
1

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

INSTITUTE OF INFORMATION ENGINEERING, AUTOMATION, AND
MATHEMATICS

Complexity Reduction of Explicit Model Predictive Control

Diploma thesis

FCHPT-5414-50911

2012 Bc. Juraj Holaza

2

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

INSTITUTE OF INFORMATION ENGINEERING, AUTOMATION, AND
MATHEMATICS

Complexity Reduction of Explicit Model Predictive Control

Diploma thesis

FCHPT-5414-50911

Study program: automation and information in chemical and food technology
Number and name of the field of study: automation 5.2.14
Educational department: Faculty of Chemical and Food Technology
Supervisor: Doc. Ing. Michal Kvasnica, PhD.
Consultant: Ing. Alexander Szőcs

2012 Bc. Juraj Holaza

Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation and
Mathematics

Registration number:
Student's ID:
Author of thesis:
Study programme:
Study field:

Thesis supervisor:
Consultant:

Topic: Complexity Reduction of Explicit Model Predictive Control

Length of thesis: 50

Topic specifications:

In Explicit Model Predictive Control (MPC) the on
reduced by pre-computing the optimal feedback law, for each feasible initial condition, and
storing it in form of a Piecewise Affine (PWA) function. The function,
a set of polytopic regions, however, is often very complex and prohibits cheap implementation.
The thesis therefore proposes an approach to reduce complexity of PWA feedback laws. The
procedure is based on recovering a
approximation of the value function.

Main goals of the thesis are as follows:
1) provide an overview of Model Predictive Control and its implementation in closed loop;
2) derive optimal PWA approximation of a
3) propose an automated approach to constructing PWA functions which are bounded from
below and from above;
4) recover a PWA feedback law from approximation of the value function;
5) illustrate the procedure by means of simple examples.

Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation and

Faculty of Chemical and Food
Technology
2011/2012

DIPLOMA THESIS TOPIC

FCHPT-5414-50911
50911
Bc. Juraj Holaza (50911)
Automation and Informatization in Chemistry and Food Industry

5.2.14 automation

doc. Ing. Michal Kvasnica, PhD.
Ing. Alexander Szőcs

Complexity Reduction of Explicit Model Predictive Control

In Explicit Model Predictive Control (MPC) the on-line implementation effort is considerably
computing the optimal feedback law, for each feasible initial condition, and

Piecewise Affine (PWA) function. The function, which is defined over
set of polytopic regions, however, is often very complex and prohibits cheap implementation.

The thesis therefore proposes an approach to reduce complexity of PWA feedback laws. The
 simpler, sub-optimal PWA feedback law from a particular

approximation of the value function.

Main goals of the thesis are as follows:
1) provide an overview of Model Predictive Control and its implementation in closed loop;
2) derive optimal PWA approximation of a set of points;
3) propose an automated approach to constructing PWA functions which are bounded from

PWA feedback law from approximation of the value function;
5) illustrate the procedure by means of simple examples.

3

and Food

Automation and Informatization in Chemistry and Food Industry

Complexity Reduction of Explicit Model Predictive Control

line implementation effort is considerably

which is defined over
set of polytopic regions, however, is often very complex and prohibits cheap implementation.

The thesis therefore proposes an approach to reduce complexity of PWA feedback laws. The
particular

4

Diploma thesis topic submission date: 13. 02. 2012

Deadline for submission of Diploma
thesis: 19. 05. 2012

Bc. Juraj Holaza
Student

prof. Ing. Miroslav Fikar, DrSc.
Head of office prof. Ing. Miroslav Fikar, DrSc.

Study programme supervisor

5

ABSTRAKT

Vzhľadom na to, že prediktívne riadenie má relatívne veľké výpočtové nároky, jeho

implementácia bola obmedzená iba na riadenie pomalých procesov. Z tohoto dôvodu cieľom

tejto diplomovej práce je overiť možnosti explicitného prediktívneho riadenia a nájsť takú

metódu, ktorá by bola schopná rozšíriť jeho využitie. V prvých kapitolách tejto práce sa lepšie

oboznámime s danou problematikou. Dočítame sa aj o tom, ako by sme dokázali implementovať

dané riadenie aj do procesov s rýchlou dynamikou. Práve tento poznatok nás bude viesť k našej

metóde, ktorá sa bude snažiť znížiť dátovu záťaž linearizovaného systému a to aj za cenu

zníženia výkonu riadenia. V každej nasledujúcej kapitole budeme riešiť všetky potrebné prvky,

ktoré nás dovedú až k finálnemu tvaru našej metódy. O tom, že daná metóda je plne funkčná a,

že bolo dosiahnuté aj požadované zrýchlenie, sa môžeme presvedčiť v poslednej kapitole.

Kľúčové slová: MATLAB, prediktívne riadenie (MPC), po častiach afinná funkcia (PWA)

6

ABSTRACT

The main goal of this diploma thesis is to verify the possibilities of model predictive control

approach for a purpose of finding a method which will be able to extend its applicability, since

this control strategy has relatively large computational demands. In the sequel we will be

familiar with the whole problem more closely, therefore a main objective of this method will be

specified. This objective will be based on decreasing capacity of explicit model predictive

controls data of this method, which will achieve faster computation time of the optimal input to

the system at the expense of suboptimality. In sequel Chapters we will gradually deal with all the

important elements that will lead us to desired method. To prove that this method is fully

functional and that desired objective is achieved, is reported in the last Chapter.

Keywords: MATLAB, model predictive control (MPC), Piecewise affine function (PWA)

7

 I would like to thank my supervisor Doc. Ing. Michal

Kvasnica, PhD. for his guidance, valuable discussions and

comments. I would also like to thank to Ing. Alexander

Szőcs for his patience and constructive critique. The

largest thanks belongs to my family who supported me

during my study.

 Juraj Holaza

8

Content

Introduction ... 13

1 Introduction to model predictive control (MPC)... 14

1.1 Comparison of PID, LQR and MPC control approaches 15

1.2 Advantages of model predictive control ... 17

1.3 Mathematical formulation of MPC ... 17

1.3.1 Convex optimization problems ... 17

1.3.2 Norms .. 18

1.3.3 Constraints .. 21

1.3.4 Mathematical formulation of the problem ... 23

1.4 Basic feature of model predictive control ... 24

1.4.1 Comparison of two standard forms of model predictive control 24

1.4.2 Creation of data for explicit model predictive control ... 25

1.4.3 Processing data of explicit model predictive control .. 27

1.5 MATLAB .. 29

2 Applicability of model model predictive control ... 30

2.1 Sampling time ... 31

2.2 Computation time of explicit predictive control ... 32

2.3 Reducing the number of regions ... 33

3 Reconstruction of objective function .. 35

3.1 Direct construction of piecewise affine objective function 35

3.1.1 Formulation in MATLAB .. 39

3.2 Other methods of construction piecewise affine function 41

4 Boundaries ... 42

4.1 Lower boundary � .. 42

9

4.2 Upper boundary � .. 43

4.2.1 Definitions and theorems ... 43

4.2.2 MPC formulation ... 44

4.2.3 Creating the upper boundary .. 44

4.3 Admissible stable area ... 46

5 Fitting of the new objective function ... 47

5.1 Objective function and the upper boundary .. 47

5.2 Objective function and the lower boundary .. 48

5.3 Creating a new objective function ... 49

5.4 Implementation in MATLAB.. 50

6 Certification .. 51

6.1 Certification of the upper boundary .. 51

6.1.1 Formulation in MATLAB .. 51

6.2 Certification of the lower boundary .. 52

6.2.1 Formulation in MATLAB .. 54

6.3 Formulation in MATLAB ... 54

7 Control law .. 57

7.1 Approximate simplical control law ... 57

7.2 Formulation in MATLAB ... 58

8 Examples.. 61

8.1 Example 1 (lti_1d_stable) ... 61

8.1.1 Formulation in MATLAB .. 63

8.2 Example 2 (lti_1d_unstable) ... 64

8.2.1 Formulation in MATLAB .. 66

8.3 Summarization of examples .. 67

8.3.1 Summarization of example 1 .. 67

10

8.3.2 Summarization of example 2 .. 71

Conclusion .. 72

Resumé.. 73

References .. 76

Appendix A – Main program ... 77

Appendix B – Systems ... 78

lti_1d_stable .. 78

lti_1d_unstable .. 78

Appendix C – prepare_data ... 79

J_add_norm ... 80

get_J_epigraph ... 80

Appendix D – reindex_pwa... 82

Appendix E – Jlow_Jup .. 83

Appendix F – fit_PWA .. 84

Appendix G – Certifications ... 85

cert_Jup.. 85

cert_Jlow.. 85

Appendix H – draw_PWA .. 86

get_pwa_max ... 86

Appendix I – get_u... 87

get_Vu ... 87

norminf .. 87

norm1 ... 88

Appendix J – plot_PWA_u ... 91

11

Appendix K – get_PWA .. 92

Appendix L – Points_into_PWA .. 93

Appendix M – Commands and functions used in sumarization 94

Comparison of time requirements ... 94

get_time_m1 .. 95

get_time_m2 .. 95

Comparition of control laws .. 95

12

Table of used shortcuts

LQ – Linear Quadratic

LQR – Linear-Quadratic Regulator

MEMS – Micro-Electro-Mechanical Systems

MPC – Model predictive control

MPT – Multi-Parametric Toolbox

PID – Proportional–Integral–Derivative

PWA – PieceWise Affine

13

Introduction

Model predictive control is an atractive control strategy, where the optimal input sequence is

obtained via solving optimization problems. Actually, this fact represents the main drawback of

the aforementioned so-called on-line method, because such an optimization procedure requires a

powerful computer with operating system and last, but not least an appropriate solver. Hence,

this methodology only on slow processes can be implemented, since the optimal input value has

to be obtainable within one sampling time.

This work is organized as follows: The first one has a theoretical character and there we can find

a brief introduction to model predictive control, but also the advantages of convex functions, the

types of norms and restrictions and much more. The advantages of model predictive control are

explained by a simple comparison of PID, LQR and MPC control where the controlled system is

a car and the driver is the appropriate regulator. The procedure of obtaining the data necessary

for process control and its subsequent processing, are properly described and also for better

interpretation graphically shown. The second part addresses the issue of implementation of

model predictive control on fast systems. Here are mentioned reasons why it is necessary that the

computation time, required to obtain an optimal (or suboptimal) input to the system, must be

smaller or equal than sampling time of the discrete system. From this point forward our goal will

be to reduce the number of regions, even at the cost of reducing the control quality. Thorough the

Chapters we will be more familiar with this problem and step by step we will achieve a method,

which will be capable of solving this problem (at a price of suboptimal solution) and at the same

time it will guarantees the stability of the controlled system. In order to proof the functionality of

this method we will try to implement it into a several examples and the results graphically

illustrate.

14

1 Introduction to model predictive control (MPC)

Model predictive control experienced in recent decades a significant change from the theoretical

research to practical applications. Its development was strongly influenced by the requirements

of the industry. Recently, model predictive control with a lot of real industrial applications, is

one of the most modern control approaches implemented in industrial processes. The first model

predictive control algorithms were used before more than twenty-five years ago in industry as an

effective way of controlling multidimensional systems with constraints. [1]

In general we can say that MPC is a control approach, where optimized variables are obtained by

optimization over a finite time horizon subject to constraints To realize such computation the

model and the initial state has to be known. The result of such an optimization procedure is then

the sequence of optimal inputs, of which only the first one is implemented to the system. This is

the reason why the model predictive control significantly differs from conventional control

methods, which use time-invariant control law. [1]

Figure 1.1: Graphic concept of receding horizon model predictive control

k+N

The reference trajectory

The predicted output

A measured output

Predicted action input

Implemented action input

Prediction horizon

...
Sampling time

Future Past

k+1

k

k+2

15

1.1 Comparison of PID, LQR and MPC control approaches

For a simplified comparison in order to compare the following control strategies, i.e. PID, LQR

and MPC, consider the following situation:

The first car driver (PID) will know the initial state as well as the final target. His speed will

have predetermined parameters of the car (controller). Driver of this car would not take into

account traffic regulations since they will not be in his predetermined parameters. Because of

this he will probably pay a lot of fines, therefore his driving will not be optimal. What is the

worst is that he will be dangerous on the road. Since the driver will not look ahead, he will drive

only by using rear-view mirrors and based on them he will adapt control. (PID controllers may

adapt their control only by using feedback).

Figure 1.2: Scheme of control using PID controler

The driver (LQR) of the other car will start planning his own travel plan (optimal trajectory)

before his journey will began. He should be thoroughly familiar with the possibilities in his trip

in advance and thus he will know how to optimally control his car at any state (infinite prediction

horizon). The problem arises when the driver is stubborn and does not intend to change his pre-

made plan during the journey. Thus, he will drive only by his first planed trajectory and does not

care of the possibility of complications (crashing into other cars, driver discomfort, blocked path,

an unexpected obstacle on the way ...) what would most likely lead to a collision.

Figure 1.3: Scheme of control using LQR controler

Optimizer

Feedback

Plant

Input

Reference

Output

Feedback

Plant

K(s)

Input

Reference

Controller

Output

16

The driver (MPC) of the third car will look around for a possibilities before starting the trip.

Since he would be able to see path only a few meters ahead based on his eyesight (prediction

horizon), his traveling plan will be restricted exactly by this distance (optimization over a finite

time horizon). On the basis of what awaits him on the trajectory he will predict how quickly can

the car go. He would thus has an optimal control plan for this trajectory. The plan will also

consider all restrictions such as trajectory, speed limit, time, fuel consumption and others.

Regardless of the extensive plan the driver will always use only the first input (e.g. for the first

meter of the track), which will cause that the car will move forward (by one meter). Driver will

then create a new plan based on present circumstances for a trajectory which can be recently

seen. This way driver will create multiple trajectory plans where only the first planned input will

be implemented to the system (car), which will lead him to a flexible driving performance. He

will be able to respond fast enough to any possible danger on the road.

Figure 1.4: Scheme of control using MPC controler

Differences between each control approach can be characterized in the following table:

 MIMO systems Performance Constraints

PID NO NO NO

LQR YES YES NO

MPC YES YES YES

Table 1.1: Differences between each control approach

Input

Plant

Feedback

Reference

Optimizer

Outout

Prediction

17

1.2 Advantages of model predictive control

One of the biggest advantages of model predictive control is the effective handling of input

constraints, where almost all plants are subject to such restrictions. MPC strategy thus overcomes

the shortcomings of existing methods, such as the LQ (linear quadratic), respectively LQG

(linear quadratic Gaussian), working on the infinite prediction horizon, which are not able to

involve constraints in the optimization problem. In the practical problems controlled inputs are

naturally limited in its scope (e.g. valve can be opened only to 100%), impact on system without

using constrained inputs can be significant. Vital ingredients in control are represented by

different safe conditions, which do not allow to exceed certain limitations of some physical

variables (e.g. pressure, temperature, concentration). Moreover, MPC problem formulation

allows one to include special type of constraints (e.g. soft constraints), which primarily serve for

ensuring stability in case of systems with time delays or for respecting some physical limitations

when non-minimum phase system has to be controlled. [1]

1.3 Mathematical formulation of MPC [2]

Optimization problem of the MPC is to minimize the objective function while we must take into

account the different constraints (e.g., car control, respect the road, keeping distance from other

cars, obey the maximum speed and so on). Mathematically we can formulate this problem as

follows:

 ��� ���	
 �1.1

Objective function

 s. t. ���	
 � 0 �1.1�

Inequality constraints

 ���	
 � 0 �1.1�

Equity constraints

1.3.1 Convex optimization problems

Convex optimization problem has several advantages:

• Achieving global solutions (if one attain local minimum, then it is also a global

one)

• The availability of efficient solvers

18

Definition: The function ��	
 is called convex if for any two points 	� and 	� , ���0,1�
���	� � �1 � �
	�
 � ���	�
 � �1 � �
��	�
 �1.2

and the function is called strictly convex if:

���	� � �1 � �
	�
 ! ���	�
 � �1 � �
��	�
 �1.3

For each ���0,1�, 	� # 	�.

If function ��	
 is (strictly) convex function, then function ���	
 is (strictly) concave.

Figure 1.5: Convex and concave functions

If we pick up two points $ � ��	�
 and % � ��	�
, one can obtain a line segment $%&&&&. If the

graph of the function on the assumed interval lies under the chord (tetivo), then function is

convex. Naturally, if we replace the sign � with the ' in the inequality (1.2) then fulfillment of

the modified expression indicates concavity.

1.3.2 Norms

Norm is a function that assigns a length of all (nonzero) vectors in a vector space. They are

convex functions, which we can write as P-norm l) of the vector 	 � �	�, 	�, 	*, … , 	,�- :

.	./ � 01|	�|/
� 3�//

 �1.4

Convex function Concave function Nonconvex,

nonconcave function

A B

A

B
A B

19

Norm l� (Taxicab) Norm l� (Euclidean) Norm l6 (Infinity)

.	.� � 1|	�|� �1.4

.	.� � 71 	��� �1.4�

.	.6 � max� |	�| �1.4�

 .	.�

 .	.�

 .	.6

 .	 � ;.�

 .	 � ;.�

 .	 � ;.6

1.3.2.1 Taxicab norm (<=)

Taxicab norm (14.a) belongs to piecewise linear cost function, which means that we will

be using linear programing.

min .	.� @. �. $	 � % A	 � B,

�1.5

where 	 � �	�, 	�, … , 	,�-. If minimization of 1 norm is assumed then the objective function can

be transformed into the following form. As long as the first norm is defined as (1.4a), our

objective function can be expressed by equation:

min |	�| � |	�|� . . . �|	,| �1.6

In figure 1.6a is a a graphical representation for one state 	�. To compute taxicab norm in the

certain point we have to construct epigraph E� which will define area betwen the epigraph and

y

x

y

x

y

x

x x x

20

the absolute value (figure 1.6b). Minimizing this surface until reaching point 	� will get us the

value of the Taxicab norm (figure 1.6c). Assume that x is a vector, E is a vector of functions,

which will substitute the maximum value. Both of them are our optimization variables.

figure 1.6a figure 1.6b figure 1.6c

Based on this procedure problem (1.5) can be reformulate into:

min E� � E�� . . . �E, @. �. $	 � % A	 � B �E� � 	� � E�

 �E� � 	� � E�

 F
 �E, � 	, � E,

�1.7

1.3.2.2 Infinity norm

Infinity norm (14.c) is similar to Taxicab norm. It also belongs to piecewise linear cost

function, which means that we will be using linear programing. Difference between them is in

objective function. In Taxicab norm we have considered E as a vector of functions. In Infinity

norm E is a scalar that will represent only the worst absolute value among vector x.

min E @. �. $	 � % A	 � B �E � 	� � E

 F
 �E � 	, � E

�1.8

0 	

|	|
E�

min E� |	�|

	� 0 	

|	| E�

	� 0 	

|	|

	�

21

1.3.2.3 Euclidean norm

Problem that uses the euclidean norm (14.b) will not belong to linear programing since cost is

neither linear, nor piecewise linear. What is worst, it does not even belong to quadratic

programing (because of the square root). The most common procedure to transform this norm

into quadratic programing is to multiply it with itself. In another words we will get the squared

value of this norm.

.	.� I .	.�� �1.9

min K	-	 @. �. $	 � % A	 � B

�1.10

min 	-	 @. �. $	 � % A	 � B

�1.11

This modified form of the norm distorts the true value so that in the interval 	���1; 1

values are undervalued while in the interval 	���∞; �1
 N �1; ∞
 values are overvalued.

1.3.3 Constraints

For control of real technological processes or technical systems is necessary to meet a number of

limitations which are defined in advance. The role of constraints in the control design has at least

three important aspects.

1. Using restrictions for better representation of physical systems (input saturation)

2. Using constraints to ensure stable control (constraints in the form of end-stabilizing

constraints)

3. Using restrictions for tuning a controller parameters to achieve better quality control

In terms of character constraints can be divided into:

• Physical constraints (eg, we can not affine term the gear lever into a higher level than the

design allows)

• Technological constraints (obeying certain speed limitations)

In practical applications, we often encounter with convex constraints, which are easily solvable.

A set O P Q, is convex if: 	, ; R O, S, T ' 0, S � T � 1

 S	 � T; R O �1.12

22

Figure 1.7: Convex and nonconvex sets

The most common examples of sets of constraints are:

• Polytopic

 	 R Q, P � U	|$	 � %V

• Box

$ � W 1 0�1 0
 0 1 0�1 X, % � Y 	�,Z[\	�,Z[\�	�,Z�,�	�,Z�,

]

• Ellipsoidal – more difficult to solve

 	 R Q, ^ � U	|�	 � 	�
_�	 � 	�
 � `V

• Nonconvex – extremly difficult to solve

^

	�,Z�,

	�,Z[\

	�,Z[\
	�,Z�, 	�,Z[\

P

Convex set Nonconvex set

x

y

x
y O

O

23

Polytope P represents an area that was created as an intersection of all halfspaces (constraints in

the form of inequality (1.1b)), while constraints in a form of equality (1.1c) define an area where

must lie the optimum (in this case lines p, r, s, t). In figure 1.8 is ilustrated an example of all

constraints, where permissible area of the problem is highlighted by a red color.

Figure 1.8: Constraints in form of equality and inequality

1.3.4 Mathematical formulation of the problem

Optimization problem can be defined as:

min 1a.b\	cde./ � .bfgcde./hij�
ek� �1.13

Objective function

@. �. 	cd� � $	c � %gc �1.13�

Plant model

	c � 	��
 �1.13�

Initial conditions

	c R l �1.13m

State constraints

gc R n, �1.13o

Input constraints

where

N – Prediction horizon

P – Norm

b\, bf – Weighting matrices

l, n – state and input constraints

	cde, gcde – values of states and inputs in k-stage of prediction

p
r

s
t

P

24

1.4 Basic feature of model predictive control

Recently, the model predictive control method is being applied to the control systems with fast

dynamics, hybrid systems, to the precise micro-electro-mechanical systems (MEMS). They are

also applied in the development of new advanced control functions of mechatronic systems,

especially in the automotive industry. These applications are allowed to create or develop new

numerically efficient methods and model predictive control strategies for minimizing the

practical control numerical computational load especially in real-time modes at the expense of a

higher volume of auxiliary calculations carried out in real time mode. In this context, are rapidly

developing methods aimed at explicit model predictive control using multi-parametric

programming. [1]

1.4.1 Comparison of two standard forms of model predictive control

Classical approach based on on-line computation involves the following steps:

1. Obtain information about the current state 	��
 (either by direct measurement or

through a Kalman filter)

2. Solve the optimization problem

3. Obtain optimal action inputg��

4. Implement current value of the control value into plant

5. Repeat from step 1

Explicit model predictive controlled involves the following steps:

1. Pre-calculate the vectors of optimized problem

2. Obtain information about the current state 	��
 (either by direct measurement or

through a Kalman filter)

3. Obtain optimal input g��

4. Implement input value into plant

5. Repeat this procedure from step 2

25

As the name implies, the on-line control is carried out continuously during the control of the

system. This method is usually time consuming, hence the classical on-line approach was mainly

implemented on slow procesess. Although the level of computer technology now forwarded

much further, overloading of the computer can still be ineffective (e.g. in economic terms). In

the "off-line" control we will firstly linearize the problem and so we will divide the objective

function into n-PWA functions. Each region is described by a vector of objective function, which

is assigned to an adequate vector for the action input. Subsequently, the system will be controlled

by these pre-made vectors. This method can significantly relieve the processor at cost of

increased requirements on the memory. The disadvantage of this method is mainly its flexibility

relative to the changing structure of the system. But if we will be assuming a time invariant

system, then this problem can be ignored.

1.4.2 Creation of data for explicit model predictive control

In this Section will be explained a simplified method of creation of data for explicit model

predictive control. Let us consider a convex objective function�:; � ��	
,

Figure 1.9: Objective function

which we will divide into n-PWA functions as follows:

x

y

�

26

Figure 1.10: Linearization of the objective function

Number of sections affects the quality of the model in proportion, as it is a linearization. So that

created piecewise affine objective function � describes our original objective function � with n-

regions (sections). The function � can be defined as a linear function:

; � �-	 � ��, �1.14

 where _� P Q,, 	 R _�characterizes the i-th region, � R Q,\�, �� R Q, � � 1, p&&&&& .

Figure 1.11: Piecewise affine objective function

; � �-	 � ��

; � �-	 � ��

; � *-	 � �*

; � q-	 � �q

; � r-	 � �r

; � s-	 � �s

; � t-	 � �t

; � u-	 � �u

; � v-	 � �v

; � *-	 � �*

; � v-	 � �v

; � s-	 � �s

; � �-	 � ��

; � �-	 � ��

x

y

; � q-	 � �q

; � r-	 � �r

; � t-	 � �t

; � u-	 � �u

�

y

x

�

x

y �

27

Parameters thus obtained are stored in the matrix:

$ � ��, �, … , ,
 �1.15

% � ���, ��, … , �,
 �1.16

Each region has created its own associated control law, which also can be defined as a linear

function:

g � ��-	 � m�, �1.17

where _� P Q,, 	 R _� characterizes the i-th region, �� R Q,\�, m� R Q, � � 1, p&&&&& .

Figure 1.12: Control law

We will also save these parameters into matrices:

w � ���, ��, … , �,
 �1.18

x � �m�, m�, … , m,
 �1.19

Model expressed by equations (1.14) and (1.17) is also known as piecewise affine (PWA) model

and falls into the category of hybrid systems

1.4.3 Processing data of explicit model predictive control

Let us assume that we have all the necessary data of the hybrid system: A, B, C, D �1.15, 1.16, 1.18, 1.19
.

x

u

28

This system will be controlled by using the following steps:

1. With the initial state 	� we will compute the functional values of each region�:
���	�
 � �-	 � �� �1.20

, where �and �� are parameters of the given region �.
2. To find out in which region (p) we currently are, we need to find the maximum value

among all functional values:

p � max ���	�
 �1.21

3. If the current region is known, the first optimal value of the input will be computed from

the corresponding equation of the affine function (for a given region):

g� � �e-	� � me �1.22

4. Implementation of the current value of the input to the system lead us to a change in state

of the system, thus this procedure will be applied again from the first step.

Figure 1.13: Computation of a optimal action inputs

�s�	�

�*�	�
 g� � ��-	� � m�

�t�	�

�r�	�

�q�	�

�*�	�

���	�

���	�

u

x

y

x

g� � �*-	� � m*

29

1.5 MATLAB

MATLAB is a programming environment for scientific and technical calculations and modeling,

design of algorithms, simulations, plotting of functions and data, creation of user interfaces,

measurement and signal processing. MATLAB is an abbreviation of MATrix LABoratory,

which corresponds to the fact that key data structures, using in calculation are matrices. It also

allows to interface with programs written in other languages, including C/C + +, Java and

Fortran.

For MATLAB was created numerous number of toolboxes that extend the capabilities of

programming. One of them is called MPT (The Multi-Parametric Toolbox) for the design,

analysis and implementation of optimal controllers for a limited (linear, nonlinear and hybrid)

systems. The effectiveness of the code is guaranteed by an extensive library of algorithms from

the field of computational geometry and many multiparametric optimization. [3]

30

2 Applicability of model model predictive control

In the first Chapter we have get familiar with model predictive control as one of the most modern

control approach that is mostly implemented on industrial systems because of their large time

constants. Model predictive control is rapidly expanding caused of its effective handling of input

restrictions and the fact that it is predicting the future of the model. The reason why MPC is not

implemented into quicker systems can by demonstrated on the following example. Let us say

that our controlled system is a chemical reactor where we will control temperature of reactor by

stream of cooling water. Chemical reactions can have realy fast thermal gradients that require

quick response for cooling. We are talking about exothermic reactions since more intense

reactions can lead us to produce great amount of heat. If the additional heat that is not required

for propagation of reaction will not be cooled soon enough the system can reach certain point

from where it will be unstable. The temperature will grow exponentially until explosion will

eventually come. This explosion will not only cause economic and environmental losses, but

may as well cause losses of lives or suing and disintegration of the entire company. So to avoid

scenario from example 1, our controller has to ensure to compute the correct action inputs to the

system within a specified period.

yz � y{, �2.1

where yz is time required to compute optimal input and y{ is sampling time of the system.

Model predictive control is very computationally expensive because several predictions of

control inputs from certain state are being performed (only the first one is used). This prediction

is required for better control performance. Of course we can decrease it at the cost of losing one

of the advantages of this control. From Chapter 1.4 we know that there exist two different

methods of control. The first one is called on-line method and it computes whole mathematical

formulation (1.13) several times for each sampling time. On the other hand the second explicit

method does not compute the whole mathematical formulation, but only simple searching in the

tables of piecewise affine functions. From this we can deduce that this method is more useful for

us. From now on we will consider only this method.

31

2.1 Sampling time

Each discretized system has sampling time that represents period of time where system receives

information about states, safety sensors and so on. Now we know that the controler must process

all received informations and use them to determine the appropriate input to the system. Since

sampling time is directly linked to the speed of the system, it can be read from it. Length of

sampling time can be determined from following interval:

y{ R |yv�5 , yv�15 }, �2.2

where yv� is time when the step response of the output reached 90% of the steady-state value

(minimal phases system) or 90% of the maximum amplitude (non-minimal phases system) what

is sufficient since all characteristics of the system should be described (figure 2.1).

Figure 2.1: Step response of minimal and non-minimal phase system

32

2.2 Computation time of explicit predictive control

As it was mentioned computation time of explicit predictive control consists of searching values

in the table. In this table we find matrices (1.15), (1.16), (1.18) and (1.19) via which we express

equations (1.14) and (1.17). The whole method how we are computation data of predictive

explicit control is described (graphicly as well) in Chapter 1.4.3. If information about the current

state is obtained we compute all function values of this state for each region (1.20). By finding

the maximal value among them we will associate the index of the current state (1.21). Optimal

input is then simply compute from equation (1.22). From this procedure computation time can be

expressed as a function of number of regions k:

yz � ��p
 �2.3

Problem can be seen from a diferent perspective if after linearization all regions (their intervals)

would be saved with matrices (1.15), (1.16), (1.18) and (1.19). Finding the correct index of the

region will be defined as assigning current state of the system to the correct interval region. We

are simply asking whether the state belongs to the first, second, ..., n-th region (figure 2.2). Then,

if the index is known, the optimal input will be directly calculated from the associated matrices

(1.17). In this case computation time is expressed as linear function:

yz � � 1 �z
~

�k� , �2.4

where is time required to solve equation of optimal input (1.17), ` represents index of the
correct region and �z is the time required to determine whether the state of the system lies in one
region.

Figure 2.2: Seeking the region of validity

��

	� R �1

Start ��
	� � �1 �e

	� R �2

	� � �2

	� R �p

	� � �p�1
…

g � ��-	� � m� g � ��-	� � m� g � �e-	� � me

33

Since we do not know in what region we are, we have to count with the worst time. This time

occurs if and only if the state will be located in the last region and therefore the algorithm will

have to check every single region. Equation �2.4
 will then have the form:

yz � p�z � , �2.5

where p is the number of regions.

2.3 Reducing the number of regions

From equation (2.5) is obvious that computation time yz is directly proportional to the number of

regions p, therefore if we want to met expression (2.1) we need to reduce the number of regions.

From Chapter 1.4.2 we know that initial data for explicit model predictive control are made of

linearization of the system (figure 2.3). So from continuous function �:; � ��	
 we will get

piecewise affine function �, for which applies �1.14
. This function will be associated with a

control law expressed by equation �1.17
.

Figure 2.3: PWA functions

u

x

u

x

u

x

y

x

� y

x x

y �

34

Now if we want to simplify whole formulation of piecewise affine function defined over ten

regions at figure 2.3, we have to reduce the number of regions. Based on this we will decrease

requirements for data storage and due to equation �2.5
 computation time will be decreased as

well. On the other hand innacuracies of linearization and of the performance (optimality) will be

increased.

From the procedure, where PWA function described over ten regions � we will get another PWA

function � described over two regions:

�: ;� � ���	
 � �: ;� � ���	
, �2.6

which can be seen on figure 2.4. If �: ;� � ���	
 is optimal PWA function, then �: ;� � ���	
 is

suboptimal PWA function.

Figure 2.4: PWA function over 2 regions

x

u

x

u u

x

y

x

� y

x

y

x

�

35

3 Reconstruction of objective function

Till now we assumed to have objective function as a continuous function (figure 1.9), but in most

cases it is not true. In real systems after implementing certain input (inputs), by using feedback

(observer, kalmans filter ...) we will receive only information about current state (states). For this

given state (states), we can determine its (their) function value. So basically by implementing

several inputs (set of inputs) we will get n-coordinates of the objective function as we can see in

figure 3.1. Now our goal would be to reconstruct objective function by means of these points.

Figure 3.1: Objective function expressed by points

3.1 Direct construction of piecewise affine objective function

By using this direct method we will attempt to reconstruct a piecewise affine function directly

from the given points. Basically what we want to do is to find out all slopes and affine terms of

each line that will be describing our piecewise affine function. To achieve this we have to

performe the following steps:

1. In the first step we will create lines between given point for each 	� � 	� �� # �.

��	�
 � ��,�- 	� � ��,� �3.1

��	�
 � ��,�- 	� � ��,�, �3.1�

36

where 	 are coordinates of points, � is a slope, � is a affine term, i is index of the given

point, j is index of each further point � � � � 1, �&&&&&&&&&.

Figure 3.2: Lines leading through given point

In the figure 3.2 are two examples for first point (� � 1, � � 2,11&&&&&&) and the second point

(� � 2, � � 3,11&&&&&&).

2. In the second step we will find out correct slopes and affine terms of each following pair

of points (each region).

From equations (3.1) we can express slope by:

��,� � ��	�
 � ��	�
	� � 	� �3.2

Since we are assuming that objective function is convex, correct slope can be computed

as a minimum value among all slopes:

�� � min ���,�
 �3.3

By combining equations (3.2) and (3.3), we will get the equation:

�� � ��	�
 � ��	�
	� � 	� �3.4

If slopes between two following points are known, then corresponding affine terms can

be obtained from equation:

37

�� � ��	�
 � ��	� �3.5

In figure 3.3 are two examples of correct slope and affine term for the given point.

Figure 3.3: Line leading through given point

3. Since that objective function is expressed only as a set of lines (figure 3.4) and not as a

line in the corresponding regions (figure 1.11), we will have to change it in this last

(third) step. There exist several methods how to solve this problem. For example we can

find out regions by intersections where in this case we would find coordinates of our

starting points as edges of regions.

Figure 3.4: Objective function expressed by lines

38

The method which we are going to use is basically similar to method described in

Chapter 1.4.3:

• In the begining we will find polytope Χ which will include all points x:

	 R Χ Χ � �x| ��5�5� � x � �55�� �3.6

• Then by separating this polytope we will create a large number of small points

on which we will evaluate the function values of all lines.

• Then we will find to which line belonged this maximum value. This way we will

be able to define vertices of regions.

The result of this procedure is piecewise affine objective function defined over ten

regions (figure 3.5)

Figure 3.5: Piecewise linear function over 10 regions

39

3.1.1 Formulation in MATLAB

Consider the symmetric objective function in �� expressed by these points:

x = [-5 -4 -3 -2 -1 0 1 2 3 4 5];
y = [15 11 8 5 2.2 0 2.2 5 8 11 15];

If we would like to plot these points, we would get the same result as in figure 3.1. Our first two

steps (to obtain figure 3.5) we will achieve by the following optimization procedure:

• First of all we will define each optimized parameter:

x_length = length(x);
xlength = x_length - 1;

nx = size(x,1);

%% symbolic parameters

J = sdpvar(xlength,1);
alfa = sdpvar(xlength,nx);
beta = sdpvar(xlength,1);

• As we consider that the objective function is symmetrical (and that we are in ��), in

constraints will be included in addition to equations (3.4) and (3.5) the term:

�� � �� , �3.7

where � � 1, �/2&&&&&&&&, � � �, �/2&&&&&&&&

%% constraints
F = [];
% constraints for alpha
for i = 1:xlength
 for j = i+1:xlength + 1
 F = F + [alfa(i,:) <= (y(j)-y(i))/(x(:,j)-x(:,i))];
 end
 if nx == 1 % symmetrical obj
 F = F + [alfa(i,:) == -alfa(xlength + 1 - i,:)];
 end
end

% constraints for beta
for i = 1:xlength
 F = F + [J(i) == alfa(i,:)*x(:,i) + beta(i)];
 if nx == 1 % symmetrical obj
 F = F + [beta(i) == beta(xlength + 1 - i)];
 end
end

• The objective function is going to minimize distance of the given point and the function

value in corresponding line in that point:

40

%% objective function
obj = 0;
for i = 1:xlength
 obj = obj + (J(i) - y(i))^2;
end

• If we have defined whole formulation, then we can solve the problem from which we will

obtain optimal slopes and affine terms:

%% solve
info = solvesdp(F,obj);
if info.problem ~= 0
 error('Problem is unsolvable !!!')
end
alfa = double(alfa);
beta = double(beta);

The last (third) step will be achieved by using function f = get_explicit_pwa_max(alpha',

beta', X), where Χ is a polytope defined by equation (3.6) and represents a convex hull of

vertices of all regions:

nx = size(x,1);
x_max = zeros(1,nx);
x_min = zeros(1,nx);
for i = 1:size(x,1)
 x_max(i) = max(x(i,:));
 x_min(i) = min(x(i,:));
end
X = polytope([eye(nx);-eye(nx)],[x_max'; -x_min']);

% obtain the explicit representation of f(x) as
% f(x) = c_j*x+d_j if x \in P_j
f = get_explicit_pwa_max(alpha', beta', X);

By ploting the result of this function by function plot_pwa(f), we would get the figure 3.5.

plot_pwa(f);
grid on
hold off

The whole algorithm can be found in the appendix as m-file get_PWA. In table 3.1 the required

computational time is listed as a function of dimension:

Dimension �� �� �*

Elapsed time [s] 4.211420 4.384174 4.459774

Table 3.1: Computation time of the algorithm

41

3.2 Other methods of construction piecewise affine function

There are several other methods by means we are able to construct piecewise affine objective

function. One of the most common techniques is based on approximation of a curve (objective

function) that will minimize a sum of squared distances between each of those points and the

curve. This way we will get a function in a polynomial form (figure 3.2). Then we can make the

same procedure as we did in figure 2.3.

Figure 3.6: Approximating a curve using least squared method

Advantage of this method is that we can have whole objective function (that does not have to be

convex) in a form of polynomial (e.g.�: ; � 	� � 2	 � 1). But if we will construct piecewise

affine function from this polynomial, inaccuracy caused by both in approximation and

linearization should be higher than in the first (Chapter 3.1) direct method.

f(x)

x

f(x)

x

f(x)

x

42

4 Boundaries

In order to reduce the number of regions (of the objective function) we have to define a stable

area in which we may perform this operation. This area will be constructed through the two

piecewise affine functions (boundaries) � and �. In order to demonstrate these two boundaries we

are going to use system lti_1d_unstable, which we can find in the appendix.

4.1 Lower boundary �

Since the lower boundary represents the optimal objective function, therefore there can not be a

better (lower placed) objective function such as this one.

;� ' ;�, �4.1

where Κ � U��V , ��: ;� � ���	
 is a set of suboptimal functions and ��: ;� � ��	
 is the optimal

function. This optimal function ��we can get as a result of optimization problem described in

Chapter 1.3.4 by equations 1.13. Lower boundary of the system is depicted in figure in figure

4.1.

Figure 4.1: Lower boundary

43

4.2 Upper boundary ��
In this Section we will create an upper boundary for objective function. This boundary combined

with lower boundary will define an admissible area in which stability will be guaranteed by

Lyapunov function.

4.2.1 Definitions and theorems [4]

Let us consider linear discrete time dynamical systems:

	d � $	 � %g, �4.2

where 	 R �,� is the current state, g R �,� is the current control input to the system and 	d is

the successor state. Then if system (4.2) is controlled by the control law ge � ��	
, the closed

loop system is defined as:

	d � $	 � %��	
 �4.3

• Positively invariant set – A set l P �,� is positively invariant set of system (4.3), if $	e � %��	e
 R l �	 R l

• K-class function – A real-valued function �: Q�� � Q�� belongs to class K if it is

continuous, strictly increasing and ��0
 � 0. Where Q�� is the set of non-negative reals.

• Lyapunov function – Let l be a positively invariant set for system (4.3) containing

neighborhood � of the origin in its interior and let α�·
, α�·
 and β�·
 be K-class

functions. A non-negative function V: l � Q�� with ��0
 � 0 is called a Lyapunov

function in l if:

�	 R l: ��	
 ' α�.x.
 �4.4

�	 R �: ��	
 � α�.x.
 �4.4�

�	 R l: ��	d
 � ��	
 � �β�.x.
 �4.4�

• Asymptotic stability – If system (4.3) admits a Lyapunov function in l, then the

equilibrium point at the origin is asymptotically stable with region of attraction l.

44

4.2.2 MPC formulation

Let us reformulate (1.13) into:

 ���	
 � 1 ℓ�	e, ge
ij�
ek� �4.5

 @. �. 	ed� � $	e � %ge �4.5�

 	� � 	 �4.5�

 	c R l �4.5m

 gc R n, �4.5o

where l and n are closed and convex polytopes, containing the origin, $ and % are systems

matrices, ���	
 is an optimal objective function and ¡�	e, ge
 is a k-stage cost of the objective

function which can be defined as:

�	 R l, �g R n ℓ�	e, ge
 � .b	e./ � .�ge./, �4.5�

where b is a positive semi-definite and � is a positive definite weight matrix and ¢ represents

a norm. In our case only Taxicab (¢ � 1) or Infinite (¢ � ∞) norm. Assuming that objective

function satisfy conditions of the Lyapunov function, by using formulation (4.5) equation (4.4c)

can be transformed into:

�	 R l ��	ed�
 � ��	e
 � ℓ�	e, ge
 �4.6

4.2.3 Creating the upper boundary

Let us consider the lower boundary � (respectively optimal objective function ��) that is a PWA

function defined over n-regions. If � � U�	�, ��	�
�, … , �	e, ��	e
�V £ Q,�d� is a set of vertices

of this function, then ¤ � U¥	¦§ , �a	¦§h¨, … , ¥	¦©ª§ , �a	¦©ª§h¨V £ � is a set of the lower convex

hull of �. Based on equation (4.6) a set of vertices of the upper boundary is then computed as:

¤ � «¥	¦§ , �a	¦§h � ℓ�	¦§ , g¦§
¨, … , ¥	¦©ª§ , �a	¦©ª§h � ℓ�	¦©ª§ , g¦©ª§
¨¬, �4.7

where �	 R l, �g R n. Vertices 	¦ � 	¦ from now on we can use only 	¦ and the stage cost ℓ

can be expressed by (4.5f), equation (4.7) can be transformed as:

45

�	 R l, �g R n, � � 1, � � 1 ¤ � �	¦® , �a	¦®h � ¯b	¦®¯/ � ¯�g¦®¯/°�, �4.8

where b is a positive semi-definite and � is a positive definite weighting matrices and ¢

represents a norm. To have all informations about the upper boundary we need to compute slopes � and affine terms � from the following equation:

�	 R l, � � 1, �
 ������ � ± 	¦®- 1	¦®ª§- 1²j� � ³�³�d��, �4.9

where � is the number of regions and ³� � �a	¦®h � ¯b	¦®¯/ � ¯�g¦®¯/. In MATLAB this

procedure to obtain data of the upper boundary from the informations of the lower boundary is

implemented in function prepare_data.

Figure 4.2a: Vertices of the lower boundary Figure 4.2b: Lower convex hull of �

Figure 4.2c: Vertices of the upper boundary Figure 4.2d: Upper boundary

x
Ri Ri+1

J(x)

XFi XFi+1 XFi+2

�
�

x
Ri Ri+1

J(x)

XFi XFi+1 XFi+2

ℓ�	¦�, g¦�

ℓ�	¦�d�, g¦�d�

ℓ�	¦�d�, g¦�d�
 �

x
Ri Ri+1 J(XFi)

J(x)

XFi XFi+1 XFi+2

J(XFi+1)

J(XFi+2)
�

x
Ri Ri+1

Xi,1 Xi,2 Xi+1,1 Xi+1,2

J(Xi,1)

Xi-1,2 Xi+2,1

J(Xi-1,2)

J(Xi,2)

J(Xi+1,1)

J(x)

J(Xi+1,2)

J(Xi+2,1) �

46

4.3 Admissible stable area

Let us assume that the lower � and the upper � boundary is well known, then the admissible

area ´, where stability is guarantee based on Lyapunov function, is defined as:

 ´ � Ug| �¡µ¶�	
 � g � �g¢�	
, �	 R lV �4.10

Now when the stable area is defined, we are able to fit a new objective function �� with a smaller

number of regions. We will have to keep in mind that the stability is guaranteed only if ���	
 R ´, �	 R l is satisfied.

Figure 4.3: Restricted stable area

47

5 Fitting of the new objective function

Now what we are going to do is to fit a new objective function over fewer regions as the first

objective function has had (�·� � ��). Since the area where we can perform this operation is

strictly restricted by two boundaries (figure 4.3), then new piecewise affine objective function

has to satisfy equations:

�	: ��	
 � ��	
 �5.1

�	: ��	
 � ��	
, �5.1�

where � is new fitted objective function, � is a lower boundary and � is a upper boundary. Since

the explicit definition of a function is:

��	
 � maxe��e-	 � �e
, �5.2

therefore in order to satisfy the equation (5.1) we have to find coefficients �� and �� � � 1, p for

fixed value of p .

5.1 Objective function and the upper boundary

Assuming that data of the upper boundary is well known (defined as piecewise affine function

with slopes w¸ and affine terms x¸), equation (5.1a) can be further formulated as:

��, �	 R ��: maxe��e-	 � �e
 � w¸,�- 	 � x¸,�, �5.3

where �� is i-th region, �e is k-th slope and �e is k-th affine term of the objective function. From

equation �5.3
 follows that maximum value of the new fitted objective function has to be lower

or equale than the function value of the upper boundary. On the right side, it would be the same

as if we would say that each function value on the left side must be lower or equal than the

function value on the right side. Equation (5.3) has operator less or equal (�) and as both of

those functions (�, �) are convex, necessary and sufficient condition are satisfied and the

equation can be modified as:

��, �	 R ��, �p: �e-	 � �e � w¸,�- 	 � x¸,� �5.4

48

Equation �5.4
 can be applied on vertices of the upper boundary (instead of whole axis scale)

and the formulation will be equivalent to:

��, �¹� R ¹o`����
, �p: �e-¹� � �e � w¸,�- ¹� � x¸,� �5.5

Figure 5.1a: Fitting PWA function

restricted by upper boundary

Figure 5.1b: Fitting PWA function

restricted by upper boundary on the

whole axis x

Figure 5.1c: Fitting PWA function

restricted by upper boundary on the

verteces

5.2 Objective function and the lower boundary

Let us say that data of the lower boundary is well known (defined by matrix wº for slopes and

matrix xº for affine terms). Equation (5.1b) can be then further formulated as:

��, �	 R ��: wº,�- 	 � xº,� � maxe ��e-	 � �e
 �5.6

The unknown variables are on the other side, the operator is now bigger or equal (') than the

function value of lower boundary. In this case only necessary condition is satisfied and by this

reason implication is used between equations (5.5) and (5.6):

��, �¹� R ¹o`����
: wº,�- ¹� � xº,� � maxe a�e-¹� � �eh �5.7

In other words if equation (5.7) is met, then equation (5.6) does not have to be met. Equation

(5.7) is extreamly difficult to compute, because maximum value is being used.

 � � max �	�
 �5.8

The result from equation (5.8) � is achieved by computation following problem:

49

��: �»�1 � ¼�
 � � � 	� � »a1 � ¼�h �5.9

��, ��, � # �: 	� � 	� � »�1 � ¼�
, �5.9�

where ∑ ¼¾�¾k� � 1 and ¼¾ � U0,1V.

Figure 5.2a: Fitting PWA function

restricted by lower boundary.

Figure 5.2b: Fitting PWA function

restricted by lower boundary on the

whole axis x

Figure 5.2c: Fitting PWA function

restricted by lower boundary on the

verteces

5.3 Creating a new objective function

Figure 5.3a: Fitting PWA function

restricted by vertices of lower and

upper boundary.

Figure 5.3b: Badly fitted PWA

function

Figure 5.2c: Properly fitted PWA

function.

In this Chapter we are going to creating a new objective function. Basically we are going to fit

new affine lines (regions) restricted by vertices of lower and upper boundary (figure 5.3a). Based

on these conditions the optimizer can fit badly piecewise affine function as we can see in the

50

figure 5.3b. This wrong approximation is allowed by using implication between equations (5.6)

and (5.7). While equation (5.7) is satisfied, another equation (5.6) is not. Properly fitted

piecewise affine function is illustrated in figure 5.2c.

5.4 Implementation in MATLAB

Let us consider that data about system and its boundaries are known. To obtain new fitted

objective function we will define function:

 [alpha,beta] = fit_PWA(Jup,Jlow,V,K),

where Jup is an upper boundary, Jlow is a lower boundary, V are verteces of regions and K is

number of regions of the new fitted function which we have to define. Outputs of this function

are slopes alpha and affine terms beta. This function is basically MATLAB representation of

the equations (5.5) and (5.7). We have to keep in mind that even equation (5.7) was used,

YALMIP will also compute equations (5.9).

function [alpha,beta] = fit_PWA(Jup,Jlow,V,K,x_up,x_low)
nx = size(V{1},2);
% obj. function
obj = 0;
% constraints
F = [];
% symbolic values
alpha = sdpvar(nx,K,'full');
beta = sdpvar(1,K);

for i = 1:length(V)
 % Jup
 for j = 1:length(V{i})
 F = F + [(V{i}(j,:)*alpha + beta) <= ...
 V{i}(j,:)*Jup.C{i} + Jup.D{i}];
 end
 % Jlow
 for j = 1:length(V{i})
 F = F + [max(V{i}(j,:)*alpha + beta) >= ...
 V{i}(j,:)*Jlow.C{i} + Jlow.D{i}];
 end
end

%% solve
info = solvesdp(F,obj);
if info.problem ~= 0
 error('Problem is unsolvable !!!')
end

alpha = double(alpha);
beta = double(beta);

51

6 Certification

As we know from Chapter 5.2, equation (5.7) is only necessary condition to expression (5.6) and

so we can get bad approximation (Figure 5.3b), therefore after every fitted objective function we

have to check if the equation (5.6) is also satisfied. For the fulfilling of the constraints we will

use certification.

6.1 Certification of the upper boundary

Equation (5.5) is necessary and sufficient condition to expression (5.3), certification for the

upper boundary is unnecessary. Anyway just to be sure we will apply this certification which can

be formulated as:

��, �	 R �� maxe��e-	 � �e
 ¿ w¸,�- 	 � x¸,�, �6.1

where x is a optimization variable which belongs to �� region, �e is set of slopes and �e is set of

affine terms of the objective function while w¸,� are slopes and x¸,� are affine terms of the upper

boundary. If exist any solution 	 which will satisfy equation (6.1) it means that at the point with

coordinates 	 function value of the fitted objective function is greater then function value of the

upper boundary. For this reason we have to increase the number of the upper boundary vertices

by this point 	. Then we will try to fit another objective function, but with greater number of

vertices. Since between equations (5.3) and (5.5) is equivalence, equation (6.1) should not be

ever satisfied.

6.1.1 Formulation in MATLAB

For the certification of the upper boundary (based on the equation (6.1)) we can create function:

[x] = cert_Jup(alpha,beta,Jup,V),

where alpha are slopes and beta are affine terms of the fitted objective function, Jup are

piecewise affine data of the upper boundary and V is vector of vertices (regions). Output x is a

point where equation (6.1) is satisfied. We have to keep in mind that if optimized problem is

infeasible then in parameter x will not be saved a value. So after command double(x) zero will

be received. Then based on the result x will be printed the answer.

52

function [x] = cert_Jup(alpha,beta,Jup,V)
nx = size(alpha,1);

for i = 1:length(V)
 x = sdpvar(nx,1);

 obj = 0;

 F = [];
 F = F + [ismember(x, Jup.R(i))];
 F = F + [max(alpha'*x + beta') - (Jup.C{i}'*x + Jup.D{i}) > 1e-5];

 info = solvesdp(F,obj);

 x = double(x);
 if info.problem == 0 && x ~= 0 , break;end
end

if x == 0
 disp('cert_Jup: Alpha and beta were certificated !!!')
else
 disp('cert_Jup: Alpha and beta were not certificated !!!')
end

6.2 Certification of the lower boundary

By certification of the lower boundary we are going to find out if fitted objective function is

above lower boundary. This procedure is necessary because between equations (5.6) and (5.7) is

applied implication (5.6 I 5.7) and so equation (5.7) is only necessary condition for equation

(5.6). This can cause that fitted objective function will not be in the restricted area (figure 5.3b).

Certification for the lower boundary can be formulated as:

��, �	 R ��, �p �e-	 � �e ! wº,�- 	 � xº,�, �6.2

where x is optimized point which belongs to �� region, �e is set of slops and �e is set of affine

terms of the objective function while wº,� are slopes and xº,� are affine terms of the lower

boundary. Since we want to find point with the greatest deviation from the lower boundary

equation (6.2) will be transformed into following optimization problem:

��, �	 R �� d� � min �E � �wº,�- 	 � xº,�

 �6.3

 E ' maxe ��e-	 � �e
, �6.3�

53

where E is the maximum function value of the fitted objective function, 	 is optimized point and d� is an optimal result of this problem. This set of equations can be further reformulated as:

��, �	 R �� d� � min �E � �wº,�- 	 � xº,�

 �6.4

�p E ' �e-	 � �e �6.4�

If the result of this problem will be negative then objective function is badly fitted with the

greatest deviation in point 	. Let us apply equations (6.4) on figure 5.3b than as a result we will

get figure 6.1a. In this figure we can clearly see that new objective function is badly fitted what

will equation (6.4) find out by negative value of variance d� ! 0. For this reason we have to

increase the number of the lower boundary vertices by this point 	 � �0,4 (figure 6.1b). Then

we can try to fit another objective function while this time we can be sure that equations (6.4)

will not be satisfied in the point 	 (and in its close vicinity). This procedure should be repeated

until nonnegative variance will be found. It is possible that equations (6.4) will still have

negative variance which can cause that problem (5.7) illustrated in figure 5.2c will be

transformed into problem (5.6) illustrated in figure 5.2b.

Figure 6.1a: Certification of the fitted funciton Figure 6.1b: Result of the certification

54

6.2.1 Formulation in MATLAB

For the certification of the lower boundary (based on equations (6.4)) we can create function:

[x,d] = cert_Jlow(alpha,beta,Jlow,V),

where alpha are slopes and beta are affine terms of the fitted objective function, Jlow are

piecewise affine data of the lower boundary and V is vector of vertices (regions). Output d

represents variance of the fitted objective function and lower boundary in a point with axis x.

Based on this variance is also printed to the commandline the answer.

function [x,d] = cert_Jlow(alpha,beta,Jlow,V)
nx = size(alpha,1);
for k = 1:length(V)
 x = sdpvar(nx,1);
 eps = sdpvar(1,1);

 obj = eps - (Jlow.C{k}'*x + Jlow.D{k});

 F = [];
 F = F + [ismember(x, Jlow.R(k))];
 for i = 1:length(alpha)
 F = F + [eps >= alpha(:,i)'*x + beta(i)];
 end

 info = solvesdp(F,obj);
 if info.problem ~= 0, error('Problem is unsolvable !!!'),end

 x = double(x); d = double(obj);
 if d < -1e-6, break; end
end

if d >= -1e-6
 disp(sprintf('cert_Jlow: Alpha and beta were certificated !!!'))
else
 disp('cert_Jlow: Alpha and beta were not certificated !!!')
 disp(sprintf(' In point x = %d is difference = %d.',x,d))
end

6.3 Formulation in MATLAB

Until now we have certification of upper and lower boundary. But as it was already mentioned in

both certifications if any of these function will find out x that will satisfy equation (6.1)

respectively (6.2), then we have to increase number of vertices by this point x. After receive new

extended vector of vertices we will fit another objective function and then certification can start

again. This cycle we should perform until fitted objective function will be in the restricted area.

55

Because of certification of the lower boundary problem it is possible that using equations (6.4)

illustrated in figure 5.2c will be transformed into problem (5.6) illustrated in figure 5.2b. For this

reason we will define the maximum number of cycles. Since we are going to send extending

vertices (x_up, x_low) to the function fit_PWA we have to upgrade it by adding additional

inputs:

[alpha,beta] = fit_PWA(Jup,Jlow,V,K,x_up,x_low)

And by adding additional constraints:

for i = 1:length(V)
 % Jup extended vertices
 for j = 1:length(x_up)
 F = F + [(x_up(j,:)'*alpha + beta) <= ...
 x_up(j,:)'*Jup.C{i} + Jup.D{i}];
 end
 % Jlow extended vertices
 for j = 1:length(x_low)
 F = F + [max(x_low(j,:)'*alpha + beta) >= ...
 x_low(j,:)'*Jlow.C{i} + Jlow.D{i}];
 end
end

To ensure functionality of the mentioned cycles we will use the function:

[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N),

where Jup and Jlow are piecewise afiine data for boundaries, V is vector of all vertices

(regions), K is number of regions of the new fitted function, x_up and x_low vectors of

extended vertices (while in the beginning there are empty) and N represents number of maximum

cycles. Outputs from this function are slopes alpha and affine terms beta of the final fitted

objective function and vectors of extended vertices x_up and x_low.

function [alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N)
[alpha,beta] = fit_PWA(Jup,Jlow,V,K,x_up,x_low);

[x] = cert_Jup(alpha,beta,Jup,V); % cert_Jup: f(x) <= Jup(x)

if x ~= 0
 x_up = [x_up; x];
 [alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N);
End

[x,d] = cert_Jlow(alpha,beta,Jlow,V); % cert_Jlow: Jlow(x) <= f(x)
if d < -1e-6
 x_low = [x_low; x];
 if length(x_low) < N + 1
 [alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N);
 elseif length(x_low) == N

56

 fprintf('!!! Lack of iteration steps !!!\n')
 end
else

 fprintf('Jlow(x) <= f(x) <= Jup(x) certified\n')
end

In the beginning new objective function will be fitted (fit_PWA). Then certification of the upper

boundary will be applied (cert_Jup). Based on the result x this function may add another vertex

and then recursively run function Jlow_Jup once again. If fitted objective function will be under

upper boundary then certification of the upper boundry will be satisfied and we can start

certificate lower boundary (cert_Jlow). Based on variance d we may add another vertex and

again recursively run function Jlow_Jup. If both certificatins are satisfied (or number of cycles

will run out) we will print the result of the certification.

To plot last fitted objective function we can use function:

[VV] = draw_PWA(alpha, beta, X, Jpoly),
where alpha and beta are slopes and affine terms of fitted objective function, X represents

edges of axis and Jpoly is a structure where slopes and affine terms of both boundaries have

been saved. To obtain explicit representation of fitted objective function we will use function

get_explicit_pwa_max. When boundaries have been plotted by using command plot we can

plot mentioned fitted objective function through function plot_pwa. In the end we will compute

vector of all region verteces as the output of this main function draw_PWA.

% function [VV] = draw_PWA(alpha, beta, X, Jpoly)
% alpha - slope (f(x) = alpha*x + beta)
% beta - affine term (f(x) = alpha*x + beta)
% X - Polytop representing range of each axis (in matrix X)
% VV - vertices of each new region (from new alpha and beta)
function [VV] = draw_PWA(alpha, beta, X, Jpoly)

% obtain the explicit representation of f(x) as
% f(x) = c_j*x+d_j if x \in P_j
f = get_explicit_pwa_max(alpha, beta, X);

if gcf==1, plot(Jpoly, 'y'); end

hold on, plot_pwa(f); grid on, hold off

% output
for i = 1:length(f.R), VV{i} = extreme(f.R(i)); end

57

7 Control law

In Chapter 1.4.2 was mentioned that each piecewise affine objective function must be associated

with piecewise affine control law to achieve successfully control of any process. System does not

care about objective function in the certain state, it requires only optimal input from controller to

move forward. In this Section we will describe how to obtain control law from objective

function.

7.1 Approximate simplical control law [5]

Let � � U�	�, ��	�
�, … , �	e, ��	e
�V £ Q,d� be a set of vertices of the fitted objective function

and g� be the optimizer for vertex �	� , ��	�
�. If ¤ � U¥	¦§ , �a	¦§h¨, … , ¥	¦©ª§ , �a	¦©ª§h¨V £ �

are the vertices contained in a facet of the lower convex hull of �, then the approximate critical

region defined by ¤ is �·¦ Á �µ�¹ Â\� and the control law is given as:

�	 R �·¦ g��	
: � Ã¦Ä¦j� �	1�, �7.1

where

Ã¦ Á �g¦§ … g¦©ª§�

Ä¦ Á 	¦§ … 	¦©ª§1 … 1 °

Equation (7.1) defines the approximate control law as the interpolation of the optimal control

action given at the vertices of each approximate critical region.

Figure 7.1a: Certificated PWA

objective function

Figure 7.1b: Vertices of all regions

of PWA objective functions

Figure 7.1c: Vertices made of the

lower convex hull of vector V

58

Figure 7.2a: Optimized inputs of vector V Figure 7.2b: Control law associated with obj. function

7.2 Formulation in MATLAB

First step to implement equation (7.1) will be to prepare vector of the optimized inputs Ã¦ for

verteces �. For this purpose we use the function:

[Vu] = get_Vu(VV,sysStruct,probStruct),
where sysStruct and probStruct are structures of the initial problem (in our case it is

problem defined in lti_1d_unstable) and VV are vertices of each region (VV � �). Output of

this function is optimized inputs (Vu � Ã¤) and it will be received as a result of the optimization

of the particular norm. Overview of the most used norms is mentioned in Chapter 1.3.2, but in

MATLAB we will use matrix formulation. Full description of each function (norminf, norm1)

is in the appendix.

% Vu -> cell of the optimum inputs in all vertices
function [Vu] = get_Vu(VV,sysStruct,probStruct)
% objective function and constraints
if probStruct.norm == inf
 [Vu] = norminf(VV,sysStruct,probStruct);
elseif probStruct.norm == 1
 [Vu] = norm1(VV,sysStruct,probStruct);
else
 fprintf('!!! Norm "%d" is not allowed !!!\n',probStruct.norm);
end

 If we take a better look to the equation (7.1) we will see that result of the multiplication Ã¦Ä¦j�

is a matrix which represents slopes and affine terms of the control law. This matrix will be output

of the following function:

59

[VU,Vu] = get_u(VV,sysStruct,probStruct),
where inputs are just the same as in the function get_Vu (already described), first output Vu

represents vector of optimized inputs while the second one represents mentioned matrix of slopes

and affine terms of the control law (VU � Ã¦Ä¦j�).

% VU -> cell of the alpha and beta for inputs
% (VU{i} = [a1_i, a2_i...;b1_i, b2_i...;])
% Vu -> cell of the optimum inputs in all region vertices from VV
function [VU,Vu] = get_u(VV,sysStruct,probStruct)
[Vu] = get_Vu(VV,sysStruct,probStruct);

nx = size(sysStruct.A,2); % number of states

for i = 1:length(VV)
 for j = 1:nx
 X = [VV{i}(:,j)'; ones(1,length(VV{i}(:,j)))];
 U = [Vu{i}(:,j)'];
 C = U*X^-1;
 VU{i}(:,j) = C';
 end
end

To plot the final control law can be again used function draw_PWA or alternatively can be used

following function:

plot_PWA_u(VV,Vu),
where VV is vector of vertices of objective function and Vu is vector of vertices of the control

function. If this function will meet with more than two dimensional problem, it will write

warning using command fprintf.

function plot_PWA_u(VV,Vu)
nx = size(VV{1},2);

if nx == 1
 figure
 hold on
 xlabel('x')
 ylabel('u')
 title(sprintf('Control PWA function over %d regions',length(VV)))

 plot([VV{:}],[Vu{:}],'--b','LineWidth',3)
 legend('u = f(x)')
 grid

elseif nx == 2
 temp = ceil(length(VV)/7);
 color = repmat({'b','g','r','c','m','y','k'},1,temp);

 figure
 hold on
 xlabel('x1')

60

 ylabel('x2')
 zlabel('u')
 title(sprintf('Control PWA function over %d regions',length(alpha)))
 grid

 % for u1
 for i = 1:length(VV)
 x = VV{i}(:,1);
 y = VV{i}(:,2);
 z = Vu{i}(:,1);

 patch(x,y,z,color{i})
 end

 if size(Vu{1},2) == 2
 figure
 hold on
 xlabel('x1')
 ylabel('x2')
 zlabel('u2')
 title(sprintf('Control PWA function over %d regions',length(alpha)))
 grid

 % for u2
 for i = 1:length(VV)
 x = VV{i}(:,1);
 y = VV{i}(:,2);
 z = Vu{i}(:,2);

 patch(x,y,z,color{i})
 end
 end

else
 fprintf('!!! Cant plot if nx > 2 !!!\nNumber of states: nx = %d\n',nx)
end

61

8 Examples

In Chapter 2 we have analyzed that if we want to control any process equation (2.1) must be

satistied. To achieve that we have to sometimes decrease computation time at the expense of

optimality, especially when fast process has to be controlled. By decreasing the number of

regions we will lower PWA data requirements for process control, but on the other hand

performance will be decreased as well (figure 2.4). In this Section we will illustrate a few

examples where this method will be used.

8.1 Example 1 (lti_1d_stable)

Let us have an example of linear time-invaiant, one dimensional stable problem defined as

lti_1d_stable. The result of the call lti_1d_stable can be seen in the figure 8.1a. Our next

step will be to find upper boundary. Lower boundary is already known since it is represented by

optimal solution of this problem (figure 8.1a). Both boundaries are plotted in figure 8.1b, where

the restricted (stable) area is being highlighted. Now if we look at this figure 8.1b more closely

we should see that this whole problem can be defined even over two regions (Ç � 2) and as this

problem looks realy simple five iteration steps should be enough (È � 5). This way we can

reduce data required to store slopes and affine terms to a quarter (and approximately computation

time as well (2.5)). To get this new simplified objective function we will use function Jlow_Jup,

where certification is included. If new problem will by certificated or if we will run out of

iteration steps, final objective function will be plotted (figure 8.1c). As a last step to control this

system with new suboptimal objective function we need to construct a control law. This

procedure is described in Chapter 7 and so we should know that if we want to get slopes and

affine terms of the control law we need to call function get_u and the function plot_PWA_u

(alternatively function draw_PWA) will plot it (figure 8.1e). From Chapter 2 we know that by

decreasing number of regions we will also decrease computation time required to assign correct

input to the system based on current state but at the expense of loosing performance. This loss

can be seen while comparing optimal and suboptimal control laws (figure 8.1f).

62

Figure 8.1a: Optimal PWA objective function Figure 8.1b: Restricted stable area

Figure 8.1c: Fitted PWA objective function Figure 8.1d: Suboptimal PWA objective function

Figure 8.1e: Control PWA function Figure 8.1f: Comparison of the control laws

63

8.1.1 Formulation in MATLAB

System lti_1d_stable is defined as:

clear sysStruct probStruct

sysStruct.A = 0.8;
sysStruct.B = 1;
sysStruct.C = 1;
sysStruct.D = 0;
sysStruct.umax = 1;
sysStruct.umin = -1;
sysStruct.xmax = 5;
sysStruct.xmin = -5;

probStruct.Q = 1;
probStruct.R = 1;
probStruct.norm = 1;
probStruct.N = 5;

nx = mpt_sysStructInfo(sysStruct);

ctrl = mpt_control(sysStruct, probStruct)

To create a new suboptimal control law of the system mentioned above we need to call following

functions:

close all
clear all
clc

lti_1d_stable;
prepare_data;

N = 5; % number of iteration steps
K = 2; % number of approx regions
x_up = []; % empty extending vertices for the upper boundary

x_low = []; % empty extending vertices for the lower boundary

[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N);

VV = draw_PWA(alpha, beta, X, Jpoly);

[VU,Vu] = get_u(VV,sysStruct,probStruct);

plot_PWA_u(VV,Vu);

64

8.2 Example 2 (lti_1d_unstable)

Let us have an example of linear time-invariant, one dimensional unstable problem defined as

lti_1d_unstable. By calling m-file with this name as this system we will get an explicit form

of this problem which can be graphically seen in the figure 8.2a. When the lower boundary will

be found we can highlight stable area. For this purpose we have prepared another m-file

prepare_data (figure 8.1b). From figure 8.1b we will try to guess the minimal number of

regions which can be this system defined (Ç � 4). Since this problem is a little bit more difficult

as example 1 the number of iterations will be doubled (È � 10). To get a new simplified

objective function we will use function Jlow_Jup in which certification is included (figure 8.2d).

The only thing what is left to do is to extract control law from the objective function. This step is

achieved by function get_u and then after using another function plot_PWA_u we will plot it

(figure 8.2e). In the end we can compare optimal and suboptimal control laws to see the lost of

the performance caused by this method (figure 8.2f).

Since optimal objective function is symmetrical we can try to even simplify this computation. If

we split objective function into two halfs (�� R É�5,0Ê, �� R É0,5Ê), then the result of the first

half �� will be also result for the other half, but with opposite sign of the slopes. This way fitting

and the certification should by simplified by a half. To prove this statement we can take a look at

the table 8.1. Time-inequality of these two methods is caused by MATLAB, which had in the

case of the asymmetries to use more extended vertices.

Operation
Algorithm that does

not use symmetry

Algorithm that use

symmetry

Prepare explicit data 5.1 [s] 5.1 [s]

Fit a new objective function 9.2 [s] 1.1 [s]

Number of extended vertices 3 0

Plot objective function 0.2[s] 0.2 [s]

Extract control law 0.7 [s] 0.6 [s]

Plot control law 0.1[s] 0.1 [s]

Total time 15.3 [s] 7.1 [s]

Table 8.1: Comparing time efficiency by using symmetry

65

Figure 8.2a: Optimal PWA objective function Figure 8.2b: Restricted stable area

Figure 8.2c: Fitted PWA objective function Figure 8.2d: Suboptimal PWA objective function

Figure 8.2e: Control PWA function Figure 8.2f: Comparison of the control laws

66

8.2.1 Formulation in MATLAB

System lti_1d_unstable is defined as:

clear sysStruct probStruct

sysStruct.A = 1.1;
sysStruct.B = 1;
sysStruct.C = 1;
sysStruct.D = 0;
sysStruct.umax = 1;
sysStruct.umin = -1;
sysStruct.xmax = 5;
sysStruct.xmin = -5;

probStruct.Q = 1;
probStruct.R = 1;
probStruct.norm = 1;
probStruct.N = 5;

nx = mpt_sysStructInfo(sysStruct);
ctrl = mpt_control(sysStruct, probStruct)

To create a new suboptimal control law of the system we need to call following functions

(function reindex_pwa is attached in the appendix):

close all, clear all, clc

lti_1d_unstable;
prepare_data;

N = 10; % number of iteration steps
K = 4; % number of approx regions
x_up = []; x_low = []; % empty extending vertices for boundaries

if nx == 1 % nx is a dimension of the problem
 [Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V);
 if smtr == 1 && mod(K,2) == 0, K = K/2; V = V(1:end/2);end
end

[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N);

if nx == 1 && smtr == 1 && mod(K,2) == 0
 temp = length(V);
 for i = 1:temp, V{temp+i} = -V{temp-i+1}; end
 alpha = [alpha, -alpha];
 beta = [beta, beta];
end

VV = draw_PWA(alpha, beta, X, Jpoly);

[VU,Vu] = get_u(VV,sysStruct,probStruct);

plot_PWA_u(VV,Vu);

67

8.3 Summarization of examples

Reducing the memory requirements of explicit model predictive control was only a supporting

role, since our main goal is to reduce computation time of this control. By using results from

each example we can find the improvement of time-consuming calculation of the required

optimal input based on current state. In following graphs we will see compared time

requirements of optimal (��, g�) and suboptimal (��, g�) problems.

8.3.1 Summarization of example 1

In this work are mentiond two procedures how we find the input to the system (Chapter 1.4.3 and

Chapter 2.2), therefore in order to illustrate computation improvement of the result from the

example 1 we will proceed both of them. While in figures 8.3 is compared time required to

obtain input to the system in each region, in figure 8.4 we can see the control difference of

optimal and suboptimal control laws.

Figure 8.3a: Compared time required to obtain input to

the system by procedure from Chapter 1.4.3

Figure 8.3b: Compared time required to obtain input to

the system by procedure from Chapter 2.2

68

Figure 8.4: Control difference of optimal and suboptimal control laws

8.3.1.1 Formulation in MATLAB

Both time comparison procedures can be simple implemented in MATLAB using following

commands:

close all
clear all
clc

lti_1d_stable;
prepare_data;
N = 10; % number of iteration steps
K = 2; % number of approx regions
x_up = []; x_low = []; % empty extending vertices

[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N);

[Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V);
VV = draw_PWA(alpha, beta, X, Jpoly);

[VU,Vu] = get_u(VV,sysStruct,probStruct);
[VUU,Vuu] = get_u(V,sysStruct,probStruct);

69

for i = 1:length(alpha)
 J_alpha{i} = alpha(:,i);

 J_beta{i} = beta(:,i);
end

x = [-5:.1:-.1 .1:.1:5];
for j = 1:5
 time_m1 = []; time_m2 = [];
 for i = 1:length(x)
 if x(i) == 0, continue;end
 % Procedure 1
 [time1,u_opt] = get_time_m1(Jlow.C,Jlow.D,V,VUU,x(i));
 [time2,u_sub] = get_time_m1(J_alpha,J_beta,VV,VU,x(i));
 time_m1 = [time_m1 [time1;time2]];

 % Procedure 2
 [time1,u_opt] = get_time_m2(V,VUU,x(i));
 [time2,u_sub] = get_time_m2(VV,VU,x(i));
 time_m2 = [time_m2 [time1;time2]];
 end
end
figure, hold on
title('Procedure 1'),xlabel('State'),ylabel('Computation time [s]')
plot(x,time_m1(1,:),'b')

plot(x,time_m1(2,:),'r')
legend('Optimal problem','Subptimal problem')

figure, hold on
title('Procedure 2'),xlabel('State'),ylabel('Computation time [s]')
plot(x,time_m2(1,:),'b')

plot(x,time_m2(2,:),'r')

legend('Optimal problem','Subptimal problem'),

where function get_time_m1 is defined as:

function [time,u] = get_time_m2(VV,VU,x)
tic,
for i = 1:length(VV)
 minVV = min(VV{i}); maxVV = max(VV{i});
 if x <= maxVV && x >= minVV, Ri = i; break; end
end
u = VU{Ri}'*[x;1]; % action input
time = toc;

and function get_time_m2 is defined as:

function [time,u] = get_time_m1(alpha,beta,VV,VU,x)
tic,
for i = 1: length(VV)
 Fvalue(i) = x'*alpha{i} + beta{i};
end
MaxF = max(Fvalue); % maximal function value
Ri = find(Fvalue == MaxF); % index of region
u = VU{Ri}'*[x;1]; % action input
time = toc;

70

Control difference of optimal and suboptimal control laws is implemented in MATLAB by:

close all
clear all
clc

lti_1d_stable;
prepare_data;
N = 10; % number of iteration steps
K = 2; % number of approx regions
x_up = []; x_low = []; % empty extending vertices
[Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V);

[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N);

VV = draw_PWA(alpha, beta, X, Jpoly);

[VU,Vu] = get_u(VV,sysStruct,probStruct);

time = 25;

% optimal control law
X = [];

x = -5;

for i=1:time
 X = [X x]; x = sysStruct.A*x+sysStruct.B*ctrl(x);
end

% suboptimal control law
Y = [];
x = -5;
for i = j:time
 Y = [Y x];

 % finding u
 for i = 1:length(VV)
 VV_min = min(VV{i});
 VV_max = max(VV{i});
 if (x >= VV_min) && (x <= VV_max)
 u = VU{i}(1)*x + VU{i}(2);
 end
 end

 x = sysStruct.A*x + sysStruct.B*u;
end

figure
hold on
plot(0:time,[X 0],'b','Linewidth',2)
plot(0:time,[Y 0],'--r','Linewidth',2)
axis([0 time -5 1])
title('Comparation of optimal and suboptimal regulation')
xlabel('Sampling time'),ylabel('x'),legend('u^*','u^~'),grid

71

8.3.2 Summarization of example 2

In order to summarize results from second example we will use the same functions as in Chapter

8.3.1, with exceptions that lti_1d_unstable and K = 4 has been used.

Figure 8.5a: Compared time required to obtain input to

the system by procedure from Chapter 1.4.3

Figure 8.5b: Compared time required to obtain input to

the system by procedure from Chapter 2.2

Figure 8.6: Control difference of optimal and suboptimal control laws

72

Conclusion

Predictive control is one of the most modern control approach which differs from other

conventional methods by its ability to predict the development of states and the fact that

constraints are directly incorporated into the optimization problem. On the other hand this

complexity represents the main drawback of this approach, because to solve such complicated

optimization problem requires large computational demands. In this work we have tried to

propose a method which allowed implementation of this control approach on systems with fast

dynamics.

In the opening Chapters, we have got familiar with model predictive control (its strengths,

options, mathematical formulations and so on) as well as the reasons why it is necessary to

propose use of the method which is able to reduce the demands for explicit data storage but at the

expense of losing performance (optimality). In sequel Chapter we have been searching for an

appropriate solution which has been dealing with all necessary requirements of this method and

thus to achieve suboptimal regulator, which would simultaneously guarantee the stability of the

system in his whole range. In order to define a stable area where a new simplified objective

function could be fitted, we have used two boundaries. First (lower) boundary was basically the

optimal objective function, while the other one (upper boundary) was created by moving of the

system at the limit of stability. In this stable area we were able to approximate a new simplified

objective function defined over fewer region. Since only necessary condition has been used in

the lower boundary, correct fitting was not guaranteed (as we could saw in the figures). In order

to insure that the necessary condition has met the sufficient condition we have defined the

certification. Right after the newly created function has fulfilled the certification we was able to

extract a control law from it and thus to obtain a suboptimal regulator. In order to proof the

functionality of this method we have implemented it into two examples and the results

graphically illustrated.

In this work we have proposed a method which is able to reduce the computation time and a

storage capacity of the explicit data by a great portion, while stability is still guaranteed. Based

on this reduction the control of the system can be faster, but we have to keep in mind that at the

expense of losing the performance (optimality).

73

Resumé

Úvod

Prediktívne riadenie patrí k najmodernejším prístupom riadenia, ktoré sa odlišuje od ostatných

konvenčných metód riadenia tým, že sekvencia optimálnych vstupov do systému sa vypočíta

prostredníctvom optimalizácie daného problému na konečnom predikčnom horizonte vzhľadom

na obmedzenia a za predpokladu, že model procesu, ako aj stav v danom kroku riadenia sú

známe. V skutočnosti tento fakt predstavuje aj najväčšiu nevýhodu tohto spôsobu riadenia,

pretože pre výpočet takejto optimalizácie je potrebná výkonná výpočtová technika

a v neposlednej rade aj efektívny softvér (solver). Z tohto dôvodu sa prediktívne riadenie

implementovalo prevažne do procesov s pomalou dynamikou, akými sú napríklad priemyselné

procesy, nakoľko optimálny akčný zásah do daného procesu musí byť vypočítaný do doby

odobrania ďalšej vzorky (vzorkovacieho času). V posledných rokoch bol však zaznamenaný

významný pokrok v oblasti zdokonaľovania a vývoja výpočtových prostriedkov vrátene nových

výkonných numerických metód a z toho hľadiska sa aj tento nedostatok postupne vytráca.

Explicitné prediktívne riadenie

Poznáme dva prístupy implementácie prediktívneho riadenia. Prvým z nich je klasický prístup

rovnako označovaný ako on-line riadenie. Druhým prístupom je explicitné riadenie, ktoré je

taktiež nazývané ako off-line riadenie. Základný rozdiel medzi týmito dvoma spôsobmi riadenia

je v prístupe vypočítania optimálneho vstupu do systému. Pri on-line prístupe sa optimálny

akčný zásah vypočíta neustálou optimalizáciou problému (1.13), čo vedie k výraznému

zaťaženiu výpočtovej techniky. Z tohto dôvodu sa tento klasický prístup riadenia mohol

implementovať iba do systémov s pomalou dynamikou. Pri explicitnom riadení sa optimalizácia

vykoná iba raz a to ešte predtým, ako začneme riadiť daný systém (odkiaľ vychádza aj názov

off-line). Touto optimalizáciou si daný problém vyjadríme ako hybridný systém, ktorého budeme

môcť riadiť pomocou rovníc (1.14, 1.17). Teda ako systém, ktorého účelová funkcia ako aj

zákon riadenia budú rozdelené do viacerých po častiach afinných úsekov (regiónov). Údaje

o každom jednom úseku, teda smernice a posunutie, sú uložené do tabuľky, ktorá bude

obsahovať matice (1.15), (1.16), (1.18) a (1.19). Akčný zásah sa získa prostredníctvom určenia

74

indexu aktívneho regiónu pre aktuálny stav a to na základe jednoduchých matematických

výpočtov. Následne sa z tabuľky získajú údaje o zákone riadenia pre daný región a určí sa

správny akčný zásah. Už teda nebude prebiehať neustala optimalizácia daného problému, čím sa

výrazne zníži náročnosť na výpočtovú techniku. Na druhej strane, vzhľadom na rozsiahlosť

tabuľky údajov, sa zvýši pamäťová náročnosť.

Zníženie implementačnej náročnosti explicitného prediktívneho riadenia

Z teórie vieme, že pri riadení diskrétnych systémov (ktoré sú všetky systémy riadené počítačom)

sa musí čas, potrebný na výpočet optimálneho akčného zásahu, zmestiť práve do jednej doby

vzorkovania (2.1), pričom vhodná doba vzorkovania pre daný proces by mala spadať do určitého

intervalu (2.2). Explicitné prediktívne riadenie je prístup, pri ktorom sa optimálny vstup do

riadeného procesu vypočíta prostredníctvom hľadania príslušného regiónu v tabuľke údajov

(obrázok 2.2). Preto môžeme povedať, že čas potrebný na výpočet optimálneho vstupu bude

priamo úmerný počtu regiónov (2.5). Preto vieme, že ak budeme chcieť implementovať

explicitné prediktívne riadenie do ľubovoľného systému (s určitou periódou vzorkovania),

budeme musieť znížiť počet regiónov daného problému až do takej miery, aby bol výpočtový čas

akčného zásahu menší (nanajvýš rovný) ako doba vzorkovania. Rovnako prostredníctvom

znižovania počtu regiónov budeme znižovať aj pamäťové nároky, ktoré sú potrebné

k implementácii daného explicitného prediktívneho riadenia.

Metóda, ktorá bola navrhnutá v tejto práci, sa snaží znížiť počet regiónov a to takým spôsobom,

že prvotnú (optimálnu) účelovú funkciu sa pokúsi aproximovať novou (suboptimálnou) účelovou

funkciou, ktorá bude zadefinovaná prostredníctvom menšieho počtu regiónov. Avšak takáto

aproximácia nemôže byť vykonaná na ľubovoľnom mieste. Preto je potrebné si najskôr zostrojiť

hranice stability. Spodnú hranicu tvorí práve naša optimálna účelová funkcia, nakoľko lepšie

riadenie ako je to optimálne už neexistuje. Hornú hranicu zostrojíme tak, že daný systém

posunieme až na hranicu stability. Prípustná oblasť, kde bude garantovaná stabilita daného

systému, vznikne vymedzením práve týchto dvoch hraníc (obrázok 4.3), v ktorej budeme môcť

aproximovať novú (suboptimálnu) účelovú funkciu. Pre spätnú kontrolu, či takto zostrojená

funkcia bude podmnožinou stabilného priestoru, sme si zostrojili dva certifikáty. Až keď daná

funkcia prejde certifikáciou, budeme môcť priradiť k nej suboptimálny zákon riadenia (obrázok

7.2).

75

Záver

V diplomovej práci sme sa zaoberala problematikou znižovania implementačnej náročnosti

explicitného prediktívneho riadenia. Vysvetlili sme si základné prednosti prediktívneho riadenia

a následne sme si aj predstavili dva odlišné prístupy pri jeho implementácii. Navrhli sme metódu,

ktorá na základe redukcie počtu regiónov dokázala znížiť implementačnú náročnosť explicitného

prediktívneho riadenia, ale to za cenu zníženia kvality riadenia (suboptimality). Funkčnosť tejto

metódy sme dokázali v poslednej kapitole a to na dvoch príkladoch, pričom výsledky porovnania

optimálneho a suboptimálneho riadenia boli ilustrované prostredníctvom grafov.

76

References

[1] Ing. Adrián Karas,PhD., prof. Ing. Boris Rohaµ-Ilkiv,CSc., doc. Ing. Cyril Belavý,CSc.:

Praktické aspekty prediktívneho riadenia. STU Bratislava 2007. ISBN 978-80-89316-06-9

[2] Michal Kvasnica, Ing., PhD. - Model Predictive Control (MPC), Part 1: Introduction

[3] M. Kvasnica, P. Grieder, and M. Baotic �. Multi-Parametric Toolbox (MPT), 2004.

Available from http://control.ee.ethz.ch/~mpt/

[4] Alexander Domahidi, Melanie N. Zeilinger, Manfred Morari and Colin N. Jones:
Learning a Feasible and Stabilizing Explicit Model Predictive Control.Law by Robust
Optimization.

[5] C.N. Jones, M. Barić and M. Morari: Multiparametric Linear Programming with

Applications to Control. European Journal of Control (2007)13:152–170

77

Appendix A – Main program

close all
clear all
clc

lti_1d_stable;
% lti_1d_unstable;
% lti_2d;

prepare_data;
N = 10; % number of iteration steps
K = 2; % number of approx regions
x_up = []; x_low = []; % empty extending vertices

nx = size(sysStruct.A,2); % number of states

if nx == 1 % nx is a dimension of the problem
 [Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V);
 if smtr == 1 && mod(K,2) == 0, K = K/2; V = V(1:end/2);end
end

[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N);

if nx == 1 && smtr == 1 && mod(K,2) == 0
 temp = length(V);
 for i = 1:temp
 V{temp+i} = -V{temp-i+1};
 end
 alpha = [alpha, -alpha];
 beta = [beta, beta];
end

% VV = draw_PWA_1D(alpha,beta,Jlow,Jup,V);
VV = draw_PWA(alpha, beta, X, Jpoly);

[VU,Vu] = get_u(VV,sysStruct,probStruct);

plot_PWA_u(VV,Vu);

78

Appendix B – Systems

lti_1d_stable

clear sysStruct probStruct

sysStruct.A = 0.8;
sysStruct.B = 1;
sysStruct.C = 1;
sysStruct.D = 0;
sysStruct.umax = 1;
sysStruct.umin = -1;
sysStruct.xmax = 5;
sysStruct.xmin = -5;

probStruct.Q = 1;
probStruct.R = 1;
probStruct.norm = 1;
probStruct.N = 5;

nx = mpt_sysStructInfo(sysStruct);
ctrl = mpt_control(sysStruct, probStruct)

lti_1d_unstable

clear sysStruct probStruct

sysStruct.A = 1.1;
sysStruct.B = 1;
sysStruct.C = 1;
sysStruct.D = 0;
sysStruct.umax = 1;
sysStruct.umin = -1;
sysStruct.xmax = 5;
sysStruct.xmin = -5;

probStruct.Q = 1;
probStruct.R = 1;
probStruct.norm = 1;
probStruct.N = 5;

nx = mpt_sysStructInfo(sysStruct);
ctrl = mpt_control(sysStruct, probStruct)

79

Appendix C – prepare_data

% we want to find a_k, b_k, k = 1,...,K of the convex PWA function
% f(x) := max a_k*x+b_k such that
% \forall x: Jlow(x) <= max a_k*x+b_k <= Jup(k)
% "K" is minimized (as a heurstics we minimize ||a_k||_1, ||b_k||_1)
% since Jlow() and Jup() are PWA functions, the first constraint reads
% \forall i, x \in R_i: Clow_i*x+Dlow_i <= max a_k*x+b_k <= Cup_i*x+Dup_i
%
% in our case, Jlow(x) = V(x), where V(x) is the optimal cost function of a
% given explicit MPC solution (pretend it's a Lyapunov function for now),
% and Jup(x) = Jlow(x) + ||Qx||
%
% Jlow() and Jup() are convex PWA functions:
% Jlow(x) := Clow_i*x+Dlow_i, if x \in R_i
% Jup(x) := Cup_i*x+Dup_i, if x \in R_i

% to construct epigraphs, we need to find the maximum of a PWA function
% over its domain. for that, we need vertices of the domain
X = union(ctrl.Pfinal); VX = extreme(X);

% we are going to approximate the cost of a given explicit MPC solution
Clow = ctrl.Bi; for i = 1:length(Clow), Clow{i} = Clow{i}'; end
Dlow = ctrl.Ci;
R = ctrl.Pn;
V = pelemfun(@extreme, R);
nR = length(R);

% get Jup(x) = Jlow(x) + ||Qx||
[Cup, Dup] = J_add_norm(Clow, Dlow, R, ctrl.probStruct.Q);

% obtain polytopic representation of the epigraphs:
% * PJ is the epigraph of Jlow(x)
% * PJN is the epigraph of Jup(x)
% * Jpoly is the polytopic representation of the difference of the two
% functions
[PJ, PJN, Jpoly, Jmax] = get_J_epigraph(R, X, Clow, Dlow, Cup, Dup);

close all
plot(Jpoly, 'y');

Jlow.R = R;
Jlow.C = Clow;
Jlow.D = Dlow;
Jup.R = R;
Jup.C = Cup;
Jup.D = Dup;

80

J_add_norm

function [c, d] = J_add_norm(c, d, R, Q)

nx = dimension(R(1));
V = pelemfun(@extreme, R);

for k = 1:length(c)
 W = V{k}';
 nv = size(W, 2);
 J = c{k}'*W + repmat(d{k}, 1, nv);
 for i = 1:nv
 J(i) = J(i) + sub_norm(W(:, i), Q, R(k));
 end
 q = [W' ones(nv, 1)]\J';
 c{k} = q(1:nx); d{k} = q(end);
end

%---
function y = sub_norm(x, Q, R)

x0 = chebyball(R);
nx = length(x0);
M = eye(nx);
for i = 1:nx
 if x0(i) < 0
 M(i, i) = -1;
 end
end
y = sum(Q*(M*x));

get_J_epigraph

function [PJ, PJN, J, Jmax] = get_J_epigraph(R, B, Clow, Dlow, Cup, Dup)
nx = dimension(R(1));

% obtain maximal value of Jup(x) over domain "B"
V = extreme(B);
Jmax = 0;
for i = 1:length(Cup)
 for j = 1:size(V, 1)
 Jmax = max(Jmax, Cup{i}'*V(j, :)' + Dup{i});
 end
end

fprintf('Computing epigraph of Jlow(x)...\n');
% epigraph of the value function, i.e.
% { [x; e] | e >= Jlow(x) }
x = sdpvar(nx, 1);
e = sdpvar(1, 1);
yPJ = [ismember(x, B); e <= Jmax];
for k = 1:length(Clow)

81

 yPJ = yPJ + [e >= Clow{k}'*x + Dlow{k}];
end
PJ = union(polytope(yPJ));

fprintf('Computing epigraph of Jup(x)...\n');
% epigraph of the shifted value function, i.e.
% { [x; e] | e >= J(x) + ||x|| }
yPJN = [ismember(x, B); e <= Jmax];
for k = 1:length(Cup)
 yPJN = yPJN + [e >= Cup{k}'*x + Dup{k}];
end
PJN = union(polytope(yPJN));

fprintf('Computing polytopes of Jup(x)-Jlow(x)...\n');
% polytopic representation of J(x)+||x|| - J(x)
J = polytope;
V = pelemfun(@polytope, R);
nR = length(R);
x = sdpvar(nx, 1);
e = sdpvar(1, 1);
for i = 1:nR
 if i==1 || i == nR || mod(i, 10)==0
 fprintf('%d / %d\n', i, nR);
 end
 Jlow = Clow{i}'*x+Dlow{i};
 Jup = Cup{i}'*x+Dup{i};
 yJ = [ismember(x, R(i)); Jlow <= e <= Jup];
 J = [J polytope(yJ)];
end

82

Appendix D – reindex_pwa

% re-index each region from left to right by axis x1
% check for symmetry (if smtr == 1 => obj function is symmetrical)
function [Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V)
% find correct positions of each region
temp = zeros(1,length(Jlow.R));
positions = zeros(1,length(Jlow.R));

if length(Jlow.C{:,1}) == 1
 for i = 1:length(Jlow.R)
 temp(i) = max(extreme(Jlow.R(i)));
 end
else
 for i = 1:length(Jlow.R)
 tempp = extreme(Jlow.R(i));
 temp(i) = max(tempp(1,:));
 end
end

temp2 = sort(temp); k = 1;
while k <= length(temp2)
 tempp2 = find(temp == temp2(k));
 if length(tempp2) > 1
 for j = 1:length(tempp2)
 positions(k+j-1) = tempp2(j);
 end
 k = k + length(tempp2);
 else
 positions(k) = tempp2; k = k + 1;
 end
end

% re-index each region
Jlow.R = Jlow.R(positions);
Jlow.C = Jlow.C(positions);
Jlow.D = Jlow.D(positions);

Jup.R = Jup.R(positions);
Jup.C = Jup.C(positions);
Jup.D = Jup.D(positions);

V = V(positions);
%% checking for symmetry (if smtr == 1 => obj is symmetrical)
k = length(Jup.R);
smtr = 1;

for i = 1:k/2
 if sum(abs(Jup.C{i} + Jup.C{k+1-i}) > 1e-9) > 0, smtr = 0; break; end
 if sum(abs(Jup.D{i} - Jup.D{k+1-i}) > 1e-9) > 0, smtr = 0; break; end
 if sum(abs(Jlow.C{i} + Jlow.C{k+1-i}) > 1e-9) > 0, smtr = 0; break; end
 if sum(abs(Jlow.D{i} - Jlow.D{k+1-i}) > 1e-9) > 0, smtr = 0; break; end
end

83

Appendix E – Jlow_Jup

function [alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N)
[alpha,beta] = fit_PWA(Jup,Jlow,V,K,x_up,x_low);

% cert_Jup: f(x) <= Jup(x)
[x] = cert_Jup(alpha,beta,Jup,V);
if x ~= 0
 x_up = [x_up; x];
 [alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N);
end

% cert_Jlow: Jlow(x) <= f(x)
[x,d] = cert_Jlow(alpha,beta,Jlow,V);
disp('======================================')
alpha
beta
x_up
x_low
disp('======================================')

if d < -1e-6
 x_low = [x_low; x];
 if length(x_low) < N + 1
 [alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N);
 elseif length(x_low) == N
 fprintf('!!! Lack of iteration steps !!!\n')
 end
else
 fprintf('Jlow(x) <= f(x) <= Jup(x) certified\n')
end

84

Appendix F – fit_PWA

function [alpha,beta] = fit_PWA(Jup,Jlow,V,K,x_up,x_low)
nx = size(V{1},2);

% obj. function
obj = 0;

% constraints
F = [];

% symbolic values
alpha = sdpvar(nx,K,'full');
beta = sdpvar(1,K);

for i = 1:length(V)
 % Jup
 for j = 1:length(V{i})
 F = F + [(V{i}(j,:)*alpha + beta) <= ...
 V{i}(j,:)*Jup.C{i} + Jup.D{i}];
 end
 for j = 1:length(x_up)
 F = F + [(x_up(j,:)'*alpha + beta) <= ...
 x_up(j,:)'*Jup.C{i} + Jup.D{i}];
 end
 % Jlow
 for j = 1:length(V{i})
 F = F + [max(V{i}(j,:)*alpha + beta) >= ...
 V{i}(j,:)*Jlow.C{i} + Jlow.D{i}];
 end
 for j = 1:length(x_low)
 F = F + [max(x_low(j,:)'*alpha + beta) >= ...
 x_low(j,:)'*Jlow.C{i} + Jlow.D{i}];
 end
end

%% solve
info = solvesdp(F,obj);
if info.problem ~= 0
 error('Problem is unsolvable !!!')
end
alpha = double(alpha);
beta = double(beta);

85

Appendix G – Certifications

cert_Jup

function [x] = cert_Jup(alpha,beta,Jup,V)
nx = size(alpha,1);

for i = 1:length(V)
 x = sdpvar(nx,1);

 obj = 0; F = [];
 F = F + [ismember(x, Jup.R(i))];
 F = F + [max(alpha'*x + beta') - (Jup.C{i}'*x + Jup.D{i}) > 1e-5];

 info = solvesdp(F,obj);

 x = double(x);
 if info.problem == 0 && x ~= 0 , break;end
end

if x == 0, disp('cert_Jup: Alpha and beta were certificated !!!')
else disp('cert_Jup: Alpha and beta were not certificated !!!')
end

cert_Jlow

function [x,d] = cert_Jlow(alpha,beta,Jlow,V)
nx = size(alpha,1);
for k = 1:length(V)
 x = sdpvar(nx,1); eps = sdpvar(1,1);

 obj = eps - (Jlow.C{k}'*x + Jlow.D{k});

 F = [];
 F = F + [ismember(x, Jlow.R(k))];
 for i = 1:length(alpha)
 F = F + [eps >= alpha(:,i)'*x + beta(i)];
 end

 info = solvesdp(F,obj);
 if info.problem ~= 0, error('Problem is unsolvable !!!'),end

 x = double(x); d = double(obj);
 if d < -1e-6, break; end
end

if d >= -1e-6, disp('cert_Jlow: Alpha and beta were certificated !!!')

else
 disp('cert_Jlow: Alpha and beta were not certificated !!!')
 fprintf(' In point x = %d is difference = %d. \n',x,d)
end

86

Appendix H – draw_PWA

% function [VV] = draw_PWA(alpha, beta, X, Jpoly)
% alpha - slope (f(x) = alpha*x + beta)
% beta - affine term (f(x) = alpha*x + beta)
% X - Polytop representing range of each axis (in matrix X)
% VV - vertices of each new region (from new alpha and beta)
function [VV] = draw_PWA(alpha, beta, X, Jpoly)

% obtain the explicit representation of f(x) as
% f(x) = c_j*x+d_j if x \in P_j
f = get_explicit_pwa_max(alpha, beta, X);

if gcf==1, plot(Jpoly, 'y'); end

hold on, plot_pwa(f); grid on, hold off

% output
for i = 1:length(f.R), VV{i} = extreme(f.R(i)); end

get_pwa_max

function fs = get_pwa_max(a, b, X)

nx = dimension(X);
J = sdpvar(1, 1);
x = sdpvar(nx, 1);
F = [J <= 1e4; ismember(x, X)];
for k = 1:size(a, 2)
 F = F + [J >= a(:, k)'*x + b(k)];
end
sol = solvemp(F, J, sdpsettings, x, J);
fpwa = mpt_mpsol2ctrl(sol, 1);
R = fpwa.Pn;
C = fpwa.Bi; for i = 1:length(C), C{i} = C{i}'; end
D = fpwa.Ci;

fs.R = R;
fs.C = C;
fs.D = D;

87

Appendix I – get_u

% VU -> cell of the alpha and beta for inputs
% (VU{i} = [a1_i, a2_i...;b1_i, b2_i...;])
% Vu -> cell of the optimum inputs in all region vertices from VV
function [VU,Vu] = get_u(VV,sysStruct,probStruct)
[Vu] = get_Vu(VV,sysStruct,probStruct);

nx = size(sysStruct.A,2); % number of states
nu = size(sysStruct.B,2); % number of inputs

for i = 1:length(VV)
 for j = 1:nx
 X = [VV{i}(:,j)'; ones(1,length(VV{i}(:,j)))];
 U = [Vu{i}(:,j)'];
 C = U*X^-1;
 VU{i}(:,j) = C';
 end
end

get_Vu

% Vu -> cell of the optimum inputs in all vertices
function [Vu] = get_Vu(VV,sysStruct,probStruct)
% objective function and constraints
if probStruct.norm == inf
 [Vu] = norminf(VV,sysStruct,probStruct);
elseif probStruct.norm == 1
 [Vu] = norm1(VV,sysStruct,probStruct);
else
 fprintf('!!! Norm "%d" is not allowed !!!\n',probStruct.norm);
end

norminf

% min sum(Ex) + sum(Eu)
% s.t. X == tA*X+tB*U+tE*xt
% tH*X <= tK
% tL*U <= tM
% -tEx <= tQ*X <= tEx
% -tEu <= tR*U <= tEu
function [Vu] = norminf(VV,sysStruct,probStruct)
% number of states, number of inputs
nx = size(sysStruct.A,2); % number of states
nu = size(sysStruct.B,2); % number of inputs
N = probStruct.N; % prediction horizon

% matrices for the objective function and the constraints for N = 1
H = [eye(nx);-eye(nx)];
L = [eye(nu);-eye(nu)];
K = [sysStruct.xmax; -sysStruct.xmin];
M = [sysStruct.umax ; -sysStruct.umin];

88

% matrices for the objective function and the constraints for N
tQ = kron(eye(N),probStruct.Q);
tR = kron(eye(N),probStruct.R);
tH = kron(eye(N),H);
tL = kron(eye(N),L);
tK = kron(ones(N,1),K);
tM = kron(ones(N,1),M);
tE1 = eye(nx);
tE2 = kron(ones(N-1,1),zeros(nx));
tE = [tE1;tE2];
tA1 = kron(ones(1,N),zeros(nx));
tA2 = kron(eye(N-1),sysStruct.A);
tA3 = kron(ones(N-1,1),zeros(nx));
tA = [tA1;tA2 tA3];
tB1 = kron(ones(1,N),zeros(nx,nu));
tB2 = kron(eye(N-1),sysStruct.B);
tB3 = kron(ones(N-1,1),zeros(nx,nu));
tB = [tB1;tB2 tB3];

% optimization variables
U = sdpvar(N*nu,1);
X = sdpvar(N*nx,1);
Eu = sdpvar(N,1);
Ex = sdpvar(N,1);
tEx = kron(Ex, ones(nx,1));
tEu = kron(Eu, ones(nu,1));

% simulation
for i = 1:length(VV)
 u0opt = [];
 for j = 1:2
 % objective function and constraints
 obj = sum(Ex) + sum(Eu);
 F = [X == tA*X+tB*U+tE*VV{i}(j,:); ...
 tH*X <= tK; ...
 tL*U <= tM; ...
 -tEx <= tQ*X <= tEx; ...
 -tEu <= tR*U <= tEu];
 info = solvesdp(F,obj);
 if info.problem ~= 0, error('Problem is infeasible'), end
 u0opt = [u0opt double(U(1:nu))];
 end
 Vu{i} = u0opt';
end

norm1

% min c'*Z
% s.t. AA*Z <= BB
% GG*Z = HH
function [Vu] = norm1(VV,sysStruct,probStruct)
% number of states, number of inputs
nx = size(sysStruct.A,2);
nu = size(sysStruct.B,2);
N = probStruct.N;

89

% matrices for the objective function and the constraints for N = 1
H = [eye(nx);-eye(nx)];
L = [eye(nu);-eye(nu)];
K = [sysStruct.xmax; -sysStruct.xmin];
M = [sysStruct.umax ; -sysStruct.umin];

% matrices for the objective function and the constraints for N
tQ = kron(eye(N),probStruct.Q);
tR = kron(eye(N),probStruct.R);
tH = kron(eye(N),H);
tL = kron(eye(N),L);
tK = kron(ones(N,1),K);
tM = kron(ones(N,1),M);
tE1 = eye(nx);
tE2 = kron(ones(N-1,1),zeros(nx));
tE = [tE1;tE2];
tA1 = kron(ones(1,N),zeros(nx));
tA2 = kron(eye(N-1),sysStruct.A);
tA3 = kron(ones(N-1,1),zeros(nx));
tA = [tA1;tA2 tA3];
tB1 = kron(ones(1,N),zeros(nx,nu));
tB2 = kron(eye(N-1),sysStruct.B);
tB3 = kron(ones(N-1,1),zeros(nx,nu));
tB = [tB1;tB2 tB3];

% optimization variables
U = sdpvar(N*nu,1);
X = sdpvar(N*nx,1);
Eu = sdpvar(N*nu,1);
Ex = sdpvar(N*nx,1);

% objective and constraints
obj = 0; F = [];

ZnuH = zeros(size(tH,1),N*nu);
ZnxH = zeros(size(tH,1),N*nx);
ZnxL = zeros(size(tL,1),N*nx);
ZnuQ = zeros(size(tQ,1),N*nu);
ZnuL = zeros(size(tL,1),N*nu);
ZnxR = zeros(size(tR,1),N*nx);

AA = [ZnuH tH ZnuH ZnxH; ...
 tL ZnxL ZnuL ZnxL; ...
 ZnuQ tQ ZnuQ -eye(N*nx); ...
 ZnuQ -tQ ZnuQ -eye(N*nx); ...
 tR ZnxR -eye(N*nu) ZnxR; ...
 -tR ZnxR -eye(N*nu) ZnxR];

BB = [tK;tM;zeros(size(AA,1) - size([tK;tM],1),1)];
GG = [-tB (eye(N*nx)-tA) zeros(N*nx,N*nu) zeros(N*nx)];
% HH = tE*xt;
%
% F = [AA*[U;X;Eu;Ex] <= BB; ...
% GG*[U;X;Eu;Ex] == HH];

90

% simulation
for i = 1:length(VV)
 u0opt = [];
 for j = 1:2
 HH = tE*VV{i}(j,:);

 F = [AA*[U;X;Eu;Ex] <= BB; ...
 GG*[U;X;Eu;Ex] == HH];

 info = solvesdp(F,obj);
 if info.problem ~= 0, error('Problem is Infeasible'),end
 u0opt = [u0opt double(U(1:nu))];
 end
 Vu{i} = u0opt';
end

91

Appendix J – plot_PWA_u

function plot_PWA_u(VV,Vu)
nx = size(VV{1},2);

if nx == 1
 figure
 hold on

 plot([VV{:}],[Vu{:}],'--b','LineWidth',3)

 xlabel('x'), ylabel('u'), legend('u = f(x)'), grid
 title(sprintf('Control PWA function over %d regions',length(VV)))

elseif nx == 2
 temp = ceil(length(VV)/7);
 color = repmat({'b','g','r','c','m','y','k'},1,temp);

 figure

 grid, hold on
 xlabel('x1'), ylabel('x2'), zlabel('u')

 title(sprintf('Control PWA function over %d regions',length(alpha)))

 % for u1
 for i = 1:length(VV)
 x = VV{i}(:,1);
 y = VV{i}(:,2);
 z = Vu{i}(:,1);

 patch(x,y,z,color{i})
 end

 if size(Vu{1},2) == 2
 figure

 grid, hold on
 xlabel('x1'), ylabel('x2'), zlabel('u2')

 title(sprintf('Control PWA function over %d regions',length(alpha)))

 % for u2
 for i = 1:length(VV)
 x = VV{i}(:,1);
 y = VV{i}(:,2);
 z = Vu{i}(:,2);

 patch(x,y,z,color{i})
 end
 end

else
 fprintf('!!! Cant plot if nx > 2 !!!\nNumber of states: nx = %d\n',nx)
end

92

Appendix K – get_PWA

close all
clear all
clc

%%
x = [-5 -4 -3 -2 -1 0 1 2 3 4 5];
y = [15 11 8 5 2.2 0 2.2 5 8 11 15];

% x = [-5 -4 -3 -2 -1 0 1 2 3 4 5; ...
% -5 -4 -3 -2 -1 0 1 2 3 4 5];
% y = [15 11 8 5 2.2 0 2.2 5 8 11 15];

[alpha,beta] = Points_into_PWA(x,y);
%%
nx = size(x,1);

% if nx == 1, plot_1D_PWA(alpha, beta, x,y),end

x_max = zeros(1,nx);
x_min = zeros(1,nx);
for i = 1:size(x,1)
 x_max(i) = max(x(i,:));
 x_min(i) = min(x(i,:));
end
X = polytope([eye(nx);-eye(nx)],[x_max'; -x_min']);

% obtain the explicit representation of f(x) as
% f(x) = c_j*x+d_j if x \in P_j
f = get_explicit_pwa_max(alpha', beta', X);

plot_pwa(f);
grid on
hold off

93

Appendix L – Points_into_PWA

function [alfa,beta] = Points_into_PWA(x,y)
x_length = length(x);
y_length = length(y);
if x_length ~= y_length error('! Length x ~= y !'),end
%% symbolic parameters
xlength = x_length - 1;
nx = size(x,1);

J = sdpvar(xlength,1);
alfa = sdpvar(xlength,nx);
beta = sdpvar(xlength,1);
%% objective function
obj = 0;
for i = 1:xlength
 obj = obj + (J(i) - y(i))^2;
end
%% constraints
F = [];
for i = 1:xlength
 for j = i+1:xlength + 1
 F = F + [alfa(i,:) <= (y(j)-y(i))/(x(:,j)-x(:,i))];
 end
 if nx == 1 % symmetrical obj
 F = F + [alfa(i,:) == -alfa(xlength + 1 - i,:)];
 end
end

for i = 1:xlength
 F = F + [J(i) == alfa(i,:)*x(:,i) + beta(i)];
 if nx == 1 % symmetrical obj
 F = F + [beta(i) == beta(xlength + 1 - i)];
 end
end
%% solve
info = solvesdp(F,obj);
if info.problem ~= 0
 error('Problem is unsolvable !!!')
end
alfa = double(alfa);
beta = double(beta);

94

Appendix M – Commands and functions used in sumarization

Comparison of time requirements

close all
clear all
clc

lti_1d_stable;
prepare_data;
N = 10; % number of iteration steps
K = 2; % number of approx regions
x_up = []; x_low = []; % empty extending vertices

[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N);
[Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V);

VV = draw_PWA(alpha, beta, X, Jpoly);

[VU,Vu] = get_u(VV,sysStruct,probStruct);
[VUU,Vuu] = get_u(V,sysStruct,probStruct);

for i = 1:length(alpha)
 J_alpha{i} = alpha(:,i); J_beta{i} = beta(:,i);
end

x = [-5:.1:-.1 .1:.1:5];
for j = 1:5
 time_m1 = [];
 time_m2 = [];
 for i = 1:length(x)
 if x(i) == 0, continue;end
 % Procedure 1
 [time1,u_opt] = get_time_m1(Jlow.C,Jlow.D,V,VUU,x(i));
 [time2,u_sub] = get_time_m1(J_alpha,J_beta,VV,VU,x(i));
 time_m1 = [time_m1 [time1;time2]];

 % Procedure 2
 [time1,u_opt] = get_time_m2(V,VUU,x(i));
 [time2,u_sub] = get_time_m2(VV,VU,x(i));
 time_m2 = [time_m2 [time1;time2]];
 end
end
figure, hold on
title('Procedure 1'),xlabel('State'),ylabel('Computation time [s]')
plot(x,time_m1(1,:),'b'), plot(x,time_m1(2,:),'r')
legend('Optimal problem','Subptimal problem')

figure, hold on
title('Procedure 2'),xlabel('State'),ylabel('Computation time [s]')
plot(x,time_m2(1,:),'b'),plot(x,time_m2(2,:),'r')
legend('Optimal problem','Subptimal problem')

95

get_time_m1

function [time,u] = get_time_m1(alpha,beta,VV,VU,x)
tic,
for i = 1: length(VV)
 Fvalue(i) = x'*alpha{i} + beta{i};
end
MaxF = max(Fvalue); % maximal function value
Ri = find(Fvalue == MaxF); % index of region
u = VU{Ri}'*[x;1]; % action input
time = toc;

get_time_m2

function [time,u] = get_time_m2(VV,VU,x)
tic,
for i = 1:length(VV)
 minVV = min(VV{i}); maxVV = max(VV{i});
 if x <= maxVV && x >= minVV, Ri = i; break; end
end
u = VU{Ri}'*[x;1]; % action input
time = toc;
close all
clear all
clc

Comparition of control laws

lti_1d_stable;
prepare_data;
N = 10; % number of iteration steps
K = 2; % number of approx regions
x_up = []; x_low = []; % empty extending vertices

[Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V);

[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N);

VV = draw_PWA(alpha, beta, X, Jpoly);

[VU,Vu] = get_u(VV,sysStruct,probStruct);

time = 25;

% optimal control law
X = [];

x = -5;
for i=1:time
 X = [X x];

 x = sysStruct.A*x+sysStruct.B*ctrl(x);
End

% suboptimal control law
Y = [];
x = -5;

96

for j = 1:time
 Y = [Y x];

 % finding u
 for i = 1:length(VV)
 VV_min = min(VV{i});
 VV_max = max(VV{i});
 if (x >= VV_min) && (x <= VV_max)
 u = VU{i}(1)*x + VU{i}(2);
 end
 end

 x = sysStruct.A*x + sysStruct.B*u;
end

figure
hold on
plot(0:time,[X 0],'b','Linewidth',2)
plot(0:time,[Y 0],'--r','Linewidth',2)
axis([0 time -5 1])
title('Comparation of optimal and suboptimal regulation')
xlabel('Sampling time'),ylabel('x'),legend('u^*','u^~'),grid

