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ABSTRAKT

Vzhladom na to, Ze prediktivne riadenie mé relativne velké vypoctové naroky, jeho
implementdcia bola obmedzend iba na riadenie pomalych procesov. Z tohoto dovodu cie

tejto diplomovej priace je overit moZnosti explicitného prediktivneho riadenia a ndjst’ takud
metddu, ktord by bola schopnd rozsirit' jeho vyuzitie. V prvych kapitolach tejto prace sa lepSie
obozndmime s danou problematikou. Docitame sa aj o tom, ako by sme dokazali implementovat’
dané riadenie aj do procesov s rychlou dynamikou. Prave tento poznatok nds bude viest’ k nasej
metdde, ktord sa bude snazit' zniZit' datovu zataZ linearizovaného systému ato aj za cenu
zniZenia vykonu riadenia. V kazdej nasledujicej kapitole budeme riesit’ vSetky potrebné prvky,
ktoré nas dovedu az k findlnemu tvaru nasej metédy. O tom, Ze dand metdda je plne funkcna a,

Ze bolo dosiahnuté aj poZadované zrychlenie, sa mdzeme presvedcit’ v poslednej kapitole.

Kracové slova: MATLAB, prediktivne riadenie (MPC), po Castiach afinna funkcia (PWA)



ABSTRACT

The main goal of this diploma thesis is to verify the possibilities of model predictive control
approach for a purpose of finding a method which will be able to extend its applicability, since
this control strategy has relatively large computational demands. In the sequel we will be
familiar with the whole problem more closely, therefore a main objective of this method will be
specified. This objective will be based on decreasing capacity of explicit model predictive
controls data of this method, which will achieve faster computation time of the optimal input to
the system at the expense of suboptimality. In sequel Chapters we will gradually deal with all the
important elements that will lead us to desired method. To prove that this method is fully

functional and that desired objective is achieved, is reported in the last Chapter.

Keywords: MATLAB, model predictive control (MPC), Piecewise affine function (PWA)



I would like to thank my supervisor Doc. Ing. Michal
Kvasnica, PhD. for his guidance, valuable discussions and
comments. [ would also like to thank to Ing. Alexander
Szlics for his patience and constructive critique. The
largest thanks belongs to my family who supported me

during my study.

Juraj Holaza



Content

INLrOAUCHION cccueenrireeisniceisncsninsnisecsnncsensncssessssssnsssessssssncssessssssssssssssssssssssssssssassssssasssssssssss 13
1 Introduction to model predictive control (MPC).......ccoveicrrnicssanccssanccsasesssascssoanes 14
1.1 Comparison of PID, LQR and MPC control approaches...........c.cccceecvveeureennnenn. 15

1.2 Advantages of model predictive CONtrol ...........ccccveeeiiieniieeniieeieeeee e 17

1.3 Mathematical formulation of MPC ...........cccciiiiiiiiiiiiicceceeeee 17
1.3.1 Convex optimization ProbIEMS .......cuuii i ae e e e s baee e enes 17
1.3.2 N o7 0 o 1RSSR 18
13.3 (0o 0 153 { =101 £ TP OTPRP 21
1.3.4 Mathematical formulation of the problem...........ccceei e 23
1.4 Basic feature of model predictive control ............cccoeviieviiiiniiiinniieiicceieeen 24
141 Comparison of two standard forms of model predictive control.........ccccoeeeeviviiiiiineennns 24
1.4.2 Creation of data for explicit model predictive control .........ccccovvveeeiiiicciie e, 25
1.4.3 Processing data of explicit model predictive control...........cccceeeeeeciiieiei e, 27
1.5 MATLAB ...ttt ettt et ettt et et e saaeens 29

2 Applicability of model model predictive cONtrol ........ccccceeceicscnccscanccscanecssasessoanes 30
2.1 SAMPING TIME ...eeniiiiiiiiieiiieeeiee ettt e st e st e e s e e sabee s 31

2.2 Computation time of explicit predictive control ...........ccccveevveeerieeerieeecireeeneen. 32

2.3 Reducing the number of TEZIONS ........ccueeeiiieeiiieiiieciie e 33

3  Reconstruction of objective fUNCLION .......ccovveeeervercnssercssencssnicsssnicssanesssasesssasesssanes 35
3.1 Direct construction of piecewise affine objective function...........cccceeeceeeveennnnne 35
3.11 FOrmulation in IMATLAB .....cooeiie ettt ettt et st e s sar e s e e sbeeesmeeesaree s 39
3.2 Other methods of construction piecewise affine function............c.ccecveevcvieennenn. 41

4 BOUNAATIES..cinueiruieeisensnnisnisecsnecsnnssncssisssnssncssessssssecsssssssssssssssssssssssssssssssassssssasssssssssss 42

4.1 LOWET DOUNAATY J....viiiiiiieiiieeiie ettt e e eeaae e e aaeeeeaee s 42



4.2 UPPEr BOUNAATY J ....eiiiiiiiiiiiiiee ettt st s 43

421 Definitions and thEOIEMS ........ei i s e e e s 43
4.2.2 MPC FOrMUITION ...ttt et et esare e e eneeesaree s 44
4.2.3 Creating the UppPer BOUNAArY..........oe i ae e 44
4.3 Admissible Stable area.........occueeovieriiiiiiiniieiieeeeee e 46

5  Fitting of the new objective fUNCiON.....cccccerrericrrercsssercssnrcssanicssasicssasesssasessasesssanes 47
5.1 Objective function and the upper boundary ...........cccocveeeviieeiiieniieeeieeeeeee, 47

5.2 Objective function and the lower boundary ...........cccccveeeviieeiiieniiiecieeeieeeen 48

5.3 Creating a new 0bjectiVe fUNCHON. ........ceviiiiriiiiiriiieriie et 49

5.4 Implementation in MATLAB.........c.cooiiiiii e 50

6 CertifiCation ....cecceeveeseeisensecsnncsensecssnssensncssessssssncssnsssssssssssssssssessssssasssassssssasssssssssns 51
6.1 Certification of the upper boundary ..........cccoecvveeeiiieeiiienieeee e 51
6.1.1 FOrmulation in IMATLAB .....coouiie ettt ettt sttt e s s e s e sre e e smneesaree s 51
6.2 Certification of the lower boundary ............ccoccveeiiiiiiiiiiniiiieeen 52
6.2.1 FOrmulation in IMATLAB ....ouiiiie ettt ettt st sttt e eee s 54
6.3 Formulation in MATLAB ......cooiiiii e 54

AR ©71) 115 1) 1 F: 1O 57
7.1 Approximate simplical control 1aw .............coocveeiiiiiniiiiiniiiieeeeeeen 57
7.2 Formulation in MATLAB .......ooiiiiieeeeeee e 58

LT D9€:1 11 1] U2 61
8.1 Example 1 (It_1d_stable) .......ccceeviieiriieeiiieeiieeeieeeiee et 61
8.1.1 FOrmulation in IMATLAB ...ttt sttt et n e e s 63
8.2 Example 2 (Iti_1d_unstable) .........cceiriiiiiiiiniieiieeeeeeeeee e 64
8.2.1 FOrmulation in IMATLAB ...ttt ettt st s s st n e e s 66
8.3 Summarization of XamPIEs .........cceeervuiieriiiieriie et 67

8.3.1 SuMmMarization of @XamMPIE 1 ... e e e rae s 67



8.3.2 SUMMArization Of @XAMPIE 2 ......euiiiiieeee e e e aa e 71

L 001) 1 T4 L1 11 1 TRt 72
RESUIME.....ucneenriniriininnicicinsnnssssssssississississssssssssssssssssssssssssstsssssssssossssssssssssssssssssssssssossossns 73
REFEIEICES ..uuceuereriireiniinisunisninseissncssicsnisncssissssssesssessssssessssssssssesssssssssssssssssassssssssssasssssssssns 76
Appendix A — Main PrOZTaIN ccueiccceiccssccssnessssscssssssssssssssssssssssssssssssssssssssssssssssssssssssssases 77
APPENAiX B — SYSEEIMS ..cuvviirrercrsnicssnicssanessssnesssssssssssssssssssssssssssssssssssssssssssssssssasssssssssssases 78
T Td_SEADIE ..o 78
16 Td_UNSEADIE ... 78
Appendix C — prepare_data .........ceeccineccssnecssancsssssesssssessssssssssssssssssssssssssssssssssssssssssssases 79
J QA TIOTTIY et e e e e e et ee e e e e e e e e e aeeaeeeeeeaaaan—aaaeaaaaaa 80
GO J_EPIZIAPN ..ottt e 80
Appendix D — reiNdeX_PWa...cccieeicisnccssancsssancssssncsssascsssssesssssessasssssasssssasssssasssssasssssasssssns 82
APPENdiX E — JIOW_JUP ceeicvveiiiseicssnicssninssanisssancsssssesssssesssssssssssssssssssssssssssssssssssssssssssases 83
APPENAiX F — fit PWA ...cciiiviiiniiicnsninssnnicssnnesssanisssssesssssssssssssssssssssssssssssssssssssssssssssssssases 84
Appendix G — CertifiCations .....c.ccccrveccssencsssencsssancssssnessssessssscssssssssasssssasssssasssssasssssasssssns 85
CRIE U .ttt ettt et e et e ettt e st e e it e e sab e e bt e e e bt e e e bteesbteenabaeea 85
COTE L OW et e e e e e et e e e e e e et e ——aaaeee et et ————————— 85
Appendix H — draw_PWA .....ciiiiininnininnicnsnnisssssessssssssssssssssssssssssssssssssssssssssssssssssssases 86
GEL PWA_ITIAX c.tteeutieeeuiteeeiiteesitteesiteeesateesateesaateeeabteesabteesabeeesabeeesbeesasbeeenbbeesnbteesabeeesabaeena 86
APPENAiX I — et _U..coiiveriiiissnricssssnniccsssnnecsssssnsecsssssssesssssssssssssssssssssssssssssssassssssssssssssssassass 87
Fo LS A VA | SO OO PSP PPRRRRP 87
DOTTIAIIE -ttt ettt et e s bt st e s bt e e bt e sabeebeenaneens 87
110) 11 1 TP PSSP PUTRPRORURROPRRRPRRRRPO 88



Appendix K — get_PWA .....iiiniiinnninnsnicssnicssnncsssssessssssssssssssssssssssssssssssssssssssssssssssssssases 92

Appendix L — Points_into_PWA .......cciiiiviiiiriinnsncsssnncsssnnssssssssssssssssssssssssssssssssssssssases 93
Appendix M — Commands and functions used in Sumarization .........cccccceeeeeeuecscercsnneee 94
Comparison of tiMe FEQUITEIMENLS .......ceerureeriurieriireeriiteerieeerieeesiteeesteeestreessieeesbeeesbeeenns 94
GEE_TIME_IMIL oottt e et e et e e e e e et eesateeessbaeesbeeessaeesneeennneeennaeens 95
GEE_TIME_INZ c.oetieeiiieeciiee ettt e eite e et e ettt e et eeeateeestaeeeasaeesnseeaasseeesssaeenssaeenssaeensseesnsseennsneenns 95

Comparition Of CONLIOL LAWS .....coouuiiiiiiiiiiie ettt 95



Table of used shortcuts

LQ
LQR
MEMS
MPC
MPT
PID

PWA

Linear Quadratic

Linear-Quadratic Regulator
Micro-Electro-Mechanical Systems
Model predictive control
Multi-Parametric Toolbox
Proportional-Integral-Derivative

PieceWise Affine



Introduction

Model predictive control is an atractive control strategy, where the optimal input sequence is
obtained via solving optimization problems. Actually, this fact represents the main drawback of
the aforementioned so-called on-line method, because such an optimization procedure requires a
powerful computer with operating system and last, but not least an appropriate solver. Hence,
this methodology only on slow processes can be implemented, since the optimal input value has

to be obtainable within one sampling time.

This work is organized as follows: The first one has a theoretical character and there we can find
a brief introduction to model predictive control, but also the advantages of convex functions, the
types of norms and restrictions and much more. The advantages of model predictive control are
explained by a simple comparison of PID, LQR and MPC control where the controlled system is
a car and the driver is the appropriate regulator. The procedure of obtaining the data necessary
for process control and its subsequent processing, are properly described and also for better
interpretation graphically shown. The second part addresses the issue of implementation of
model predictive control on fast systems. Here are mentioned reasons why it is necessary that the
computation time, required to obtain an optimal (or suboptimal) input to the system, must be
smaller or equal than sampling time of the discrete system. From this point forward our goal will
be to reduce the number of regions, even at the cost of reducing the control quality. Thorough the
Chapters we will be more familiar with this problem and step by step we will achieve a method,
which will be capable of solving this problem (at a price of suboptimal solution) and at the same
time it will guarantees the stability of the controlled system. In order to proof the functionality of
this method we will try to implement it into a several examples and the results graphically

llustrate.
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1 Introduction to model predictive control (MPC)

Model predictive control experienced in recent decades a significant change from the theoretical
research to practical applications. Its development was strongly influenced by the requirements
of the industry. Recently, model predictive control with a lot of real industrial applications, is
one of the most modern control approaches implemented in industrial processes. The first model
predictive control algorithms were used before more than twenty-five years ago in industry as an

effective way of controlling multidimensional systems with constraints. [1]

In general we can say that MPC is a control approach, where optimized variables are obtained by
optimization over a finite time horizon subject to constraints To realize such computation the
model and the initial state has to be known. The result of such an optimization procedure is then
the sequence of optimal inputs, of which only the first one is implemented to the system. This is
the reason why the model predictive control significantly differs from conventional control

methods, which use time-invariant control law. [1]

Past Future

The reference trajectory
The predicted output

A measured output

Predicted action input

Implemented action input

‘_/./ Prediction horizon

L 1 1 1 1 1 [ [ 1 )
I T 1 1 1 ) 1 1
Sampling time

k+1  k+2 k+N

4

k

Figure 1.1: Graphic concept of receding horizon model predictive control
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1.1 Comparison of PID, LQR and MPC control approaches

For a simplified comparison in order to compare the following control strategies, i.e. PID, LQR
and MPC, consider the following situation:

The first car driver (PID) will know the initial state as well as the final target. His speed will
have predetermined parameters of the car (controller). Driver of this car would not take into
account traffic regulations since they will not be in his predetermined parameters. Because of
this he will probably pay a lot of fines, therefore his driving will not be optimal. What is the
worst is that he will be dangerous on the road. Since the driver will not look ahead, he will drive
only by using rear-view mirrors and based on them he will adapt control. (PID controllers may

adapt their control only by using feedback).

Reference
l Controller Plant
Input Output
Ks) ’ >
A
Feedback

Figure 1.2: Scheme of control using PID controler
The driver (LQR) of the other car will start planning his own travel plan (optimal trajectory)
before his journey will began. He should be thoroughly familiar with the possibilities in his trip
in advance and thus he will know how to optimally control his car at any state (infinite prediction
horizon). The problem arises when the driver is stubborn and does not intend to change his pre-
made plan during the journey. Thus, he will drive only by his first planed trajectory and does not
care of the possibility of complications (crashing into other cars, driver discomfort, blocked path,

an unexpected obstacle on the way ...) what would most likely lead to a collision.

Reference
l Optimizer Plant
Input N Output
| > S
5 = 4

Feedback

Figure 1.3: Scheme of control using LQR controler
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The driver (MPC) of the third car will look around for a possibilities before starting the trip.

Since he would be able to see path only a few meters ahead based on his eyesight (prediction

horizon), his traveling plan will be restricted exactly by this distance (optimization over a finite

time horizon). On the basis of what awaits him on the trajectory he will predict how quickly can

the car go. He would thus has an optimal control plan for this trajectory. The plan will also

consider all restrictions such as trajectory, speed limit, time, fuel consumption and others.

Regardless of the extensive plan the driver will always use only the first input (e.g. for the first

meter of the track), which will cause that the car will move forward (by one meter). Driver will

then create a new plan based on present circumstances for a trajectory which can be recently

seen. This way driver will create multiple trajectory plans where only the first planned input will

be implemented to the system (car), which will lead him to a flexible driving performance. He

will be able to respond fast enough to any possible danger on the road.

Reference

l Optimizer

Plant

} I Input

Feedback

A 4

Outout

A

Prediction

Figure 1.4: Scheme of control using MPC controler

Differences between each control approach can be characterized in the following table:

MIMO systems Performance Constraints
PID NO NO NO
LQR YES YES NO
MPC YES YES YES

Table 1.1: Differences between each control approach
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1.2 Advantages of model predictive control

One of the biggest advantages of model predictive control is the effective handling of input
constraints, where almost all plants are subject to such restrictions. MPC strategy thus overcomes
the shortcomings of existing methods, such as the LQ (linear quadratic), respectively LQG
(linear quadratic Gaussian), working on the infinite prediction horizon, which are not able to
involve constraints in the optimization problem. In the practical problems controlled inputs are
naturally limited in its scope (e.g. valve can be opened only to 100%), impact on system without
using constrained inputs can be significant. Vital ingredients in control are represented by
different safe conditions, which do not allow to exceed certain limitations of some physical
variables (e.g. pressure, temperature, concentration). Moreover, MPC problem formulation
allows one to include special type of constraints (e.g. soft constraints), which primarily serve for
ensuring stability in case of systems with time delays or for respecting some physical limitations

when non-minimum phase system has to be controlled. [1]

1.3 Mathematical formulation of MPC [2]

Optimization problem of the MPC is to minimize the objective function while we must take into
account the different constraints (e.g., car control, respect the road, keeping distance from other

cars, obey the maximum speed and so on). Mathematically we can formulate this problem as

follows:
min fo(x) (1.1a)  Objective function
s.t. filx) <0 (1.1b)  Inequality constraints
gi(x)=0 (1.1¢)  Equity constraints

1.3.1 Convex optimization problems
Convex optimization problem has several advantages:

e Achieving global solutions (if one attain local minimum, then it is also a global

one)

e The availability of efficient solvers
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Definition: The function f(x) is called convex if for any two points x; and x, , te[0,1]

ftxy + (1= xz) S tf (1) + (1 =) f (x2) (1.2)

and the function is called strictly convex if:

fltxy + (1= 0x) <tf(x) + (1= O)f (x2) (1.3)
For each te[0,1], x; # x,.

If function f(x) is (strictly) convex function, then function —f (x) is (strictly) concave.

) . Nonconvex
Convex function Concave function ’

nonconcave function

Figure 1.5: Convex and concave functions
If we pick up two points A = f(x;) and B = f(x,), one can obtain a line segment AB. If the
graph of the function on the assumed interval lies under the chord (tetivo), then function is
convex. Naturally, if we replace the sign < with the > in the inequality (1.2) then fulfillment of

the modified expression indicates concavity.
1.3.2 Norms

Norm is a function that assigns a length of all (nonzero) vectors in a vector space. They are

convex functions, which we can write as P-norm 1, of the vector x = [x, X3, X3,..., xn]7

1/p
Il = (ZW) (14)
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Norm I, (Taxicab) Norm I, (Euclidean) Norm 1, (Infinity)
llxlly = ZIin (14a) | lixllz = Zx? (14b) | llxlleo = maxlx;|  (1.4¢)
i i
A A
X X X
ll¢1l4 Il [l oo
A A A
X X X
I { J
Yy \V Yy
———)
lIx = ylly lIx =yl Ix = ylle

1.3.2.1 Taxicab norm (l,)

Taxicab norm (14.a) belongs to piecewise linear cost function, which means that we will

be using linear programing.

min||x|,
s.t. Ax<B (1.5)
Gx = H,

where x = [x4, X5, ..., X,,]7. If minimization of 1 norm is assumed then the objective function can
be transformed into the following form. As long as the first norm is defined as (1.4a), our

objective function can be expressed by equation:
min|x;| + |x|+. . . +|x,] (1.6)

In figure 1.6a is a a graphical representation for one state x;. To compute taxicab norm in the

certain point we have to construct epigraph &; which will define area betwen the epigraph and
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the absolute value (figure 1.60). Minimizing this surface until reaching point x; will get us the

value of the Taxicab norm (figure 1.6¢). Assume that x is a vector, € is a vector of functions,

which will substitute the maximum value. Both of them are our optimization variables.

x| 4

x| 4

| min/¢&
[21] LV

0 x

Ry

figure 1.6a

Based on this procedure problem (1.5) can be reformulate into:

0 X1

figure 1.6b

ming + &+. ..

s.t.

1.3.2.2 Infinity norm

Ax < B
Gx=H

—& < X1 < &1

—& < X < &y

& <X, <&,

Ry

o
wt------2
Ka

Ry

figure 1.6¢

(1.7)

Infinity norm (14.c) is similar to Taxicab norm. It also belongs to piecewise linear cost

function, which means that we will be using linear programing. Difference between them is in

objective function. In Taxicab norm we have considered ¢ as a vector of functions. In Infinity

norm ¢ is a scalar that will represent only the worst absolute value among vector x.

min &

s.t.

Ax < B

i
A
=
3
A
M

(1.8)
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1.3.2.3 Euclidean norm

Problem that uses the euclidean norm (14.b) will not belong to linear programing since cost is
neither linear, nor piecewise linear. What is worst, it does not even belong to quadratic
programing (because of the square root). The most common procedure to transform this norm
into quadratic programing is to multiply it with itself. In another words we will get the squared

value of this norm.

llxlly = Ilxl13 (1.9)
min</xT x min x”x
s.t. Ax<B (1.10) ‘ s.t. Ax<B (111)
Gx =H Gx =H

This modified form of the norm distorts the true value so that in the interval xe(—1;1)

values are undervalued while in the interval xe(—oo0; —1) U (1; o) values are overvalued.
1.3.3 Constraints

For control of real technological processes or technical systems is necessary to meet a number of
limitations which are defined in advance. The role of constraints in the control design has at least

three important aspects.

1. Using restrictions for better representation of physical systems (input saturation)
2. Using constraints to ensure stable control (constraints in the form of end-stabilizing
constraints)
3. Using restrictions for tuning a controller parameters to achieve better quality control
In terms of character constraints can be divided into:
e Physical constraints (eg, we can not affine term the gear lever into a higher level than the

design allows)
e Technological constraints (obeying certain speed limitations)

In practical applications, we often encounter with convex constraints, which are easily solvable.

AsetS € R"isconvexif:x,y €S, L, u=0, A+u=1

Ax+uy€es (1.12)
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Convex set

Nonconvex set

Figure 1.7: Convex and nonconvex sets

The most common examples of sets of constraints are:

e Polytopic

x € R" 7= {x|Ax < B}
e Box
X2 max
10 xl.max
A= 01 B = X2,max
-1 07 _xl,min
0-1 _xz,min xz,min
X1,min X1,max

e Ellipsoidal — more difficult to solve

x€€R" & ={x|(x —x0)P(x —xy) <1}

e Nonconvex — extremly difficult to solve
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Polytope 2 represents an area that was created as an intersection of all halfspaces (constraints in

the form of inequality (1.1b)), while constraints in a form of equality (1.1c) define an area where

must lie the optimum (in this case lines p, r, s, t). In figure 1.8 is ilustrated an example of all

constraints, where permissible area of the problem is highlighted by a red color.

Figure 1.8: Constraints in form of equality and inequality

1.3.4 Mathematical formulation of the problem

Optimization problem can be defined as:

N-1
min Z (IIQxkaIIp + IIQuqullp) (1.13a) Objective function
k=0
S.t. Xeyp1 = Axy + Buy (1.13b) Plant model
x; = x(t) (1.13¢) Initial conditions
X €EX (1.13d) State constraints
u; € U, (1.13e) Input constraints
where
N — Prediction horizon
P — Norm
Q,, Qy — Weighting matrices
X, U — state and input constraints
Xegror Ueak — values of states and inputs in k-stage of prediction
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1.4 Basic feature of model predictive control

Recently, the model predictive control method is being applied to the control systems with fast
dynamics, hybrid systems, to the precise micro-electro-mechanical systems (MEMS). They are
also applied in the development of new advanced control functions of mechatronic systems,
especially in the automotive industry. These applications are allowed to create or develop new
numerically efficient methods and model predictive control strategies for minimizing the
practical control numerical computational load especially in real-time modes at the expense of a
higher volume of auxiliary calculations carried out in real time mode. In this context, are rapidly
developing methods aimed at explicit model predictive control using multi-parametric

programming. [1]
1.4.1 Comparison of two standard forms of model predictive control
Classical approach based on on-line computation involves the following steps:

1. Obtain information about the current state x(t) (either by direct measurement or

through a Kalman filter)
2. Solve the optimization problem
3. Obtain optimal action inputu(t)
4. Implement current value of the control value into plant
5. Repeat from step 1
Explicit model predictive controlled involves the following steps:
1. Pre-calculate the vectors of optimized problem

2. Obtain information about the current state x(t) (either by direct measurement or

through a Kalman filter)
3. Obtain optimal input u(t)
4. Implement input value into plant

5. Repeat this procedure from step 2
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As the name implies, the on-line control is carried out continuously during the control of the
system. This method is usually time consuming, hence the classical on-line approach was mainly
implemented on slow procesess. Although the level of computer technology now forwarded
much further, overloading of the computer can still be ineffective (e.g. in economic terms). In
the "off-line" control we will firstly linearize the problem and so we will divide the objective
function into n-PWA functions. Each region is described by a vector of objective function, which
is assigned to an adequate vector for the action input. Subsequently, the system will be controlled
by these pre-made vectors. This method can significantly relieve the processor at cost of
increased requirements on the memory. The disadvantage of this method is mainly its flexibility
relative to the changing structure of the system. But if we will be assuming a time invariant

system, then this problem can be ignored.
1.4.2 Creation of data for explicit model predictive control

In this Section will be explained a simplified method of creation of data for explicit model

predictive control. Let us consider a convex objective functionf:y = f(x),

v

Figure 1.9: Objective function

which we will divide into n-PWA functions as follows:
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v

Figure 1.10: Linearization of the objective function

Number of sections affects the quality of the model in proportion, as it is a linearization. So that
created piecewise affine objective function g describes our original objective function f with n-

regions (sections). The function g can be defined as a linear function:

y=ajx+b;, (1.14)

where P; € R™, x € P;characterizes the i-th region, a; € R™, b, € R, i = 1,k.

A \
y \\ ) y=alx+b,
\
\ y=alx+b,
yalx+b, \\
\ y=da,x+ T b
\ / Yy =azx+ 03
\ /
\ / y=aix+b,
\ / — T
— T y =agx + bg
=a;x+b, \\ // y =alx + b
\
\ Tyt .
y=alx+bs L P y=wx Yy =agx + by
N—
y=alx+b, y=alx+b, y=alx+
=alx+b
Y axTDs R y =alx + bg
X y=da,x+

Figure 1.11: Piecewise affine objective function

26



Parameters thus obtained are stored in the matrix:

A= (ay, ay,...,a,) (1.15)
B = (bl, bz, ...,bn) (1.16)

Each region has created its own associated control law, which also can be defined as a linear

function:

u=clx+d, (1.17)

where P; € R™, x € P; characterizes the i-th region, ¢c; € R™!, d; € R,i = 1,k .

=
v

Figure 1.12: Control law

We will also save these parameters into matrices:

C = (cq, €y s Cp) (1.18)
D = (dl, dz, ...,dn) (1.19)

Model expressed by equations (1.14) and (1.17) is also known as piecewise affine (PWA) model
and falls into the category of hybrid systems

1.4.3 Processing data of explicit model predictive control

Let us assume that we have all the necessary data of the hybrid system: A, B, C, D
(1.15,1.16,1.18,1.19).
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This system will be controlled by using the following steps:

1. With the initial state x, we will compute the functional values of each regioni:
fi(xo) = alx + b; (1.20)

, where a;and b; are parameters of the given region i.

2. To find out in which region (k) we currently are, we need to find the maximum value

among all functional values:
k = max f;(x,) (1.21)

3. If the current region is known, the first optimal value of the input will be computed from

the corresponding equation of the affine function (for a given region):

W = clxg + dy (1.22)

4. Implementation of the current value of the input to the system lead us to a change in state

of the system, thus this procedure will be applied again from the first step.

[
»

AW RAN
N

A 4

Figure 1.13: Computation of a optimal action inputs
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1.5 MATLAB

MATLAB is a programming environment for scientific and technical calculations and modeling,
design of algorithms, simulations, plotting of functions and data, creation of user interfaces,
measurement and signal processing. MATLAB is an abbreviation of MATrix LABoratory,
which corresponds to the fact that key data structures, using in calculation are matrices. It also
allows to interface with programs written in other languages, including C/C + +, Java and

Fortran.

For MATLAB was created numerous number of toolboxes that extend the capabilities of
programming. One of them is called MPT (The Multi-Parametric Toolbox) for the design,
analysis and implementation of optimal controllers for a limited (linear, nonlinear and hybrid)
systems. The effectiveness of the code is guaranteed by an extensive library of algorithms from

the field of computational geometry and many multiparametric optimization. [3]
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2 Applicability of model model predictive control

In the first Chapter we have get familiar with model predictive control as one of the most modern
control approach that is mostly implemented on industrial systems because of their large time
constants. Model predictive control is rapidly expanding caused of its effective handling of input
restrictions and the fact that it is predicting the future of the model. The reason why MPC is not
implemented into quicker systems can by demonstrated on the following example. Let us say
that our controlled system is a chemical reactor where we will control temperature of reactor by
stream of cooling water. Chemical reactions can have realy fast thermal gradients that require
quick response for cooling. We are talking about exothermic reactions since more intense
reactions can lead us to produce great amount of heat. If the additional heat that is not required
for propagation of reaction will not be cooled soon enough the system can reach certain point
from where it will be unstable. The temperature will grow exponentially until explosion will
eventually come. This explosion will not only cause economic and environmental losses, but
may as well cause losses of lives or suing and disintegration of the entire company. So to avoid
scenario from example 1, our controller has to ensure to compute the correct action inputs to the

system within a specified period.

T, <Ti, (2.1)
where T, is time required to compute optimal input and T is sampling time of the system.

Model predictive control is very computationally expensive because several predictions of
control inputs from certain state are being performed (only the first one is used). This prediction
is required for better control performance. Of course we can decrease it at the cost of losing one
of the advantages of this control. From Chapter 1.4 we know that there exist two different
methods of control. The first one is called on-line method and it computes whole mathematical
formulation (1.13) several times for each sampling time. On the other hand the second explicit
method does not compute the whole mathematical formulation, but only simple searching in the
tables of piecewise affine functions. From this we can deduce that this method is more useful for

us. From now on we will consider only this method.
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2.1 Sampling time

Each discretized system has sampling time that represents period of time where system receives
information about states, safety sensors and so on. Now we know that the controler must process
all received informations and use them to determine the appropriate input to the system. Since
sampling time is directly linked to the speed of the system, it can be read from it. Length of

sampling time can be determined from following interval:

Too T90>

—_,— 2.2
uE(s’w’ (2.2)

where Ty, is time when the step response of the output reached 90% of the steady-state value

(minimal phases system) or 90% of the maximum amplitude (non-minimal phases system) what

is sufficient since all characteristics of the system should be described (figure 2.1).

Step Respanse (minimum phase system)

1 T T T T T T
0.8 Hgge = 049 | _
& 06| | i
=
E 04t | .
nzr | i
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0 | | | | | | |
n 1 2 3 4 5 E 7 3
Time (zec)
Step Respanse (non-minimum phase system)
04 —

335 T T T T T T T T

Amplitude

Titme: [zec)

Figure 2.1: Step response of minimal and non-minimal phase system
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2.2 Computation time of explicit predictive control

As it was mentioned computation time of explicit predictive control consists of searching values
in the table. In this table we find matrices (1.15), (1.16), (1.18) and (1.19) via which we express
equations (1.14) and (1.17). The whole method how we are computation data of predictive
explicit control is described (graphicly as well) in Chapter 1.4.3. If information about the current
state is obtained we compute all function values of this state for each region (1.20). By finding
the maximal value among them we will associate the index of the current state (1.21). Optimal
input is then simply compute from equation (1.22). From this procedure computation time can be

expressed as a function of number of regions k:

Te = f(k) (2.3)

Problem can be seen from a diferent perspective if after linearization all regions (their intervals)
would be saved with matrices (1.15), (1.16), (1.18) and (1.19). Finding the correct index of the
region will be defined as assigning current state of the system to the correct interval region. We
are simply asking whether the state belongs to the first, second, ..., n-th region (figure 2.2). Then,
if the index is known, the optimal input will be directly calculated from the associated matrices

(1.17). In this case computation time is expressed as linear function:

.
T.=a+ Z te, (2.4)
i=1

where a is time required to solve equation of optimal input (1.17), r represents index of the
correct region and ¢, is the time required to determine whether the state of the system lies in one

region.

Xo e Rk_]_

A 4
=
=

XO ERk

u=clxy+d; u=clx,+d, u=clxg+dy

Figure 2.2: Seeking the region of validity
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Since we do not know in what region we are, we have to count with the worst time. This time
occurs if and only if the state will be located in the last region and therefore the algorithm will

have to check every single region. Equation (2.4) will then have the form:

T, = kt. + a, (2.5)

where k is the number of regions.

2.3 Reducing the number of regions

From equation (2.5) is obvious that computation time T, is directly proportional to the number of
regions k, therefore if we want to met expression (2.1) we need to reduce the number of regions.
From Chapter 1.4.2 we know that initial data for explicit model predictive control are made of
linearization of the system (figure 2.3). So from continuous function f:y = f(x) we will get
piecewise affine function g, for which applies (1.14). This function will be associated with a

control law expressed by equation (1.17).

a a
y f y g
X X
— >
A A A
u u u

Figure 2.3: PWA functions
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Now if we want to simplify whole formulation of piecewise affine function defined over ten
regions at figure 2.3, we have to reduce the number of regions. Based on this we will decrease
requirements for data storage and due to equation (2.5) computation time will be decreased as
well. On the other hand innacuracies of linearization and of the performance (optimality) will be

increased.

From the procedure, where PWA function described over ten regions g we will get another PWA

function h described over two regions:

gy =f"(x) - hy=Ffkx), (2.6)

which can be seen on figure 2.4. If g: y* = f*(x) is optimal PWA function, then h: § = f(x) is
suboptimal PWA function.

v
v
v

v
v
v

Figure 2.4: PWA function over 2 regions
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3 Reconstruction of objective function

Till now we assumed to have objective function as a continuous function (figure 1.9), but in most
cases it is not true. In real systems after implementing certain input (inputs), by using feedback
(observer, kalmans filter ...) we will receive only information about current state (states). For this
given state (states), we can determine its (their) function value. So basically by implementing
several inputs (set of inputs) we will get n-coordinates of the objective function as we can see in

figure 3.1. Now our goal would be to reconstruct objective function by means of these points.

Objective function expressed by paints

165 . |
] ]
A0 fmmmmm
= u .
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] ]
0 %
-5 a 5
X

Figure 3.1: Objective function expressed by points

3.1 Direct construction of piecewise affine objective function

By using this direct method we will attempt to reconstruct a piecewise affine function directly
from the given points. Basically what we want to do is to find out all slopes and affine terms of

each line that will be describing our piecewise affine function. To achieve this we have to

performe the following steps:

1. In the first step we will create lines between given point for each x; < x; Vi # j.

f(x) = aljx; + Bi; (3.1a)

f(x) =alx; + By, (3.1b)
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where x are coordinates of points, « is a slope, [ is a affine term, i is index of the given

point, j is index of each further point j = 1 + 1, n.

Lines between first and each further paint Lines between second and each further paint
i EECEEEPPREPTER LR LT

15mg

10}--

Figure 3.2: Lines leading through given point

In the figure 3.2 are two examples for first point (i = 1,j = 2,11) and the second point

(i=2j=311).

In the second step we will find out correct slopes and affine terms of each following pair

of points (each region).
From equations (3.1) we can express slope by:

_fO) — f)

= (3.2)

ij

Since we are assuming that objective function is convex, correct slope can be computed

as a minimum value among all slopes:

a; = min (a; ;) (3.3)

By combining equations (3.2) and (3.3), we will get the equation:

o)~ f)

T (34)

If slopes between two following points are known, then corresponding affine terms can

be obtained from equation:
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Bi = f(x;) — aix; (3.5)

In figure 3.3 are two examples of correct slope and affine term for the given point.

Line between the first and secaond point Line between the second and third paint

Figure 3.3: Line leading through given point

Since that objective function is expressed only as a set of lines (figure 3.4) and not as a
line in the corresponding regions (figure 1.11), we will have to change it in this last
(third) step. There exist several methods how to solve this problem. For example we can
find out regions by intersections where in this case we would find coordinates of our

starting points as edges of regions.

Objective function expressed by straight lines

Figure 3.4: Objective function expressed by lines
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The method which we are going to use is basically similar to method described in
Chapter 1.4.3:

¢ In the begining we will find polytope X which will include all points x:

xex x={x(22)=x<(})) (3.6)

e Then by separating this polytope we will create a large number of small points

on which we will evaluate the function values of all lines.

e Then we will find to which line belonged this maximum value. This way we will
be able to define vertices of regions.
The result of this procedure is piecewise affine objective function defined over ten

regions (figure 3.5)

PWWa function awver 10 regions
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Figure 3.5: Piecewise linear function over 10 regions

38



3.1.1 Formulation in MATLAB

Consider the symmetric objective function in R? expressed by these points:

x=[-5-4-3-2-1012345];
y = [15 11 8 5 2.2 0 2.2 5 8 11 15];

If we would like to plot these points, we would get the same result as in figure 3.1. Our first two

steps (to obtain figure 3.5) we will achieve by the following optimization procedure:

e First of all we will define each optimized parameter:

x_length = length(x);
xlength = x_length - 1;

nx = size(x,1);

%% symbolic parameters

J = sdpvar (xlength,1);
alfa = sdpvar (xlength,nx);
beta = sdpvar (xlength,1);

e As we consider that the objective function is symmetrical (and that we are in R1), in

constraints will be included in addition to equations (3.4) and (3.5) the term:

a; = aj, (3.7)

wherei = 1,n/2,j =n,n/2

%% constraints
= [1;
% constraints for alpha
for i = l:xlength
for j = i+l:xlength + 1
F =F + [alfa(i,:) <= (y(I)-y(1))/(x(:,3)-x(:,1))1;

&l

end
if nx == 1 $ symmetrical obj

F=F + [alfa(i,:) == -alfa(xlength + 1 - i,:)];
end

end

% constraints for beta
for i = 1l:xlength

F=F + [J(i) == alfa(i,:)*x(:,1) + beta(i)];
if nx == 1 $ symmetrical obj

F =F + [beta(i) == beta(xlength + 1 - 1i)];
end

end

e The objective function is going to minimize distance of the given point and the function

value in corresponding line in that point:
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%% objective function
= 0;
= l:xlength

ob]j obj + (J(1) - y(1))"2;

e If we have defined whole formulation, then we can solve the problem from which we will

obtain optimal slopes and affine terms:

%% solve
info = solvesdp(F,obj);
if info.problem ~= 0
error ('Problem is unsolvable !!'!")
end
alfa = double(alfa);
beta = double (beta);

The last (third) step will be achieved by using function f = get_explicit_pwa_max(alpha’,
beta', x),where X is a polytope defined by equation (3.6) and represents a convex hull of

vertices of all regions:

nx = size(x,1

)i

x_max = zeros(l,nx);
x_min = zeros(l,nx);
for 1 = 1l:size(x,1)

x_max (i) = max(x(i,:));

x_min(i) = min(x(i,:));
end
X = polytope([eye(nx);-eye(nx)], [x_max'; —-x_min']);

o\

obtain the explicit representation of f(x) as
f(x) = c_j*x+d_j if x \in P_j
= get_explicit_pwa_max(alpha', beta', X);

o\

H

By ploting the result of this function by function plot_pwa (f), we would get the figure 3.5.

plot_pwa(f);
grid on
hold off

The whole algorithm can be found in the appendix as m-file get_pwa. In table 3.1 the required

computational time is listed as a function of dimension:

Dimension R1 R? R3

Elapsed time [s] 4.211420 4.384174 4.459774

Table 3.1: Computation time of the algorithm
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3.2 Other methods of construction piecewise affine function

There are several other methods by means we are able to construct piecewise affine objective
function. One of the most common techniques is based on approximation of a curve (objective
function) that will minimize a sum of squared distances between each of those points and the
curve. This way we will get a function in a polynomial form (figure 3.2). Then we can make the

same procedure as we did in figure 2.3.

f(X)T

Figure 3.6: Approximating a curve using least squared method

Advantage of this method is that we can have whole objective function (that does not have to be
convex) in a form of polynomial (e.g.f:y = x? + 2x + 1). But if we will construct piecewise
affine function from this polynomial, inaccuracy caused by both in approximation and

linearization should be higher than in the first (Chapter 3.1) direct method.
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4 Boundaries

In order to reduce the number of regions (of the objective function) we have to define a stable

area in which we may perform this operation. This area will be constructed through the two
piecewise affine functions (boundaries) / and J. In order to demonstrate these two boundaries we

are going to use system 1ti_1d_unstable, which we can find in the appendix.
4.1 Lower boundary J

Since the lower boundary represents the optimal objective function, therefore there can not be a

better (lower placed) objective function such as this one.

yi=y', (4.1)

where K = {K;} , k;:y; = f(x) is a set of suboptimal functions and f*:y* = f(x) is the optimal
function. This optimal function f*we can get as a result of optimization problem described in
Chapter 1.3.4 by equations 1.13. Lower boundary of the system is depicted in figure in figure
4.1.

PwWA function defined over 3 regions
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Figure 4.1: Lower boundary
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4.2 Upper boundary J

In this Section we will create an upper boundary for objective function. This boundary combined
with lower boundary will define an admissible area in which stability will be guaranteed by
Lyapunov function.

4.2.1 Definitions and theorems [4]

Let us consider linear discrete time dynamical systems:
xt = Ax + Bu, (4.2)

where x € R™ is the current state, u € R™ is the current control input to the system and x7 is
the successor state. Then if system (4.2) is controlled by the control law u;, = k(x), the closed

loop system is defined as:

xt = Ax + Bk(x) (4.3)

e Positively invariant set — A set X € R™ is positively invariant set of system (4.3), if

Axy, + Bk(xx) EX Vx €X

e K-class function — A real-valued function a: R, = R, belongs to class K if it is

continuous, strictly increasing and @(0) = 0. Where R, is the set of non-negative reals.

e Lyapunov function — Let X be a positively invariant set for system (4.3) containing
neighborhood NV of the origin in its interior and let o(-), a(-) and B(-) be K-class
functions. A non-negative function V: X - Ry, with V(0) = 0 is called a Lyapunov

function in X if:

Vx € X: V(x) = a(llx]) (4.4a)
Vx € N V(x) < a(|lxl) (4.4b)
Vx € X: V(ixt) —V(x) < —-BIxID (4.40)

e Asymptotic stability — If system (4.3) admits a Lyapunov function in X, then the

equilibrium point at the origin is asymptotically stable with region of attraction X .
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4.2.2 MPC formulation

Let us reformulate (1.13) into:

N-1
JG) = ) ) (450

k=0
s.t.  Xp4q1 = Axy + Buy (4.5b)
Xog =X (4.5¢)
X, €EX (4.5d)
u; €U, (4.5¢e)

where X and U are closed and convex polytopes, containing the origin, A and B are systems
matrices, /*(x) is an optimal objective function and [(xj, u;) is a k-stage cost of the objective

function which can be defined as:

Vx e X,VueU C(xp, ug) = [[Qxillp + lIRug |l (4.51)

where Q is a positive semi-definite and R is a positive definite weight matrix and p represents
anorm. In our case only Taxicab (p = 1) or Infinite (p = o) norm. Assuming that objective
function satisfy conditions of the Lyapunov function, by using formulation (4.5) equation (4.4c)

can be transformed into:

VxeX J(iesn) = J (i) < €(x0k, ug) (4.6)
4.2.3 Creating the upper boundary

Let us consider the lower boundary J (respectively optimal objective function f*) that is a PWA
function defined over n-regions. If V. = {[xy,J(x1)], ..., [xx, J (xx)]} € R™* is a set of vertices
of this function, then F = {[x&,](xﬂ)], " [x£n+1'](xfn+1)]} c V is a set of the lower convex

hull of V. Based on equation (4.6) a set of vertices of the upper boundary is then computed as:

F= {[xﬂ’](xﬂ) + g(xﬂ’uﬂ)]’ o [xEn+1’](xEn+1) + {)(xl_:n+1’u1_:n+1)]}’ (4.7)

where Vx € X, Vu € U. Vertices xp = xz from now on we can use only x and the stage cost ¢
can be expressed by (4.5f), equation (4.7) can be transformed as:
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veexvuewi=Tarl  F={frmCo) +loxell + IRl [} @®)

where Q is a positive semi-definite and R is a positive definite weighting matrices and p
represents a norm. To have all informations about the upper boundary we need to compute slopes

a and affine terms f from the following equation:

-1
weri=Tn ({=(F 1) () )

where n is the number of regions and ¢; =](xFl.) + ||QxFl.||p + ||RuFi||p. In MATLAB this

procedure to obtain data of the upper boundary from the informations of the lower boundary is

implemented in function prepare_data.
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Figure 4.2a: Vertices of the lower boundary Figure 4.2b: Lower convex hull of V
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Figure 4.2c: Vertices of the upper boundary Figure 4.2d: Upper boundary
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4.3 Admissible stable area

Let us assume that the lower J and the upper J boundary is well known, then the admissible

area p, where stability is guarantee based on Lyapunov function, is defined as:

o ={u|Jlow(x) <u < Jup(x),Vx € X} (4.10)

Now when the stable area is defined, we are able to fit a new objective function f with a smaller

number of regions. We will have to keep in mind that the stability is guaranteed only if

f(x) € o, Vx € X is satisfied.

Eestricted stable area
K LLLLTTLETT s Pommmm oo .
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Figure 4.3: Restricted stable area
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5 Fitting of the new objective function

Now what we are going to do is to fit a new objective function over fewer regions as the first
objective function has had (R; < R;). Since the area where we can perform this operation is
strictly restricted by two boundaries (figure 4.3), then new piecewise affine objective function

has to satisfy equations:

ve:  f(x) <J (%) (5.1a)
vx:  J(x) < f(x), (5.1b)

where f is new fitted objective function, J is a lower boundary and J is a upper boundary. Since

the explicit definition of a function is:

f () = max (agx + By), (5.2)

therefore in order to satisfy the equation (5.1) we have to find coefficients a; and f; i = 1,k for

fixed value of k .

5.1 Objective function and the upper boundary

Assuming that data of the upper boundary is well known (defined as piecewise affine function

with slopes Cy; and affine terms Dy, ), equation (5.1a) can be further formulated as:

Vi,Vx € R;: maxy, (apx + Bi) < Clix + Dy, (5.3)

where R; is i-th region, ay, is k-th slope and S, is k-th affine term of the objective function. From
equation (5.3) follows that maximum value of the new fitted objective function has to be lower
or equale than the function value of the upper boundary. On the right side, it would be the same
as if we would say that each function value on the left side must be lower or equal than the
function value on the right side. Equation (5.3) has operator less or equal (<) and as both of
those functions (f, j) are convex, necessary and sufficient condition are satisfied and the

equation can be modified as:

Vi,Vx € R, Vk:  ajx+ P < Clix + Dy (5.4)
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Equation (5.4) can be applied on vertices of the upper boundary (instead of whole axis scale)

and the formulation will be equivalent to:

Vi, Vv; € vert(R;),Vk: apvj + B < Cfvj + Dy, (5.5)
Fitting PWA function Fitting PWA function Fitting PWWA function
40 i A0 p----pm=zemceoocaon-ono- 1
— — Jdlow !
30 AW | — —Jup .- .
\ CERY /f
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10 10}~ s =
0 0 : :
d - 5 0 5
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Figure 5.1a: Fitting PWA function Figure 5.1b: Fitting PWA function Figure 5.1c: Fitting PWA function
restricted by upper boundary restricted by upper boundary on the restricted by upper boundary on the

whole axis x verteces
5.2 Objective function and the lower boundary

Let us say that data of the lower boundary is well known (defined by matrix C; for slopes and

matrix D; for affine terms). Equation (5.1b) can be then further formulated as:

Vi,Vx € R;: CLT,ix +Dy; < mIgX(a;fx + Br) (5.6)

The unknown variables are on the other side, the operator is now bigger or equal (=) than the
function value of lower boundary. In this case only necessary condition is satisfied and by this

reason implication is used between equations (5.5) and (5.6):

Vi,Vv; € vert(R;): Clvj+Dy; < m}gx(a,{vj + Bi) (5.7)

In other words if equation (5.7) is met, then equation (5.6) does not have to be met. Equation

(5.7) is extreamly difficult to compute, because maximum value is being used.

t = max (x;) (5.8)

The result from equation (5.8) t is achieved by computation following problem:
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Vi: -M(1-6)<t—-x<M(1-) (5.9q)
Vi, V],l * ] Xj <x;+ M(l - 61')’ (59b)

where Y!_, 8, = 1and &, = {0,1}.

Fitting PWA, function Fitting FWaA, function

40

30

= 207

10F-

Figure 5.2a: Fitting PWA function Figure 5.2b: Fitting PWA function Figure 5.2c: Fitting PWA function
restricted by lower boundary. restricted by lower boundary on the restricted by lower boundary on the

whole axis x verteces

5.3 Creating a new objective function

Fitting PYWA function Fitting PWWA function Fitting PWWA function
300 - — —fitted PvA | 0% -{ — — fitted PWA/,E
. .1 | SN r‘/ — 20r- :
= X ! X

Figure 5.3a: Fitting PWA function Figure 5.3b: Badly fitted PWA Figure 5.2c: Properly fitted PWA
restricted by vertices of lower and function function.

upper boundary.

In this Chapter we are going to creating a new objective function. Basically we are going to fit
new affine lines (regions) restricted by vertices of lower and upper boundary (figure 5.3a). Based

on these conditions the optimizer can fit badly piecewise affine function as we can see in the
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figure 5.3b. This wrong approximation is allowed by using implication between equations (5.6)
and (5.7). While equation (5.7) is satisfied, another equation (5.6) is not. Properly fitted

piecewise affine function is illustrated in figure 5.2c.

5.4 Implementation in MATLAB

Let us consider that data about system and its boundaries are known. To obtain new fitted

objective function we will define function:

[alpha,beta] = fit_PWA (Jup,Jlow,V,K),

where Jup is an upper boundary, Jlow is a lower boundary, v are verteces of regions and K is
number of regions of the new fitted function which we have to define. Outputs of this function
are slopes alpha and affine terms beta. This function is basically MATLAB representation of
the equations (5.5) and (5.7). We have to keep in mind that even equation (5.7) was used,
YALMIP will also compute equations (5.9).

function [alpha,beta] = fit_PWA (Jup,Jlow,V,K,x_up,x_low)
nx = size(V{1l},2);

[

% obj. function

obj = 0;
% constraints
F = [1;

[)

% symbolic values
alpha = sdpvar(nx,K, "full');
beta = sdpvar (1,K);

for i = 1l:length(V)
% Jup
for j l:length(V{i})
F=F + [(V{i} (], :)*alpha + beta) <= ...

V{i} (J,:)*Jup.C{i} + Jup.D{i}];

end
% Jlow
for j = 1l:length(V{i})
F =F + [max(V{i}(j,:)*alpha + beta) >= ...
V{i}(j,:)*Jlow.C{i} + Jlow.D{i}];
end
end

%% solve
info = solvesdp (F,obj);
if info.problem ~= 0
error ('Problem is unsolvable !!!")
end
alpha = double(alpha);
beta = double (beta);
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6 Certification

As we know from Chapter 5.2, equation (5.7) is only necessary condition to expression (5.6) and
so we can get bad approximation (Figure 5.3b), therefore after every fitted objective function we
have to check if the equation (5.6) is also satisfied. For the fulfilling of the constraints we will

use certification.

6.1 Certification of the upper boundary

Equation (5.5) is necessary and sufficient condition to expression (5.3), certification for the
upper boundary is unnecessary. Anyway just to be sure we will apply this certification which can

be formulated as:

Vi,Vx € R; maxy, (afx + By) > Clix + Dy, (6.1)

where X is a optimization variable which belongs to R; region, ay is set of slopes and Sy, is set of
affine terms of the objective function while Cy ; are slopes and Dy, ; are affine terms of the upper
boundary. If exist any solution x which will satisfy equation (6.1) it means that at the point with
coordinates x function value of the fitted objective function is greater then function value of the
upper boundary. For this reason we have to increase the number of the upper boundary vertices
by this point x. Then we will try to fit another objective function, but with greater number of
vertices. Since between equations (5.3) and (5.5) is equivalence, equation (6.1) should not be

ever satisfied.
6.1.1 Formulation in MATLAB

For the certification of the upper boundary (based on the equation (6.1)) we can create function:

[x] = cert_Jup(alpha,beta,Jup,V),

where alpha are slopes and beta are affine terms of the fitted objective function, Jup are
piecewise affine data of the upper boundary and v is vector of vertices (regions). Output x is a
point where equation (6.1) is satisfied. We have to keep in mind that if optimized problem is
infeasible then in parameter x will not be saved a value. So after command double (x) zero will

be received. Then based on the result x will be printed the answer.
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function [x] = cert_Jup(alpha,beta, Jup,V)

nx = size(alpha,l);
for i = 1l:length(V)
x = sdpvar(nx,1);
obj = 0;
Fo=11;
F =F + [ismember(x, Jup.R(1i))];
F = F + [max(alpha'*x + beta') - (Jup.C{i}'*x + Jup.D{i}) > le-5];

info = solvesdp (F,obj);

x = double(x);

if info.problem == 0 && x ~= 0 , break;end
end
if x ==

disp('cert_Jup: Alpha and beta were certificated !!!")
else

disp('cert_Jup: Alpha and beta were not certificated !!!")
end

6.2 Certification of the lower boundary

By certification of the lower boundary we are going to find out if fitted objective function is
above lower boundary. This procedure is necessary because between equations (5.6) and (5.7) is
applied implication (5.6 = 5.7) and so equation (5.7) is only necessary condition for equation
(5.6). This can cause that fitted objective function will not be in the restricted area (figure 5.3b).

Certification for the lower boundary can be formulated as:

Vi,Vx € R;, Vk aix + B < Clix + Dy, (6.2)

where x is optimized point which belongs to R; region, ay, is set of slops and [y, is set of affine
terms of the objective function while C); are slopes and D ; are affine terms of the lower
boundary. Since we want to find point with the greatest deviation from the lower boundary

equation (6.2) will be transformed into following optimization problem:

Vi,Vx € R; d* = min (¢ — (C[x + D)) (6.3a)

£ = maxy (afx + By), (6.3b)
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where ¢ is the maximum function value of the fitted objective function, x is optimized point and

d* is an optimal result of this problem. This set of equations can be further reformulated as:

Vi,Vx € R; d* = min (¢ — (C[;x + D)) (6.4a)
vk e=alx+ By (6.4b)

If the result of this problem will be negative then objective function is badly fitted with the
greatest deviation in point x. Let us apply equations (6.4) on figure 5.3b than as a result we will
get figure 6.1a. In this figure we can clearly see that new objective function is badly fitted what
will equation (6.4) find out by negative value of variance d* < 0. For this reason we have to
increase the number of the lower boundary vertices by this point x = —0,4 (figure 6.1b). Then
we can try to fit another objective function while this time we can be sure that equations (6.4)
will not be satisfied in the point x (and in its close vicinity). This procedure should be repeated
until nonnegative variance will be found. It is possible that equations (6.4) will still have
negative variance which can cause that problem (5.7) illustrated in figure 5.2c will be

transformed into problem (5.6) illustrated in figure 5.2b.

Cerification of fitted PVWA, function Cerification of fitted PAWEA, function

Figure 6.1a: Certification of the fitted funciton Figure 6.1b: Result of the certification
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6.2.1 Formulation in MATLAB

For the certification of the lower boundary (based on equations (6.4)) we can create function:

[x,d] = cert_Jlow(alpha,beta,Jlow,V),

where alpha are slopes and beta are affine terms of the fitted objective function, Jlow are
piecewise affine data of the lower boundary and v is vector of vertices (regions). Output d
represents variance of the fitted objective function and lower boundary in a point with axis x.

Based on this variance is also printed to the commandline the answer.

function [x,d] = cert_Jlow(alpha,beta,Jlow,V)
nx = size(alpha,l);
for k = 1l:1length (V)

x = sdpvar (nx,1);

eps = sdpvar(l,1);

obj = eps - (Jlow.C{k}'*x + Jlow.D{k});
F=11;
F F + [ismember (x, Jlow.R(k))];
for i = l:length(alpha)
F =F + [eps >= alpha(:,1)"'"*x + beta(i)];

end

info = solvesdp (F,obj);
if info.problem ~= 0, error('Problem is unsolvable !!!"),end

x = double(x); d = double(obj);
if d < -1le-6, break; end
end

if d >= -le-6

disp(sprintf('cert_Jlow: Alpha and beta were certificated !!!"))
else

disp('cert_Jlow: Alpha and beta were not certificated !!!")

disp (sprintf (' In point x = %d is difference = %d.',x,d))
end

6.3 Formulation in MATLAB

Until now we have certification of upper and lower boundary. But as it was already mentioned in
both certifications if any of these function will find out x that will satisfy equation (6.1)
respectively (6.2), then we have to increase number of vertices by this point x. After receive new
extended vector of vertices we will fit another objective function and then certification can start

again. This cycle we should perform until fitted objective function will be in the restricted area.
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Because of certification of the lower boundary problem it is possible that using equations (6.4)
illustrated in figure 5.2¢ will be transformed into problem (5.6) illustrated in figure 5.2b. For this
reason we will define the maximum number of cycles. Since we are going to send extending
vertices (x_up, x_low) to the function fit_pwA we have to upgrade it by adding additional

inputs:

| [alpha,beta] = fit_ PWA (Jup, Jlow,V,K, x_up,x_low)

And by adding additional constraints:

for i = 1:1length(V)
% Jup extended vertices
for j = l:length(x_up)
F F + [(x_up(j,:)"'*alpha + beta) <=

x_up(Jj,:) "*Jup.C{i} + Jup.D{i}];

end
% Jlow extended vertices
for j = l:length(x_low)
F = F + [max(x_low(j,:)"'*alpha + beta) >=
x_low(j,:)"'"*Jlow.C{i} + Jlow.D{i}];
end
end

To ensure functionality of the mentioned cycles we will use the function:

|[alpha,beta,x_up,x_low] = Jlow_Jup (Jup,Jlow,V,K,x_up,x_low,N),

where Jup and Jlow are piecewise afiine data for boundaries, v is vector of all vertices
(regions), K is number of regions of the new fitted function, x_up and x_low vectors of
extended vertices (while in the beginning there are empty) and N represents number of maximum
cycles. Outputs from this function are slopes alpha and affine terms beta of the final fitted

objective function and vectors of extended vertices x_up and x_1low.

function [alpha,beta,x_up,x_low] = Jlow_Jup (Jup,Jlow,V,K,x_up,x_low,N)
[alpha,beta] = fit_PWA (Jup,Jlow,V,K,x_up,x_low);
[x] = cert_Jup(alpha,beta,Jup,V); % cert_Jup: f(x) <= Jup(x)
if x ~= 0
x_up = [x_up; X];
[alpha, beta,x_up,x_low] = Jlow_Jup(Jup,Jdlow,V,K,x_up,x_low,N);
End
[x,d] = cert_Jlow(alpha,beta,Jlow,V); % cert_Jlow: Jlow(x) <= f(x)
if d < -le-6
x_low [x_low; x];

if length(x_low) < N + 1
[alpha, beta,x_up,x_low] = Jlow_Jup(Jup,Jdlow,V,K,x_up,x_low,N);
elseif length(x_low) ==
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fprintf('!!! Lack of iteration steps !!!\n'")
end
else
fprintf ('Jlow(x) <= f(x) <= Jup(x) certified\n')
end

In the beginning new objective function will be fitted (£it_pwa). Then certification of the upper
boundary will be applied (cert_Jup). Based on the result x this function may add another vertex
and then recursively run function J1low_Jup once again. If fitted objective function will be under
upper boundary then certification of the upper boundry will be satisfied and we can start
certificate lower boundary (cert_Jlow). Based on variance d we may add another vertex and
again recursively run function Jilow_Jgup. If both certificatins are satisfied (or number of cycles

will run out) we will print the result of the certification.

To plot last fitted objective function we can use function:

[VV] = draw_PWA (alpha, beta, X, Jpoly),

where alpha and beta are slopes and affine terms of fitted objective function, x represents
edges of axis and Jpoly is a structure where slopes and affine terms of both boundaries have
been saved. To obtain explicit representation of fitted objective function we will use function
get_explicit_pwa_max. When boundaries have been plotted by using command plot we can
plot mentioned fitted objective function through function plot_pwa. In the end we will compute

vector of all region verteces as the output of this main function draw_pwa.

% function [VV] = draw_PWA (alpha, beta, X, Jpoly)

% alpha - slope (f(x) = alpha*x + beta)

% beta - affine term (f(x) = alpha*x + beta)

% X — Polytop representing range of each axis (in matrix X)
$ VV — vertices of each new region (from new alpha and beta)
function [VV] = draw_PWA (alpha, beta, X, Jpoly)

o\

obtain the explicit representation of f(x) as
f(x) = c_j*x+d_j if x \in P_j
f = get_explicit_pwa_max(alpha, beta, X);

o\

if gcf==1, plot(Jpoly, 'v'); end

hold on, plot_pwa(f); grid on, hold off

[)

s output
for i = 1:length(f.R), VV{i} = extreme(f.R(i)); end
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7 Control law

In Chapter 1.4.2 was mentioned that each piecewise affine objective function must be associated
with piecewise affine control law to achieve successfully control of any process. System does not
care about objective function in the certain state, it requires only optimal input from controller to
move forward. In this Section we will describe how to obtain control law from objective

function.

7.1 Approximate simplical control law [5]

Let V = {[xq, f(x)], v, [k, f ()]} € R™ 1 be a set of vertices of the fitted objective function
and u; be the optimizer for vertex [x;, f(x;)]. If F = {[xFl,f(xpl)], s [xpn+1,f(xpn+1)]} cV
are the vertices contained in a facet of the lower convex hull of V, then the approximate critical

region defined by F is Rp := conv m,/V and the control law is given as:

VxeRy  @(x):=UpX7! (’1‘) (7.1)
where
UF — [uF1 an+1]
. xF1 an+1
X = [ 1 .. 1

Equation (7.1) defines the approximate control law as the interpolation of the optimal control

action given at the vertices of each approximate critical region.
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Figure 7.1a: Certificated PWA Figure 7.1b: Vertices of all regions Figure 7.1c: Vertices made of the
objective function of PWA objective functions lower convex hull of vector V
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7.2 Formulation in MATLAB

First step to implement equation (7.1) will be to prepare vector of the optimized inputs Ur for

verteces I/. For this purpose we use the function:

[Vu] = get_Vu(VV,sysStruct, probStruct),

where sysstruct and probstruct are structures of the initial problem (in our case it is
problem defined in 1ti_1d_unstable) and vv are vertices of each region (Vv = V). Output of
this function is optimized inputs (Vu = Ur) and it will be received as a result of the optimization
of the particular norm. Overview of the most used norms is mentioned in Chapter 1.3.2, but in
MATLAB we will use matrix formulation. Full description of each function (norminf, norml)

is in the appendix.

[

% Vu -> cell of the optimum inputs in all vertices
function [Vu] = get_Vu(VV,sysStruct,probStruct)
% objective function and constraints
if probStruct.norm == inf
[Vu] = norminf (VV, sysStruct, probStruct) ;
elseif probStruct.norm ==
[Vu] = norml (VV,sysStruct,probStruct);
else
fprintf('!!! Norm "%d" is not allowed !!!\n',probStruct.norm);
end

If we take a better look to the equation (7.1) we will see that result of the multiplication UpX7*
is a matrix which represents slopes and affine terms of the control law. This matrix will be output

of the following function:
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[VU,Vu] = get_u(VV,sysStruct,probStruct),

where inputs are just the same as in the function get_vu (already described), first output vu
represents vector of optimized inputs while the second one represents mentioned matrix of slopes

and affine terms of the control law (VU = UpXz1).

o\

VU —> cell of the alpha and beta for inputs
(VU{i} = [al_i, a2_i...;bl_1i, b2_i...;]1)
Vu -> cell of the optimum inputs in all region vertices from VV
function [VU,Vu] = get_u(VV,sysStruct,probStruct)
[Vu] = get_Vu(VV, sysStruct,probStruct) ;

o\

o\

[)

nx = size(sysStruct.A,2); % number of states

for i = 1l:length(VV)

for j = 1:nx
X = [VV{i}(:,3)"'; ones(l,length(VV{i}(:,3)))];
U = [Vu{i}(:,3)"'1;
C = U*X"-1;
VU{i}(:,3J) = C';
end

end

To plot the final control law can be again used function draw_pwa or alternatively can be used

following function:

plot_PWA_u(VV,Vu),

where vv is vector of vertices of objective function and Vu is vector of vertices of the control
function. If this function will meet with more than two dimensional problem, it will write

warning using command fprintf.

function plot_PWA_u(VV,Vu)
nx = size(VV{1l},2);

if nx ==
figure
hold on
xlabel ('x")
ylabel('u')

title(sprintf ('Control PWA function over %d regions',length(VV)))

plot ([VV{:}],[Vu{:}],"'--b', 'Linewidth', 3)
legend('u = f£(x)")
grid

elseif nx ==
temp = ceil(length(VV)/7);
'g'

color = repmat({'b"', ety e’y 'mt', 'y, "k}, L, temp)
figure

hold on

xlabel ('x1")
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else

end

ylabel ('"x2")

zlabel('u')
title(sprintf ('Control PWA function over %d regions
grid
% for ul
for i = 1:length(VV)
x = VV{i}(:,1);
y = VV{i} (:,2);
z = Vu{i}(:,1);

patch(x,vy,z,color{i})

end
if size(Vu{l},2) == 2
figure
hold on
xlabel ( xl')
ylabel ( ")
zlabel (' ")
tltle(sprlntf('Control PWA function over %d regions
grid
% for uZ2
for i = 1:1length(VV)
x = VV{i} (:,1);
y = VV{i} (:,2);
z = Vu{i} (:,2);

patch(x,vy,z,color{i})
end
end

fprintf('!!! Cant plot if nx > 2 !!!\nNumber of states:

', length(alpha)))

', length(alpha)))

nx = %d\n',nx)
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8 Examples

In Chapter 2 we have analyzed that if we want to control any process equation (2.1) must be
satistied. To achieve that we have to sometimes decrease computation time at the expense of
optimality, especially when fast process has to be controlled. By decreasing the number of
regions we will lower PWA data requirements for process control, but on the other hand
performance will be decreased as well (figure 2.4). In this Section we will illustrate a few

examples where this method will be used.

8.1 Example 1 (Iti_1d_stable)

Let us have an example of linear time-invaiant, one dimensional stable problem defined as
1ti_1d_stable. The result of the call 1ti_1d_stable can be seen in the figure 8.1a. Our next
step will be to find upper boundary. Lower boundary is already known since it is represented by
optimal solution of this problem (figure 8.1a). Both boundaries are plotted in figure 8.1b, where
the restricted (stable) area is being highlighted. Now if we look at this figure 8.1b more closely
we should see that this whole problem can be defined even over two regions (K = 2) and as this
problem looks realy simple five iteration steps should be enough (N = 5). This way we can
reduce data required to store slopes and affine terms to a quarter (and approximately computation
time as well (2.5)). To get this new simplified objective function we will use function Jlow_Jup,
where certification is included. If new problem will by certificated or if we will run out of
iteration steps, final objective function will be plotted (figure 8.1c). As a last step to control this
system with new suboptimal objective function we need to construct a control law. This
procedure is described in Chapter 7 and so we should know that if we want to get slopes and
affine terms of the control law we need to call function get_u and the function plot_PwWa_u
(alternatively function draw_pwa) will plot it (figure 8.1e). From Chapter 2 we know that by
decreasing number of regions we will also decrease computation time required to assign correct
input to the system based on current state but at the expense of loosing performance. This loss

can be seen while comparing optimal and suboptimal control laws (figure 8.1f).
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8.1.1 Formulation in MATLAB

System 1ti_1d_stable is defined as:

clear sysStruct probStruct
sysStruct.A .8;
sysStruct.B =
sysStruct.C

sysStruct.D

sysStruct.umax
sysStruct.umin = -1;
sysStruct.xmax = 5;
sysStruct.xmin = -5;

O P O
~

probStruct.Q = 1;
probStruct.R = 1;
probStruct.norm =
probStruct.N = 5;

nx = mpt_sysStructInfo(sysStruct);

ctrl = mpt_control (sysStruct, probStruct)

To create a new suboptimal control law of the system mentioned above we need to call following

functions:

close all
clear all
clc

1ti_1d_stable;
prepare_data;

N = 5; % number of iteration steps

K = 2; % number of approx regions

x_up = []; % empty extending vertices for the upper boundary
x_low = []; % empty extending vertices for the lower boundary
[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N);

VV = draw_PWA (alpha, beta, X, Jpoly);

[VU,Vu] = get_u(VV,sysStruct,probStruct);

plot_PWA_u (VV,Vu);
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8.2 Example 2 (Iti_1d_unstable)

Let us have an example of linear time-invariant, one dimensional unstable problem defined as
1ti_ld_unstable. By calling m-file with this name as this system we will get an explicit form
of this problem which can be graphically seen in the figure 8.2a. When the lower boundary will
be found we can highlight stable area. For this purpose we have prepared another m-file
prepare_data (figure 8.1b). From figure 8.1b we will try to guess the minimal number of
regions which can be this system defined (K = 4). Since this problem is a little bit more difficult
as example 1 the number of iterations will be doubled (N =10). To get a new simplified
objective function we will use function Jlow_Jup in which certification is included (figure 8.2d).
The only thing what is left to do is to extract control law from the objective function. This step is
achieved by function get_u and then after using another function plot_pwa_u we will plot it
(figure 8.2e). In the end we can compare optimal and suboptimal control laws to see the lost of
the performance caused by this method (figure 8.2f).

Since optimal objective function is symmetrical we can try to even simplify this computation. If
we split objective function into two halfs (h; € (—5,0), h, € (0,5)), then the result of the first
half h; will be also result for the other half, but with opposite sign of the slopes. This way fitting
and the certification should by simplified by a half. To prove this statement we can take a look at
the table 8.1. Time-inequality of these two methods is caused by MATLAB, which had in the

case of the asymmetries to use more extended vertices.

Algorithm that does Algorithm that use
Operation
not use symmetry symmetry

Prepare explicit data 5.1 [s] 5.1s]

Fit a new objective function 9.2 [s] 1.1 [s]

Number of extended vertices 3 0

Plot objective function 0.2[s] 0.2 [s]

Extract control law 0.7 [s] 0.6 [s]
Plot control law 0.1[s] 0.1 [s]

Total time 15.3 [s]

Table 8.1: Comparing time efficiency by using symmetry
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Figure 8.2f: Comparison of the control laws
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8.2.1 Formulation in MATLAB

System 1ti_1d_unstable is defined as:

clear sysStruct probStruct

sysStruct.A .1
sysStruct.B =
sysStruct.C
sysStruct.D
sysStruct.umax
sysStruct.umin = -1;
sysStruct.xmax = 5;

sysStruct.xmin = -5;

I
oOr P

probStruct.Q = 1;
probStruct.R = 1;
probStruct.norm =
probStruct.N = 5;

nx = mpt_sysStructInfo(sysStruct);
ctrl = mpt_control (sysStruct, probStruct)

To create a new suboptimal control law of the system we need to call following functions

(function reindex_pwa is attached in the appendix):

close all, clear all, clc

1ti_1d_unstable;
prepare_data;

N = 10; % number of iteration steps
K = 4; % number of approx regions
x up = []; x_low [1; % empty extending vertices for boundaries
if nx == 1 % nx is a dimension of the problem
[Jlow,Jup,V,smtr] = reindex_pwa (Jlow,Jup,V);
if smtr == 1 && mod(K,2) == 0, K = K/2; V = V(l:end/2);end
end
[alpha, beta,x_up,x_low] = Jlow_Jup(Jup,Jdlow,V,K,x_up,x_low,N);
if nx == 1 && smtr == 1 && mod(K,2) == 0
temp = length(V);
for i = 1l:temp, V{temp+i} = -V{temp-i+1}; end
alpha = [alpha, -alphal;
beta = [beta, betal;
end

VV = draw_PWA (alpha, beta, X, Jpoly);
[VU,Vu] = get_u(VV,sysStruct,probStruct);
plot_PWA_u(VV,Vu);
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8.3 Summarization of examples

Reducing the memory requirements of explicit model predictive control was only a supporting
role, since our main goal is to reduce computation time of this control. By using results from
each example we can find the improvement of time-consuming calculation of the required
optimal input based on current state. In following graphs we will see compared time

requirements of optimal (f*,u*) and suboptimal (f, i) problems.
8.3.1 Summarization of example 1

In this work are mentiond two procedures how we find the input to the system (Chapter 1.4.3 and
Chapter 2.2), therefore in order to illustrate computation improvement of the result from the
example 1 we will proceed both of them. While in figures 8.3 is compared time required to
obtain input to the system in each region, in figure 8.4 we can see the control difference of

optimal and suboptimal control laws.

w10 Frocedure 1 w10 Frocedure 2
e i — Optimal problem :
=3 S S 551 Subptimal Fruhlem __________
= i ) |
a ; i w i
ER - SRR - ; ] T ST ;
= — Optimal problem ! = :
o . ' ] 1
= Subptimal problem =
g A T - A B A preermomennoneenes :
E ! ' E 1 1
2 : : 2 : :
< : ! < =
s AT : Ly _,l ------------------- :
H H as H H
5 0 5 5 0 5
State State
Figure 8.3a: Compared time required to obtain input to Figure 8.3b: Compared time required to obtain input to
the system by procedure from Chapter 1.4.3 the system by procedure from Chapter 2.2
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Comparation of optimal and suboptimal regulation
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Figure 8.4: Control difference of optimal and suboptimal control laws

8.3.1.1 Formulation in MATLAB

Both time comparison procedures can be simple implemented in MATLAB using following

commands:

close all
clear all
clc

1ti_1d_stable;
prepare_data;

N = 10; % number of iteration steps
K = 2; % number of approx regions
x_up = []; x_low = []; % empty extending vertices

[alpha, beta,x_up,x_low] = Jlow_Jup(Jup,Jdlow,V,K,x_up,x_low,N);

[Jlow,Jup,V,smtr] = reindex_pwa (Jlow,Jup,V);
VV = draw_PWA (alpha, beta, X, Jpoly);

[VU,Vu] = get_u(VV,sysStruct,probStruct);
[VUU, Vuu] = get_u(V,sysStruct, probStruct);
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for i = 1:length(alpha)
J_alpha{i} = alpha(:,1);
J_beta{i} = beta(:,1i );

end
x = [-5:.1:—-.1 .1:.1:5];
for j = 1:5
time_ml = []; time_m2 = [];
for i = 1l:length(x)
if (i) == 0, continue;end
% Procedure 1
[timel,u_opt] = get_time_ml(Jlow.C,Jlow.D,V,VUU,x(1));
[time2,u_sub] = get_time_ml (J_alpha,J_beta,VV,VU,x(1i));
time_ml = [time_ml [timel;time2]];
% Procedure 2
[timel,u_opt] = get_time_m2(V,VUU,x(1));
[time2,u_sub] = get_time_m2(VV,VU,x(1));
time_m2 = [time_m2 [timel;time2]];
end
end

figure, hold on

title('Procedure 1'),xlabel('State'),ylabel('Computation time [s]")
plot(x,time_ml(1l,:),'b")

plot(x,time_ml(2,:),'r")

legend ('Optimal problem', 'Subptimal problem')

figure, hold on

title('Procedure 2'),xlabel ('State'),ylabel ('Computation time [s]")
plot(x,time_m2(1l,:), 'b")

plot(x,time_m2(2,:),'r")

legend('Optimal problem', 'Subptimal problem'),

where function get_time_ml 1is defined as:

function [time,u] = get_time_m2 (VV, VU, x)
tic,
for i = 1:1length(VV)

minVV = min(VV{i}); maxVV = max(VV{i});

if X <= maxVV && x >= minVV, Ri = 1i; break; end
end
u = VU{Ri}'*[x;1]; % action input
time = toc;

and function get_time_m2 is defined as:

function [time,u] = get_time_ml (alpha,beta,VV, VU, x)
tic,
for i = 1: length(VV)
Fvalue (i) = x'*alpha{i} + beta{i};
end
MaxF = max (Fvalue); % maximal function wvalue
Ri = find(Fvalue == MaxF); % index of region
u = VU{Ri}'*[x;1]; % action input
time = toc;
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Control difference of optimal and suboptimal control laws is implemented in MATLAB by:

close all
clear all
clc

1lti_1d_stable;
prepare_data;

N = 10; % number of iteration steps

K = 2; % number of approx regions
x up = [1; x_low = []; % empty extending vertices
[Jlow,Jup,V, smtr]

reindex_pwa (Jlow, Jup, V) ;

[alpha, beta,x_up,x_low] = Jlow_Jup(Jup,Jdlow,V,K,x_up,x_low,N);
VV = draw_PWA (alpha, beta, X, Jpoly);

[VU,Vu] = get_u(VV,sysStruct,probStruct);

time = 25;

% optimal control law
X (1
x = -5;
for i=l:time
X = [X x]; x = sysStruct.A*x+sysStruct.B*ctrl (x);

% suboptimal control law

Y [1;
x = =55
for i = j:time
Y = [Y x];
% finding u
for i = 1:1length(VV)
VV_min = min(VV{i});
VV_max = max(VV{i});
if (x >= VV_min) && (X <= VV_max)
u = VU{i}(1l)*x + VU{i}(2);
end
end
X = sysStruct.A*x + sysStruct.B*u;
end
figure
hold on

plot (0O:time, [X 0], 'b', 'Linewidth', 2)

plot(0O:time, [Y O], '——xr', 'Linewidth', 2)

axis ([0 time -5 117])

title('Comparation of optimal and suboptimal regulation')
xlabel ('Sampling time'),ylabel('x"'),legend('u”*"', 'u"~"),grid
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8.3.2 Summarization of example 2

In order to summarize results from second example we will use the same functions as in Chapter

8.3.1, with exceptions that 1ti_1d_unstable and K = 4 has been used.
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Figure 8.5a: Compared time required to obtain input to Figure 8.5b: Compared time required to obtain input to
the system by procedure from Chapter 1.4.3 the system by procedure from Chapter 2.2
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Conclusion

Predictive control is one of the most modern control approach which differs from other
conventional methods by its ability to predict the development of states and the fact that
constraints are directly incorporated into the optimization problem. On the other hand this
complexity represents the main drawback of this approach, because to solve such complicated
optimization problem requires large computational demands. In this work we have tried to
propose a method which allowed implementation of this control approach on systems with fast

dynamics.

In the opening Chapters, we have got familiar with model predictive control (its strengths,
options, mathematical formulations and so on) as well as the reasons why it is necessary to
propose use of the method which is able to reduce the demands for explicit data storage but at the
expense of losing performance (optimality). In sequel Chapter we have been searching for an
appropriate solution which has been dealing with all necessary requirements of this method and
thus to achieve suboptimal regulator, which would simultaneously guarantee the stability of the
system in his whole range. In order to define a stable area where a new simplified objective
function could be fitted, we have used two boundaries. First (lower) boundary was basically the
optimal objective function, while the other one (upper boundary) was created by moving of the
system at the limit of stability. In this stable area we were able to approximate a new simplified
objective function defined over fewer region. Since only necessary condition has been used in
the lower boundary, correct fitting was not guaranteed (as we could saw in the figures). In order
to insure that the necessary condition has met the sufficient condition we have defined the
certification. Right after the newly created function has fulfilled the certification we was able to
extract a control law from it and thus to obtain a suboptimal regulator. In order to proof the
functionality of this method we have implemented it into two examples and the results

graphically illustrated.

In this work we have proposed a method which is able to reduce the computation time and a
storage capacity of the explicit data by a great portion, while stability is still guaranteed. Based
on this reduction the control of the system can be faster, but we have to keep in mind that at the

expense of losing the performance (optimality).
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Resumé

Uvod

Prediktivne riadenie patri k najmodernej$Sim pristupom riadenia, ktoré sa odliSuje od ostatnych
konvenénych metdd riadenia tym, Ze sekvencia optimédlnych vstupov do systému sa vypocita
prostrednictvom optimalizacie daného problému na konecnom predikénom horizonte vzhl'adom
na obmedzenia a za predpokladu, Ze model procesu, ako aj stav v danom kroku riadenia su
zname. V skutoc¢nosti tento fakt predstavuje aj najvicSiu nevyhodu tohto spdsobu riadenia,
pretoze pre vypocet takejto optimalizicie je potrebnd vykonnd vypoctovd technika
a v neposlednej rade aj efektivny softvér (solver). Z tohto dovodu sa prediktivne riadenie
implementovalo prevazne do procesov s pomalou dynamikou, akymi sd napriklad priemyselné
procesy, nakol'ko optimdlny akény zdsah do daného procesu musi byt vypocitany do doby
odobrania d’alSej vzorky (vzorkovacieho casu). V poslednych rokoch bol vSak zaznamenany
vyznamny pokrok v oblasti zdokonal'ovania a vyvoja vypoctovych prostriedkov vratene novych

vykonnych numerickych metdéd a z toho hl'adiska sa aj tento nedostatok postupne vytraca.

Explicitné prediktivne riadenie

Pozndme dva pristupy implementécie prediktivneho riadenia. Prvym z nich je klasicky pristup
rovnako oznacovany ako on-line riadenie. Druhym pristupom je explicitné riadenie, ktoré je
taktiez nazyvané ako off-line riadenie. Zékladny rozdiel medzi tymito dvoma spdsobmi riadenia
je v pristupe vypocitania optimalneho vstupu do systému. Pri on-line pristupe sa optimélny
akény zdsah vypocita neustdlou optimalizdciou problému (1.13), ¢o vedie k vyraznému
zataZzeniu vypoctovej techniky. Ztohto dovodu sa tento klasicky pristup riadenia mohol
implementovat’ iba do systémov s pomalou dynamikou. Pri explicitnom riadeni sa optimalizicia
vykond iba raz ato eSte predtym, ako zacneme riadit’ dany systém (odkial’ vychddza aj ndzov
off-line). Touto optimalizéciou si dany problém vyjadrime ako hybridny systém, ktorého budeme
moct’ riadit’ pomocou rovnic (1.14, 1.17). Teda ako systém, ktorého ucelovad funkcia ako aj
zdkon riadenia budid rozdelené do viacerych po &astiach afinnych tdsekov (regiénov). Udaje
o kazdom jednom dtseku, teda smernice a posunutie, si ulozené do tabulky, ktord bude

obsahovat’ matice (1.15), (1.16), (1.18) a (1.19). Ak¢ny zéasah sa ziska prostrednictvom urcenia
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indexu aktivneho regionu pre aktudlny stav ato na zdklade jednoduchych matematickych
vypoctov. Nasledne sa z tabulky ziskaji udaje o zdkone riadenia pre dany regién aur¢i sa
spravny akény zdsah. UZ teda nebude prebiehat’ neustala optimalizdcia daného problému, ¢im sa
vyrazne zniZi ndro¢nost’ na vypoctovi techniku. Na druhej strane, vzhl'adom na rozsiahlost

tabul’ky udajov, sa zvysi pamétova narocnost’.
ZniZenie implementac¢nej narocnosti explicitného prediktivneho riadenia

Z tedrie vieme, Ze pri riadeni diskrétnych systémov (ktoré su vSetky systémy riadené pocitacom)
sa musi Cas, potrebny na vypocet optimdlneho akéného zasahu, zmestit’ pradve do jednej doby
vzorkovania (2.1), priCom vhodna doba vzorkovania pre dany proces by mala spadat’ do urcitého
intervalu (2.2). Explicitné prediktivne riadenie je pristup, pri ktorom sa optimdlny vstup do
riadeného procesu vypocita prostrednictvom hladania prislusného regiénu v tabulke tdajov
(obrazok 2.2). Preto mdzeme povedat’, Ze Cas potrebny na vypocet optimalneho vstupu bude
priamo umerny poctu regiénov (2.5). Preto vieme, ze ak budeme chciet implementovat
explicitné prediktivne riadenie do T'ubovolného systému (s ur€itou periédou vzorkovania),
budeme musiet’ zniZit’ pocet regiénov daného problému az do takej miery, aby bol vypoctovy Cas
akéného zdsahu mens$i (nanajvy§ rovny) ako doba vzorkovania. Rovnako prostrednictvom
zniZovania poctu regiéonov budeme znizovat aj pamidtové ndroky, ktoré sd potrebné
k implementacii daného explicitného prediktivneho riadenia.

Metdda, ktord bola navrhnutd v tejto praci, sa snazi zniZit’ pocet regiénov a to takym sposobom,
Ze prvotnu (optimdlnu) Gc¢elovi funkciu sa pokisi aproximovat’ novou (suboptimélnou) tcelovou
funkciou, ktord bude zadefinovana prostrednictvom mensieho poctu regidonov. AvsSak takato
aproximdcia nemdze byt vykonand na 'ubovol'nom mieste. Preto je potrebné si najskor zostrojit’
hranice stability. Spodnu hranicu tvori prdve naSa optimdlna tcelovd funkcia, nakolko lepSie
riadenie ako je to optimdlne uz neexistuje. Hornd hranicu zostrojime tak, Ze dany systém
posunieme a7z na hranicu stability. Pripustnd oblast, kde bude garantovand stabilita daného
systému, vznikne vymedzenim prave tychto dvoch hranic (obrdzok 4.3), v ktorej budeme mdct’
aproximovat’ novi (suboptimdlnu) udcelovi funkciu. Pre spétnd kontrolu, ¢i takto zostrojend
funkcia bude podmnoZinou stabilného priestoru, sme si zostrojili dva certifikaty. AZ ked dana
funkcia prejde certifikdciou, budeme moct priradit’ k nej suboptimdlny zdkon riadenia (obrazok

7.2).
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Zaver

V diplomovej praci sme sa zaoberala problematikou zniZovania implementacnej ndrocnosti
explicitného prediktivneho riadenia. Vysvetlili sme si zdkladné prednosti prediktivneho riadenia
a ndsledne sme si aj predstavili dva odliSné pristupy pri jeho implementécii. Navrhli sme metddu,
ktord na zdklade redukcie poctu regiénov dokdzala znizit’ implementacni naro¢nost’ explicitného
prediktivneho riadenia, ale to za cenu zniZenia kvality riadenia (suboptimality). Funk¢nost’ tejto
metody sme dokdzali v poslednej kapitole a to na dvoch prikladoch, pricom vysledky porovnania

optimalneho a suboptimdlneho riadenia boli ilustrované prostrednictvom grafov.
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Appendix A — Main program

close all
clear all
clc

1ti_1d_stable;
% 1lti_1d_unstable;
$ 1lti_2d;

prepare_data;

N = 10; % number of iteration steps
K = 2; % number of approx regions
x_up = []; x_low = []; % empty extending vertices
nx = size(sysStruct.A,2); % number of states
if nx == % nx is a dimension of the problem
[Jlow,Jup,V,smtr] = reindex_pwa (Jlow,Jup,V);
if smtr == 1 && mod(K,2) == 0, K = K/2; V = V(l:end/2);end
end
[alpha, beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N);
if nx == 1 && smtr == 1 && mod(K,2) == 0

temp = length(V);
for i = l:temp

V{itemp+i} = -V{temp-i+1};
end
alpha = [alpha, -alphal;
beta = [beta, betal;

% VV = draw_PWA_1D(alpha,beta,Jlow,Jup,V);
VV = draw_PWA (alpha, beta, X, Jpoly);

[VU,Vu] = get_u(VV,sysStruct,probStruct);

plot_PWA_u(VV,Vu);
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Appendix B — Systems

Iti_1d_stable

clear sysStruct probStruct

sysStruct.
sysStruct.
sysStruct.
sysStruct.
sysStruct.umax
sysStruct.umin =
sysStruct.xmax = 5;
sysStruct.xmin = -5;

.8;

~.

U Qw >
I
O~ B O

H\-

|
|
=
~.

probStruct.
probStruct.R = 1;
probStruct.norm =
probStruct.N = 5;

|®)
|
=

nx = mpt_sysStructInfo(sysStruct);
ctrl = mpt_control (sysStruct, probStruct)

Iti_1d_unstable

clear sysStruct probStruct

sysStruct.A .1;
sysStruct.B =
sysStruct.C
sysStruct.D
sysStruct.umax
sysStruct.umin = -1;
sysStruct.xmax = 5;

sysStruct.xmin =

~.

O
~

||~

I

|
(@)
~.

probStruct.Q = 1;
probStruct.R = 1;
probStruct.norm =
probStruct.N = 5;

nx = mpt_sysStructInfo(sysStruct);
ctrl = mpt_control (sysStruct, probStruct)



Appendix C - prepare_data

o\

we want to find a_k, b_k, k =1,...,K of the convex PWA function
f(x) := max a_k*x+b_k such that
\forall x: Jlow(x) <= max a_k*x+b_k <= Jup (k)
"K" is minimized s a heurstics we minimize ||a_k||_1, ||b_k|]|_1)
) are PWA functions, the first constraint reads
i:

)
(
since Jlow () and Jup
\forall i, x \in R Clow_i*x+Dlow_1i <= max a_k*x+b_k <= Cup_i*x+Dup_i

o o

o\

a
(

o\

o\

o\

o\

in our case, Jlow(x) = V(x), where V(x) is the optimal cost function of a
given explicit MPC solution (pretend it's a Lyapunov function for now),
and Jup(x) = Jlow(x) + ||0x]||

o° o

o\

% Jlow() and Jup() are convex PWA functions:
% Jlow(x) := Clow_i*x+Dlow_1i, if x \in R_1
% Jup (x) := Cup_i*x+Dup_i, if x \in R_1i

o\

to construct epigraphs, we need to find the maximum of a PWA function
over its domain. for that, we need vertices of the domain
= union(ctrl.Pfinal); VX = extreme (X);

o\

>

[

% we are going to approximate the cost of a given explicit MPC solution
Clow = ctrl.Bi; for i = 1l:length(Clow), Clow{i} = Clow{i}'; end

Dlow = ctrl.Ci;

R = ctrl.Pn;

V = pelemfun(@extreme, R);

nR = length(R);

get Jup(x) = Jlow(x) + |[0x]|
Cup, Dup] = J_add_norm(Clow, Dlow, R, ctrl.probStruct.Q);

— o°

% obtain polytopic representation of the epigraphs:

% * PJ is the epigraph of Jlow(x)

% * PJIN is the epigraph of Jup(x)

% * Jpoly is the polytopic representation of the difference of the two
% functions

[PJ, PJN, Jpoly, Jmax] = get_J_epigraph(R, X, Clow, Dlow, Cup, Dup);

close all
plot (Jpoly, 'v');

Jlow.R = R;
Jlow.C = Clow;
Jlow.D = Dlow;
Jup.R = R;
Jup.C = Cup;

Jup.D = Dup;



J _add_norm

function [c, d] = J_add_norm(c, d, R, Q)

nx = dimension(R(1));
V = pelemfun(@extreme, R);

for k = 1l:1length(c)

W = V{k}"';
nv = size (W, 2);
J = c{k}"*W + repmat (d{k}, 1, nv);
for 1 = 1l:nv
J(i) = J(i) + sub_norm(W(:, i), Q, R(k));
end
g = [W' ones(nv, 1)]\J';
c{k} = g(l:nx); d{k} = g(end);
end
function y = sub_norm(x, Q, R)

x0 = chebyball (R);
nx = length(x0);
M = eye(nx);
for 1 = 1l:nx
if x0(i) < O
M(i, 1) = -1;
end
end
y = sum(Q* (M*x));

get_J_epigraph

function [PJ, PJN, J, Jmax] = get_J_epigraph(R, B, Clow, Dlow,
nx = dimension(R(1));

% obtain maximal value of Jup(x) over domain "B"
V = extreme (B);
Jmax = 0;
for i = 1l:length(Cup)
for j = 1l:size(V, 1)

Jmax = max(Jmax, Cup{i}'*V(j, :)' + Dup{i});
end
end
fprintf ('Computing epigraph of Jlow(x)...\n');
% epigraph of the wvalue function, i.e.
% { [x; el | e >= Jlow(x) }
x = sdpvar(nx, 1);
e = sdpvar(l, 1);
yPJ = [ ismember (x, B); e <= Jmax ];
for k = 1l:length(Clow)

Cup,

Dup)

80



yPJ = yPJ + [ e >= Clow{k}'*x + Dlow{k} ];
end
PJ = union(polytope (yPJ));

fprintf ('Computing epigraph of Jup(x)...\n');
% epigraph of the shifted value function, i.e.
5 A [x; el | e > J(x) + [Ix]]| }

yPIN = [ ismember (x, B); e <= Jmax ];

for k = 1l:length(Cup)

yPIN = yPJIN + [ e >= Cup{k}'*x + Dup{k} ];
end
PJN = union(polytope (yPJN)) ;

fprintf ('Computing polytopes of Jup(x)-Jlow(x)..
% polytopic representation of J(x)+|[x|| - J(x)
J = polytope;
V = pelemfun(€polytope, R);
nR = length(R);
x = sdpvar (nx, 1);
e = sdpvar(l, 1);
for i = 1:nR
if i==1 || i == nR || mod(i, 10)==
fprintf('sd / %d\n', i, nR);
end
Jlow = Clow{i}'*x+Dlow{i};
Jup = Cup{i}'"*x+Dup{i};
yJ = [ ismember (x, R(i)); Jlow <= e <= Jup ];

J = [J polytope(yJ)];
end

An');
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Appendix D - reindex_pwa

% re—-index each region from left to right by axis x1

% check for symmetry (if smtr == 1 => obj function is symmetrical)
function [Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V)

% find correct positions of each region
temp = zeros(l,length(Jlow.R));
positions = zeros(1l,length(Jlow.R));

if length(Jlow.C{:,1}) ==
for i = 1:length(Jlow.R)

temp (i) = max(extreme (Jlow.R(1i)));
end
else
for i = 1:length(Jlow.R)
tempp = extreme(Jlow.R(i));
temp (i) = max(tempp(l,:));
end

end

temp2 = sort(temp); k = 1;
while k <= length(temp2)
tempp2 = find(temp == temp2(k));
if length(tempp2) > 1
for j = l:length(tempp2)

positions (k+j-1) = tempp2(]j);
end
k = k + length(tempp?2);
else
positions (k) = tempp2; k = k + 1;
end

end

[)

% re—index each region

Jlow.R = Jlow.R(positions);
Jlow.C = Jlow.C(positions);
Jlow.D Jlow.D(positions);

Jup.R Jup.R(positions);
Jup.C = Jup.C(positions);
Jup.D = Jup.D(positions);

V = V(positions);

%% checking for symmetry (if smtr == 1 => obj is symmetrical)
k = length(Jup.R);
smtr = 1;

for i = 1:k/2
if sum(abs (Jup.C{i} + Jup.C{k+1-i}) > 1e-9) > 0, smtr = 0; break; end
if sum(abs (Jup.D{i} - Jup.D{k+1-i}) > 1e-9) > 0, smtr = 0; break; end
if sum(abs(Jlow.C{i} + Jlow.C{k+1-1i}) > le-9) > 0, smtr = 0; break; end
if sum(abs(Jlow.D{i} - Jlow.D{k+1-1i}) > le-9) > 0, smtr = 0; break; end
end
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Appendix E - Jlow_Jup

function [alpha,beta,x_up,x_low] = Jlow_Jup (Jup,Jlow,V,K, x_up,x_low,N)
[alpha,beta] = fit_PWA (Jup,Jlow,V,K,x_up,x_low);
% cert_Jup: f(x) <= Jup(x)
[x] = cert_Jup(alpha,beta,Jup,V);
if x ~= 0
X_up = [x_up; xI;
[alpha, beta,x_up,x_low] = Jlow_Jup(Jup,Jdlow,V,K,x_up,x_low,N);
end

% cert_Jlow: Jlow(x) <= f(x)

[x,d] = cert_Jlow(alpha,beta,Jlow,V);

diSp(' ")
alpha

beta

X_Uup

x_low

diSp(' ")

if d < -1le-6

x_low = [x_low; x];
if length(x_low) < N + 1
[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jdlow,V,K,x_up,x_low,N);
elseif length(x_low) ==
fprintf('!!! Lack of iteration steps !!!\n"'")
end
else
fprintf ('Jlow(x) <= f(x) <= Jup(x) certified\n')

end
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Appendix F - fit_ PWA

function [alpha,beta] = fit_PWA (Jup,Jlow,V,K,x_up,x_low)
nx = size(V{1l},2);

% obj. function

obj = 0;

% constraints
F=11;

% symbolic values
alpha = sdpvar(nx,K, "full');
beta = sdpvar (1,K);

for i = 1l:length(V)

% Jup
for j = 1l:length(V{i})
F =F + [(V{i} (], :)*alpha + beta) <=
V{i} (3j,:)*Jup.C{i} + Jup.D{i}];
end
for j = length (x_up)

1:
F =F + [(x_up(j,:)"'"*alpha + beta) <=
x_up(j,:)"'*Jup.C{i} + Jup.D{i}];
end
% Jlow
for j = l:length(V{i})
F =F + [max(V{i} (j,:)*alpha + beta) >=
V{i}(j,:)*JTlow.C{i} + Jlow.D{i}];

end
for j = l:length(x_low)
F = F + [max(x_low(Jj,:)"'*alpha + beta) >=
x_low(j,:)'"*Jlow.C{i} + Jlow.D{i}];
end

end

%% solve
info = solvesdp (F,obj);
if info.problem ~= 0
error ('Problem is unsolvable !!!")
end
alpha = double(alpha);
beta = double (beta);



Appendix G - Certifications

cert_Jup
function [x] = cert_Jup(alpha,beta, Jup,V)
nx = size(alpha,l);
for i = 1:length(V)
x = sdpvar (nx,1);
obj = 0; F = [];
F = F + [ismember(x, Jup.R(i))];
F = F + [max(alpha'*x + beta') - (Jup.C{i}'*x + Jup.D{i}) > le-5];
info = solvesdp (F,obj);
x = double(x);

if info.pro
end

blem == 0 && x ~=

0 , break;end

if x == 0, disp('cert_Jup: Alpha and beta were certificated !!!")
else disp('cert_Jup: Alpha and beta were not certificated !!!")

end

cert_Jlow

function [x,d]

nx = size(alpha

for k = 1l:1lengt
x = sdpvar (

obj = eps -

[
~.

+

[is
= 1:1
F +

m
0
R

Mo e
\

info = solv
if info.pro

x = double (
if d < -le-
end

if d >= -le-o0,
else

disp('cert_

fprintf ('
end

= cert_Jlow(alpha
P13
h (V)
nx,1l); eps = sdpv

(Jlow.C{k}'"'"*x +
member (x, Jlow.R(

ength (alpha)
[eps >= alpha(:,

esdp (F, ob7j) ;
blem ~= 0, error(

x); d = double (ob
6, break; end

disp('cert_Jlow:

Jlow: Alpha and b
In point

,beta, Jlow, V)

ar(1l,1);

Jlow.D{k});

k))1;

1) '"*x + beta(i)];

'Problem is unsolvable !!!"),end

3);

Alpha and beta were certificated

eta were not certificated !!!")
x = %d 1s difference

Prrn)

sd. \n',x,d)
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Appendix H — draw_PWA

% function [VV] = draw_PWA (alpha, beta, X, Jpoly)

% alpha - slope (f(x) = alpha*x + beta)

% beta - affine term (f(x) = alpha*x + beta)

3 X - Polytop representing range of each axis (in matrix X)
% VV — vertices of each new region (from new alpha and beta)
function [VV] = draw_PWA (alpha, beta, X, Jpoly)

o\

obtain the explicit representation of f(x) as
f(x) = c_j*x+d_j if x \in P_j
f = get_explicit_pwa_max(alpha, beta, X);

o\

if gcf==1, plot(Jpoly, 'v'); end
hold on, plot_pwa(f); grid on, hold off

% output
for i = 1:length(f.R), VV{i} = extreme(f.R(i)); end

get_pwa_max

function fs = get_pwa_max(a, b, X)
nx = dimension (X);
J = sdpvar(l, 1);
x = sdpvar (nx, 1);
F = [ J <= 1led4; ismember(x, X) ];
for k = l:size(a, 2)
F=F+ [ J > a(:, k)"*x + b(k) 1;
end
sol = solvemp(F, J, sdpsettings, x, J);

fpwa = mpt_mpsol2ctrl(sol, 1);

R = fpwa.Pn;

C fpwa.Bi; for 1 = l:length(C), C{i} = C{i}"'; end
D = fpwa.Ci;

fs.R = R;
fs.C = C;
fs.D = D;
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Appendix I - get_u

o\

VU -> cell of the alpha and beta for inputs

% (VU{i} = [al_i, a2_i...;bl_i, b2_i...;])
% Vu -> cell of the optimum inputs in all region vertices from VV
function [VU,Vu] = get_u(VV,sysStruct,probStruct)
[Vu] = get_Vu(VV,sysStruct,probStruct) ;
nx = size(sysStruct.A,2); % number of states
nu = size(sysStruct.B,2); % number of inputs
for i = 1l:length(VV)
for j l:nx
X = [VW{i}(:,3)"; ones(l,length(VV{i}(:,3)))];
U = [Vu{i}(:,3)"];
C = U*X"-1;
VU{i}(:,3J) = C';
end
end

get_Vu
% Vu —> cell of the optimum inputs in all vertices
function [Vu] = get_Vu(VV,sysStruct,probStruct)
% objective function and constraints
if probStruct.norm == inf
[Vu] = norminf (VV,sysStruct, probStruct) ;
elseif probStruct.norm == 1
[Vu] = norml (VV,sysStruct, probStruct) ;
else
fprintf ('!!! Norm "%d" is not allowed !!!\n',probStruct.norm);
end

norminf

o\

min sum(Ex) + sum(Eu)
s.t. X == tA*X+tB*U+tE*xt

tH*X <= tK

tL*U <= tM

—-tEx <= tQ*X <= tEx

—-tEu <= tR*U <= tEu
function [Vu] = norminf (VV, sysStruct,probStruct)
% number of states, number of inputs
nx size(sysStruct.A,2); number of states
nu = size(sysStruct.B,2); number of inputs
N = probStruct.N; prediction horizon

o° o° o o

o\

Il
o\

o\

o\

matrices for the objective function and the constraints for N = 1
[eye (nx) j—eye(nx)];

[eye(nu) j—eye(nu)l;

[sysStruct.xmax; -sysStruct.xmin];

[sysStruct.umax ; —-sysStruct.umin];

2 X B mooe
|
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% matrices for the objective function and the constraints for N

tQ = kron(eye(N),probStruct.Q);

tR = kron(eye(N),probStruct.R);

tH = kron(eye(N),H);

tL = kron(eye(N),L);

tK = kron(ones(N,1),K);

tM = kron(ones(N,1),M);

tEl = eye(nx);

tE2 = kron(ones(N-1,1),zeros(nx));
tE = [tEl;tE2];

tAl = kron(ones(1l,N), zeros (nx)

)i
tA2 = kron(eye(N-1), sysStruct A);
tA3 = kron(ones(N-1,1),zeros(nx));
tA [tAl;tA2 tA3];
tB1 kron(ones(1,N), zeros (nx,nu) ) ;
tB2 = kron(eye(N-1),sysStruct.B);
tB3 kron(ones (N-1,1), zeros (nx,nu) ) ;
tB = [tBl;tB2 tB3];

o\

optimization variables

= sdpvar (N*nu, 1) ;

= sdpvar (N*nx,1);

Eu = sdpvar (N, 1);

Ex = sdpvar(N,1);

tEx = kron(Ex, ones(nx,1));
tEu = kron(Eu, ones(nu,l));

X G

[)

% simulation
for i = 1l:length(VV)
ulopt = [];
for j = 1:2
% objective function and constraints
obj = sum(Ex) + sum(Eu);
F = [X == tA*X+tB*U+tE*VV{i} (], :);
tH*X <= tK;
tL*U <= tM; ...
—-tExX <= tQ*X <= tEx;
-tEu <= tR*U <= tEu];

info = solvesdp(F,obj);
if info.problem ~= 0, error('Problem is
ulopt = [ulopt double(U(l:nu))];
end
vVu{i} = ulopt';
end
norml
$ min c'*Z
% s.t. AA*Z <= BB
% GG*Z = HH
function [Vu] = norml (VV,sysStruct,probStruct)
% number of states, number of inputs
nx = size(sysStruct.A,2);
nu = size(sysStruct.B,2);

N = probStruct.N;

infeasible'

)

end
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[eye (nx) j—eye(nx)];

[eye(nu) ;-eye(nu)l];

= [sysStruct.xmax; -sysStruct.xmin];
[sysStruct.umax ; —-sysStruct.umin];

2 X B mooe
Il

o+
10
|

= kron(eye (N),probStruct.Q);
tR = kron(eye(N),probStruct.R);

(
tH = kron(eye(N),H);
tL = kron(eye(N),L);
tK = kron(ones(N,1),K);
tM = kron(ones(N,1),M);
tEl = eye(nx);
tE2 = kron(ones(N-1,1), zeros(nx));
tE = [tEl;tE2];
tAl = kron(ones(1l,N),zeros(nx));
tA2 = kron(eye(N-1),sysStruct.A);
tA3 = kron(ones(N-1,1), zeros(nx));
tA = [tAl;tA2 tA3];
tBl = kron(ones(1l,N),zeros(nx,nu));
tB2 = kron(eye(N-1),sysStruct.B);
tB3 = kron(ones(N-1,1), zeros(nx,nu));
tB = [tB1l;tB2 tB3];

% optimization wvariables
= sdpvar (N*nu, 1) ;
= sdpvar (N*nx,1);
Eu = sdpvar (N*nu,1l);
= sdpvar (N*nx, 1)

X a
|

14

=
X
|

[)

% objective and constraints

obj = 0; F = [1];

ZnuH = zeros(size(tH,1l),N*nu);
ZnxH = zeros(size(tH,1l),N*nx);
znxL = zeros(size(tL,1l),N*nx);
ZnuQ = zeros(size(tQ,1l),N*nu);
Zznul. = zeros(size(tL,1l),N*nu);
ZnxR = zeros(size (tR,1),N*nx);
AA = [ZnuH tH ZnuH ZnxH;

tL ZnxL Znul ZnxL;

ZnuQ tQ ZnuQ -eye (N*nx);
ZznuQ —-tQ ZnuQ -eye(N*nx);
tR ZnxR —-eye (N*nu) ZnxR;
-tR ZnxR -eye (N*nu) ZnxR];

BB = [tK;tM;zeros(size(AA,1l) - size([tK;tM],1),1)];

GG = [-tB (eye(N*nx)-tA) zeros(N*nx,N*nu) zeros(N*nx)];
% HH = tE*xt;

$ F = [AA*[U;X;Eu;Ex] <= BB;

% GG* [U;X;Eu;Ex] == HH];

matrices for the objective function and the constraints for N

% matrices for the objective function and the constraints for N

1
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% simulation
for i = 1:length(VV)
ulopt = [1;
for §j = 1:2
HH = tE*VV{i} (3, :);

F = [AA*[U;X;Eu;Ex] <= BB;
GG* [U; X;Eu;Ex] == HH];

info = solvesdp (F,obj);

if info.problem ~= 0,

error ('Problem is Infeasible'),end

ulopt = [ulopt double(U(l:nu))];

end
Vu{i} = ulopt';
end

90



Appendix J — plot_ PWA_u

function plot_PWA_u(VV,Vu)
nx = size(VV{l},2);

if nx ==
figure
hold on

plot ([VV{:}],[Vu{:}],"'--b', "LineWidth', 3)

xlabel ('x"), ylabel('u'), legend('u = f(x)'), grid
title(sprintf ('Control PWA function over %d regions',length(VV)))

elseif nx ==
temp = ceil (length(VV)/7);
color = repmat({'b','g','c','c','m","'yv",'k"},1,temp);

figure

grid, hold on

xlabel ('x1"), vylabel('x2'), zlabel('u')

title(sprintf ('Control PWA function over %d regions', length (alpha)))

[

% for ul

for i = 1:1length(VV)
x = VV{i}(:,1);
y = VV{i}(:,2);
z = Vu{i} (:,1);

patch(x,vy,z,color{i})
end

if size(Vu{l},2) == 2
figure
grid, hold on
xlabel ('x1"), vylabel('x2'), zlabel('u2'")
title(sprintf ('Control PWA function over %d regions', length(alpha)))
% for uz2
for i = 1l:length(VV)

x = VV{i}(:,1);
y = VV{i}(:,2);
z = Vu{i}(:,2);

patch(x,y,z,color{i})
end
end

else
fprintf('!!! Cant plot if nx > 2 !!!'\nNumber of states: nx = %d\n',nx)
end
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Appendix K - get_ PWA

close all
clear all

clc
Xx =[-5-4 -3 -2 -1012345];
y [15 11 8 5 2.2 0 2.2 5 8 11 15];
$ x = [-5-4-3-2-1012347£5;
% -5 -4 -3 -2 -1 012 3 4 57];
$ vy = [1511 8 5 2.2 0 2.2 5 8 11 15];
[alpha,beta] = Points_into PWA(x,V);
nx = size(x,1);
% if nx == 1, plot_1D_PWA (alpha, beta, x,y),end
x_max = zeros(l,nx);
Xx_min = zeros(l,nx);
for i = 1l:size(x,1)
x_max (i) = max(x(i,:));
x_min(i) = min(x(i,:));
end
X = polytope([eye(nx);-eye(nx)], [x_max'; -x_min']);

o\

obtain the explicit representation of f(x) as
f(x) = c_j*x+d_j if x \in P_j
= get_explicit_pwa_max(alpha', beta', X);

o\

[,

plot_pwa(f);
grid on
hold off



Appendix L — Points_into_ PWA

function [alfa,beta] = Points_into_PWA(x,y)
x_length = length(x);

y_length = length(y);

if x_length ~= y_length error('! Length x ~= vy
%% symbolic parameters

xlength = x_length - 1;

nx = size(x,1);

J = sdpvar (xlength,1);
alfa = sdpvar (xlength,nx);
beta = sdpvar(xlength,1l);
%% objective function

obj = 0;
for i = 1l:xlength
obj = obj + (J(i) - y(i))"2;
end
%% constraints
F =11
for i = 1l:xlength
for j = i+l:xlength + 1
F =F + [alfa(i,:) <= (y(3)-y(1))/(x(:
end
if nx == 1 $ symmetrical obj
F =F + [alfa(i,:) == —-alfa(xlength +
end

end

for i = l:xlength

F =F + [J(1) == alfa(i,:)*x(:,1) + beta(i
if nx == 1 % symmetrical obj
F =F + [beta(i) == beta(xlength + 1 -
end
end
%% solve
info = solvesdp (F,obj);

if info.problem ~= 0
error ('Problem is unsolvable !!!")
end
alfa = double(alfa);
beta = double (beta);

'), end
FJ)—x(:,1))1;
1 -1i,:)1;
)15

i)1;
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Appendix M — Commands and functions used in sumarization

Comparison of time requirements

close all
clear all
clc

1ti_1d_stable;
prepare_data;

N = 10; % number of iteration steps

K = 2; % number of approx regions

x_up = []; x_low = []; % empty extending vertices

[alpha, beta,x_up,x_low] = Jlow_Jup(Jup,Jdlow,V,K,x_up,x_low,N);
[Jlow,Jup,V,smtr] = reindex_pwa (Jlow,Jup,V);

VV = draw_PWA (alpha, beta, X, Jpoly);

[VU,Vu] = get_u(VV,sysStruct,probStruct);
[VUU, Vuu] = get_u(V,sysStruct, probStruct);

for i = 1l:length(alpha)
J_alpha{i} = alpha(:,1i); J_beta{i} = beta(:,1);

end
x = [-5:.1:—-.1 .1:.1:5];
for j = 1:5
time_ml = [];
time_m2 = [];
for i = 1:length(x)
if x(i) == 0, continue;end
% Procedure 1
[timel,u_opt] = get_time_ml(Jlow.C,Jlow.D,V,VUU,x(1));
[time2,u_sub] = get_time_ml (J_alpha,J_beta,VV,VU,x(1));
time_ml = [time_ml [timel;time2]];
% Procedure 2
[timel,u_opt] = get_time_m2(V,VUU,x (1)) ;
[time2,u_sub] = get_time_m2(VV,VU,x(1));
time _m2 = [time_m2 [timel;time2]];
end
end

figure, hold on

title('Procedure 1'),xlabel ('State'),ylabel ('Computation time [s]")
plot(x,time_ml(1,:),'b"'"), plot(x,time_ml(2,:),'r")

legend('Optimal problem', 'Subptimal problem')

figure, hold on
title('Procedure 2'),xlabel ('State'),ylabel ('Computation time [s]")
plot(x,time_m2(1l,:), 'b"),plot(x,time_m2(2,:),'r")

legend ('Optimal problem', 'Subptimal problem')
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get_time_ml

function [time,u] = get_time_ml (alpha,beta,VV,VU, x)
tic,
for i = 1: length(VV)
Fvalue (i) = x'*alpha{i} + beta{i};
end
MaxF = max (Fvalue); % maximal function value
Ri = find(Fvalue == MaxF); % index of region
u = VU{Ri}'*[x;1]; % action input
time = toc;

get_time_m2

function [time,u] = get_time_m2(VV,VU, x)
tic,
for i = 1:1length(VV)

minVV = min(VV{i}); maxVV = max(VV{i});

if X <= maxVV && x >= minVV, Ri = 1i; break; end
end
u = VU{Ri}'*[x;1]; % action input
time = toc;

close all
clear all
clc

Comparition of control laws

1ti_1d_stable;
prepare_data;

N = 10; % number of iteration steps

K = 2; % number of approx regions

x up = [1; x_low = []; % empty extending vertices
[Jlow,Jup,V,smtr] = reindex_pwa (Jlow,Jup,V);

[alpha, beta,x_up,x_low] = Jlow_Jup(Jup,Jdlow,V,K,x_up,x_low,N);

VV = draw_PWA (alpha, beta, X, Jpoly);

[VU,Vu] = get_u(VV,sysStruct,probStruct);

% optimal control law

X (1
x = =55
for i=l:time
X = [X x];
x = sysStruct.A*x+sysStruct.B*ctrl(x);
End

% suboptimal control law

[1;
= 75;

X



for j = 1l:time
[Y x];

=
|

% finding u
for i = 1:1length(VV)
VV_min = min(VV{i});
VV_max max (VV{i});
if (x >= VV_min) && (X <= VV_max)
u = VU{i}(1)*x + VU{i}(2);
end
end

X = sysStruct.A*x + sysStruct.B*u;
end

figure

hold on

plot (0:time, [X 0], 'b'", "'Linewidth', 2)
plot(0O:time, [Y 0], '——r', 'Linewidth', 2)
axis ([0 time -5 17)

title('Comparation of optimal and suboptimal regulation')

xlabel ('Sampling time'),ylabel('x'),legend('u~*"',

'ut~"),grid
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