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Abstract

This work is aimed to solve predictive control problems. The aim of this work is to
study the basic ideas of the predictive control. In this work we are dealing mainly with the
explicit predictive control. The main goal of this work was to explore the abilities to reduce
the cost of the controller. The work can be divided in to the two parts. The first part discusses
the theoretical part of the predictive problem. In the second part we show the method how to

reduce the size of the look up table.
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Abstrakt

Tato praca je zamerand na rieSenie problémov prediktivneho riadenia. Ciel'om prace je
Stadium zékladnej myslienky prediktivneho riadenia. Praca sa zaobera predovsetkym s
explicitnym prediktivnym riadenim. Hlavnou ulohou préce je preskimat’ moznosti znizenia
ceny riadenia. Praca je rozdelend do dvoch Casti. Prva sa zaobera s teoretickymi zakladmi
prediktivneho riadenia. V druhej Casti je rozpisana metodda na redukciu zlozitosti

vyhl'adavacej tabul’ky.

KTlacové slova: prediktivne riadenie, konvexnd optimalizacia, vyhl'addvacia tabulka
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1. Introduction

1.1. History of predictive control

The first control algorithm, which was successfully implemented on real plants
date back to nineties of the last century. The idea of model predictive control (MPC)
was published in the early seventies. Despite of this fact, it was not used in real-time
applications due to the lack of powerful computers. Mainly, this was the reason why
such controllers were first implemented on processes with slow dynamics (e.g. chemical
and petrochemical industry). The petrochemical industry was the first place where it
was successfully used, but after it became useful in other part of industries, for example
in mechanical engineering or robotics. It can be used wherever where is necessary to
count to the optimal control some restrictions. The most general optimization problem
can be formulated in next way: get the maximum (heat, money ...) at minimum input

(energy, work, ...).

1.2. Idea of model predictive control

The efficiency of predictive control is the following: it is able to calculate,
respectively produce an optimal input which is a product of optimization. The
optimization produces a sequence of input which respects the constraints. There can be
constraints on the state variables, output variables or on the input variables. The main
goal of the optimization is to calculate the best input to the system in the actual state. In
the sequel I will describe the basic control strategies: PID, LQR, MPC and characterize
its advantages and disadvantages. | would like to start with the one of the easiest kind of

control, with the PID controller.
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1.2.1. PID controller

This is one of these control methods which is used in the industry. More than 80% of
the controllers work in this principle. The advantage of this kind of control is following:
it has really easy structure, it is cheap, and easy to set. There are only few parameters
which are necessary to set. These parameters are the gain (Z), the integral time constant
(T:) and the derivate time constant (Tp). If we know these parameters of controller and
we know the control error (e) we can calculate the input (u) to the system. We obtain
information of the system behavior (y). The control error is calculated as a difference
between the output and the set point (w). The control law of the PID controller has the

next form:

u(t) = K (e(t) + Ti [ye@dr + Ty <e(t)) (1)

As you can see this is a really easy type of equation. There is only addition and
multiplication, so this kind of controller doesn’t need a performance hardware or CPU.
Another advantage is the simple structure, so we need only few bytes in memory of our
hardware. The big disadvantage of PID is that, it can be used only in case of SISO
(single input-single output) systems. In case of MIMO (multi input- multi output)
system, there exist a method how to control it with the PID controller. This method
name is a decoupling compensator, which is able to create SISO loops from the MIMO
system, but it don’t have to work in every single case, and sometimes it is really
difficult to cut up system into SISO loops. The next disadvantage is that, it can’t work
with constraints. There is a possibility to use the anti-windup, but if we have to control
the unstable system this approach is not the best, because it can more destabilize the
controlled system, and this is unacceptable, because the first task of control is to
stabilize the system. The simple structure, easy set and the cheap implementation are the
best advantages of this kind of control. Usually it is used to control for example the
valves, which are able to control the pressure and level in the tank, or temperature.
These controllers can be set experimentally. Sometimes occur that the model of the
system is not punctual. Then they set the parameters by one of many methods (Ziegler-

Nichols, Strejc, Cohen-Coon, Haalman, Smith-Morari, ...) and leave the possibility for
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the operators to change the parameters of the controller. After few try-outs they are

usually able to set the parameters of the controller which will create an acceptable input.

On the 1% figure you can see the scheme of the PID control in the closed loop.

PID

Plant

Figure 1.: Control using PID

1.2.2. LQR

Y

Output

The Linear Quadratic Regulator is another type of control. This is a higher level

of control, because it can work with more than one state variable. It tries to optimize the

input. We are given a linear system which we would like to control and a quadratic

objective function. By the objective function the controller is possible to calculate the

minimal necessary input to get the system from the current state to the desired state.

This method of control can be used not only for the SISO systems, so we don’t need any

compensators to create SISO loops from the MIMO system. It works on the base of the

Ricatti‘s equation. By solving the algebraic form of Ricatti’s equation we get the

parameters of controller, which stabilizes the system and move to the desired state. It

calculates the all inputs which are necessary to get the system to the required state. The

objective function and the one linear constraint have the following form:
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min fooo xTQx +u"Ru (2)

s.t.: x = Ax + Bu (3)

Where variable x represents all the states, variable u all inputs, and A, B are the
matrices of state space representation. What we get is the parameters of the controller
(K). The advantage of this approach stems from the fact, the optimization is performed
over infinite horizon. It means it calculates until infinity, so it knows what will happen
with the system in the future, but it does not take into account the constraints. The

optimal input is calculated by next equation:
u=K(x).x (4)

Where K (x) is the solution of Riccati’s equation which a function of the states, and x
represents all the states in the system. The K (x) is calculated only once off-line in case
of time-invariant system, so if happens something unpredictable it can cause unexpected

situation.

W K(X) u Plant X Output

Figure 2.: Control using LQR

Between the advantages of the LQR control is that, it is able to watch to the infinity, so
it mean it can give us to best possible performance. This method allowed to used
discrete time not only continues. Big disadvantage is that, it can work only with linear

model and can’t work with constraints.
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1.2.3. Model Predictive Control

Model predictive control is one of the best modern methods which was
successfully implemented in the wide range of the industry. The main reason why is
better than other control method is that because its formulations involves constraints.
The basic idea is similar like in the LQR, but now the objective function has a discrete
form, so from the integral become summation operator, and the upper bound isn’t
infinity. So it works only in the finite prediction horizon. Sometimes occurs the LQR
gives us better input than MPC, because it can see to the infinity and predictive control
works only in finite predictive horizon, but if happened something which wasn’t a part
of the LQR formulation the LQR isn’t able to react on it. In the LQR method the
parameter of controller is calculated once at the beginning that is that what we call
offline method. The MPC in every single period calculates the optimal input to the
system, which satisfies all the criteria and constraints. It is possible to use not only the
linear model, but we can use nonlinear or hybrid plant models. The Achilles heel of this
method is the difficulty and time consuming of optimization problem. The CPU has
only one sample time to calculate the optimal input by solving the optimization
problem. If it doesn’t able to do that, there is a chance to lost information of the
behavior of the system, which in the better case can causes losing of optimality, in
worse case loosing the stability. This is the biggest disadvantage of this method. The
objective function and the constraints have the following form:

N-1

] = min z xI'Qx; + ul Ru; (5)
i=0

S.t.:xtyq = Ax; + Bu, (6)

x€X (7)

ueu (8)

xo = x(t) 9)
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Where X and U are set of acceptable values for states and inputs. Other variables are
similar as in the section of LQR. N is the size of the predictive horizon. The objective
function with the larger predictive horizon will more complex problem, and harder for
the solver to solve, so the solving time and the requirements of the memory will
increase. On one hand we would like to have a huge predictive horizon, because as
bigger is the horizon as much better it can predict the behavior of the system, but in the
other way the big prediction horizon causes that the problem will not solvable for the
given time. If the solver isn’t able to solve the optimization problem in time it is
necessary to reduce pre size of the predictive horizon or change the system in other
way. For example change the constraints, leave out the not necessary constraints or pre

calculate the values of some variables.

w imizati u Plant X Output
5| Optimization P
y,
X
Figure 3.: Control using MPC
1.2.4. Comparison

We would like to show you the difference between these kinds of control. How do
they work in the same situation? We are given the car, which is driven by the controller.
At first it should be a PID controller. If we will drive the car with the PID it’s like to
drive without the eye contact on the road. We will not see what is ahead of us. We just
see the road from the rearview mirror, so if we leave the road we will register it only
than when it appears on the mirror. If we would like to drive the car by the LQR, it’s
like use the GPS, which know the fastest or the closest way to get from the current
location to the required location, so it will be able to control the car, but if there are a
crash or an accident on the road, or some table were changed the LQR will not calculate

with this fact. The predictive control is like when the car is driven by the human.
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1.3. Model Predictive Control

There are two different methods of the predictive control. One is the ON LINE
method and the next is the OFF LINE or EXPLICIT method. Both of these methods can
be used to control systems, nearly with the same quality. The difference between them
is the required time to calculate the optimal input to the system. The online method is
the basic method witch calculates the optimization in after obtaining information of the
system from the measurement. The explicit method is new approach in the theory of
control. It calculates the optimization only once, in the beginning, and after use the

explicit form of the control law, which is faster than the online method.

1.3.1. On - line MPC

This kind of method can be used when we have a system with great time constant,
for example if we would like to control rectification columns, or other similar process
with the big time constant. In the case of the rectification column there can be thousands
of variables and hundreds of constraints, so the optimization problem is really complex
and hard to solve. There is necessary a good solver and a computer with high
performance, which is able to solve the optimization problem. As the size of the
predictive horizon will increase, than complicated will the optimization problem. This
method has extremely good implementation in the chemical and petrochemical industry,
where the processes have big time constant. These slow processes ensure necessary time
to solve the optimization problem. The rectification columns time constant is usually
between 30 minutes and 60 minutes. This time is enough to calculate the optimal input

by the online method.
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1.3.2.  Explicit MPC

This method can be used to control systems with faster dynamic behavior. Usually
is used in a mechanical or electricity engineering. The difference in control between the
off line and on line method is in how it calculates the optimal input. The parameters and
the constraints of the system are the same, but in this case the optimization is done only
once, and we get the explicit form of the control law. We can imagine that explicit form
of control law like a simple affine function where we know the slope and the affine
term, the only variable which is changing is the variable which represents the state.
There isn’t only one affine function, there is one for every region. Every single region
consists of the same number of the parameters, but the values of the parameters are
different. If we have a one dimensional problem, than every region consist of one slope
and one affine term. If we have a M dimensional problem, than every region consist of

M slope and one affine term.

When we know the actual state of our system, we know the parameters of control
law, so we can easily calculate the optimal input. This method is much faster than the
on line method of predictive control, because there is optimization only before the
beginning. During the running, there is only necessary to find the correct region where
is the system. This method is useful until we don’t have too much states and inputs.
When we have a bigger system, with many constraints the optimizer will create a big
amount of regions. The big number of regions can occur that the controller algorithm
will not be able to upload to the memory of the controlled system, so the
implementation will impossible. Every region increases the amount of the memory
which is necessary for a good operation of the controller. If we don’t have enough
memory for our control algorithm, than we can’t drop out some regions. The solution is
little bit more difficult. If we can’t upload the whole look up table to the memory it can
cause that the control will not optimal or what is the worst scenario the process can lead

to unstable behavior.
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1.4. Open and closed loop in MPC

In this section we would like to show the difference between open and closed
loop. Let’s imagine the situation when we have a car, and we need to get car from the
current position to the other position. There are several type of constraints, like the car
has to stay on road, respect speed limits, and secure that the car will not crash into the
car ahead of. The main goal of the optimization can be to minimalize the amount of fuel
what will car need to get from A to B. Now the predictive horizon we can imagine in
this way: every single prediction horizon equals 10 meters. So if we have a small
horizon, it‘s like drive a car during the foggy forecast, if we have a longer horizon it’s
like drive a car in the sunny forecast. The open loop control will work in the following
way: we obtain the sequence of optimal input from one measurement and every single
input is implemented to the system. After when we get out of the inputs we make
another measurement and the optimizer calculates again a sequence of inputs. Returning
to the example with car it’s like drive the car that way, you open your eyes for a second,
watch what is on road, we mean the traffic, the tables, the curves, etc., and after close
your eyes and drive with closed eye until you remember the path. This isn’t the best
attitude, because during you drive without eye contact on road, there can appear
unexpected situation, like the car ahead of you will unexpectedly slow down, or some
children step on road. If we don’t calculate with these options we can hit somebody or
crash the car. This is the reason why predictive control is used in closed loop. The basic
idea of the closed loop is the same like in the open-loop, but there we implement only
the first input from the sequence of inputs. We need information about the system in
every single sample time. If we aren’t able to measure all the states, than somehow we
need to estimate the states, or use an observer, Kalmans filter. After when we have
information about the system the optimizer can calculate the sequence of optimal inputs
to the system. We need to realize that we get the sequence of inputs, but we implement
only the first one. Now is ensured the continuous feedback to the system. The first thing
what can look really useless are the other calculated inputs. If we don’t use them, why
do we want from the optimizer to calculate them? As | mentioned before the moving
horizon is like an ability to see to the future, in the example with car it is the distance
ahead of car. Imagine the situation when you drive a car and front of you is a concrete
wall. If you have a small predictive horizon it is like driving the car with bad visibility

20



conditions. If you don’t see the wall, you can’t stop the car or change the way to avoid
the obstracle, but if we have a larger predictive horizon than we will able to see what
should happened and changed the way or the speed of the car by using the brake. This
was just an example, it doesn’t work only with the cars, it can works with the reactors,
with robots, with everything what is necessary to control. On one hand we try to
increase the length of the predictive horizon to get better predictions, but on the other
hand we would like to decrease the length of the horizon, because it increases the
complexity of the optimization problem. As | mentioned before to solve more comple

optimization problem is necessary to have more time. In the explicit predictive control

X
it

shouldn’t be problem, because the optimization is done only once, but the big predictive

horizon can causes that the number of regions will highly increase, what is not desired
in this case. This is the worst what should happen. As we can see the length of the

prediction horizon must be chosen very carefully.

012345 678 91011 12 13 141516 t

OPEN LOOP

012345 678 91011 12 13141516 t

CLOSED LOOP

Figure 4.: Open and closed loop 1
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Register only here

Somebody enters the road\\ \

012345 678 91011 12 13 141516 t

OPEN LOOP

Register here 012345 678 91011 12 13141516 t
Somebody enters the road CLOSED LOOP

Figure 5.: Open and closed loop 2

1.5. Optimization

We will aim to use convex optimization, because if we find the extreme of the
convex optimization problem, we found the global extreme. The optimization problem
can be divided in to the two parts, in to the objective function and the constraints. There
can be 3 types of objective function. It can be convex, concave or neither. If we would
like to minimize the objective function it is good to have a convex function, if we need

to maximize the objective function it is good to have a concave function.
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Figure 8.: Nonconvex and nonconcave function
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The function is convex when the following inequality holds:

flx—(1-0)y) <0f()+ (1 -6)f(y) (10)
6 €[0,1] (11)
The aforementioned inequality can be interpreted as follows. We are given convex

function and if we connect any of 2 points by a line, and a function will under the

line than we can say that the function is convex.

x)

o= f(ex—(1-06)y) i

af -

0

20+ 5l
w0l X 6x—(1-8)y D £ o
a 1 1 1 1 ] 1 | 1 1

Figure 9.: Geometrical represantation of convex function

The objective function tries to minimize the distance from the setpoint. The
distance, what is a scalar value, can be expressed by norms. There are many
different types of norms. Ones are the following: 1, 2, .

The 1 norm, which sometimes is called Manhattan norm, calculates the distance
like if we are in the city and we would like to get from the A to B, but we can’t go
through the building, we can use only the streets. The 2 norm we can imagine like
if want go from A to B but there aren’t any barriers. The oo norm calculates only
with the longest part of the way. The following figures shows the differences

between these norms:

v
Vv

v

lIxl2 1l l1¢1] o0

Figure 10.: Norms, distance from origo
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Figure 11.: Norms, distance between x and y

The mathematical formulations of these norms are the following. Variable x is a
vector of all state variables.

x = [x1, %5, 0, x,]7 (12)

Ixll = ) l|xil (13)

(14)

x| oo = max;|x;] (15)

The ||x]|, is usually used to minimize the amount of energy necessary to move the
system from the current state to the required state. The problem with this norm is
the square root, which causes nonlinearity. Instead of ||x||, norm is frequently

used the square of that norm (|| x||3).

Ixll3 = ) x? = xx (16)

l

The difference between these norms is that the ||x||3 undervalues small and
overvalues large numbers, but there is no difference in the result between them.
The outcome from optimization should be the same, it doesn’t depend which

norm was chosen to use.

As we have the objective function, next what we need to know are the

constraints of the system. In predictive control is possible to use constraints in the
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form of equalities and inequalities. The constraints delimit the allowed place
where the optimizer can work. We can have an easy convex set or hard
nonconvex set of constraints. It is really easy to show the difference between

convex and nonconvex constraints by geometry.

N Y

Figure 12.: Convex and nonconvex constraints

On the figure above are two 2 dimensional shapes. The first one is convex and the
second one is nonconvex. The way how to decide what kind of shape do we have
is to choose 2 different points which are the part of the shape. If we can connect
them with a line segment and the whole line segment is a part of the shape than
we have a convex shape, but this have to be valid for arbitrary two points in the
shape. The mathematical formulation is the following:

We are given a shape (S) and some points which are part of this shape (X, y):
x,y €S (17)
We need an auxiliary variable (1):
A €]0,1] (18)
Than the line between them can be formulated in following way:
Ax+(1-MVy €S (19)

It must pay for every value of A and for every point x, y. If it is valid, than we

have a convex shape.
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Polytopes are convex shapes, created from finite pieces of halfspaces. The
halfspace indicates the allowed place. Polytops are every time convex shapes, so
they are really useful in the optimization.

T x=h

Xo

Figure 6.: Halfspace

x= [y, Xy, v, Ky ] (20)

B = [31»,32: ---»,Bn] (21)

Where variable a consist from the slopes and the B from the affine term

So if we have a finite number of halfspaces in form a] x < b; then the intersection

of these halfspaces give a polytope.

The general form of the optimization problem in the predictive control has the

following form:

The objective function

min cTx OR minxTPx + 2QTx+ R (22)
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The constraints

Ax < B (23)
Gx=H (24)
x €X (25)
u€ev (26)
x; = x(t) (27)

The result of this optimization problem is the optimal input to the system.

2. Reduction of complexity

Explicit predictive control is able to reduce the cost of the controller. This type of
control precalculates the law of control and saves information in a look-up table. What
Is necessary is to find the correct position in the table, by some mathematical
operations. In case when the look-up table size is too big, then is problem to upload it to
the hardware, because the controllers have limited memory. In this section we would

like to show and explain the way how to reduce the size of the table.

2.1. Theory

The complexity is primarily given by the number of constraints and secondary by
the number of states. Both of these are strongly connected to the length of the prediction
horizon. If we reduced the number of constraints we can get simpler look-up table, but
this isn’t the good way how to do it. There are few other possibilities how to reduce the

complexity, for example there is a chance to simplify the actual explicit control law
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replaced by easier form. The explicit form of the control law is usually in the following

form:

u* = y(x) (28)

Where x consists of values of the actual state, u*is the optimal input, and y
consists of the parameter of the control law. It can be everything. The simplest case is
that when this is an affine equation. In this work | was working with the affine

equations.

2.2. Problem Statement

We are given the system and we are able to calculate the objective function in
optimum (Jlow) and in the worst case which is still able to stabilize (Jup) the system.
We would like to find the function f(x), which satisfies the following inequation for all

state (x):

vx Jiow () < f(x) < Jup () (29)

Where f(x) has the following form:

f (x) = max (agx + by) (30)

The index k is fixed value, which says us the number of new
approximation. We would like to find these new slopes (a”) and affine

terms (B) of the new, easier objective function.

2.2.1. Objective function

The aim of this work was to understand and create a general algorithm which will
able to reduce the complexity of the controller. First of all it was necessary to
understand the connection between the complexity of the explicit control and the

complexity of objective function. If depends one on another, if yes than in what way.

At first time we tried to recognize the difference on the simply SISO system. The

control algorithm was written in Matlab. During the work we used some products of
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Matlab, and few Toolboxes, like Yalmip, etc. There were some prepared functions, so

we didn’t have to create every function that we used in this work.

At first is necessary to define the system with we would like to work.

State-space representation:

A=038 B=1 C =

Constraints for state:

-5<x<5
Constraints for input:
-1<u<l1l
Predictive horizon:
N=5
Weighting matrix for state:
Q=1
Weighting matrix for input:
R=1
Chosen norm:
1 norm

This information in Matlab is saved in the next form:

clear sysStruct probStruct

sysStruct.A = 0.8;
sysStruct.B = 1;
sysStruct.C = 1;
sysStruct.D = 0;
sysStruct.umax = 1;
sysStruct.umin = -1;
sysStruct.xmax = 5;
sysStruct.xmin = -5;

probStruct.Q = 1;
probStruct.R = 1
probStruct.norm
probStruct.N = 5;

nx = mpt sysStructInfo(sysStruct);
ctrl = mpt control (sysStruct, probStruct)
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The state-space representation of the system, the matrices A, B, C, D, are saved in the
variables sysSturct.A, sysStruct.B, etc. As you can see, this is a stable system. Here we
can find constraints for a maximum and minimum value for input and similarly for the
state. Q and R are the weighting matrices. By these matrices we can tune the objective
function of the optimization. If the matrix R will have larger value than we say that it is
an important or expensive input, so try to use it only when it is really necessary. Not
only the size of these matrices are important, larger weight have the rate between the
weight matrixes. For example if we set the value 1 for both of them or set the value 100
both of them the result will the same, because the rate is still the same. In this case one
norm was used and the length of prediction horizon was declared in N.

There exists a function in Matlab which is able to create from this information the
explicit form of control law. | mean we get the number of the regions and the
parameters of these regions. This function is prepare_data. If we would like to plot how
does the objective function looks like there is another function in Matlab, the plot_pwa.

The argument of this function is Jlow or Jup, which are variables created by the

function prepare_data. What we get is the form of the objective function.

PWA function over 8 regions

0 : ]
-5 0 5
X

Figure 14.: Objective funtion of stable systém
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The lower blue function (Jlow) represents the optimal values of the objective function.
The upper function (Jup) is the worst case scenario which is still able to produce the

stable feedback. The Jup is calculated in the next way:
Jup = Jlow + [[x][,, + [[ull, (31)

So the upper bound is calculated from the optimal lower bound (Jlow) and from the
addition of the norm of the state and the norm of the optimal input in current state. This
is the way how we get the allowed space, where we can find our easier form of control
law. This system can be controlled by 8 regions as you can see on the figure 13. Every

region consists of the linear parameters from the slope and from the affine term.

They are in the following way:

C_up” x + D_up, if x ER, (32)

Jup(x) =< C_up” ,x + D_up, if x €R, (33)
C_up” x + D_up; if x €R; (34)

C_low™ x + D_low, if x €ER, (35)

J_low(x) =< C_low" ,x + D_low, if x €ER, (36)
C_low™ ,x + D_low; if x €R; (37)

So every region has its own parameters. In the same time only one region is
active. This is the biggest disadvantage of this method. The high number of regions can
occur that it will impossible to implement in real plant. The goal is to reduce the number
of these regions, but it is necessary to rest this amount of regions which still can
stabilize the process. The first criterion of the control law is the stability and the next
one is the quality of control. There are 2 methods how to reduce the number of regions.
The first one is the simpler from the mathematical part of the problem, because we need
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only choose some points from the allowed space. When we have a one dimensional
optimization problem it isn’t really hard to choose good points for approximation, but in
case when we have a many optimization variables than it can be really difficult. If we
choose all points from the lower function, from the Jlow it will not efficient, because the
lower function is the most complex case. There is no concrete method how to choose
good points, but it is necessary to choose some from the allowed space, so the value of
these points must be bigger than the lower function (Jlow) and less than the upper
function (Jup). We can choose one point from every region, but if we do this the result
what we get will not simpler than the nominal problem. So at first what is good to do if
we have one dimensional system is study the graph of the objective function. For
example if we have the situation what is on the 13" figure. We are able to reduce the
number of regions from the original 8 to the 2. This is the best case, but if can reduced

the number of regions about only 50 % is really good result.

On the next 3 figures are few possibilities how to choose point for the approximation to
reduce the number of the regions. In the first 2 cases there was enough only 2 regions,
but in the last case | showed the situation when we have 4 regions. If the new created
line between the upper and the lower function is not similar with the lower function, the
result is that the solution is not optimal only suboptimal, but still able to guarantee a
stability of the control. But if the new line is the same like a lower function than it is
optimal, but there is no way how to reduce the number of regions. So there is a
compromise between the complexity (number of regions) and the quality of control. We
need to know if the less quality is still satisfactory. If not than we need to change the
number of regions. The suboptimal solution is worse than optimal, but if the optimal
solution is impossible to implement, than is necessary to think in this way, to get the

only the suboptimal solution, but less with less complex look-up table.
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PWA function over 8 regions

Figure 15.: Reduced complexity 1

PWA function over 8 regions

Figure 16.: Reduced complexity 2

PWA function over 8 regions

Figure 17.: Reduced complexity 3
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The other method, what | used in this work is more complicated from the mathematical
part, but it still works when we have a difficult not only one dimensional optimization

problem.

In this method Matlab, Yalmip and MPT Toolbox was used. The beginning is the same
like in the first approximation method.

Let have a convex objective function, which was divided to finite number of regions.
Every region has its own parameter, not only for the objective function for the control
law too. Usually in real life the form of the objective function is symmetrical. If we
recognize that fact we are able to formulate the optimization problem like a symmetrical
problem, so our problem will be easier for the solver and for the computer too. The
solvers which I used during this work don’t work in the symmetrical principle. It
doesn’t have to be bad, because if we want we can compare which solution is better for

us, and choose the better one. Than get the symmetrical values of the better one.

At first time 1 would like to explain the mathematical part of the optimization.

f(x)
J up

J_search

J low

Figure 18.: J functions
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The main goal is to find the red J_search function, which must be between the
functions J_up and J_low. These functions were created in Matlab by the function
prepare_data. The variables J _low and J_up are cell arrays. They contain the following
variables: R, C and D.

The variable R represents the number and the characteristic of the regions. By the

function extreme we are able to get the size and the vertexes of the regions.

The number of regions:

n R = length(Jlow.R)

The size of the regions:

extreme (Jlow.R (1))

As | already mentioned before there is an ability to divide the whole optimization into
two part. Then is enough to calculate from the minimum independent value to the zero.
If we would like to do this, we can save time, our algorithm will work faster, because it
must work with less optimization variables, and less constraints. The function
prepare_data doesn’t create the regions in this sequence what we need. We need to sort
these data. This is the way how to do it in Matlab. By the function extreme I got all the
extreme of the function. | saved them to the variables, used a sort and after comparison
the sorted values with the original values and save it information like the position. After
that | had the information of the position | was able to sort the original data by this
information of position. Now is enough to say that work only with the regions which are

on the left side of the coordinate origin.

MIN=[];MAX=[];

for i=1:n R

MIN=[MIN min (extreme (Jlow.R(1)))]1;
MAX=[MAX max (extreme (Jlow.R(1i)))]1;
end

%% ranking of regions
TEMP = [];

for i=1:n R
TEMP= [TEMP extreme (Jlow.R(1i))];

end

TEMP2=1[1];
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for i=1:size (TEMP, 2)
TEMP2 (1, i) =max (extreme (Jlow.R(i)));
TEMP2 (2,1)=min (extreme (Jlow.R(1)));
End

SORT=sort (TEMP2 (2, :));

POSITION=[];

for i=1:n R

POSITION=[POSITION find (SORT (i)==TEMP2(2,:))]1;
end

for i=1:n R
C low{i}=J1low.C{POSITION (1) };
D_low{i}=Jlow.D{POSITION(i I
C up{i}=Jup.C{POSITION (1)}
D up{i}=Jup.D{POSITION (i)}
Regions{i}=extreme (Jlow.R (
end

)
)
POSITION(1)));

These new variables (C_low, D_low, C_up, D_ up) include the original data but in form
which is better for us. After this we can begin with the formulation of the optimization
problem. The first thing what we need to do is get some approximation which are in the

allowed space. The way how | formulated this optimization problem is the following:

We know that every points of the approximation must be under the upper function J_up

and must have bigger value than the lower function J_low.

Vx ]low(x) < ]search(x) < ]up (x) (38)

The first part of this inequality is easy to guarantee. If we need to guarantee that all the
values of the approximated function will under the upper function we can formulated it

in this form:
Vi,V x € Rimax(agx + i) < ¢y ;x + dy; (39)

This equation says that the maximum value of the function from the approximation have

a lower value than the upper limit (J_up). Index k is number of the functions which we
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need for the good approximation, index i is index for the regions, and V is the vertexes
of the regions. This equation can be transformed into the easier form. The inequalities
say that the maximal value must be lower than some other kind of value, and this is the
same when we say it must be bigger than any value which can take the function. If we

realize that we can rewrite the function before:

Vi,Vx € R afx + By < ¢ ;x + dy; (40)

We used convex optimization so if we need to connect two points it will never have

nonconvex function. In the worst case it should be a line between these points.

o
[

> >

X X

Two points Convex function between two points

> >

X X

Convex function between two points Nonconvex function between two points

Figure 19.: Convex and nonconvex functions between 2 points
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The mathematical definition for the convex function, as | mentioned in the section

1.5 Optimization, can be expressed by the following inequation:

fOx—A-0)y) <0f(x)+ (1 -0)f(y) (41)
0 €[0,1] (42)

From the figure 18. convex and nonconvex functions between 2 points and from this
equation we are able to reduce the complexity of this problem. We don’t have to
calculate and control every point on the connector between 2 points. It is enough to
control only in the boundaries of the regions if the constraints are valid. This is the way

how to ensure that the approximation will under the upper function.

The next task is it to ensure that the approximation will over the lower function.

The mathematical formulation is the following:

Vx ]low (x) < ]search (x) (43)

Vi,V x € R;:max(alx + ) = C;l-x +dy; (44)

Bound the function from below is harder than from above. When we bond the function
from above we need to check only the vertexes of the regions. In case if we have a one
dimensional problem there are only 2 points. As | mentioned before we work with
convex functions, and if we realize that how is possible to connect two points, than we
should realize that the condition which says the approximation must be above the lower
function don’t have to be complied in this case if we investigate only the vertexes of the
regions. The only way how to solve the problem was create the algorithm which can
certificate that the desired function will above the lower function. So the control

algorithm works in the next way:

1. the first part of algorithm will declare what kind of system do we have

2. tries to find an easier form of the objective function, by calculating new a and 3
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IS it necessary to certificate if these new o and 3 satisfies conditions
it yes we have a solution

if no than the point where the system doesn’t satisfies is saved

o o > w

everything starts from the point 1., the only difference is that than the algorithm

will calculate with this point which was saved

On the following figures are the objective functions of unstable system which are
obtained from the control algorithm. The only difference between the stable and

unstable system is on the state-space matrix A, everything other are the same. In case of

unstable system the value of the A=1,1.

PWA function over 10 regions

Figure 20.: Objective function from algorithm 1
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PWA function over 10 regions

Figure 21.: Objective function from algorithm 2

PWA function over 10 regions

Figure 22.: Objective function from the algorithm 3
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PWA function over 10 regions

Figure 23.: Objective function from algorithm 4

As you can see the control algorithm needs 4 steps to find the correct values of the
variables o and . The main goal of the certification algorithm is to reduce the distance
and find the point where this distance has the maximal value. The algorithm consists of
two loops, where the first one is responsible for calculating the variables o and B, and
the second one controlled if this parameter satisfies all the conditions. As you can see
on the figure 19-22 during the optimization I used all the regions. This is the reason why

these graphs aren’t symmetrical.

2.2.2. Control law

Now when we have an easier form of the objective function we can approach the

control law construction. The control law has the following form:

acontrolTlx + ﬁcontroll if X € Rl (45)
usuboptimal contol(x) = acontroszx + ﬁcontrolz if x € RZ (46)
acontrolTix + .Bcontroli ifx € Ri (47)
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The new suboptimal input can be easily calculated. We have all the necessary
information what we need. In the beginning we need to find the new boundaries for the
new objective function, the vertexes of the new regions. | solve this problem in the

following way:

We know that each part of the objective function, every single region can be described

by the affine function.
Yi=ax+p; (48)

Where a is the slope and 3 is the affine term. We know that 2 affine functions have one
common point and this point is the boundary between the regions. The way how |

calculate this point is the following:
Vi =ai1x+ By (49)
V2 =ax + (50)

We know that the value of y; and y, is the same in one concrete x.

Vi =D)2 (51)

ax+ B =ax+ [, (52)
_B2— b1

x = “—a, (53)

We know the new boundaries of the regions, the vertexes of the regions. The next what
we need is to calculate the optimal input in these special points. The general form of the
calculation is the following:

N-1

J(x) = minz 1Qxsll, + [1Rwll (54)
k=0

S.t.:Xgyq1 = Axy + Buy, (55)

xr €EX (56)

u, €U (57)

This optimization calculates the optimal input to the system taking into account the

constraints and the dynamic behavior of the system. The new value of the state is
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calculated from the equation of the state equation. There are constraints on the state and

inputs too, so the optimization must respect these restrictions.

Vi is the vertex of the regions

U(V)) is the optimal input in the vertex

X is the actual state

The graph of the control law should have this form:

1.5

0.5

-1.5

control law

i =van["] ()

(58)

O

Figure 24.: New control law
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1.5

comparision between control laws

0.5

-0.5

T T T T T

s griginal control law
new control law
original boundaries

\
x‘% *  new boundaries

-1.5
B

Figure 25.: Comparision between control laws

After | had this control law | was able to control my system. The control law consists of

4 regions. On the figure of the control law it seems like there are only 3 regions. The

second and the third regions have similar absolute values. At first | tested the original

explicit controller (blue line) and compared with the new explicit controller (green line).
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explicit control

T T T T T T T

o
)
T

original explicit controler
new explicit contraler 7

r
[y}
T
1

do
[y}
T
1

i
(A}
T
1

a 10 15 20 25 30 35 40
time

Figure 26.: Control by original and new controller

As you can see on the graph of the control both controllers are able to control the
chosen system. The original controller is able to get system faster to the steady state
than the easier new controller. The difference between these controllers isn’t huge, so if
we can’t implement the original controller, which has 10 regions so it needs space in the
memory for the 20 variables, we can implement the new controller which has only 4
regions and need space only for 8 variables. In this case the easier form of controller
reduces the required space in memory by 60%. This is the way how to reduce the cost
of the controller by eliminating the number of parameters thanks to eliminating the

regions.
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3. Conclusion

In this work | studied the problem of predictive control. The aim goal was to
search if exist any possibilities to reduce the cost of the explicit predictive control. The
work is divided into few sections. In the first section | showed the basic difference
between the predictive control and the other kind of control, which are used in the
industry. In the next section | explained the difference between the online and the
explicit predictive control, and how the method how can be reduced the complexity of
the look up table, which is the basic of the explicit predictive control. | created a control

algorithm in Matlab, which can find an easier form of the control law.
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4. Resumé

Uvod

Prediktivne riadenie je jednou z modernych metdd v riadeni procesov. Prvé myslienky
boli publikované uz v sedemdesiatych rokoch minulého storo¢ia, ale kvoli
nedostato¢nej vypoctovej kapacity vtedajsich pocitatov implementacia v priemysle
nebola mozna. Prvé tspechy prisli az deviatdesiatych rokoch minulého storocia, kedy sa
podarilo implementovat’ na redlnom zariadeni. Prvé odvetvie v priemysle ktorom sa ujal
tento princip riadenia bolo prave petrochemické. Vel'ké ¢asové konsStanty a pomala
dynamika riadenych procesoch umoznila uspe$ni implementaciu. Casom ako sa
vypoctovy vykon pocitacov sa zvacSoval vznikol dostatoény vypoctovy zaklad aj pre
riadenie procesov s rychlejSou dynamikou. Takto sa tento moderny princip riadenie sa
ujal napriklad v mechanike alebo v robotike. Tato metoda moze byt pouzita vsade kde
je potrebné zohl'adnit’ ohrani¢enia pri vypocte optimalneho akéného zasahu.
NajvSeobecnejsia myslienka optimalizacie ma nasledovnu formulaciu: vytazit

maximum (teplo, vynos, ...) pri minimalnom vstupe (energia, praca, ...).

Zakladna myslienka prediktivneho riadenia

Vyhodu prediktivneho riadenia, oproti ostatnym pristupom je, Ze pri vypocte
optimalneho akéného zasahu je schopny pracovat’ s ohrani¢eniami a to vo forme
rovnosti a nerovnosti. Tuto schopnost’ nema v sebe PID regulator ale ani regulator LQR.
Celd myslienka je zaloZend na vypocte predikcii. Predikcie st informécie o budacom
spravani sa systému, pri poznani dynamiky, ohrani¢eni a pociatocnej podmienky
systému. Cim je na§ matematicky model systému presnejsi tym lepsie vieme odhadnit
spravanie sa systému V buducnosti. Kvoli tomu aby sa zabezpecila stabilita systému
prediktivne riadenie sa implementuje v uzavretej slucke. Pri otvorenej slucke sa
vygenerovana sekvencia akénych zasahov implementuje celd. Co moze sposobit’, Ze

regulator nebude moct’ reagovat’ na nepredvidatel'né situacie. To je dovod preco sa
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pouziva uzavreta slucka, v ktorom v kazdom periode vzorkovania sa vypocita sekvencia
akénych zasahov, ale do systému sa implementuje iba prva hodnota akéného zasahu.
Tie ostatné hodnoty sa nepouziju na riadenie syst¢ému. Na prvy pohl'ad to moze vyzerat
ako nezmysel, lebo zatazujeme pocitac s rieSenim zlozitého optimalizatného problému,
a po uspesnom rieseni pouzijeme iba prvi hodnotu rieSenia. Tie ostatné hodnoty sluzia
na vypocet predikcii v algoritme. Nasim ciel'om je ¢o najviac dovidiet’ do buducnosti,
tym padom budeme vyzadovat’ ¢o najvacsi predikény horizont, ale na druhej strane sme
obmedzeny vypoétovym vykonom. Cim je na§ problém zloZitejsi, va¢si tym silnejsi
procesor potrebujeme alebo viac ¢asu na vypocet. Musime vediet’ garantovat’, ze
optimalizacia sa vypocita v kazdom peridode vzorkovania za kratsi ¢as ako je samotné
vzorkovanie. V pripade ak by sa to nepodarilo zabezpecit, mohli by sme prist’

0 informacie zo systému.

Metody prediktivneho riadenia

Existuju dve rozli¢né pristupy prediktivneho riadenia. Jedna je ON-LINE metoda

a druhd je EXPLICITn4 metdda. Obe metody mdzu byt pouZité na riadenie systémov
pribliZzne s rovnakou kvalitou riadenia. Rozdiel medzi nimi spoc¢iva v potrebnom case na
vypocet optiméalneho akéného zasahu. Prvd metoda sa pouziva vtedy ked’ mame
dostatocne dlhy €as na vypocet optimalizacie. V tomto pripade sa optimalizacia vykona
v kazdom kroku. V pripade, ked’ mame za tlohu riadit’ systém s vel'mi rychlou
dynamikou ako napriklad mechanické kyvadla, kde je ¢as vzorkovania radovo

v milisekundéch on-line metdda neprichadza do uvahy. Explicitné prediktivne riadenie
je vhodné na riadenie takychto systémov s rychlou dynamikou. Najvacsi rozdiel medzi
dvoma metddami je, Ze explicitnom riadeni sa optimalizacia vykonava iba raz, eSte pred
samotnym riadenim. Zvykne sa to volat’ aj off-line metdda lebo optimalizacia je
vykonana eSte pred zacatim riadenia. To ¢o ziskame z optimalizacie je vyhl'adavacia
tabul’ka, ktora pozostava z koeficientov ucelovej funkcie a koeficientov zakona
riadenia. Tato tabul’ka sa rozdelit’ do regionov a kazdy region obsahuje uz spomenuté
parametre. Na zaklade jednoduchych matematickych operacii sa da zistit' v ktorom
stave sa systém nachadza, to znamena ze vieme, ktory region je aktivny. V danom

okamihu iba jeden region mdze byt’ aktivny. Ked’ pozname index aktivneho regionu
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vieme aj koeficienty zakona riadenia a vieme vypocitat’ potrebny akény zasah. V praci
som sa zaoberal iba s linearnymi funkciami. Aj G¢elova funkcia bola po Castiach
linedrna aj zédkon riadenia bol linearny. Tato metoda sa d& pouzit’ iba v pripade, ked’

mame menej ako 5 stavov.

Redukcia zlozitosti

V pripade, Ze optimalizacia na zaklade nasich poziadaviek vypocita parametre regionov,
ale mnozstvo regionov je tak vel'ké, ze fyzikalne sa to nedd implementovat’ na riadenie
lebo pamit regulatora je silne limitovana. V takom pripade je potrebné zredukovat’
potrebnu pamét. V pripade, ze by sme vynechali iba také mnoZstvo regionov, ktoré je
potrebné na to aby sa vyhl'addvacia tabulka dala nahrat’ na hardware, mézeme prist’

v prvom rade o0 optimalnost’ v druhom rade aj o stabilitu. Toto rieSenie nie je
akceptovatel'né. Redukcia zlozitosti sa da dosiahnut’ aj S0 zjednodusenim ucelovej
funkcie. V pripade ak sme schopny najst’ jednoduchsi tvar ucelovej funkcie aj za t
cenu, zZe nase rieSenie bude iba suboptimdlne, ale dokaze stabilizovat’ systém, je stale
lepsie rieSenie ako Ziadne rieSenie. V praci som opisal postup ako ziskat také

jednoduchsie rieSenie.

Zaver

Diplomova préaca bola zamerand na prediktivne riadenie. V ramci prace som porovnal
prediktivne riadenie so Standardnymi formami riadenia. Vysvetlil zdkladni myslienku
a porovnal explicitni metodu a on-line metddu riadenia. V praci je opisany sposob na
redukciu zloZitosti explicitného prediktivneho riadenia. Na konci prace som porovnal

povodny aj zjednoduseny regulator. Vysledok som spracoval graficky.
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