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Abstract

This work is aimed to solve dynamic optimization problems. Secondly, the aim of the work

is to study methods which helps us to solve dynamic optimization problems. In this work

we are dealing mainly with two numerical methods. The first method is control vector

parametrization (CVP) and the second is orthogonal collocation (OC). We also discuss several

approaches for computing gradients, which are very important in the computing algorithm.

The work is divided into two parts. The first part discusses the theoretical basis for solving

optimization problems. In the second part we show the application of the methods and

procedures in several optimization problems.



Abstrakt

Táto práca je zameraná na riešenie problémov dynamickej optimalizácie. Ciel’om práce je

štúdium metód, ktoré nám pomáhajú pri riešeńı optimalizačných problémov. Práca sa za-

oberá predovšetkým dvoma numerickými metódami. Prvá metóda je parametizácia vektora

riadenia (CVP) a druhá metóda je ortogonálna kolokácia (OC). Tiež sa zaoberáme postupom

výpočtu gradientov, ktoré sú vel’mi dôležité pri výpočtovom algoritme. Práca je rozdelená do

dvoch čast́ı. Prvá čast’ sa zaoberá teoretickými základmi pre riešenie optimalizačných úloch.

V druhej časti ukazujeme aplikáciu metód a postupov pri riešeńı optimalizačných problémov.
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Nomenclature

A initiator concentration [mol l−1]/cooling surface [m2]

as surface area occupied by an emulsifier molecule [dm2]

Cpj cooling fluid heat capacity [Jkg−1K−1]

f initiator efficiency

Fj cooling fluid flowrate [ls−1]

fMS α–methylstyrene molar fraction in the initial load

ic inhibition coefficient

J objective function

Kd death coefficient [h−1]

kd rate constant for initiator decomposition [s−1]

kp rate constant for propagation [dm3mol−1s−1]

kcm rate constant for initiator radical entry into micelles [dm3micelle−1s−1]

kcp rate constant for initiator radical entry into particles [dm3part−1s−1]

KIPc product inhibition kinetic coefficient [gL−1]

KISc substrate inhibition kinetic coefficient [gL−1]

KSc substrate saturation kinetic coefficient [gL−1]

ktrM rate constant for transfer to monomer [dm3mol−1s−1]
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L kinetic chain length [gmol−1]

M global monomer concentration [mol dm−3]

m number of micelles per unit volume [micelle dm−3]

MM monomer molecular weight [gmol−1]

Mp monomer concentration in particles [mol dm−3]

mc maintenance coefficient [h−1]

mrCp reactor total heat capacity [JK−1]

Mpc critical monomer concentration in particles [mol dm−3]

M̄n number–average molecular weight [gmol−1]

n̄ average number of radicals per particle

N number of inactive particles per unit volume [particle dm−3]

N• number of active particles per unit volume [particle dm−3]

Np total number of particles per unit volume [particle dm−3]

NA Avogadro’s number [mol−1]

ns aggregation number of micelles

P dead polymer concentration [mol dm−3]

Pc product concentration [gL−1]

Pj number of polymers with chain length j

Qi ith moment of the molecular weight distribution

r reaction rate [gL−1h−1]

R• initiator radical concentration [mol dm−3]

Ra initiator decomposition rate [mol dm−3s−1]

Ri initiation rate [mol dm−3s−1]

Rn particle formation rate [mol dm−3s−1]

Rp polymerization rate [mol dm−3s−1]
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Rt termination rate [mol dm−3s−1]

RtrM transfer to monomer rate [mol dm−3s−1]

S emulsifier concentration [mol dm−3]

Sc substrate concentration [gL−1]

Si ith mode of the process

T reactor temperature [K]

t time [s]

Tj jacket temperature [K]

Tj,in cooling fluid inlet temperature [K]

U heat transfer coefficient [JK−1s−1m−2]

u control variable

V reactor contents volume [L]

V reactor jacket volume [L]

x state vector

ẋ vector of state derivatives

NI number of intervals

X monomer conversion

Xc critical monomer conversion

Xd dead biomass concentration [gL−1]

Xab active biomass concentration [gL−1]

YPscSc stoichiometric yield coefficient

YXscSc stoichiometric yield coefficient

DoF degree of freedom
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Greek Symbols

ε constant describing the efficiency of the particles relative to the micelles in collecting

an initiator radical

∆H polymerization reaction enthalpy [Jmol−1]

ρM monomer density [g dm−3]

ρp polymer particle density [g dm−3]

ρj cooling fluid density [g dm−3]

ρP polymer density [g dm−3]

ωP polymer weight fraction in the particles

µ specific growth rate of biomass [h−1]

µmax maximal specific growth rate of biomass [h−1]

Subscripts

0 initial

f final

Superscripts

L lower bound

U upper bound
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Chapter 1
Introduction

The search of optimal solution for problem is a every day struggle for everyone. Every day

we solve optimization problem when we are trying to find the optimal solution for our prob-

lem. By searching for optimal solution we can use many optimization methods. For solving

optimization problem we require well formulated mathematical description of the problem.

We also have to consider that every process has also constraints for example maximum speed

of a car, maximal flow in the pipes. Therefore search for optimal solution must obey such

constraints. When we talk about optimality (optimal solution) we talk about minimization

or maximization of objective function for example minimization of time, costs and energy

and maximization of production and profit. In this work we show the application of the

methods and procedures for solving dynamic optimization problems in chemical technolog-

ical processes. These methods are divided into two groups. First methods we talk about

analytical ones, and the second are numerical methods. For solving optimization problems

we use mainly numerical methods, specifically control vector parametrization (CVP) and or-

thogonal collocation (OC). The work is divided into two parts. The first part discusses the

general formulation of dynamic optimization problems. We discuss analytical and numerical

methods. In the last section of the first part, we examine procedures for calculating gradients

using finite differences, sensitivity equations, and adjoint variables methods. In the second

part of the work we show the application of these methods on several dynamic optimiza-

tion problems. In the first example we discuss the application of sensitivity equations for

parameter estimation problem. In the second example, optimal control of tubular reactor,

we compare numerical methods with different ways of calculating of gradients. In the next

example, time-optimal control of car, we show the procedure for calculating gradients us-

ing adjoint variables and the procedure for solving optimization problem using orthogonal

collocation.
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In the last example, the emulsion polymerization process, we compare the results obtained

using control vector parametrization method with finite differences or adjoint variables.
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Part I

Theoretical basis



Chapter 2
Dynamic Optimization

Dynamic optimization is usually referred to open-loop optimal control. In this chapter we

discuss the general formulation of dynamic optimization problems. We also discuss constraints

on the state and control variables. (Fikar 2007)

2.1 Problem Formulation

The main requirement for solving optimization problems is well formulated and defined prob-

lem. Formulation of optimal control problem requires (Kirk 1970):

1. Mathematical description of system which has to be controlled

2. Definition of constraints

3. Specification of minimization criterion

We consider system described by a set of ordinary differential equations

ẋ(t) = f(x(t), u(t), p, t) x(t0) = x0 (2.1)

where x(t) is a vector of state variables, u(t) is vector of control variables, p is a vector of

time independent optimized variables, t is independent time variable and x(t0) is a vector of

initial conditions. Next we define the objective functional which can be written in three basic

forms

• Bolza form

J(u(t), p) = G(x(tf ), p) +

tf
∫

t0

F (x(t), u(t), p, t)dt (2.2)
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• Lagrange form

J(u(t), p) =

tf
∫

t0

F (x(t), u(t), p, t)dt (2.3)

• Mayer form

J(u(t), p) = G(x(tf ), p) (2.4)

where J represents the optimization criterion, G and F are differentiable scalar functions.

Our objective is to find such control which will minimize the objective functional.

2.2 Constraints

Certain restrictions exist for all processes of chemical technology. These are the criteria which

we must respect while solving the optimization problems. Wide range of constraints can occur

in optimization problems. These can be divided into several cases.

• Interior equality constraints

h(x, u, p, ti) = 0 ti ∈ [t0, tf ] (2.5)

• Interior inequality constraints

g(x, u, p, ti) ≤ 0 ti ∈ [t0, tf ] (2.6)

• terminal equality constraints

h(x, u, p, tf ) = 0 (2.7)

• terminal inequality constraints

g(x, u, p, tf ) ≤ 0 (2.8)

Next we consider the upper and lower bounds on states and controls.

• boundaries for the states

x(t)L ≤ x(t) ≤ x(t)U (2.9)

• boundaries for the controls

u(t)L ≤ u(t) ≤ u(t)U (2.10)

Where superscripts L and U denote lower and upper boundaries respectively.
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Chapter 3
Optimal Control

In this chapter we discuss the general problems with optimal control of processes. We will

deal with the basic approach to solve the optimal control problems. By solving the problems

of optimal control we consider the minimization or maximization of the objective functional.

xf

x0

x(t)

x(tf )

t0 tf t

(a) fixed final time and state

x0

x(t)

t0 tf t

(b) fixed final time

xf

x0

x(t)

t0 t

(c) fixed final state

x0

x(t)

t0 t

(d) free final state and time

Figure 3.1: General problems of optimal control
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3.1 Problems of Optimal Control

For solving optimal control problems we can consider the maximization or minimization of

objective functional. By maximization of objective function we mean the maximization of

profit or conversion of reactants. As a minimization problem, we consider the minimization

of costs, outlet, energy and time. In the following four cases Fig.(3.1) we show some problems

of optimal control. Our objective is to find the optimal state trajectory from all admissible

state trajectories x(t) with the corresponding vector of control variables u(t) (Hirmajer 2007).

The first case of optimal control Fig.(3.1(a)) is when we have specified the final value of time

and state variables. This problem may seem very easy to solve, but the specified final values

of state and time variables can be very restrictive. In the next two cases Fig.(3.1(b)) and

Fig.(3.1(c))we have specified the final conditions for time or state variables. By fixed final

state value we can consider for example the minimization of final time by which we reach the

desired state (e.g. required conversion of reactants). The least restrictive case is when the

value of final state variables and time are unknown Fig.(3.1(d)).

3.2 Necessary Conditions of Optimality

This section discusses the necessary conditions of optimality which can give, beside other

things, information about the gradients of objective function. First we have to mentioned

that every constraint can be adjoined to the functional J by using Lagrange multipliers (Hull

2003). Then we can consider the function in following form

J̄ = J +

nc
∑

j=1

νjJj (3.1)

where J̄ is the augmented functional, nc is the number of constraints and ν is a vector of

Lagrange multipliers. We join the functional with the process described in equation (2.1).

J̄ = G+

∫ tf

t0

[F + λT (f − ẋ)]dt+

nc
∑

j=1

νj

{

Gj +

∫ tf

t0

[Fj + λT
j (f − ẋ)]dt

}

(3.2)

We define the Hamilton function

H(x(t), λ(t), u(t), p, t) = F (x(t), u(t), p, t) + λT (t)f(x(t), u(t), p, t) (3.3)
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Next we define functions as augmented functional

Ḡ = G+

nc
∑

j=1

νjGj (3.4a)

F̄ = F +

nc
∑

j=1

νjFj (3.4b)

λ̄ = λ+

nj
∑

j=1

νjλj (3.4c)

H̄ = H +

nj
∑

j=1

νjHj (3.4d)

New form of augmented functional can be written as follows

J̄(u(t), p) = Ḡ(x(ti), p, ti) +

∫ tf

t0

(H̄(x, λ̄, u, p, t) − λ̄T ẋ)dt (3.5)

where i ∈ {1, . . . .ni + 1} represents interior points. For the derivation of the augmented

functional we will consider typical problems of optimization.

• fixed initial time (t0 = 0),

• free initial conditions (x(t0, p) = x0(p))

• free final conditions (x(tf ) = xf )

• free final time (tf )

Differential of functional (3.5) can be written as follows

dJ̄ = dḠ+

∫ tf

t0

δH̄dt−

∫ tf

t0

δ(λ̄T ẋ)dt+ (H̄ − λ̄T ẋ)|tfdtf +

ni
∑

i=1

[H̄ − λ̄T ẋ]
t+i
t−i
dti (3.6)

Using integration method by parts we transform
∫ tf
t0

δ(λ̄T ẋ)dt into

−

∫ tf

t0

δ(λ̄T ẋ)dt = −

∫ tf

t0

(δλ̄T ẋ+ λ̄T δẋ)dt (3.7)

=

∫ tf

t0

( ˙̄λT δx− δλ̄T ẋ)dt− [λ̄T δx]
tf
t0 −

ni
∑

i=1

[λ̄T δx]
t+i
t−i

Now we can express all the differentials and variations in (3.6) and considering (3.7) we obtain

dJ̄ =
∂Ḡ

∂xT

∣

∣

∣

∣

t=tf

dxtf +

ni
∑

i=1

∂Ḡ

∂xT

∣

∣

∣

∣

t=ti

dxti +
∂Ḡ

∂pT
dp+

∂Ḡ

∂tf
dtf +

ni
∑

i=1

∂Ḡ

∂ti
dti

+

∫ tf

t0

(

∂H̄

∂xT
δx+

∂H̄

∂λ̄T
δλ̄+

∂H̄

∂uT
δu+

∂H̄

∂pT
δp+ ˙̄λT δx− δλ̄T ẋ

)

dt (3.8)

− λ̄T
tf
δxtf + λ̄T

t0δxt0 +

ni
∑

i=1

(λ̄T
t−i
δxt−i

− λ̄T
t+i
δxt+i

) + H̄tfdtf − λ̄T
tf
ẋtfdtf

+

ni
∑

i=1

(H̄t−i
− H̄t+i

)dti +

ni
∑

i=1

(λ̄T
t−i
ẋt−i

− λ̄T
t+i
ẋt+i

)dti
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The next step is to regroup the corresponding terms. We notice that dxti = δxt±i
+ ẋt±i

dti

and by equating δxt0 =
∂xt0

∂pT
dp we obtain

dJ̄ =

(

∂Ḡ

∂xT

∣

∣

∣

∣

tf

− λ̄T
tf

)

dxtf +

(

∂Ḡ

∂tf
+ H̄tf

)

dtf +

(

∂Ḡ

∂pT
+

∫ tf

t0

∂H̄

∂pT
dt+

∂x0
∂pT

)

dp

+

ni
∑

i=1

(

∂Ḡ

∂xT

∣

∣

∣

∣

t=ti

+ λ̄T
t−i

− λ̄T
t+i

)

dxti +

ni
∑

i=1

(

∂Ḡ

∂ti
+ H̄t−i

− H̄t+i

)

dti (3.9)

+

∫ tf

t0

[(

∂H̄

∂xT
+ λ̇T

)

δx+

(

∂H̄

∂λT
− ẋ

)

δλ+
∂H̄

∂uT
δu

]

dt

The differential of function J̄ must equal zero. Then the necessary conditions of optimality

we obtain when all bracketed terms are equal to zero.(Paulen et al. 2010)

• optimality condition for

control variables
∂H̄

∂uT
= 0 (3.10a)

parameters
∂Ḡ

∂pT
−

∫ tf

t0

∂H̄

∂pT
dt+ λ̄T (t0)

∂x0
∂pT

= 0 (3.10b)

final time
∂Ḡ

∂tf
+ H̄tf = 0 (3.10c)

state variables

ẋ =
∂H̄

∂λ̄
∀t ∈ [t0, tf ] (3.10d)

• optimal switching conditions for

times
∂Ḡ

∂ti
+ H̄t−i

− H̄t+i
= 0 ∀i ∈ {1, . . . , ni} (3.10e)

adjoint variables

∂Ḡ

∂xT

∣

∣

∣

∣

t=ti

+ λ̄T
t−i

− λ̄T
t+i

= 0 ∀i ∈ {1, . . . , ni} (3.10f)

• adjoint variables

definition

˙̄λ = −
∂H̄

∂x
∀t ∈ [t0, tf ] (3.10g)

boundary conditions

λ̄tf =
∂Ḡ

∂x

∣

∣

∣

∣

t=tf

(3.10h)
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Chapter 4
Dynamic Optimization Methods

For solving optimization problems we can use several optimization methods which can be

divided into two main groups

• Analytical methods

• Numerical methods

4.1 Analytical Methods

Analytical methods encompass

• Dynamic Programming

• Pontrygin’s principle of minimum

• Variational Calculus

4.1.1 Dynamic Programming

Dynamic programming is based on Bellman’s principle of optimality (Bellman 1957, Fikar

2007). This principle is based on the fact that optimal control of process depends only on

the initial and final state. We can use dynamic programming for continuous or discontinuous

systems. When we consider that trajectory form point A to point C is optimal (see Fig 4.1),

then the trajectory form point B to point C is also optimal. It shows what we have already

stated previously. The optimal control depends on the initial and final state but not on the

history of control actions.
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x(t)

t

A

B

C

Figure 4.1: Optimal trajectory

Consider functional eq.(2.2) and system eq.(2.1). We also consider that our problem has

a solution. We define function which is also called the Bellman function

ν(t, x(t)) = min
u(t)






G(tf , x(tf )) +

tf
∫

t

F (x(t), u(t), t)dt






(4.1)

differentiating eq.(4.1) we obtain the partial derivation of Bellman function

−
∂ν

∂t
= min

u(t)

[

F (x(t), u(t), t) +

(

∂ν

∂x(t)

)T

f(x(t), u(u), t)

]

(4.2)

by satisfying the boundary condition

ν(tf , x(tf )) = G(tf , x(tf )) (4.3)

Bellman’s equation (4.2) and the boundary conditions (4.3) representing necessary conditions

for finding minimum.(Hirmajer 2007, Čižniar 2005)

4.1.2 Pontryagin’s Principle of Minimum

Pontryagin’s principle of minimum (maximum) stands for a very efficient approach by solving

optimization control problems. This method is very useful when we are trying to get the

system form one steady state to another.(Hirmajer 2007, Pontryagin 1964, Čižniar 2005) We

consider the control problem (2.1) and Hamiltonian function (3.3). Next we define the adjoint

variable

λ(t) =
∂ν

∂x
(4.4)

next we differentiate separately left and right side of adjoint system with the respect to x

−
∂2ν

∂x∂t
=

∂H

∂x
+

∂2ν∂H

∂x2∂λ
(4.5)

λ̇ =
∂2ν

∂x2
ẋ+

∂2ν

∂x∂t
(4.6)
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We obtain canonical differential equations which represent the principle of minimum

λ̇(t) = −
∂H

∂x
(4.7)

ẋ =
∂H

∂λ
(4.8)

The necessary conditions for control problem (2.1), using the Pontryagin principle of minimum

are the following

• optimality condition for control variable (3.10a)

• adjoint variables definition (3.10g)

• adjoint variables boundary conditions (3.10h)

4.1.3 Variational Calculus

Basic relations for variational calculus are obtained from Bellman partial differential equa-

tions. Variational calculus is applied only for specific optimal control problems.(Hirmajer

2007)

We consider Euler-Lagrange differential equation

∂τ

∂x
−

d

dt

(

∂τ

∂ẋ

)

= 0 (4.9)

where τ is the Lagrange function define as

τ(x, ẋ, u, λ, t) = F (x, u, t) + λT [f(x, u, t)− ẋ] (4.10)

we consider objective function define eq.(2.2) then we can formulate the necessary conditions

of optimality

• optimality conditions for control variables

∂τ

∂u
= 0 t ∈ [t0, tf ] (4.11)

• definition of adjoint variables

λ̇(t) = −
∂τ

∂x
t ∈ [t0, tf ] (4.12)

• terminal conditions for adjoint variables

λ(tf ) =
∂G

∂x(tf )
(4.13)
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4.2 Numerical Methods

Numerical methods can be divide them into two main groups

• indirect methods

Boundary Condition Iteration (BCI)

Control Vector Iteration (CVI)

• direct methods

Control Vector Parametrization (CVP)

Orthogonal Collocation (OC)

4.2.1 Control Vector Parametrization

Control vector parametrization (CVP) falls into the class of numerical methods for solving

dynamic optimization problems. This method is based on approximation (discretization) of

original continuous control trajectory with finite number of control intervals of polynomial

nature. In this work we consider constant and linear control over these intervals. (Paulen

et al. 2010, Teo et al. 1991)

We consider system described by equation (2.1). The main issue with continuous control

trajectory is that we need to find optimal value of control variable at each time. As it is shown

at Fig. 4.2 there is infinite number of degrees of freedom. Hence that by discretization, the

u(t)

t

Figure 4.2: Continuous control trajectory.

original control profile, we replace the original infinite dimensional decision trajectory with

one possessing finite number of degrees of freedom (Fig. 4.3). In this case we consider 6

optimization parameters (3 constant control values, 3 corresponding time intervals). This
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u(t)

t

u1

u2

u3

∆t1 ∆t2 ∆t3

Figure 4.3: Discretized control trajectory.

yields 6 degrees of freedom to our optimization problem. Discretized control can be expressed

as

u(t) = ui ti−1 ≤ t < ti (4.14)

where ui represent constant control value as defined in Fig.(4.3). We also define the length

of time intervals as ∆ti = ti − ti−1. So we transformed the original infinite dimensional

optimization problem into finite dimensional problem of non-linear programming (Paulen

et al. 2010). Resulting problem involves finite number of decision parameters (degrees of

freedom).

We can also consider replacing the continuous control trajectory with piece-wise linear

control (see Fig. 4.4). Unlike in case of piece-wise constant trajectory (see Fig. 4.3), we may

u12

u56

u34

u78

u(t)

t

u0

u9

∆t1 ∆t2 ∆t3 ∆t4 ∆t5

(a) continuous case

u(t)

t

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

∆t1 ∆t2 ∆t3 ∆t4 ∆t5

(b) discontinuous case

Figure 4.4: Continuous and discontinuous piece-wise linear control.

consider continuous as well as discontinuous control profile. Then the continuous piece-wise

linear control trajectory (Fig. 4.4) on each time interval can be described with following
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equation.

u(t) = ui−1 +
ui − ui−1

ti − ti−1
(t− ti−1) ∀t ∈ [ti−1, ti] (4.15)

Control trajectories for discontinuous profiles can be described analogically.

Here we show how continuity of considered discretization influence the number of degrees

of freedom:

• continuous control Fig.(4.4(a)) (DoF = 11)

Since u12 : u1 = u2, u34 : u3 = u4, u56 : u5 = u6, u78 : u7 = u8, the final number

of decision variables is given by 6 control variables and 5 time intervals.

• discontinuous control (DoF = 15)

In this case we optimize 10 control variables and 5 time intervals.

Next we consider special case. We replace the continuous control trajectory with piece-

wise constant and linear control Fig.(4.5). We consider continuous and discontinuous control

u(t)

t

u0

u1

u2

u3

u4

u5
u6

u7

u8

∆t1 ∆t2 ∆t3∆t4 ∆t5 ∆t6

(a) continuous

u(t)

t

u0

u1

u2 u3

u4

u5
u6

u7

u8

∆t1 ∆t2 ∆t3 ∆t4 ∆t5 ∆t6

(b) discontinuous

Figure 4.5: Continuous and discontinuous constant-linear control

profile with 3 constant and 2 linear segments. Continuous or discontinuous control trajectory

on each time interval can be again described using either equation (4.15) for linear segments

or equation (4.14) for constant segments.

Fig.(4.5) shows number of degrees of freedom for each considered strategy:

• continuous control (DOF = 10)

In this case, u0 = u1, u2 = u3 = u4, u5 = u6 = u7 and optimization is to decide

about values of 4 control variables and lengths of 6 time intervals.

• discontinuous control (DOF = 15)

We have to optimize 9 control variables and 6 time intervals.
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Figure 4.6: Algorithm of the CVP method

In Fig.(4.6), we show general algorithm for solving optimization problems using CVP method

with adjoint variables which are used for computing gradients. The first step is to discretized

the continuous control trajectory with finite numbers of intervals with constant control. Next

we integrate the process model eq.(2.1) forward in time and adjoint system eq.(3.10g) back-

ward in time. From integration of process model we calculate the value of constraints and from

integration of adjoint system we calculate gradients on objective function and constraints.

The final step is to evaluate the value of objective function with respect to constraints with

NLP solver. The whole process is repeated until the value of objective function stops to

change.

4.2.2 Orthogonal Collocation

Orthogonal collocation (OC) transforms the original dynamic optimization problem to static

through the polynomial approximation of state and control profiles. In order to provide

the orthogonal behavior we use Lagrange polynomials for the approximation. The roots of
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Legendre polynomials determines the distribution of collocation points.(Cuthrell and Biegler

1987, Lauw-Bieng and Biegler 1991, Čižniar 2005).

We consider the system of ordinary differential equations (2.1) with finite numbers of

elements i in time t ∈ [ξi, ξi+1], we also consider constraints described in equations (2.5) and

(2.6). The next step is to choose random time interval i shown on picture Fig.(4.7) with time

t ∈ [ξi, ξi+1], state and control variables are approximated through Lagrange polynomials

which are written as follow (Fikar 2007)

xnK+1(t) =

K
∑

j=0

xnijφj(t) φj(t) =

K
∏

k=0,j

t− tik
tij − tik

(4.16)

umK(t) =
K
∑

j=1

uijθj(t) θj(t) =
K
∏

k=1,j

t− tik
tij − tik

(4.17)

for i = 1, . . . , NI

where NI represents finite numbers of elements, k = 0, j means that by k = 0 we begin, but

k 6= j, K is number of collocation points, n is index of state variable and m is index of control

variable. When we consider that number of collocation points for states and control equals,

xi−1,0 xi−1,1 xi−1,2 xi,0 xi,1 xi,2 xi+1,0 xi+1,1 xi+1,2 xi+2

ξi−1
ξ ξi+1

ξi+2
∆ξ

ui−1,1 ui−1,2 ui,1 ui,2 ui+1,1 ui+1,2

Figure 4.7: Distribution of time intervals and collocation points for state and control variables

then we can consider the distribution described on Fig.(4.7). Lagrange polynomials have the

following properties

xK+1(tij) = xij (4.18)

By mentioned polynomials we can directly define the constraints on state and control vari-

ables. Then the equations (2.1) which described the system, can be written in collocation

points as follows, while we have to consider the normalized interval ∆ξi(τ) where τ ∈ [0, 1]

∆ξr(tik) = M

K
∑

j=0

xnij φ̇j(τk)−∆ξf(tik, xik, uik) (4.19)

i = 1, . . . , NI , j = 0, . . . ,K, k = 1, . . . ,K
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where φ̇j(τk) is independent from interval length, but only from the distribution of collocation

points on the normalized interval. In order to obtain the desired NLP problem we transform

objective function and constraints the same way as we transform the system of ordinary

differential equations.
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Chapter 5
Methods for Computing Gradients

In this section we discuss the methods for computing gradients. In dynamic optimization

gradients are the basis in the computing algorithm. For obtaining gradients we can use one

of the following methods.

5.1 Finite Differences

The system is integrated n-times and in each of them is one of the variable yi changed. Then

we can express the gradients as follow

∇yjJi =
Ji(y1, . . . , yj +∆yj, . . . , yn)− Ji(y)

∆yj
i = 0, . . . , ne + nne (5.1)

where ne is the number of equality constraints, nne is the number of inequality constraints

and yi is the vector of optimized variables define as follow

yT = (∆t1, . . . ,∆tf , u
T
1 , . . . , u

T
f , p1. . . . , pp) (5.2)

where p is number of paramters. The main advantage of this method is the simplicity of

implementation. The disadvantage is the amount of integration that is necessary to repeat

for each optimized parameter (Fikar 2007). These gradients are calculated only with some

precision. Finite difference method is the least accurate method for computing gradients.

The main issue of finite differences method, is how to slightly change the variable that the

change would not be too big or too small. By too small (too big) we mean for example when

we evaluate the objective function or constraints we must integrate the system forward in

time. This integration is accurate only to some point, so it can happen that the gradients

calculated with finite differences method are inaccurate considering the integration precision.

General procedure for calculating gradients with finite differences method is following:
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1. Initial guess, y, for values of optimized variables eq.(5.2).

2. Forward integration of system eq.(2.1).

3. Calculating the value of objective function Ji(y).

4. Choosing the value of ∆y (small positive number) and initializing i = 1.

5. Changing the value of i-th parameter in vector of optimized variables by ∆y.

6. Forward integration of system with new vector of optimized variables.

7. Calculating new values for objective function Ji(y1, . . . , yj +∆yj, . . . , yn).

8. Calculating gradients according the equation (5.1)

9. If i equals the number of optimized variables then quit. Else increment i and go to

step 5.

5.2 Adjoint Variables

Form the necessary conditions of optimality we define the adjoint system and adjoint variables

eq.(3.10g) and eq.(3.10h). In the next step we express the gradients to objective function as

∂J̄

∂tf
= H̄(tf ) +

∂Ḡ

∂tf
(5.3)

∂J̄

∂tj
= H̄(t−j )− H̄(t+j ) j = 1, . . . , NI − 1 (5.4)

∂J̄

∂pT
=

∂Ḡ

∂pT
+ J̄p(t0) + λ̄T

t0

∂x0
∂pT

(5.5)

∂J̄

∂uj
= J̄u(tj−1)− J̄u(tj) j = 1, . . . , NI − 1 (5.6)

where

˙̄Ju =
∂H̄

∂uT
(5.7)

˙̄Jp =
∂H̄

∂pT
(5.8)

By expressing gradients on equations (5.3) to (5.6) we have to realize that the optimization

variables are time increments

tf =

NI
∑

i=1

∆ti (5.9)
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where NI represents finite numbers of elements. For expressing gradients on time increments

the final gradients are expressed as

∂J̄i
∂∆tj

=

NI
∑

k=1

∂J̄i
∂tk

(5.10)

The general procedure for expressing gradients on objective functional and constraints can

be written in the following steps(Paulen 2010)

1. Forward integration of system eq.(2.1) with current guess of optimized variables.

2. Initializing of adjoint variables according to eq.(3.10h)

3. Backward integration of adjoint system eq.(3.10g), eq.(5.7) and eq.(5.8)

4. Calculating gradients according the equations (5.3) to (5.6).

By the backward integration of adjoint system we require the knowledge of state variables

x(t). One of the possibilities is to integrate the state equations together with the adjoint

equations backward in time. By this approach there may occur numerical problems because

the backward integration of state equations can be unstable (Fikar 2007). The recommended

approach is to store the values of the state variables using some (possibly dense) grid of

time points. Then, if we integrate backward in time we use these grid points and interpolate

between respective state values.

5.3 Sensitivity Equations

By integration of the sensitivity system to state variables we obtain the sensitivities of individ-

ual states and parameters that we optimize (Caracotsios and Stewart 1985). The sensitivity

equations for state variables and parameters are define as follow

ṡuij
(t) =

d

dt

(

∂x

∂uTij

)

=
∂fi
∂xT

suij
+

∂fi
∂uT

(5.11)

ṡp(t) =
d

dt

(

∂x

∂pT

)

=
∂fi
∂xT

sp +
∂fi
∂pT

(5.12)

where suij
and sp are sensitivity coefficients. The initial conditions for sensitivities are written

as follows

sk(0) =
∂x(0)

∂u
=

∂x0
∂u

(5.13)

if the initial conditions depends on certain parameter, following equation is applied

x(t0) = x0(p) ⇒ sk(0) 6= 0
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When we defined the sensitivities then we can calculate the gradients according to the opti-

mization criterion

∇uij
J =

NI
∑

i=1

∂G

∂xT (t−i )
suij

+

NI
∑

i=1

∂G

∂uTi
+

tf
∫

t0

(

∂fi
∂xT

suij
+

∂fi
∂uT

)

dt (5.14)

∇pJ =

NI
∑

i=1

∂G

∂xT (t−i )
sp +

∂G

∂pT
+

tf
∫

t0

(

∂fi
∂xT

sp +
∂fi
∂pT

)

dt (5.15)

Calculation of gradients using the sensitivity equations are mainly used when we have few

optimized variables but many constraints (Fikar 2007).

The procedure for calculating gradients using sensitivity equations is following (Hirmajer

2007)

1. Guess for initial values of optimized variables.

2. Forward integration of system eq.(2.1) and sensitivity equations (5.11) and (5.12).

3. Calculating the value of objective function and constraints.

4. Calculating the gradients according the equations (5.14) and (5.15).
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Chapter 6
Lactic Acid Fermentation

Biological engineering problems can be described by a set of ordinary differential. These

dynamic models are semi-empirical and they rely on empirical data. Mathematical descrip-

tion of bioprocesses leads to models with parameters which we have to determined from

experimental data. The aim was to calculate the optimal value of prescribed parameters in

bioprocess applications. (Kovács 2010).

6.1 Problem Formulation

We consider fermentation process for the production of lactic acid using saccharose as sub-

strate. The saccharose is converted into both biomass and lactic acid during the fermentation.

The microbial reaction is given by

Sc
Xab−−→ Pc

In the reaction we use catalyst Xab which concentration changes in time. The rate of pro-

duction growth of the micro-organism Xab is given by

rXab
= µXab (6.1)

where µ is the specific growth of the biomass and given by

µ =
µmaxSc

KSc + Sc +
(

S2
c

KISc

)

1

1 +
(

Pc

KIPc

)nc
−Kd (6.2)

The rate of consumption rSc of substrate is given by

rSc = −
1

YXabSc

rXab
+mcXab (6.3)
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where the negative sign signifies that the substrate concentration decreases due to its con-

sumption by the micro-organisms. Note that rXc is positive because the micro-organisms

grow during the reaction. The rate of production rPc of lactic acid is give by

rPc = YPcScrSc (6.4)

Cell death rate rXd
follows first-order decay

rXd
= −KdXab (6.5)

The dynamic model is described by four differential equations

Ẋab = rXab
(6.6)

Ṡc = rSc (6.7)

Ṗc = rPc (6.8)

Ẋd = rXd
(6.9)

The total biomass Xt is a sum of the active biomass Xab and the dead cells Xd such as

Xt = Xab +Xd (6.10)

Our objective is to find optimal value for nine parameters

p = [µmax,KSc ,Kd,KISc ,KIPc , YXabSc , YPcSc , ic,mc]

Based on the technological considerations, it can be assumed that the parameters range

between the below defined lower and upper bounds

lb = [0.1, 0.01, 0.01, 1e1, 1e-1, 0.01, 1e-3, 1, 1e-4]

ub = [0.9, 1, 0.5, 1e4, 1e3, 0.6, 1, 10, 1]

Further we were given the experimental values for Sc, Pc and Xt for three measurements at

different times.

6.2 Results

Along with the example were provided experimental data for three measurements which were

obtained in different time. According to specified experimental data we calculated the optimal

trajectory for the calculated optimal parameters. Using sensitivity equations for calculating

gradients we calculated the optimal values for nine parameters

µmax = 0.3328 KISc = 1000 YPcSc = 0.7159

KSc = 1.000 KIPc = 50.5444 ic = 10 (6.11)

Kd = 0.1098 YXabSc = 0.0858 mc = 1.000
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Value of objective function

J = 838.2669

For calculating optimal values of the parameters we used Matlab integrated NLP-solver

fmincon. Integration was performed using ode45 integrator where 4th order Runge-Kutta

numerical integration method is implemented. We can notice that most of the estimated

parameters (6.11) are on the lower and upper bounds. Better results can be obtained by con-

sidering larger permitted space for optimization. In pictures Fig.(6.1), Fig.(6.2) and Fig.(6.3)

we compare measured data (*) and the state model (-) obtained by numerical integration of

the estimated parameters for the concentration of substrate, product and total biomass for

all three measurements.
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Figure 6.1: Comparison of measured data (*) and the state model (-) for the first measurement
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Figure 6.2: Comparison of measured data (*) and the state model (-) for the second mea-

surement
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Figure 6.3: Comparison of measured data (*) and the state model (-) for the third measure-

ment
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Chapter 7
Control of Chemical Reactor

In this section we deal with the optimal control problem of tubular reactor. For solving

the problem we used two numerical methods. The first numerical method is control vector

parametrization(CVP). And the second method is orthogonal collocation(OC). For comput-

ing gradients with CVP we used finite differences method(FD) and adjoint variables(AV).

(Čižniar et al. 2005)

7.1 Problem Formulation

The aim of the example was to calculate such control of tubular reactor, which will maximize

the concentration of the desired component B at the end of the reaction.

We consider two parallel reaction

A → B

B → C

The system is described by two ordinary differential equations

ẋ1 = −(u+ 0.5u2)x1 x1(0) = 1 (7.1)

ẋ2 = ux1 x2(0) = 0 (7.2)

u ∈ [0, 5] tf = 1 (7.3)

where, x1 is the concentration of the component A, x2 is the concentration of component B

and u is the control variable. The objective function can be written as follow

max
u(t)

x2(tf ) (7.4)
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7.2 Results

The example is divided into two parts. In the first part (Case 1) the length of time intervals

were optimized variables and the objective was to optimal control of the tubular reactor. In

the second part (Case 2) we fixed the length of the time intervals and our objective was to

calculate the optimal control of tubular reactor. For the method of orthogonal collocation

we used 5 collocation points for state variables and 2 collocation points for control variables.

By both numerical methods we used 4 time intervals for state variables and control variables.

For calculating the optimal control trajectory and value of the time intervals we used Matlab

integrated NLP-solver fmincon. Obtained results are shown in Table(7.1). In the first part

(Case 1) we compare the results where we optimized control variables and time intervals.

In the second part (Case 2) we fixed the time intervals and the optimized variable was

control variable. Further for both parts we compare the value of objective function (x2(tf )),

number of NLP iteration (#it) and computing time (CPU). For obtaining results we used two

numerical methods. The first method was control vector parametrization (CVP) by which we

used two ways for computing gradients - adjoint variables (AV) and finite differences (FD).

The second numerical method was orthogonal collocation (OC). By comparing the results

Table 7.1: Comparison of different numerical methods by fixed and optimized time intervals

Case 1 Case 2

Method CPU [s] #it x2(tf ) CPU [s] #it x2(tf )

CVP FD 47.99 50 0.5706 27.5076 28 0.5664

CVP AV 6.7441 5 0.5591 4.9982 29 0.5664

OC 63.0022 871 0.5730 4.6768 83 0.5726

for the first part (Case 1) we notice that the method of orthogonal collocation yield the best

value of objective function of all three methods. But compare to other method it needed

more NLP iterations and computing time. We notice that CVP FD yields better results for

objective function than CVP AV. This behaviour can occur when the optimization indetified

only local minimum. By comparing the results of the second part (Case 2) we notice that by

using OC we obtained the maximum value of objective function by minimum computing time

but NLP solver needed more iterations to converge. If we compare the results using CVP

method with AV and FD we can conclude that by using CVP FD we calculated the maximal

value of objective function but the computing time and NLP iterations increased compare to

CVP AV. We can also conclude that by optimizing not only control variables but also time
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intervals we obtain better results compare to results obtained when we optimized only control

variables. This behavior was expected because by increase of degrees of freedom and also by

providing accurate gradients, the optimization algorithm was able to approximate better the

objective function value.

In the following pictures Figs.(7.1),(7.2) and (7.3) we compare the optimal control trajec-

tories for all three methods.
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Figure 7.1: Comparison of control trajectory by optimized and fixed time intervals for OC
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Figure 7.2: Comparison of control trajectory by optimized and fixed time intervals for CVP

FD
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Figure 7.3: Comparison of control trajectory by optimized and fixed time intervals for CVP

AV
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Chapter 8
Time-Optimal Control of Car

In this chapter we discuss the application of two dynamic optimization methods: control

vector parametrization and orthogonal collocation. In this example we compare two men-

tioned methods. The first method was CVP with two ways of calculating gradients - adjoint

variables (AV) and finite differences (FD). The second method was OC with finite difference

gradients. In both cases we used Matlab NLP solver fmincon with the same initial condi-

tions. Our goal was to minimize the final time for which the car gets from point 0 to point

p.

0 p

Figure 8.1: Optimal control of car

8.1 Problem Formulation

The system is described with two differential equations

ẋ1 = x2 (8.1a)

ẋ2 = u (8.1b)
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where x1 is the track, x2 is the speed of the car and u is the acceleration of car. In both cases

we consider the same initial and terminate conditions

x1(0) = 0 x1(tf ) = 300 (8.2a)

x2(0) = 0 x2(tf ) = 0 (8.2b)

the constraints on control can be written as follow

−2 ≤ u ≤ 2 uL ≤ u ≤ uU (8.3)

the objective function is follow

min
u

tf (8.4)

8.2 Procedure for CVP

We consider piece-wise constant control over the time intervals. With piece-wise constant

control over the interval we can convert the dynamic optimization problem into nonlinear

programing problem.(Hirmajer 2007) We consider the functional (8.4) and constraints (8.2).

For computing gradients on objective function and constraints we procedure described in

section 5.2. Further we used two time intervals Fig.(8.2) with piece-wise constant control.

In the following procedure we show the expression of gradients on objective function. The

∆t1 ∆t2

u1 u2

t0 t1 t2

Figure 8.2: CVP example for two time intervals with piece-wise constant control

objective function can be written as follow

J0 = min
u

tf (8.5)

the second step is to express the Hamilton function

H0 = λ0,T f(x, u) = λ0
1x2 + λ0

2u (8.6)

where f is the right side of differential equations. Further we express the boundary conditions

for adjoint variables. Adjoint variables are define only in the final time

λ(tf ) =
∂Ḡ

∂xT
=





0

0



 (8.7)
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according to equation (3.10g) we obtain differential equations for adjoint system

λ̇1 = 0 (8.8)

λ̇2 = −λ1 (8.9)

Gradients on objective function are express from equations (5.3) and (5.4)

∂J0
∂tf

=
∂J0
∂t2

= 1 (8.10)

∂J0
∂ti

=
[

λ0
1(t

−

i )x2(t
−

i ) + λ0
2(t

−

i )u(t
−

i )
]

−
[

λ0
1(t

+
i )x2(t

+
i ) + λ0

2(t
+
i )u(t

+
i )
]

(8.11)

by simplifying the equation (8.11) we obtain

∂J0
∂ti

= λ0
2(ti)(u(t

−

i )− u(t+i )) (8.12)

where i = 0, 1. In Tab.(8.1) we summarized the procedure how to express gradients for each

time interval. We can also notice that we expressed the constraints as a new minimization

criterion. Then the procedure for expressing gradients on constraints is the same as for

objective function.

Table 8.1: Expression on gradients on objective function and constraints

J0 = min tf J1 = minx1(tf )− 300 J2 = minx2(tf )

u1 Ju(t0)− Ju(t1) Ju(t0)− Ju(t1) Ju(t0)− Ju(t1)

u2 Ju(t1) Ju(t1) Ju(t1)

∆t1 λ2(t1)(u1 − u2) +
∂J0
∂t2

λ2(t1)(u1 − u2) +
∂J1
∂t2

λ2(t1)(u1 − u2) +
∂J2
∂t2

∆t2
∂J0
∂t2

= λ2(tf ) = 1 ∂J1
∂t2

= λ2(tf ) = x2(tf )
∂J2
∂t2

= λ2(tf ) = u(tf )

∂J0
∂∆t1

= ∂J0
∂t1

+ ∂J0
∂t2

∂J1
∂∆t1

= ∂J1
∂t1

+ ∂J1
∂t2

∂J2
∂∆t1

= ∂J2
∂t1

+ ∂J2
∂t2

∂J0
∂∆t2

= ∂J0
∂t2

∂J1
∂∆t2

= ∂J1
∂t2

∂J2
∂∆t2

= ∂J2
∂t2

8.3 Procedure for OC

In this section we explain on example the application of orthogonal collocation for solving

optimization problems. We consider K = 2 and NE = 2. The following equations we obtain
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using equations (4.16) and (4.17) for the intervals.

Interval 1:

φ0(t) =
t− t11
t10 − t11

t− t12
t10 − t12

(8.13)

φ1(t) =
t− t10
t11 − t10

t− t12
t11 − t12

(8.14)

φ2(t) =
t− t10
t12 − t10

t− t11
t12 − t11

(8.15)

θ1(t) =
t− t12
t11 − t12

(8.16)

Interval 2:

φ0(t) =
t− t21
t20 − t21

t− t22
t20 − t22

(8.17)

φ1(t) =
t− t20
t21 − t20

t− t22
t21 − t22

(8.18)

φ2(t) =
t− t20
t22 − t20

t− t21
t22 − t21

(8.19)

θ1(t) =
t− t22
t21 − t22

(8.20)

The distribution of collocation points Fig.(8.3) we obtain as the roots of Legendre polynomi-

als. According to equations (4.16) and (4.17) we obtained equations.
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Figure 8.3: Distribution of colocation points

Example 1. interval.

[x110φ̇0(t10) + x111φ̇1(t10) + x112φ̇2(t10)]− [x210φ0(t10) + x211φ1(t10) + x212φ2(t10)] = 0 (8.21)

[x110φ̇0(t11) + x111φ̇1(t11) + x112φ̇2(t11)]− [x210φ0(t11) + x211φ1(t11) + x212φ2(t11)] = 0 (8.22)

[x110φ̇0(t12) + x111φ̇1(t12) + x112φ̇2(t12)]− [x210φ0(t12) + x211φ1(t12) + x212φ2(t12)] = 0 (8.23)

Further we rewrite the equations (8.1b) to the following form

[x210φ̇0(t10) + x211φ̇1(t10) + x212φ̇2(t10)]− [u11θ1(t11)] = 0 (8.24)

[x210φ̇0(t11) + x211φ̇1(t11) + x212φ̇2(t11)]− [u11θ1(t11)] = 0 (8.25)

[x210φ̇0(t12) + x211φ̇1(t12) + x212φ̇2(t12)]− [u11θ1(t11)] = 0 (8.26)
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8.4 Results and Discussion

In this chapter we compare two numerical methods: CVP and OC. For calculating the op-

timal control trajectory and value of time intervals we used Matlab integrated NLP-solver

fmincon. In table Tab.(8.2) are obtained results. For computing gradients in CVP method

we used finite differences method (FD) and adjoint variables (AV). It can be seen Tab.(8.2)

that by using adjoint variables for computing gradients the number of iteration increased and

the computational time decreased. We can notice by comparing CVP and OC with gradients

computed by finite differences method, that CVP method required more computational time

but less iteration to reach optimum than OC. Also we notice, that by comparing CVP method

using gradients computed by finite differences and adjoint variables, that the results for con-

trol variables and time intervals are the same. The CVP method with gradients computed by

finite differences method required less iterations but more computational time then CVP with

gradients computed with adjoint variables. The values of objective function, time intervals

and control variables are the same in all three cases. Where #it represents the number of

Table 8.2: Comparison of two numerical methods

CVP FD CVP AV OC

uU 2 2 2

uL -2 -2 -2

∆t1 12.2474 12.2474 12.2474

∆t2 12.2474 12.2474 12.2474

tf [s] 24.4949 24.4949 24.4949

#it 5 8 8

CPU [s] 5.2595 3.9550 0.5183

NLP iterations, CPU represents the computational time, tf is the value of objective function,

∆t1 and ∆t2 are the values of delta intervals and uU ,uL are the maximum and minimum

values of control variables.

In pictures Fig.(8.4) we can notice that we used two time intervals. On the first we accelerate

and on the second we decelerate. We can notice in Fig.(8.4(a)) and Fig.(8.4(d)) that we meet

the constraints which were characterized by the final conditions eq.(8.2). We can also notice

the switching time Fig.(8.4(b)) and Fig.(8.4(c)). Switching time is when the car stops to

accelerate and starts to slowing down. We also notice that the switching time is the same in

both numerical methods.
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(f) OC with finite-differences

Figure 8.4: Comparison of CVP and OC numerical method
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Chapter 9
Emulsion Polymerization Process

Emulsion polymerization process is used to produce polymers. For example latex is often

product of emulsion polymerization. The final properties of polymers are highly related to

the reaction time, molecular characteristics and reactor operating conditions. Reaction time

is influenced by operating conditions. Advantages of emulsion polymerization include high

molecular weight polymers that can be made by fast polymerization rate. But there are also

Tjin(t)

Fj

Vj

Tj

V T

Water

Monomers
Initiator

Emulsifier

Figure 9.1: Schematic representation of the batch polymerization reactor

disadvantages e.g. the removal of water to dry the polymers is energy intensive process.The

reaction of styrene and α–methylstyrene takes place in batch emulsion copolymerization reac-

tor Fig.(9.1). We assume that the contents of the reactor and the jacket are perfectly mixed.

The control variable represents the cooling fluid inlet temperature (Tjin).

49



9.1 Process Model

The process can be divided into several parts. Kinetic model, molecular weight distribution

and reactor temperature dynamic model. This model was originally described by Castel-

lanos (Castellanos 1996).

9.1.1 Kinetic Mechanism

For emulsion polymerization process we need 4 components. Dispersion medium, monomer,

initiator and emulsifier. For dispersion medium we can use water. Monomer is slightly

soluble in dispersion medium. Initiator has to be water soluble. Process of emulsion poly-

merization can be divided into three stages. Experimental validation was carried out by

Castellanos (Castellanos 1996) and Gentric (Gentric 1997).

Three stages of the model:

I: The first phase is characterized by the production of free radicals by initiator decom-

position. Free radicals are captured by the micelles. The termination of the first stage

accured with disapearing of all micelles.

II: This stage is characterized by particles growth. Their amount is constant during the

second and the third stage. The particles are saturated with monomer. This stage

terminate when all the monomer droplets have disappeared.

III: The monomer concentration in the particles decreases and the rate of polymerization

is decreasing.

The kinetic mechanism can be written as follows

Initiator decomposition: A −→ 2R• Ra = 2fkdA

Particle formation: R• +m −→ N• Rn = k1mR•

Initiation: N + R• −→ N• Ri = k2NR•

Termination: N• +R• −→ N Rt = k2N
•R•

Propagation: P•

j +M −→ P•

j+1 Rp = kpMpN
•

Transfer to monomer: P•

j +M −→ M• + P•

j RtrM = ktrMMpN
•

9.1.2 Kinetic Model

This model is based on the experiment carried out at three different temperatures and four

initial monomer compositions. In this work we consider only 10% in mass of α–methylstyrene.
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In the work Gentric (Gentric 1997) they described that there was no composition change

during the polymerization. So we can write the global propagation constant as follows

kp = k′pexp(−a.fMS) (9.1)

where a is a constant, fMS is molar fraction of α–methylstyrene at the beginning of a reaction.

The rate of particles can be written

Ṅp = kcmm
RaNA

kcmm+ kcpNp
(9.2)

next we introduce a capturing efficiency of the particles with respect to the micelles

ε =
kcpSNA

kcmm
(9.3)

Ṅp =
RaNA

1 + (εNp/SNA)
(9.4)

emulsifier molecules will be absorbed in monomolecular layers at the polymer particles surface

S = So − kv(XMo)
2/3N1/3

p (9.5)

where

kv =

[

36πM2
M

ω2
P(asNA)3ρ

2
P

]1/3

(9.6)

where X is the conversion rate and M0 is the initial monomer concentration. Then we can

write the rate of monomer consumption as follow

Ṁ = −Rp = −kpMp
Np

NA
n̄ (9.7)

The monomer concentration in the particles can be written

Mp = Mpc =
(1−Xc)ρM

[(1−Xc) +XcρM/ρP]MM
X ≤ Xc (9.8a)

Mp =
(1−X)ρM

[(1−X) +XρM/ρP]MM
X > Xc (9.8b)

where Mpc critical monomer concentration and Xc is critical conversion rate.

9.1.3 Molecular Weight Distribution Model

We also have to obtain the necessary polymer properties. These properties are linked to

polymer structure.(Paulen et al. 2010). The considered properties are for example global
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macromolecule concentration and the moments of the polymerization degrees. The degrees

of production of the moments of the molecular weight distribution can be written as follow:

Q̇0 =Rt +RtrM (9.9a)

Q̇1 =L(Rt +RtrM ) (9.9b)

Q̇2 =2L2(Rt +RtrM ) (9.9c)

where

Rt =
Ran̄Np

Np +
S
ε

(9.10)

RtrM =ktrMMp
Np

NA
n̄ (9.11)

L =
Rp

Rt +RtrM
(9.12)

Here variable L denotes kinetic chain length. Once these moments are known, the number-

average molecular weight (M̄n) can be calculated according to:

M̄n = MM
Q1

Q0
(9.13)

9.1.4 Heat Balance Equation

For the control of temperature inside the reactor we have to describe the temperature dynamic

of the reactor. The heat inside the reactor is controlled by cooling fluid. The temperature

dynamic of the reactor and the cooling jacket is described by the following equations (Salhi

et al. 2004)

Ṫ = −
V∆H

mrCp
Rp +

UA

mrCp
(Tj − T ) (9.14)

Ṫj =
Fj

Vj
(Tjin − Tj)−

UA

ρjVjCpj
(Tj − T ) (9.15)

where V and V j are the reactors contents and jacket volume, U is the heat-transfer coefficient,

Fj is the flow rate of the cooling fluid, mrCp is the reactors total heat capacity, ρj represents

the density of the cooling fluid, Cpj is the heat capacity of the cooling fluid.

9.2 Problem Formulation

The objective of this work was to calculate the optimal control by which we reach the desire

state at minimum time. The desire state is characterized by final conversion written as follow

Xf = 1−
M(tf )

M0
(9.16)
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and final number average molecular weight is define as

Mnf = MM
M0 −M(tf )

Q0(tf )
(9.17)

The objective function can be written as

min
u(t)

tf (9.18)

where initial state vector for the first stage is defined as

(x0)
T = [M0, 0, 0, 343.15, 343.15] (9.19)

State vector is represented by global monomer concentration, number of particles,three mo-

ments of molecular weight distribution, initial temperature inside the reactor and cooling

jacket: xT = (M,Np, Q0, T0, Tj,0). The optimized control variable is the temperature of the

inlet cooling fluid (Tjin).

9.3 Results and Discussion

For solving the optimization problem we used NLP solver SNOPT (Sparse Nonlinear Op-

timizer). For integration we used the ode45 integrator which uses the 4th order Runge-

Kutta method. Results are shown in Table 9.1 where we compare the computational time

(CPU), number of NLP iterations (#it), absolute and relative integration error tolerance

(Abs/RelTol) and the value of objective function (tf ) for two methods of computing gradi-

ents. The first method for computing gradients was the method of finite differences (FD)

and the second method was the method of adjoint variables (AV). NI stands for the number

Table 9.1: Comparison of computational aspects for different numbers of intervals of piece-

wise constant control and different methods for computing gradients.

FD AV

NI CPU [s] #it Abs/RelTol tf [s] CPU [s] #it Abs/RelTol tf [s]

1 1025.5 1 1e−10/1e−8 6064.9 362.3 9 1e−10/1e−8 6064.9

2 866.1 7 1e−10/1e−8 5192.6 329.5 7 1e−10/1e−8 5192.6

3 2778.5 16 1e−10/1e−8 5185.8 757.5 14 1e−10/1e−8 5185.8

4 3825.2 11 1e−10/1e−8 5183.0 640.8 9 1e−10/1e−8 5183.0

5 3220.8 10 1e−10/1e−8 5182.9 864.2 9 1e−10/1e−8 5182.9

6 4492.8 34 1e−10/1e−8 5182.6 1100.9 15 1e−10/1e−8 5182.6
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of control intervals. For each method we used the same initial conditions and the same con-

straints Xf= 0.6 and Mnf = 3 × 106 [g.mol−1]. For finding the optimal control trajectories

we fixed the time intervals which we calculated using the finite differences method we can

notice that by increase of time intervals the value of objective function is decreasing. Then

we compared the number of NLP iterations and computational time. We can notice in Table

9.1 that the computational time using adjoint variables is less than compare to method of

finite differences. This behavior might occur because of the inaccurate gradients provided by

method of finite differences. We can also notice that by the method of adjoint variables NLP

solver required less iterations to converge. The graphical comparison of optimal control tra-
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Figure 9.2: Comparison of control trajectories for different number of time intervals

jectories are shown in Fig.(9.2) for 5 and 6 time intervals. We can notice that by using finite

differences Fig.(9.2(a)) and Fig.(9.2(c)) and adjoint variables Fig.(9.2(b)) and Fig.(9.2(d))

the control trajectories are very similar. This behavior was expected because of decreasing

the degree of freedom by fixing the value of time intervals. The main differences are in the

number of NLP iterations and computational time.
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Chapter 10
Conclusions

In this work we studied the problem of dynamic optimization of processes. We considered

two numerical methods, control vector parametrization and orthogonal collocation, for solving

dynamic optimization problems. Both methods transforms the original infinite dimensional

problem into finite dimensional problem of non-linear programming. As a part of the work, we

studied several methods for computing gradients. In several examples we compare obtained

results by using the mentioned numerical methods with three different methods for computing

gradients. The first method was the method of finite differences. This method is very easy

to implement but the gradients computed by this method can be inaccurate. We used finite

differences method with the combination of adjoint variables to verify the correctness of the

computed gradients. Adjoint variables are mainly used when we have a large number of

optimized variables and only few contraints. Its because every constraint generate a system

of equations which we have to integrate. Sensitivity equations are on the other hand very

effective by large number of constraints but their disadvantage is when we have large number

of optimized variables, because every optimized variable generate system of equations which

have to be integrated. The results show that the most effective method was control vector

parametrization with gradients computed by adjoint variables. The further work can be

devoted to study the sensitivity equations of second order which give more precise Hessian

for NLP problem.
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Chapter 11
Resumé

Úvod

Hl’adanie optimálneho riešenia je každodenným problémom každého z nás. Na riešenie op-

timalizačných problémov, ktoré riešime v bežnom živote môžeme použit’ viacero metód,

ktoré nám ul’ahčujú hl’adanie optimálneho riešenia. Na vyriešenie optimalizačného problému

muśıme mat’ v prvom rade dobre zadefinovaný problém. Avšak pri riešeńı optimalizačných

úloh nemôžeme zabúdat’ na obmedzenia, ktoré je nutné rešpektovat’. Sú to väčšinou tech-

nologické obmedzenia napŕıklad maximálna rýchlost’ auta a maximálny prietok v potrub́ı.

Ak sa hovoŕı o optimálnosti resp. optimálnom riešeńı, tak sa jedná o minimalizáciu alebo

maximalizáciu účelovej funckie. Napŕıklad minimalizácia času, energie alebo nákladov a max-

imalizácia produkcie alebo zisku. Táto práca sa hlavne zaoberá aplikáciou metód na riešenie

optimalizačných úloh. Tieto metódy sa rozdel’ujú na dve skupiny a to analytické a numerické

metódy. Práca sa hlavne zaoberá numerickými metódami ako sú napŕıklad parametrizácia

vektora riadenia a ortogonálna kolokácia.

Dynamická Optimalizácia

Dynamická optimilizácia pojednáva o optimálnom riadeńı pri otvorenej slučke. Ako sme už

spomı́nali na riešenie optimalizačného problému muśıme mat’ dobre zadefinovaný problém

ktorý pozostáva z nasledovných čast́ı

• Matematický opis systému (2.1)

• Defińıcia obmedzeńı v tvare rovnosti (2.5) a nerovnosti (2.6)

• Defińıcia minimalizačného kritéria
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Minimalizačné kritérium môžeme zaṕısat’ v troch nasledujúcich tvarcoh

• Bolzov tvar (2.2)

• Lagrangerov tvar (2.3)

• Mayerov tvar (2.4)

Našou úlohou je nájst’ také riadenie, ktoré minimalizuje účelovú funkciu.

Metódy Dynamickej Optimalizácie

V tejto sekcii rozoberáme dve hlavné metódy: parametrizáciu vektora riadenia a ortogonálnu

kolokáciu. Parametrizácia vektora riadenia je založená na aproximácíı (diskretizácíı) pôvodnej

spojitej trajektoríı riadenia obr.(4.2) konečným počtom riadiacich úsekov obr.(4.3). V tejto

práci uvažujeme konštantné riadenie na jednotlivých časových úsekoch. Pri metóde orto-

gonálnej kolokácie sa pôvodne dynamický optimalizačný problém prevedie na statický vd’aka

aproximácíı časových trajektoríı stavov a riadenia ich polynomickými aproximáciami. Uvažo-

vané aproximácie je vhodné vytvárat’ s použit́ım Lagrangeových polynómov podl’a rovńıc

(4.16) a (4.17). Aby sa zabezpečili ortogonálne vlastnosti takýchto polynómov je možné ich

konštruovat’ napŕıklad na základe koreňov Legendrovych polynómov.

Metódy Výpočtu Gradientov

V rámci tejto práce sme sa zaoberali metódami výpočtu gradientov. Rozoberajú sa tri hlavné

metódy poč́ıtania gradientov:

• metóda konečných rozdielov

• adjungované premenné

• citlivostné rovnice

Metóda konečných rozdielov je spomedzi troch spomı́naných metód najmenej presná avšak

najjednoduchšie aplikovatel’ná. Jej hlavnou nevýhodou je množstvo integrácíı ktoré je treba

vykonat’. Metóda konečných rozdielov sa hlavne použ́ıva v kombinácíı s inou metódou poč́ı-

tania gradientov na overenie správnosti výpočtu gradientov. Druhou metódou poč́ıtania

gradientov sú adjungované premenné. Táto metóda sa hlavne použ́ıva ak vrámci optimal-

izačného problému máme vel’ké množstvo optimalizačných premenných s malým množstvom
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obmedzeńı. Je to preto, lebo každé obmedzenie generuje systém rovńıc ktoré treba inte-

grovat’. Pri citlivostných rovniciach máme opačný pŕıpad ako pri adjungovnaých premen-

ných. Citlivostné rovnice sa použ́ıvajú pri malom množstve optimalizačných premenných

a vel’kom množstve obmedzeńı. Pretože každá optimalizovaná premenná generuje systém

rovńıc ktoré treba integrovat’.

Pŕıklady

V rámci diplomovej práci sme rozoberali viacero optimalizačných pŕıkladov. V rámci jed-

notlivých pŕıkladov sme porovnávali výsledky, ktoré sme źıskali použit́ım viacero metód s

roẑnym pŕıstupom poč́ıtania gradientov.

Prvý pŕıklad bol fermentácia kyseliny mliečnej. Tento pŕıklad bol zameraný na odhad

parametrov, kde sme použili citlivostné rovnice na poč́ıtanie gradientov. Uvažovali sme fer-

mentačný proces na produkciu kyseliny mliečnej použit́ım sacharózy ako substrátu. Počas

fermentačného procesu sa sacharóza premeńı na biomasu a kyselinu mliečnu. Väčšina odhad-

nutých paramterov (6.11) sa nachádza na hornom a dolnom ohraničeńı. Lepšie výsledky by

sa dali źıskat’ pri uvažovańı väčšieho dovoleného priestoru.

V druhom pŕıklade sa zaoberáme optimálnym riadeńım rurkového chemického reaktora.

Porovnávali sme výsledky źısakne pomocou parametrizácie vektora riadenia a ortogonálnej

kolokácie. Pri parametrizácíı vektora riadenia sme použili dva spôsoby poč́ıtania gradientov a

to metódu konečných rozdielov a adjungované premenné. Pŕıklad sme mali rozdelený na dve

časti. V prvej časti sme uvažovali, že d́lžky časových intervalov sú optimalizované premenné

a úlohou bolo vypoč́ıtat’ optimálne riadenie chemického reaktora. V druhej časti sme časové

intervaly zafixovali a opät’ sme mali za úlohu vypoč́ıtat’ optimálne riadenie chemického reak-

tora. Na základe výsledkov, ktoré sú zhrnuté v tabul’ke tab.(7.1) si môžeme všimnút’, že

najväčšiu hodnotu účelovej funkcie sme dosiahli použit́ım metódy ortogonálnej kolokácie.

V tret’om pŕıklade sme mali za úlohu vypoč́ıtat’ optimálne riadenie auta aby prešlo zadanú

dráhu za najkratš́ı čas. Opät’ sme použili paramterizáciu vektora riadenia a ortogonálnu

kolokáciu. V rámci pŕıkladu sme vysvetlili podrobný postup na poč́ıtanie gradientov pomocou

adjungovaných premenných. Výsledky zhrnuté v tabul’ke tab.(8.2) ukazujú, že najkratš́ı

výpočtový čas potrebovala metóda ortogonálnej kolokácie.

Posledný pŕıklad bol zameraný na emulzný polymerizačný proces na výrobu polymérov.

Latex je jeden z najznámeǰśıch produktov emulzného polymerizačného procesu. Výhodou

polymerizácie je napŕıklad vel’ká molekulová hmotnost’ polymérov, ktoré je možné vytvorit’

pri rýchlej polymerizácíı. Nevýhodou je napŕıklad energetická náročnost’ pri sušeńı polymérov.

Celá reakcia styrénu a α–metylstrénu prebieha v sádzkovom polymerizačnom reaktore. V
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pŕıklade sme uvažovali zafixované časové intervaly a úlohou bolo vypoč́ıtat’ optimálne riadenie

reaktora pri ktorom dosiahneme požadovaný stav za minimálny čas. Na riešenie pŕıkladu sme

použili metódu parametrizácie vektora riadenia s dvoma spôsobmi poč́ıtania gradientov. Prvá

bola metóda konečných rozdielov a druhá bola metóda adjungovaných premenných. Výsledky

zobrazené v tabul’ke tab.(9.1) ukazujú, že metóda adjungovaných premenných potrebovala

menej výpočtového času ako metóda konečných rozdielov.

Záver

Diplomová práca bola zameraná na riešenie optimalizačných úloh. V rámci práce sme rozo-

brali viacero metód ako sú napŕıklad parametrizácia vektora riadenia a ortogonálna koloká-

cia. Ďalej sme rozoberali viacero spôsobov na poč́ıtanie gradientov. Aplikáciu spomı́naných

metód sme ukázali vo viacero optimalizačných pŕıkladov. Výsledky pŕıkladov sú podrobne

spracované v rámci každého pŕıkladu.
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Slovenská republika, 10.1.2007 2007.

D. G. Hull. Optimal Control Theory for Applications. Mechanical Engineering Series.

Springer-Verlag New York, 2003.

D. E. Kirk. Optimal Control Theory: An Introduction. Prentice-Hall, London, 1970.
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