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Abstract

This work is aimed to solve dynamic optimization problems. Secondly, the aim of the work
is to study methods which helps us to solve dynamic optimization problems. In this work
we are dealing mainly with two numerical methods. The first method is control vector
parametrization (CVP) and the second is orthogonal collocation (OC). We also discuss several
approaches for computing gradients, which are very important in the computing algorithm.
The work is divided into two parts. The first part discusses the theoretical basis for solving
optimization problems. In the second part we show the application of the methods and

procedures in several optimization problems.



Abstrakt

Tato praca je zamerand na rieSenie problémov dynamickej optimalizacie. Cielom prace je
§tidium metdd, ktoré nam pomdhaju pri rieSeni optimalizaénych problémov. Préaca sa za-
obera predovsetkym dvoma numerickymi metédami. Prva metdéda je parametizicia vektora
riadenia (CVP) a druhd metdda je ortogondlna kolokacia (OC). Tiez sa zaoberdme postupom
vypoctu gradientov, ktoré su vel'mi dolezité pri vypoctovom algoritme. Praca je rozdelend do
dvoch casti. Prvé cast’ sa zaoberd teoretickymi zdkladmi pre rieSenie optimalizaénych tloch.

V druhej casti ukazujeme aplikaciu metdd a postupov pri rieSeni optimaliza¢nych problémov.
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Nomenclature

fms

e

initiator concentration [moll~!]/cooling surface [m?]

surface area occupied by an emulsifier molecule [dm?]

cooling fluid heat capacity [Jkg 1K™1]

initiator efficiency

cooling fluid flowrate [ls™!]

a—methylstyrene molar fraction in the initial load

inhibition coefficient

objective function

death coefficient [h~!]

rate constant for initiator decomposition [s7]

rate constant for propagation [dm®mol~'s™1]

rate constant for initiator radical entry into micelles [dm>micelle”ts™!]
rate constant for initiator radical entry into particles [dm®part=!s™!]
product inhibition kinetic coefficient [gL. =]

substrate inhibition kinetic coefficient [gL.~}]

substrate saturation kinetic coefficient [gL.~?]

rate constant for transfer to monomer [dm3mol~!s™!]



3l

=

kinetic chain length [gmol!]

global monomer concentration [mol dm_?’]
number of micelles per unit volume [micelle dm 3]
monomer molecular weight [gmol~!]

monomer concentration in particles [mol dm*3]
maintenance coefficient [h_l]

reactor total heat capacity [J K]

critical monomer concentration in particles [mol dm 3]

number-average molecular weight [gmol~!]

average number of radicals per particle

number of inactive particles per unit volume [particle dm~3]
number of active particles per unit volume [particle dm 3]

total number of particles per unit volume [particle dm—3]

Avogadro’s number [mol~!]

aggregation number of micelles

dead polymer concentration [mol dm*3]

product concentration [gL_l]

number of polymers with chain length j

ith moment of the molecular weight distribution
reaction rate [gL~'h™!]

initiator radical concentration [mol dm_?’]
initiator decomposition rate [moldm=3s™!]
initiation rate [mol dm=3s~!]

particle formation rate [mol dm—3s~1]

polymerization rate [moldm3s1]

10



Ry termination rate [moldm3s~1]

Ry transfer to monomer rate [moldm™3s™!]
S emulsifier concentration [mol dm 3]

Se substrate concentration [gL~!]

S; ith mode of the process

T reactor temperature [K]

t time [s]

T; jacket temperature [K]

Tjin cooling fluid inlet temperature [K]

U heat transfer coefficient [JK~'s~tm—2
U control variable

V reactor contents volume [L]

V reactor jacket volume [L]

x state vector

z vector of state derivatives

Ny number of intervals

X monomer conversion

X, critical monomer conversion

X4 dead biomass concentration [gL~!]
Xa  active biomass concentration [gL 7]
Yp,.s. stoichiometric yield coefficient
Yx..s. stoichiometric yield coefficient

DoF  degree of freedom

11



Greek Symbols

€ constant describing the efficiency of the particles relative to the micelles in collecting

an initiator radical
AH  polymerization reaction enthalpy [Jmol™!]
pyM monomer density [gdm ™3]
Pp polymer particle density [gdm ™3]
pj cooling fluid density [gdm ™3]
P polymer density [gdm 3]
wp polymer weight fraction in the particles
w specific growth rate of biomass [h™!]
[maz Maximal specific growth rate of biomass [h™!]
Subscripts
0 initial
f final
Superscripts
L lower bound

U upper bound

12



Chapter

Introduction

The search of optimal solution for problem is a every day struggle for everyone. Every day
we solve optimization problem when we are trying to find the optimal solution for our prob-
lem. By searching for optimal solution we can use many optimization methods. For solving
optimization problem we require well formulated mathematical description of the problem.
We also have to consider that every process has also constraints for example maximum speed
of a car, maximal flow in the pipes. Therefore search for optimal solution must obey such
constraints. When we talk about optimality (optimal solution) we talk about minimization
or maximization of objective function for example minimization of time, costs and energy
and maximization of production and profit. In this work we show the application of the
methods and procedures for solving dynamic optimization problems in chemical technolog-
ical processes. These methods are divided into two groups. First methods we talk about
analytical ones, and the second are numerical methods. For solving optimization problems
we use mainly numerical methods, specifically control vector parametrization (CVP) and or-
thogonal collocation (OC). The work is divided into two parts. The first part discusses the
general formulation of dynamic optimization problems. We discuss analytical and numerical
methods. In the last section of the first part, we examine procedures for calculating gradients
using finite differences, sensitivity equations, and adjoint variables methods. In the second
part of the work we show the application of these methods on several dynamic optimiza-
tion problems. In the first example we discuss the application of sensitivity equations for
parameter estimation problem. In the second example, optimal control of tubular reactor,
we compare numerical methods with different ways of calculating of gradients. In the next
example, time-optimal control of car, we show the procedure for calculating gradients us-
ing adjoint variables and the procedure for solving optimization problem using orthogonal

collocation.
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In the last example, the emulsion polymerization process, we compare the results obtained

using control vector parametrization method with finite differences or adjoint variables.

14



Part 1

Theoretical basis



Chapter

Dynamic Optimization

Dynamic optimization is usually referred to open-loop optimal control. In this chapter we
discuss the general formulation of dynamic optimization problems. We also discuss constraints

on the state and control variables. (Fikar 2007)

2.1 Problem Formulation

The main requirement for solving optimization problems is well formulated and defined prob-

lem. Formulation of optimal control problem requires (Kirk 1970):
1. Mathematical description of system which has to be controlled
2. Definition of constraints
3. Specification of minimization criterion
We consider system described by a set of ordinary differential equations
i(t) = Fa(),ult)p,t)  a(to) = w0 (2.1)

where z(t) is a vector of state variables, u(t) is vector of control variables, p is a vector of
time independent optimized variables, ¢ is independent time variable and x () is a vector of
initial conditions. Next we define the objective functional which can be written in three basic

forms

e Bolza form

Jult).p) = Glalty).p) + [ Fla(t),u(e)p. 0 (2.2

16



e Lagrange form

ty
Tu(®).p) = [ Flalt),u(t).p. 00t (2.3)
e Mayer form
J(u(t),p) = Glalty),p) (2.4)

where J represents the optimization criterion, G and F' are differentiable scalar functions.

Our objective is to find such control which will minimize the objective functional.

2.2 Constraints

Certain restrictions exist for all processes of chemical technology. These are the criteria which
we must respect while solving the optimization problems. Wide range of constraints can occur

in optimization problems. These can be divided into several cases.
e Interior equality constraints
h(z,u,p,t;) =0 t; € [to,tf] (2.5)
e Interior inequality constraints
g(z,u,p,t;) <0 t; € [to, ty] (2.6)
e terminal equality constraints
h(z,u,p,tf) =0 (2.7)
e terminal inequality constraints
g(x,u,p,ty) <0 (2.8)
Next we consider the upper and lower bounds on states and controls.
e boundaries for the states
z(t)F < z(t) < z(t)Y (2.9)

e boundaries for the controls

u(t)l < u(t) < u(t)? (2.10)

Where superscripts L and U denote lower and upper boundaries respectively.

17



Chapter

Optimal Control

In this chapter we discuss the general problems with optimal control of processes. We will
deal with the basic approach to solve the optimal control problems. By solving the problems

of optimal control we consider the minimization or maximization of the objective functional.

z(t)}4
xf

Lo
t
(a) fixed final time and state (b) fixed final time
(1) | o(t) 4
Xy
Zo i To[— "~ !
| !
to t to t
(c) fixed final state (d) free final state and time

Figure 3.1: General problems of optimal control

18



3.1 Problems of Optimal Control

For solving optimal control problems we can consider the maximization or minimization of
objective functional. By maximization of objective function we mean the maximization of
profit or conversion of reactants. As a minimization problem, we consider the minimization
of costs, outlet, energy and time. In the following four cases Fig.(3.1) we show some problems
of optimal control. Our objective is to find the optimal state trajectory from all admissible
state trajectories x(¢) with the corresponding vector of control variables u(¢) (Hirmajer 2007).
The first case of optimal control Fig.(3.1(a)) is when we have specified the final value of time
and state variables. This problem may seem very easy to solve, but the specified final values
of state and time variables can be very restrictive. In the next two cases Fig.(3.1(b)) and
Fig.(3.1(c))we have specified the final conditions for time or state variables. By fixed final
state value we can consider for example the minimization of final time by which we reach the
desired state (e.g. required conversion of reactants). The least restrictive case is when the

value of final state variables and time are unknown Fig.(3.1(d)).

3.2 Necessary Conditions of Optimality

This section discusses the necessary conditions of optimality which can give, beside other
things, information about the gradients of objective function. First we have to mentioned
that every constraint can be adjoined to the functional J by using Lagrange multipliers (Hull

2003). Then we can consider the function in following form
j: J+ Zijj (3.1)

where J is the augmented functional, n. is the number of constraints and v is a vector of

Lagrange multipliers. We join the functional with the process described in equation (2.1).

J=G+ /tf[FJr M(f — &)]dt + iuj {Gj + /tf[Fj +AT(f - a'c)]dt} (3.2)

to j=1 to

We define the Hamilton function

H(x(t), A1), ult), p,t) = Fla(t), u(t), p,t) + AT () f(z(t), u(t),p,1) (3.3)

19



Next we define functions as augmented functional

G=G+ Z I/jGj (3.4&)
7j=1

F=F+) vF (3.4b)
j=1
j

X=X+ v (3.4c)
7j=1

T

H=H + Z I/jHj (34d)

j=1

New form of augmented functional can be written as follows

- _ tro _
J(u(t),p) = Gla(ts),p,ts) + / (H (2,2, u,p,t) — Ni)dt (3.5)
to
where i € {1,....n; + 1} represents interior points. For the derivation of the augmented

functional we will consider typical problems of optimization.
e fixed initial time (¢g = 0),
e free initial conditions (z(tg,p) = xo(p))
e free final conditions (x(tf) = xy)

e free final time (ty)

Differential of functional (3.5) can be written as follows

_ _ tr _ ty _ oo +
df =dG+ [ sHdt— [ " 6(\T@)dt + (H — NTa)| dty+ > [H—AallLdt;  (3.6)

to to =1 ‘

Using integration method by parts we transform ftif S(AT#)dt into

tr _ tr _ _
— / S(A\Td)dt = — / (AT + X6 de (3.7)
to

to

b o ST - 3 t <. tF
— / (AT6z — oATz)dt — [\ oz]) — Z[ATch]t:_

to i=1

Now we can express all the differentials and variations in (3.6) and considering (3.7) we obtain

oG oG oG "G
dxtf E dmti + —dp + —dt; + E —-dt;
t; =1

aT|,_ opT Ot s
OH 8 oH OH T .
+/t0 <3xT5m+ 8)\T5)\+8 Téu—i-a—T(Sp—i-)\ 0z — 0N m) dt (3.8)

dJ =

)\T 5$tf + )‘to(sxto + Z )\T 5$ - - 5\3}5$t1+) + Fftfdtf — j\g;ﬂttfdtf
=1

—{—ZZ(FIF —H )dt; —{—Z t+$t+)dt
=1

20



The next step is to regroup the corresponding terms. We notice that dx;, = dx+ + @,+dt;

and by equating dz;, = %dp we obtain

N c . oG oG 4 0H 9
sz(—t —A@)dxtf+<af+Htf>dtf+< + —dt+i§>dp
f

oxT op” Sy, opT dp

Z(;G +>\T -l >dxt,+z<—+H—H )dti (3.9)

0H 0
[ (2 i) (2o L]

The differential of function J must equal zero. Then the necessary conditions of optimality

we obtain when all bracketed terms are equal to zero.(Paulen et al. 2010)

e optimality condition for

control variables

OH
parameters B , B
oG f OH < 0xg
—— = [ At + M (tg) == =0 3.10b
" ). ot + A ( O)apT (3.10Db)
final time -
oG -
~— 4+ H = 1
ot +H =0 (3.10¢)
state variables -
0H
r=— WVttt 3.10d
T =23 [to, t] (3.10d)
e optimal switching conditions for
times ~
oG — = .
a—ti—FHt;—HtZL:O VZE{L...,’I’LZ‘} (3.106)
adjoint variables
oG :
&E—Tt_.-i-)\T —)\t+—0 Vie{l,...,n;} (3.10f)
e adjoint variables
definition B
: 0H
A=—— VL€ ltpt 3.10
5, Ut E [ltort] (3.10g)
boundary conditions ~
< oG
A — 3.10h
YT on —t ( )

21



Chapter

Dynamic Optimization Methods

For solving optimization problems we can use several optimization methods which can be

divided into two main groups
e Analytical methods

e Numerical methods

4.1 Analytical Methods

Analytical methods encompass
e Dynamic Programming
e Pontrygin’s principle of minimum

e Variational Calculus

4.1.1 Dynamic Programming

Dynamic programming is based on Bellman’s principle of optimality (Bellman 1957, Fikar
2007). This principle is based on the fact that optimal control of process depends only on
the initial and final state. We can use dynamic programming for continuous or discontinuous
systems. When we consider that trajectory form point A to point C' is optimal (see Fig 4.1),
then the trajectory form point B to point C is also optimal. It shows what we have already
stated previously. The optimal control depends on the initial and final state but not on the

history of control actions.

22



t

Figure 4.1: Optimal trajectory

Consider functional eq.(2.2) and system eq.(2.1). We also consider that our problem has
a solution. We define function which is also called the Bellman function
ty
v(t,z(t)) = min |G(ty,x(ts)) + /F(m(t),u(t),t)dt (4.1)

u(t)
t

differentiating eq.(4.1) we obtain the partial derivation of Bellman function

v _
ol

T
Fla®u(®.0)+ (5507 f<x<t>,u<u>,t>] (42)

by satisfying the boundary condition

v(tp,x(ty)) = G(ty,z(ty)) (4.3)

Bellman’s equation (4.2) and the boundary conditions (4.3) representing necessary conditions

for finding minimum. (Hirmajer 2007, Cizniar 2005)

4.1.2 Pontryagin’s Principle of Minimum

Pontryagin’s principle of minimum (maximum) stands for a very efficient approach by solving
optimization control problems. This method is very useful when we are trying to get the
system form one steady state to another.(Hirmajer 2007, Pontryagin 1964, Cizniar 2005) We
consider the control problem (2.1) and Hamiltonian function (3.3). Next we define the adjoint

variable

_ Ov

NOE

(4.4)

next we differentiate separately left and right side of adjoint system with the respect to x

0% OH | 9°v0H

T o0t Oz T 9z%0A (4.5)
. 0% 0%y

23



We obtain canonical differential equations which represent the principle of minimum

At) = —%—Z (4.7)
. O0H

The necessary conditions for control problem (2.1), using the Pontryagin principle of minimum

are the following
e optimality condition for control variable (3.10a)
e adjoint variables definition (3.10g)

e adjoint variables boundary conditions (3.10h)

4.1.3 Variational Calculus

Basic relations for variational calculus are obtained from Bellman partial differential equa-
tions. Variational calculus is applied only for specific optimal control problems.(Hirmajer
2007)

We consider Euler-Lagrange differential equation
or d [0t
=) =0 4.9
Ox dt <3x> (4.9)
where 7 is the Lagrange function define as
m(x, &, u, N\ t) = F(z,u,t) + N [f(z,u,t) — 2] (4.10)

we consider objective function define eq.(2.2) then we can formulate the necessary conditions

of optimality

e optimality conditions for control variables

or
— =0 teltt 4.11
0T =0 te o] (411)
e definition of adjoint variables
. or
AMt)=—— ¢ to,t 4.12
(t)=—5_ t&ltty] (4.12)

e terminal conditions for adjoint variables

(4.13)

Alty) = Da(t;)

24



4.2 Numerical Methods

Numerical methods can be divide them into two main groups
e indirect methods
Boundary Condition Iteration (BCI)
Control Vector Iteration (CVI)
e direct methods
Control Vector Parametrization (CVP)

Orthogonal Collocation (OC)

4.2.1 Control Vector Parametrization

Control vector parametrization (CVP) falls into the class of numerical methods for solving
dynamic optimization problems. This method is based on approximation (discretization) of
original continuous control trajectory with finite number of control intervals of polynomial
nature. In this work we consider constant and linear control over these intervals. (Paulen
et al. 2010, Teo et al. 1991)

We consider system described by equation (2.1). The main issue with continuous control
trajectory is that we need to find optimal value of control variable at each time. As it is shown

at Fig. 4.2 there is infinite number of degrees of freedom. Hence that by discretization, the

u(t)d

Figure 4.2: Continuous control trajectory.

original control profile, we replace the original infinite dimensional decision trajectory with
one possessing finite number of degrees of freedom (Fig. 4.3). In this case we consider 6

optimization parameters (3 constant control values, 3 corresponding time intervals). This

25
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Atl Atg Atg t

Figure 4.3: Discretized control trajectory.

yields 6 degrees of freedom to our optimization problem. Discretized control can be expressed

as
u(t) = U; ti—1 <t <t (4.14)

where u; represent constant control value as defined in Fig.(4.3). We also define the length
of time intervals as At; = t; — t;_1. So we transformed the original infinite dimensional
optimization problem into finite dimensional problem of non-linear programming (Paulen
et al. 2010). Resulting problem involves finite number of decision parameters (degrees of
freedom).

We can also consider replacing the continuous control trajectory with piece-wise linear

control (see Fig. 4.4). Unlike in case of piece-wise constant trajectory (see Fig. 4.3), we may

u(t) |

Uo

Aty Aty Atz Aty Ats ¢ Aty Aty Atz Aty Aty ¢

(a) continuous case (b) discontinuous case

Figure 4.4: Continuous and discontinuous piece-wise linear control.

consider continuous as well as discontinuous control profile. Then the continuous piece-wise

linear control trajectory (Fig. 4.4) on each time interval can be described with following

26



equation.

w(t) = i1+ Ui — Uj—1

7@ — ti—l) vVt € [ti—h ti] (4.15)
ti —ti—1

Control trajectories for discontinuous profiles can be described analogically.
Here we show how continuity of considered discretization influence the number of degrees

of freedom:
e continuous control Fig.(4.4(a)) (DoF = 11)
Since uqg : U1 = Ug, U34 : U3 = U4, Usg : Us = Ug, U7g : U7 = Ug, the final number
of decision variables is given by 6 control variables and 5 time intervals.
e discontinuous control (DoF = 15)
In this case we optimize 10 control variables and 5 time intervals.

Next we consider special case. We replace the continuous control trajectory with piece-

wise constant and linear control Fig.(4.5). We consider continuous and discontinuous control

u(t) 4

Atl Atg AtgAt4 Atg, Atﬁ t At1 Atg Atg At4 At5 Atgt

(a) continuous (b) discontinuous
Figure 4.5: Continuous and discontinuous constant-linear control
profile with 3 constant and 2 linear segments. Continuous or discontinuous control trajectory
on each time interval can be again described using either equation (4.15) for linear segments

or equation (4.14) for constant segments.

Fig.(4.5) shows number of degrees of freedom for each considered strategy:

e continuous control (DOF = 10)
In this case, ug = uy, us = uz = ug, us = ug = u7 and optimization is to decide
about values of 4 control variables and lengths of 6 time intervals.

e discontinuous control (DOF = 15)

We have to optimize 9 control variables and 6 time intervals.

27



Gradients Objective Function
Constraints
Adjoint Variables State Variables
NLP Solver = l;/
t t
Control Variables
u(t) Dynamic System

t

Figure 4.6: Algorithm of the CVP method

In Fig.(4.6), we show general algorithm for solving optimization problems using CVP method
with adjoint variables which are used for computing gradients. The first step is to discretized
the continuous control trajectory with finite numbers of intervals with constant control. Next
we integrate the process model eq.(2.1) forward in time and adjoint system eq.(3.10g) back-
ward in time. From integration of process model we calculate the value of constraints and from
integration of adjoint system we calculate gradients on objective function and constraints.
The final step is to evaluate the value of objective function with respect to constraints with
NLP solver. The whole process is repeated until the value of objective function stops to

change.

4.2.2 Orthogonal Collocation

Orthogonal collocation (OC) transforms the original dynamic optimization problem to static
through the polynomial approximation of state and control profiles. In order to provide

the orthogonal behavior we use Lagrange polynomials for the approximation. The roots of

28



Legendre polynomials determines the distribution of collocation points.(Cuthrell and Biegler
1987, Lauw-Bieng and Biegler 1991, Cizniar 2005).

We consider the system of ordinary differential equations (2.1) with finite numbers of
elements ¢ in time t € [§;,&;+1], we also consider constraints described in equations (2.5) and
(2.6). The next step is to choose random time interval ¢ shown on picture Fig.(4.7) with time
t € [&,&+1], state and control variables are approximated through Lagrange polynomials

which are written as follow (Fikar 2007)

K Ko
The(t) =Y alibi(t) o0 =11 —- (4.16)
=0 k=0, "k
K Koy
ug(t) = Zuz‘jaj(t) 0;(t) = H ﬁ (4.17)
j=1 k=15 Y

fori=1,...,Ng

where Ny represents finite numbers of elements, £ = 0, j means that by k£ = 0 we begin, but
k # j, K is number of collocation points, n is index of state variable and m is index of control

variable. When we consider that number of collocation points for states and control equals,

Ui—1,1 Ui—1,2 Ui, 1 Ui, 2 Ui41,1 Ui41,2

Zi—1,0 Ti—1,1 Ti—1,2 Z4,0 Ti,1 £4,2 Tit1,0  LTi41,1 Ti41,2 Ti42

Sim1 AE £ it

Figure 4.7: Distribution of time intervals and collocation points for state and control variables

then we can consider the distribution described on Fig.(4.7). Lagrange polynomials have the

following properties
zrc1(tiy) = i (4.18)

By mentioned polynomials we can directly define the constraints on state and control vari-
ables. Then the equations (2.1) which described the system, can be written in collocation

points as follows, while we have to consider the normalized interval A&;(7) where 7 € [0, 1]

K
Aér(tin) = MY aidj(mi) — DS (tik, Tk, i) (4.19)
i=0

i=1,...,N;, j=0,....K, k=1,....K
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where éj (71) is independent from interval length, but only from the distribution of collocation
points on the normalized interval. In order to obtain the desired NLP problem we transform
objective function and constraints the same way as we transform the system of ordinary

differential equations.
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Chapter

Methods for Computing Gradients

In this section we discuss the methods for computing gradients. In dynamic optimization
gradients are the basis in the computing algorithm. For obtaining gradients we can use one

of the following methods.

5.1 Finite Differences

The system is integrated n-times and in each of them is one of the variable y; changed. Then

we can express the gradients as follow

Ji(yl, s Yy + ijv cee 7yn) - Jz(y)
Ay,

Vng]i: 1=0,...,N¢ 4+ Npe (51)

where n. is the number of equality constraints, n,. is the number of inequality constraints

and y; is the vector of optimized variables define as follow
yT:(Atl,...,Atf,ulT,...,u?,pl....,pp) (5.2)

where p is number of paramters. The main advantage of this method is the simplicity of
implementation. The disadvantage is the amount of integration that is necessary to repeat
for each optimized parameter (Fikar 2007). These gradients are calculated only with some
precision. Finite difference method is the least accurate method for computing gradients.
The main issue of finite differences method, is how to slightly change the variable that the
change would not be too big or too small. By too small (too big) we mean for example when
we evaluate the objective function or constraints we must integrate the system forward in
time. This integration is accurate only to some point, so it can happen that the gradients
calculated with finite differences method are inaccurate considering the integration precision.

General procedure for calculating gradients with finite differences method is following:
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. Initial guess, y, for values of optimized

. Forward integration of system eq.(2.1).

step 5.

5.2 Adjoint Variables

Calculating new values for objective function J;(y1, . ..

variables eq.(5.2).

. Calculating the value of objective function J;(y).
. Choosing the value of Ay (small positive number) and initializing ¢ = 1.
. Changing the value of i-th parameter in vector of optimized variables by Ay.

. Forward integration of system with new vector of optimized variables.

Ui+ DAY, Yn).

. Calculating gradients according the equation (5.1)

. If ¢ equals the number of optimized variables then quit. Else increment i and go to

Form the necessary conditions of optimality we define the adjoint system and adjoint variables

eq.(3.10g) and eq.(3.10h). In the next step we express the gradients to objective function as

oJ - oG
or o
oJ oG - T Oxg
3 = o Tp(to) + A, T (5.5)
oJ - -
9L Juti) = Tu(t)  j=1,...,N;—1 (5.6)
8u]‘ J J
where
0H
- 0H
= gt (5.8)

By expressing gradients on equations (5.3) to (5.6) we have to realize that the optimization

variables are time increments

ty =

(5.9)

Ny
Z At;
i=1
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where N7 represents finite numbers of elements. For expressing gradients on time increments

the final gradients are expressed as

0J; Z 0J; (5.10)

The general procedure for expressing gradients on objective functional and constraints can

be written in the following steps(Paulen 2010)
1. Forward integration of system eq.(2.1) with current guess of optimized variables.
2. Initializing of adjoint variables according to eq.(3.10h)
3. Backward integration of adjoint system eq.(3.10g), eq.(5.7) and eq.(5.8)
4. Calculating gradients according the equations (5.3) to (5.6).

By the backward integration of adjoint system we require the knowledge of state variables
x(t). One of the possibilities is to integrate the state equations together with the adjoint
equations backward in time. By this approach there may occur numerical problems because
the backward integration of state equations can be unstable (Fikar 2007). The recommended
approach is to store the values of the state variables using some (possibly dense) grid of
time points. Then, if we integrate backward in time we use these grid points and interpolate

between respective state values.

5.3 Sensitivity Equations

By integration of the sensitivity system to state variables we obtain the sensitivities of individ-
ual states and parameters that we optimize (Caracotsios and Stewart 1985). The sensitivity

equations for state variables and parameters are define as follow

) d [ Ox of; of;
w(t) = — = wis 11
Suiy (V) dt <8u;‘§> 92T i1 T guT (5.11)
t) = — = 5.12
SP( ) dt (apT> OxT Sp + apT ( )
where s,,; and s, are sensitivity coefficients. The initial conditions for sensitivities are written
as follows
0x(0)  Oxo
0) = - 20 5.13
5#(0) ou ou (5.13)

if the initial conditions depends on certain parameter, following equation is applied

z(to) = wo(p) = s1(0) #0
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When we defined the sensitivities then we can calculate the gradients according to the opti-

mization criterion

t
N; f
B oG ofi Ofi
Vi, J = Zl ST ) " T Z / < oS auT> dt (5.14)
0
L 9G ofi ofi
V,J = ZBmT 5T +/<amT p+aT>dt (5.15)

to
Calculation of gradients using the sensitivity equations are mainly used when we have few
optimized variables but many constraints (Fikar 2007).

The procedure for calculating gradients using sensitivity equations is following (Hirmajer

2007)
1. Guess for initial values of optimized variables.
2. Forward integration of system eq.(2.1) and sensitivity equations (5.11) and (5.12).
3. Calculating the value of objective function and constraints.

4. Calculating the gradients according the equations (5.14) and (5.15).
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Chapter

Lactic Acid Fermentation

Biological engineering problems can be described by a set of ordinary differential. These
dynamic models are semi-empirical and they rely on empirical data. Mathematical descrip-
tion of bioprocesses leads to models with parameters which we have to determined from
experimental data. The aim was to calculate the optimal value of prescribed parameters in

bioprocess applications. (Kovécs 2010).

6.1 Problem Formulation

We consider fermentation process for the production of lactic acid using saccharose as sub-
strate. The saccharose is converted into both biomass and lactic acid during the fermentation.

The microbial reaction is given by

In the reaction we use catalyst X, which concentration changes in time. The rate of pro-

duction growth of the micro-organism X, is given by

X, = HXab (6.1)

where p is the specific growth of the biomass and given by

S, 1
_ HmazPc — —— 7 K, (6.2)
Ks, + Sc+ (K;SC) 1+ <K1}c>
The rate of consumption rg, of substrate is given by
1
rs, = _Y "X T MeXab (6.3)
Xabsc
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where the negative sign signifies that the substrate concentration decreases due to its con-
sumption by the micro-organisms. Note that rx_ is positive because the micro-organisms

grow during the reaction. The rate of production rp, of lactic acid is give by

rp. = YP.5.Ts, (6.4)
Cell death rate rx, follows first-order decay

rx, = —KaXap (6.5)

The dynamic model is described by four differential equations

Xap = 7x,, (6.6)
Se=rs, (6.7)
P.=rp, (6.8)
Xq=rx, (6.9)

The total biomass X; is a sum of the active biomass X,; and the dead cells X  such as
X =Xap + Xy (6.10)
Our objective is to find optimal value for nine parameters
P = [tmaz, Ks., Kas K15, K1Ps YX 13505 YP.Se s ey M)

Based on the technological considerations, it can be assumed that the parameters range
between the below defined lower and upper bounds

Ib=10.1,0.01,0.01, 1el, 1e-1,0.01, 1e-3, 1, le-4]

ub=1[0.9,1,0.5,1e4, 1e3,0.6, 1, 10, 1]

Further we were given the experimental values for S., P. and X; for three measurements at

different times.

6.2 Results

Along with the example were provided experimental data for three measurements which were
obtained in different time. According to specified experimental data we calculated the optimal
trajectory for the calculated optimal parameters. Using sensitivity equations for calculating

gradients we calculated the optimal values for nine parameters

[tmaz = 0.3328 Krs, = 1000 Yps, = 0.7159
Ks, = 1.000 Kip, = 50.5444 ie = 10 (6.11)
K4 = 0.1098 Yx,,5. = 0.0858 me = 1.000
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Value of objective function
J = 838.2669

For calculating optimal values of the parameters we used Matlab integrated NLP-solver
fmincon. Integration was performed using ode45 integrator where 4" order Runge-Kutta
numerical integration method is implemented. We can notice that most of the estimated
parameters (6.11) are on the lower and upper bounds. Better results can be obtained by con-
sidering larger permitted space for optimization. In pictures Fig.(6.1), Fig.(6.2) and Fig.(6.3)
we compare measured data (*) and the state model (-) obtained by numerical integration of
the estimated parameters for the concentration of substrate, product and total biomass for

all three measurements.

o 1 2 3 4 s 6 7 8 9 10 11 o 1 2 3 4 s 6 7 8 9 10 11 o 1 2 3 4 s 6 7 8 9 10 11
tih tih tih

(a) Substrate concentration (b) Product concentration (c¢) Total biomass

Figure 6.1: Comparison of measured data (*) and the state model (-) for the first measurement

s, loL)

(a) Substrate concentration (b) Product concentration (c) Total biomass

Figure 6.2: Comparison of measured data (*) and the state model (-) for the second mea-

surement
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(a) Substrate concentration

(b) Product concentration

(c¢) Total biomass

Figure 6.3: Comparison of measured data (*) and the state
ment

model (-) for the third measure-
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Chapter

Control of Chemical Reactor

In this section we deal with the optimal control problem of tubular reactor. For solving
the problem we used two numerical methods. The first numerical method is control vector
parametrization(CVP). And the second method is orthogonal collocation(OC). For comput-
ing gradients with CVP we used finite differences method(FD) and adjoint variables(AV).
(Cizniar et al. 2005)

7.1 Problem Formulation

The aim of the example was to calculate such control of tubular reactor, which will maximize
the concentration of the desired component B at the end of the reaction.

We consider two parallel reaction

A— B
B—C

The system is described by two ordinary differential equations

i1 = —(u+ 0.5u%)x r1(0) =1 (7.1)
.i'g = Uurq .%'2(0) =0 (7.2)
u € [0,5] tp=1 (7.3)

where, x1 is the concentration of the component A, xo is the concentration of component B

and wu is the control variable. The objective function can be written as follow

t 7.4
r%xxz( 1) (7.4)
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7.2 Results

The example is divided into two parts. In the first part (Case 1) the length of time intervals
were optimized variables and the objective was to optimal control of the tubular reactor. In
the second part (Case 2) we fixed the length of the time intervals and our objective was to
calculate the optimal control of tubular reactor. For the method of orthogonal collocation
we used 5 collocation points for state variables and 2 collocation points for control variables.
By both numerical methods we used 4 time intervals for state variables and control variables.
For calculating the optimal control trajectory and value of the time intervals we used Matlab
integrated NLP-solver fmincon. Obtained results are shown in Table(7.1). In the first part
(Case 1) we compare the results where we optimized control variables and time intervals.
In the second part (Case 2) we fixed the time intervals and the optimized variable was
control variable. Further for both parts we compare the value of objective function (z2(t¢)),
number of NLP iteration (#it) and computing time (CPU). For obtaining results we used two
numerical methods. The first method was control vector parametrization (CVP) by which we
used two ways for computing gradients - adjoint variables (AV) and finite differences (FD).

The second numerical method was orthogonal collocation (OC). By comparing the results

Table 7.1: Comparison of different numerical methods by fixed and optimized time intervals

Case 1 Case 2
Method || CPU [s] | #it | xa(ty) || CPU [s] | #it | xa(ty)
CVP FD 47.99 50 | 0.5706 || 27.5076 | 28 | 0.5664
CVP AV || 6.7441 5 | 0.5591 || 4.9982 | 29 | 0.5664
ocC 63.0022 | 871 | 0.5730 || 4.6768 | 83 | 0.5726

for the first part (Case 1) we notice that the method of orthogonal collocation yield the best
value of objective function of all three methods. But compare to other method it needed
more NLP iterations and computing time. We notice that CVP FD yields better results for
objective function than CVP AV. This behaviour can occur when the optimization indetified
only local minimum. By comparing the results of the second part (Case 2) we notice that by
using OC we obtained the maximum value of objective function by minimum computing time
but NLP solver needed more iterations to converge. If we compare the results using CVP
method with AV and FD we can conclude that by using CVP FD we calculated the maximal
value of objective function but the computing time and NLP iterations increased compare to

CVP AV. We can also conclude that by optimizing not only control variables but also time
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intervals we obtain better results compare to results obtained when we optimized only control

variables. This behavior was expected because by increase of degrees of freedom and also by

providing accurate gradients, the optimization algorithm was able to approximate better the

objective function value.

In the following pictures Figs.(7.1),(7.2) and (7.3) we compare the optimal control trajec-

tories for all three methods.

e——"

0 0.2 0.4 0.6 0.8 1
t

(a) Optimized u,At (b) Optimized u

Figure 7.1: Comparison of control trajectory by optimized and fixed time intervals for OC

Figure 7.2:
FD

Figure 7.3:
AV
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Comparison of control trajectory by optimized and fixed time intervals for CVP
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Comparison of control trajectory by optimized and fixed time intervals for CVP
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Chapter

Time-Optimal Control of Car

In this chapter we discuss the application of two dynamic optimization methods: control
vector parametrization and orthogonal collocation. In this example we compare two men-
tioned methods. The first method was CVP with two ways of calculating gradients - adjoint
variables (AV) and finite differences (FD). The second method was OC with finite difference
gradients. In both cases we used Matlab NLP solver fmincon with the same initial condi-

tions. Our goal was to minimize the final time for which the car gets from point 0 to point

1
] —
0 p
Figure 8.1: Optimal control of car
8.1 Problem Formulation
The system is described with two differential equations
.i'l = T2 (8.1&)
To=u (8.1b)
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where x1 is the track, x5 is the speed of the car and w is the acceleration of car. In both cases

we consider the same initial and terminate conditions

561(0) =0 CEl(tf) = 300 (8.2a)
1‘2(0) =0 xg(tf) =0 (8.2b)

the constraints on control can be written as follow
—2<u<?2 ul <u<d¥ (8.3)
the objective function is follow

mint s (8.4)

8.2 Procedure for CVP

We consider piece-wise constant control over the time intervals. With piece-wise constant
control over the interval we can convert the dynamic optimization problem into nonlinear
programing problem.(Hirmajer 2007) We consider the functional (8.4) and constraints (8.2).
For computing gradients on objective function and constraints we procedure described in
section 5.2. Further we used two time intervals Fig.(8.2) with piece-wise constant control.
In the following procedure we show the expression of gradients on objective function. The

| o | 2 |

| | |

Atl A752
to t1 to

Figure 8.2: CVP example for two time intervals with piece-wise constant control
objective function can be written as follow
Jo = muin tf (8.5)
the second step is to express the Hamilton function
Ho = X7 f(2,u) = ANag + Au (8.6)

where f is the right side of differential equations. Further we express the boundary conditions

for adjoint variables. Adjoint variables are define only in the final time

Mtp) = 5 = (8.7)
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according to equation (3.10g) we obtain differential equations for adjoint system

A =0
P

Gradients on objective function are express from equations (5.3) and (5.4)

od _ 0
oty Oty
0Jo

o, (MYt )22(t7) + A0t Julty)] = [N )a2(t) + At ut)]

by simplifying the equation (8.11) we obtain

S0 ) ut) — ule)

(8.10)

(8.11)

(8.12)

where 7 = 0,1. In Tab.(8.1) we summarized the procedure how to express gradients for each

time interval. We can also notice that we expressed the constraints as a new minimization

criterion.

objective function.

Table 8.1: Expression on gradients on objective function and constraints

Jo = mintf

Ji =minxz;(ty) — 300

Jo = minxo(ty)

U1 Ju(tO) - Ju(tl) Ju(tO) - Ju(tl) Ju(to) - Ju(tl)
Uz Ju(tl) Ju(tl) Ju(tl)
Aty || Aa(t1)(ur — ug) ?9_}];) Ao (t1)(ur — ug) + %—‘g Ao (t1)(ur — ug) + %—‘tjj
Aty G = No(ty) =1 BN = No(ty) = walty) || G2 = Na(ty) = ulty)
aJ. 0Jy . OJ o gL . dJ o dJs | OJ
oAt = on ot oAt = on + on onn = ot T ot
aJy _ 9Jy a5 _ g 0Jy _ 0
OAty — Oto OAty — Oto OAts — Oto

8.3

Procedure for OC

Then the procedure for expressing gradients on constraints is the same as for

In this section we explain on example the application of orthogonal collocation for solving

optimization problems. We consider K = 2 and NE = 2. The following equations we obtain
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using equations (4.16) and (4.17) for the intervals.

Interval 1:
t—1t11 t—t12
t) = 8.13
Po(?) t1o — t11 tio — t12 (8.13)
t—tip t—t12
1(t) = 8.14
“1(t) t11 — t1o t11 — t12 ( )
t—tip t—1tn
t) = 8.15
92(1) t1o — t10 t12 — t11 ( )
t—1
or(t) = —2 (8.16)
t11 — t12
Interval 2:
t—1ta1 t— 1o
t) = 8.17
do(t) top — t21 t20 — to2 ( )
t—tag t—192
t) = 8.18
91(t) to1 — tog to1 — tog ( )
t—19g t—1t91
t) = 8.19
@2(f) log — too ta2 — t21 (8.19)
t—1t
1(t) = — =2 (8.20)
to1 — o2

The distribution of collocation points Fig.(8.3) we obtain as the roots of Legendre polynomi-
als. According to equations (4.16) and (4.17) we obtained equations.

T z2 u

i

o
tio  ti1 tiz t21 taz t tio ti1 ti2 t21 oo t t11 t21 t
Linterval t13 = t20 IL.interval Linterval t13 = t20 Ilinterval Linterval IL.interval

Figure 8.3: Distribution of colocation points

Example 1. interval.
(21000 (t10) + 21161 (t10) + 1ad2(t10)] — [2T0d0(ti0) + 211 d1(to) + 2Tada(ti0)] =0 (8.21)
[2lodo(tin) + 2111 (t11) + wiada(t11)] — (2000 (t11) + 23161 (f11) + 2lad2(ti1)] =0 (8.22)
[z100(t12) + z11 1 (t12) + T1ada(tio)] — [Todo(tiz) + 21101 (t2) + 2Ta¢2(ti2)] =0 (8.23)

Further we rewrite the equations (8.1b) to the following form

[230d0(t10) + 2711 (t10) + 2Tadb2(t10)] — [uib:(t11)] = O (8.24)
[230d0(t11) + 231 d1(t11) + 2Tad2(t1)] — [uibi(t11)] =0 (8.25)
[230d0(ti2) + 271 d1(t12) + aTada(t12)] — [uib:(t11)] = O (8.26)
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8.4 Results and Discussion

In this chapter we compare two numerical methods: CVP and OC. For calculating the op-
timal control trajectory and value of time intervals we used Matlab integrated NLP-solver
fmincon. In table Tab.(8.2) are obtained results. For computing gradients in CVP method
we used finite differences method (FD) and adjoint variables (AV). It can be seen Tab.(8.2)
that by using adjoint variables for computing gradients the number of iteration increased and
the computational time decreased. We can notice by comparing CVP and OC with gradients
computed by finite differences method, that CVP method required more computational time
but less iteration to reach optimum than OC. Also we notice, that by comparing CVP method
using gradients computed by finite differences and adjoint variables, that the results for con-
trol variables and time intervals are the same. The CVP method with gradients computed by
finite differences method required less iterations but more computational time then CVP with
gradients computed with adjoint variables. The values of objective function, time intervals

and control variables are the same in all three cases. Where #it represents the number of

Table 8.2: Comparison of two numerical methods

CVPFD | CVP AV | OC
uV 2 2 2
ul -2 -2 -2
Aty 12.2474 | 12.2474 | 12.2474
Aty 12.2474 | 12.2474 | 12.2474
tels] 24.4949 | 24.4949 | 24.4949
Hit 5 8 8
CPU [s] || 5.2595 3.9550 | 0.5183

NLP iterations, CPU represents the computational time, ¢y is the value of objective function,

L are the maximum and minimum

At; and Aty are the values of delta intervals and wV,u
values of control variables.

In pictures Fig.(8.4) we can notice that we used two time intervals. On the first we accelerate
and on the second we decelerate. We can notice in Fig.(8.4(a)) and Fig.(8.4(d)) that we meet
the constraints which were characterized by the final conditions eq.(8.2). We can also notice
the switching time Fig.(8.4(b)) and Fig.(8.4(c)). Switching time is when the car stops to

accelerate and starts to slowing down. We also notice that the switching time is the same in

both numerical methods.
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Figure 8.4: Comparison of CVP and OC numerical method
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Chapter

Emulsion Polymerization Process

Emulsion polymerization process is used to produce polymers. For example latex is often
product of emulsion polymerization. The final properties of polymers are highly related to
the reaction time, molecular characteristics and reactor operating conditions. Reaction time
is influenced by operating conditions. Advantages of emulsion polymerization include high

molecular weight polymers that can be made by fast polymerization rate. But there are also

Tjin(t)
F;
Water
Monomers
OO Initiator
VT Emulsifier
Vi |
T}

Figure 9.1: Schematic representation of the batch polymerization reactor

disadvantages e.g. the removal of water to dry the polymers is energy intensive process.The
reaction of styrene and a—methylstyrene takes place in batch emulsion copolymerization reac-
tor Fig.(9.1). We assume that the contents of the reactor and the jacket are perfectly mixed.

The control variable represents the cooling fluid inlet temperature (T}iy,).
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9.1 Process Model

The process can be divided into several parts. Kinetic model, molecular weight distribution
and reactor temperature dynamic model. This model was originally described by Castel-

lanos (Castellanos 1996).

9.1.1 Kinetic Mechanism

For emulsion polymerization process we need 4 components. Dispersion medium, monomer,
initiator and emulsifier. For dispersion medium we can use water. Monomer is slightly
soluble in dispersion medium. Initiator has to be water soluble. Process of emulsion poly-
merization can be divided into three stages. Experimental validation was carried out by
Castellanos (Castellanos 1996) and Gentric (Gentric 1997).

Three stages of the model:

I: The first phase is characterized by the production of free radicals by initiator decom-
position. Free radicals are captured by the micelles. The termination of the first stage

accured with disapearing of all micelles.

II: This stage is characterized by particles growth. Their amount is constant during the
second and the third stage. The particles are saturated with monomer. This stage

terminate when all the monomer droplets have disappeared.

III: The monomer concentration in the particles decreases and the rate of polymerization

is decreasing.

The kinetic mechanism can be written as follows

Initiator decomposition: A — 2R® R, =2fk;A
Particle formation: R*+m —N* R, = kymR*®
Initiation: N-+R®* — N°* R; = koNR®
Termination: N*+R*—N Ry = koN°*R®
Propagation: P?+M — P}, R, = k,M,N*

Transfer to monomer: P; +M — M*+ P; Ryt = ke M N*®

9.1.2 Kinetic Model

This model is based on the experiment carried out at three different temperatures and four

initial monomer compositions. In this work we consider only 10% in mass of a—methylstyrene.
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In the work Gentric (Gentric 1997) they described that there was no composition change

during the polymerization. So we can write the global propagation constant as follows
kp = kpexp(—a.fus) (9.1)

where a is a constant, fyig is molar fraction of a—methylstyrene at the beginning of a reaction.

The rate of particles can be written

: RoNa4
Ny = komm——0"A 9.2
P " e + kop Ny (9:2)

next we introduce a capturing efficiency of the particles with respect to the micelles

_ kepSNa
€= T (9.3)
N o RaNA
P 14 (eNy/SNy)

(9.4)

emulsifier molecules will be absorbed in monomolecular layers at the polymer particles surface
. 2/3 n71/3

S =8, — ky(XM,)*3NY/ (9.5)

where

M2 1/3
367 Mg, } (9.6)

oo [ B
2 3.2
wP(asNA) Pp
where X is the conversion rate and M, is the initial monomer concentration. Then we can
write the rate of monomer consumption as follow
Np

M — —Rp — —]CpMpN—A

n (9.7)

The monomer concentration in the particles can be written

(1—X¢)pm
M, =M, = X <X, 9.8a
’ P = Xe) 4+ Xepm/pp] My (9.82)
1-X
M, = ( o X > X, (9.8b)

P11 = X) + Xpm/pp] My

where M, critical monomer concentration and X, is critical conversion rate.

9.1.3 Molecular Weight Distribution Model

We also have to obtain the necessary polymer properties. These properties are linked to

polymer structure.(Paulen et al. 2010). The considered properties are for example global
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macromolecule concentration and the moments of the polymerization degrees. The degrees

of production of the moments of the molecular weight distribution can be written as follow:

Qo =R¢ + Rirns (9.9)
Q1 =L(R; + Ryr) (9.9b)
Q2 =2L*(Ry + Rernr) (9.9¢)
where
RN,
Ry =P (9.10)
Np+ 2
Ny _
RtrM :k‘trMMp—TL (911)
A
Rp
= 9.12
Rt + Rirm (9:12)

Here variable L denotes kinetic chain length. Once these moments are known, the number-

average molecular weight (M,,) can be calculated according to:

Mn:M Ql

MG, (9.13)

9.1.4 Heat Balance Equation

For the control of temperature inside the reactor we have to describe the temperature dynamic
of the reactor. The heat inside the reactor is controlled by cooling fluid. The temperature
dynamic of the reactor and the cooling jacket is described by the following equations (Salhi

et al. 2004)

. VAH UA
T=- T, —T 14
mrcp Rp + mrcp( J ) (9 )
. F UA
Ty = 2(Tjin —Tj) — ———(T; = T 9.15
J Vy( J .]) pJV]Cp_]( J ) ( )

where V' and Vj are the reactors contents and jacket volume, U is the heat-transfer coefficient,
F} is the flow rate of the cooling fluid, m,.C), is the reactors total heat capacity, p; represents

the density of the cooling fluid, C); is the heat capacity of the cooling fluid.

9.2 Problem Formulation

The objective of this work was to calculate the optimal control by which we reach the desire

state at minimum time. The desire state is characterized by final conversion written as follow

Xp=1- %tof) (9.16)
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and final number average molecular weight is define as

My — M(ty)
My = Myy——= 9.17
nf Qo(tf) ( )
The objective function can be written as

in ¢ 9.18
min i (9.18)

where initial state vector for the first stage is defined as
(z0)T = [Mo,0,0,343.15, 343.15] (9.19)

State vector is represented by global monomer concentration, number of particles,three mo-
ments of molecular weight distribution, initial temperature inside the reactor and cooling
jacket: z1 = (M, Ny, Qo,T0,T}j0). The optimized control variable is the temperature of the
inlet cooling fluid (Tjsn,).

9.3 Results and Discussion

For solving the optimization problem we used NLP solver SNOPT (Sparse Nonlinear Op-
timizer). For integration we used the oded5 integrator which uses the 4th order Runge-
Kutta method. Results are shown in Table 9.1 where we compare the computational time
(CPU), number of NLP iterations (#it), absolute and relative integration error tolerance
(Abs/RelTol) and the value of objective function (t¢) for two methods of computing gradi-
ents. The first method for computing gradients was the method of finite differences (FD)
and the second method was the method of adjoint variables (AV). N stands for the number

Table 9.1: Comparison of computational aspects for different numbers of intervals of piece-

wise constant control and different methods for computing gradients.

FD AV
Nr || CPU [s] | #it | Abs/RelTol | tf [s] || CPU [s] | #it | Abs/RelTol | t¢ [s]

1025.5 | 1 | 1le71%/1e7® | 6064.9 || 362.3 9 | 1e70/1e7® | 6064.9
866.1 7 | 1le719/1e78 | 5192.6 || 329.5 7 | 1le719/1e78 | 5192.6
2778.5 | 16 | 1le719/1e78 | 5185.8 || 757.5 | 14 | 1le719/1e=® | 5185.8
3825.2 | 11 | 1le710/1e™8 | 5183.0 || 640.8 9 | 1le719/1e7® | 5183.0
3220.8 | 10 | le 19/1e78 | 5182.9 || 864.2 9 | 1e70/1e7® | 5182.9
4492.8 | 34 | 1le719/1e78 | 5182.6 || 1100.9 | 15 | 1le='9/1e78 | 5182.6

SO | =W (N |-
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of control intervals. For each method we used the same initial conditions and the same con-
straints Xy= 0.6 and M,y = 3 X 10% [g.mol~!]. For finding the optimal control trajectories
we fixed the time intervals which we calculated using the finite differences method we can
notice that by increase of time intervals the value of objective function is decreasing. Then
we compared the number of NLP iterations and computational time. We can notice in Table
9.1 that the computational time using adjoint variables is less than compare to method of
finite differences. This behavior might occur because of the inaccurate gradients provided by
method of finite differences. We can also notice that by the method of adjoint variables NLP

solver required less iterations to converge. The graphical comparison of optimal control tra-
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Figure 9.2: Comparison of control trajectories for different number of time intervals

jectories are shown in Fig.(9.2) for 5 and 6 time intervals. We can notice that by using finite
differences Fig.(9.2(a)) and Fig.(9.2(c)) and adjoint variables Fig.(9.2(b)) and Fig.(9.2(d))
the control trajectories are very similar. This behavior was expected because of decreasing
the degree of freedom by fixing the value of time intervals. The main differences are in the

number of NLP iterations and computational time.
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Chapter

Conclusions

In this work we studied the problem of dynamic optimization of processes. We considered
two numerical methods, control vector parametrization and orthogonal collocation, for solving
dynamic optimization problems. Both methods transforms the original infinite dimensional
problem into finite dimensional problem of non-linear programming. As a part of the work, we
studied several methods for computing gradients. In several examples we compare obtained
results by using the mentioned numerical methods with three different methods for computing
gradients. The first method was the method of finite differences. This method is very easy
to implement but the gradients computed by this method can be inaccurate. We used finite
differences method with the combination of adjoint variables to verify the correctness of the
computed gradients. Adjoint variables are mainly used when we have a large number of
optimized variables and only few contraints. Its because every constraint generate a system
of equations which we have to integrate. Sensitivity equations are on the other hand very
effective by large number of constraints but their disadvantage is when we have large number
of optimized variables, because every optimized variable generate system of equations which
have to be integrated. The results show that the most effective method was control vector
parametrization with gradients computed by adjoint variables. The further work can be
devoted to study the sensitivity equations of second order which give more precise Hessian

for NLP problem.
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Chapter

Resumé

Uvod

Hl'adanie optiméalneho riesenia je kazdodennym problémom kazdého z nas. Na rieSenie op-
timaliza¢nych problémov, ktoré riesime v beznom Zzivote mozeme pouzit’ viacero metdd,
ktoré nam ul'ah¢ujia hl'adanie optimalneho rieSenia. Na vyrieSenie optimaliza¢ného problému
musime mat’ v prvom rade dobre zadefinovany problém. AvSak pri rieSeni optimaliza¢nych
uloh nemoézeme zabtdat’ na obmedzenia, ktoré je nutné reSpektovat’. Su to vicésinou tech-
nologické obmedzenia napriklad maximalna rychlost’ auta a maximaélny prietok v potrubi.
Ak sa hovori o optimélnosti resp. optimalnom rieSeni, tak sa jedna o minimalizaciu alebo
maximalizdciu ucelovej funckie. Napriklad minimalizdcia ¢asu, energie alebo nakladov a max-
imalizacia produkcie alebo zisku. Tato praca sa hlavne zaobera aplikaciou metdd na rieSenie
optimaliza¢nych tloh. Tieto metddy sa rozdel'uji na dve skupiny a to analytické a numerické
metddy. Praca sa hlavne zaoberd numerickymi metédami ako st napriklad parametrizicia

vektora riadenia a ortogondlna kolokacia.

Dynamicka Optimalizacia

Dynamicka optimilizacia pojedndva o optimalnom riadeni pri otvorenej slucke. Ako sme uz
spominali na rieSenie optimaliza¢ného problému musime mat’ dobre zadefinovany problém

ktory pozostava z nasledovnych casti
e Matematicky opis systému (2.1)
e Definicia obmedzeni v tvare rovnosti (2.5) a nerovnosti (2.6)

e Definicia minimalizaéného kritéria
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Minimalizaéné kritérium mozeme zapisat’ v troch nasledujticich tvarcoh
e Bolzov tvar (2.2)
e Lagrangerov tvar (2.3)
e Mayerov tvar (2.4)

NasSou dlohou je néajst’ také riadenie, ktoré minimalizuje ticelovu funkciu.
)

Metédy Dynamickej Optimalizacie

V tejto sekcii rozoberame dve hlavné metddy: parametrizaciu vektora riadenia a ortogonalnu
kolokaciu. Parametrizacia vektora riadenia je zalozend na aproximécii (diskretizéci{) povodne;j
spojitej trajektorii riadenia obr.(4.2) konetnym poctom riadiacich tsekov obr.(4.3). V tejto
praci uvazujeme konStantné riadenie na jednotlivych casovych tisekoch. Pri metdde orto-
gonalnej kolokacie sa pévodne dynamicky optimaliza¢ny problém prevedie na staticky vd’aka
aproximacii ¢asovych trajektorii stavov a riadenia ich polynomickymi aproximaciami. Uvazo-
vané aproximéacie je vhodné vytvarat’ s pouzitim Lagrangeovych polynémov podl'a rovnic
(4.16) a (4.17). Aby sa zabezpecili ortogondlne vlastnosti takychto polynémov je mozné ich

konstruovat’ napriklad na zaklade korenov Legendrovych polynémov.

Metédy Vypoctu Gradientov

V rédmci tejto prace sme sa zaoberali metédami vypoctu gradientov. Rozoberajui sa tri hlavné

metddy pocitania gradientov:
e metdda koneénych rozdielov
e adjungované premenné
e citlivostné rovnice

Metéda koneénych rozdielov je spomedzi troch spominanych metéd najmenej presna avsak
najjednoduchsie aplikovatelna. Jej hlavnou nevyhodou je mnozstvo integracii ktoré je treba
vykonat’. Metdda konecnych rozdielov sa hlavne pouziva v kombinacii s inou metédou poci-
tania gradientov na overenie spravnosti vypoctu gradientov. Druhou metédou pocitania
gradientov si adjungované premenné. Tato metdda sa hlavne pouziva ak vramci optimal-

iza¢ného problému mame vel'ké mnozstvo optimaliza¢nych premennych s malym mnozstvom
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obmedzeni. Je to preto, lebo kazdé obmedzenie generuje systém rovnic ktoré treba inte-
grovat’. Pri citlivostnych rovniciach médme opaény pripad ako pri adjungovnaych premen-
nych. Citlivostné rovnice sa pouzivaju pri malom mnozstve optimalizaénych premennych
a velkom mnozstve obmedzeni. Pretoze kazda optimalizovand premennd generuje systém

rovnic ktoré treba integrovat’.

Priklady

V ramci diplomovej praci sme rozoberali viacero optimaliza¢nych prikladov. V ramci jed-
notlivych prikladov sme porovnéavali vysledky, ktoré sme ziskali pouzitim viacero metod s
roznym pristupom pocitania gradientov.

Prvy priklad bol fermentécia kyseliny mlie¢nej. Tento priklad bol zamerany na odhad
parametrov, kde sme pouzili citlivostné rovnice na pocitanie gradientov. Uvazovali sme fer-
mentacny proces na produkciu kyseliny mlie¢nej pouzitim sacharézy ako substratu. Pocas
fermentacéného procesu sa sachardza premeni na biomasu a kyselinu mlie¢nu. V&c¢sina odhad-
nutych paramterov (6.11) sa nachddza na hornom a dolnom ohrani¢eni. Lepsie vysledky by
sa dali ziskat’ pri uvazovani vécsieho dovoleného priestoru.

V druhom priklade sa zaoberdme optimalnym riadenim rurkového chemického reaktora.
Porovnavali sme vysledky zisakne pomocou parametrizicie vektora riadenia a ortogondlnej
kolokéacie. Pri parametrizacii vektora riadenia sme pouzili dva sposoby pocitania gradientov a
to metddu koneénych rozdielov a adjungované premenné. Priklad sme mali rozdeleny na dve
casti. V prvej Casti sme uvazovali, ze dfiky ¢asovych intervalov st optimalizované premenné
a tlohou bolo vypocitat’ optiméalne riadenie chemického reaktora. V druhej ¢asti sme ¢asové
intervaly zafixovali a opét’ sme mali za dlohu vypocitat’ optimdlne riadenie chemického reak-
tora. Na zdklade vysledkov, ktoré si zhrnuté v tabulke tab.(7.1) si mozeme vsimnut’, ze
najvacsiu hodnotu ucelovej funkcie sme dosiahli pouzitim metédy ortogonélnej kolokacie.

V tret’om priklade sme mali za ilohu vypocitat’ optimalne riadenie auta aby preslo zadanu
drahu za najkratsi ¢as. Opét’ sme pouzili paramterizdciu vektora riadenia a ortogonalnu
kolokaciu. V ramci prikladu sme vysvetlili podrobny postup na poc¢itanie gradientov pomocou
adjungovanych premennych. Vysledky zhrnuté v tabulke tab.(8.2) ukazuji, ze najkratsi
vypoctovy cas potrebovala metéda ortogonalnej kolokacie.

Posledny priklad bol zamerany na emulzny polymeriza¢ny proces na vyrobu polymérov.
Latex je jeden z najznamejsich produktov emulzného polymeriza¢ného procesu. Vyhodou
polymerizacie je napriklad vel'kda molekulovd hmotnost’ polymérov, ktoré je mozné vytvorit’
prirychlej polymerizacii. Nevyhodou je napriklad energeticka naro¢nost’ pri suseni polymérov.

Celd reakcia styrénu a a—metylstrénu prebieha v sadzkovom polymerizacnom reaktore. V

58



priklade sme uvazovali zafixované ¢asové intervaly a tlohou bolo vypocitat’ optimalne riadenie
reaktora pri ktorom dosiahneme pozadovany stav za minimalny ¢as. Na rieSenie prikladu sme
pouzili metédu parametrizécie vektora riadenia s dvoma sposobmi pocitania gradientov. Prva
bola metdéda koneénych rozdielov a druha bola metéda adjungovanych premennych. Vysledky
zobrazené v tabul'ke tab.(9.1) ukazuju, ze metéda adjungovanych premennych potrebovala

menej vypoctového ¢asu ako metéda koneénych rozdielov.

Zaver

Diplomovéa praca bola zamerané na rieSenie optimalizacnych dloh. V rdmci prace sme rozo-
brali viacero metdd ako st napriklad parametrizacia vektora riadenia a ortogonalna koloké-
cia. Dalej sme rozoberali viacero sposobov na poéitanie gradientov. Aplikdciu spominanych
metod sme ukazali vo viacero optimalizaénych prikladov. Vysledky prikladov si podrobne

spracované v ramci kazdého prikladu.
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