optimalne
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hodnoty troch kinetickych parametrov, ktoré by minimalizovali sumu Stvorcov rozdielov
nameranych a modelom predikovanych molarnych frakcii reaktanta a medziproduktu.
Na vyriesenie problému odhadu parametrov sme pouzili parametrizaciu vektora ria-
denia a potrebné parametre sme vypocitali najprv metédou koneénych diferencii a
potom pomocou citlivostné¢ych rovnic. Hodnota ticelovej funkcie bola rovnaka v oboch
pripadoch a aj medzi optimalnymi hodnotami kinetickych parametrov boli len malé
rozdiely. Tieto malé rozdiely optimélnych hodnot boli vd’aka tomu, ze v tomto pripade
sa jednalo o relativne jednoduchy priklad, a teda aj metoda konecnych diferencii bola

postacujuca.

Treti priklad riesil problém optimalneho riadenia v sadzkovom reaktore s naslednou
reakciou. Nagou ulohou je najst’ taky optimalny teplotny profil vo vnitry reaktora,
ktory by maximalizoval koncentraciu medziproduktu na konci celého procesu. Opti-
malizacny problém sme najprv riesili pomocou ortogonélnej kolokacie. V tomto pri-
pade sme hl'adali hodnoty piatich kolokacnych bodov pre riadiacu veli¢inu a dvoch
kolokacnych bodov pre stavové veliciny. Druhou pouzitou metédou bola parametriza-
cia vektora riadenia, kde sme potrebné gradienty vypocitali pomocou citlivostnych
rovnic. Metoda citlivostnych rovnic sa v tomto pripade ukazala byt vhodnejSou, pre-

toze optimalne hodnoty dosiahla s mensim poctom iteracii.

Poslednym studovaym procesom bola emulzna polymerizacia styrénu a a—metylstyrénu.
V tomto pripade sa jedna o hybridny systém, pretoze celd reakcia prebieha v troch
etapach - nukledcia, rast castic a pokles koncentracie. Kazda jedna faza je opisana
troma diferencidlnymi rovnicami, avsak pravé strany tychto rovnic sa menia podla
fazy, v ktorej sa prave nachadzaji. NaSou ulohou je najst’ takd optimélnu trajektoriu
riadenia, ktora by minimalizovala hodnotu koncového ¢asu. Problém bol rieseny pomo-
cou citlivostnych rovnic pomocou dvoch odlisnych NLP solverov - SNOPT a CVP_SS.
CVP_SS solver sa v tomto pripade ukazal byt’ vhodnejsim, pretoze dosiahol lepsie hod-

noty ucelovej funkcie, a to v kratSom case.

Cielom tejto diplomovej prace bolo oboznamit’ sa s problematikou dynamickej op-
timalizacie. V teoretickej rovine sme vysvetlili podstatu dynamického programovania,
Pontryaginovho principu minima a variaéného poétu. Co sa tyka numerickych metéd,
blizsie sme si vysvetlili ortogonalnu kolokaciu na konecnych prvkoch a parametrizaciu
vektora riadenia. V druhej ¢asti prace sme si ukazali aplikaciu tychto dvoch numeric-

kych metdéd na niekol’kych prikladoch.
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