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ABSTRAKT 

Vzhľadom na to, že prediktívne riadenie má relatívne veľké výpočtové nároky, jeho 

implementácia bola obmedzená iba na riadenie pomalých procesov. Z tohoto dôvodu cieľom 

tejto diplomovej práce je overiť možnosti explicitného prediktívneho riadenia a nájsť takú 

metódu, ktorá by bola schopná rozšíriť jeho využitie. V prvých kapitolách tejto práce sa lepšie 

oboznámime s danou problematikou. Dočítame sa aj o tom, ako by sme dokázali implementovať 

dané riadenie aj do procesov s rýchlou dynamikou. Práve tento poznatok nás bude viesť k našej 

metóde, ktorá sa bude snažiť znížiť dátovu záťaž linearizovaného systému a to aj za cenu 

zníženia výkonu riadenia. V každej nasledujúcej kapitole budeme riešiť všetky potrebné prvky, 

ktoré nás dovedú až k finálnemu tvaru našej metódy.  O tom, že daná metóda je plne funkčná a, 

že bolo dosiahnuté aj požadované zrýchlenie, sa môžeme presvedčiť v poslednej kapitole. 

Kľúčové slová: MATLAB, prediktívne riadenie (MPC), po častiach afinná funkcia (PWA) 
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ABSTRACT 

The main goal of this diploma thesis is to verify the possibilities of model predictive control 

approach for a purpose of finding a method which will be able to extend its applicability, since 

this control strategy has relatively large computational demands. In the sequel we will be 

familiar with the whole problem more closely, therefore a main objective of this method will be 

specified. This objective will be based on decreasing capacity of explicit model predictive 

controls data of this method, which will achieve faster computation time of the optimal input to 

the system at the expense of suboptimality. In sequel Chapters we will gradually deal with all the 

important elements that will lead us to desired method. To prove that this method is fully 

functional and that desired objective is achieved, is reported in the last Chapter.  

Keywords: MATLAB, model predictive control (MPC), Piecewise affine function (PWA) 
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Introduction 

Model predictive control is an atractive control strategy, where the optimal input sequence is 

obtained via solving optimization problems. Actually, this fact represents the main drawback of 

the aforementioned so-called on-line method, because such an optimization procedure requires a 

powerful computer with operating system and last, but not least an appropriate solver. Hence, 

this methodology only on slow processes can be implemented, since the optimal input value has 

to be obtainable within one sampling time.  

This work is organized as follows: The first one has a theoretical character and there we can find 

a brief introduction to model predictive control, but also the advantages of convex functions, the 

types of norms and restrictions and much more. The advantages of model predictive control are 

explained by a simple comparison of PID, LQR and MPC control where the controlled system is 

a car and the driver is the appropriate regulator. The procedure of obtaining the data necessary 

for process control and its subsequent processing, are properly described and also  for better 

interpretation graphically shown. The second part addresses the issue of implementation of 

model predictive control on fast systems. Here are mentioned reasons why it is necessary that the 

computation time, required to obtain an optimal (or suboptimal) input to the system, must be 

smaller or equal than sampling time of the discrete system. From this point forward our goal will 

be to reduce the number of regions, even at the cost of reducing the control quality. Thorough the 

Chapters we will be more familiar with this problem and step by step we will achieve a method, 

which will be capable of solving this problem (at a price of suboptimal solution) and at the same 

time it will guarantees the stability of the controlled system. In order to proof the functionality of 

this method we will try to implement it into a several examples and the results graphically 

illustrate. 
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1 Introduction to model predictive control (MPC) 

Model predictive control experienced in recent decades a significant change from the theoretical 

research to practical applications. Its development was strongly influenced by the requirements 

of the industry. Recently, model predictive control with a lot of real industrial applications, is 

one of the most modern control approaches implemented in industrial processes. The first model 

predictive control algorithms were used before more than twenty-five years ago in industry as an 

effective way of controlling multidimensional systems with constraints. [1] 

In general we can say that MPC is a control approach, where optimized variables are obtained by 

optimization over a finite time horizon subject to constraints To realize such computation  the 

model and the initial state has to be known. The result of such an optimization procedure is then 

the sequence of optimal inputs, of which only the first one is implemented to the system. This is 

the reason why the model  predictive control significantly differs from conventional control 

methods, which use time-invariant control law. [1] 

 
Figure 1.1: Graphic concept of  receding horizon model predictive control 
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1.1 Comparison of PID, LQR and MPC control approaches 

For a simplified comparison in order to compare the following control strategies, i.e. PID, LQR 

and MPC, consider the following situation:  

The first car driver (PID) will know the initial state as well as the final target. His speed will 

have predetermined parameters of the car (controller). Driver of this car would not take into 

account traffic regulations since they will not be in his predetermined parameters. Because of 

this he will probably pay a lot of fines, therefore his driving will not be optimal. What is the 

worst is that he will be dangerous on the road. Since the driver will not look ahead, he will drive 

only by using rear-view mirrors and based on them he will adapt control. (PID controllers may 

adapt their control only by using feedback). 

 
Figure 1.2: Scheme of control using PID controler 

The driver (LQR) of the other car will start planning his own travel plan (optimal trajectory) 

before his journey will began. He should be thoroughly familiar with the possibilities in his trip 

in advance and thus he will know how to optimally control his car at any state (infinite prediction 

horizon). The problem arises when the driver is stubborn and does not intend to change his pre-

made plan during the journey. Thus, he will drive only by his first planed trajectory and does not 

care of the possibility of complications (crashing into other cars, driver discomfort, blocked path, 

an unexpected obstacle on the way ...) what would most likely lead to a collision. 

 
Figure 1.3: Scheme of control using LQR controler 
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The driver (MPC) of the third car will look around for a possibilities before starting the trip. 

Since he would be able to see path only a few meters ahead based on his eyesight (prediction 

horizon), his traveling plan will be restricted exactly by this distance (optimization over a finite 

time horizon). On the basis of what awaits him on the trajectory he will predict how quickly  can 

the car go. He would thus has an optimal control plan for this trajectory. The plan will also 

consider all restrictions such as trajectory, speed limit, time, fuel consumption and others. 

Regardless of the extensive plan the driver will always use only the first input (e.g. for the first 

meter of the track), which will cause that the car will move forward (by one meter). Driver will 

then create a new plan based on present circumstances for a trajectory which can be recently 

seen. This way driver will create multiple trajectory plans where only the first planned input will 

be implemented to the system (car), which will lead him to a flexible driving performance. He 

will be able to respond fast enough to any possible danger on the road. 

 
Figure 1.4: Scheme of control using MPC controler 

Differences between each control approach can be characterized in the following table: 

 MIMO systems Performance Constraints 

PID NO NO NO 

LQR YES YES NO 

MPC YES YES YES 
 

Table 1.1: Differences between each control approach 
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1.2 Advantages of model predictive control 

One of the biggest advantages of model predictive control is the effective handling of input 

constraints, where almost all plants are subject to such restrictions. MPC strategy thus overcomes 

the shortcomings of existing methods, such as the LQ (linear quadratic), respectively LQG 

(linear quadratic Gaussian), working on the infinite prediction horizon, which are not able to 

involve constraints in the optimization problem. In the practical problems controlled inputs are 

naturally limited in its scope (e.g. valve can be opened only to 100%), impact on system without 

using constrained inputs can be significant. Vital ingredients in control are represented by 

different safe conditions, which do not allow to exceed certain limitations of some physical 

variables (e.g. pressure, temperature, concentration). Moreover, MPC problem formulation 

allows one to include special type of constraints (e.g. soft constraints), which primarily serve for 

ensuring stability in case of systems with time delays or for respecting some physical limitations 

when non-minimum phase system has to be controlled. [1] 

1.3 Mathematical formulation of MPC [2] 

Optimization problem of the MPC is to minimize the objective function while we must take into 

account the different constraints (e.g., car control, respect the road, keeping distance from other 

cars, obey the maximum speed and so on). Mathematically we can formulate this problem as 

follows:  

  ���           ���	
 �1.1

 
 

Objective function 

        s. t.             ���	
 � 0 �1.1�
 
 

Inequality constraints 

                        ���	
 � 0 �1.1�
 
 

Equity constraints 

1.3.1 Convex optimization problems 

Convex optimization problem has several advantages: 

• Achieving global solutions (if one attain local minimum, then it is also a global 

one) 

• The availability of efficient solvers 
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Definition: The function ��	
 is called convex if for any two points 	�  and 	� , ���0,1� 
���	� � �1 � �
	�
 � ���	�
 � �1 � �
��	�
 �1.2
 

and the function is called strictly convex if: 

���	� � �1 � �
	�
 ! ���	�
 � �1 � �
��	�
 �1.3
 

For each ���0,1�, 	� # 	�. 

If function ��	
 is (strictly) convex function, then function ���	
 is (strictly) concave. 

 

Figure 1.5: Convex and concave functions 

If we pick up two points $ � ��	�
 and % � ��	�
, one can obtain a line segment $%&&&&. If the 

graph of the function on the assumed interval lies under the chord (tetivo), then function is 

convex. Naturally, if we replace the sign �  with the  ' in the inequality (1.2) then fulfillment of 

the modified expression indicates concavity. 

1.3.2 Norms 

Norm is a function that assigns a length of all (nonzero) vectors in a vector space. They are 

convex functions, which we can write as P-norm l) of the vector 	 � �	�, 	�, 	*, … , 	,�- :  

.	./ �  01|	�|/
� 3�//

 �1.4
 

  

Convex function Concave function Nonconvex, 

nonconcave function 

A B 

A 

B 
A B 



19 
 

Norm l� (Taxicab) Norm l� (Euclidean) Norm l6 (Infinity) 

.	.� �  1|	�|�  �1.4

 

 

.	.� �  71 	���  �1.4�
 

 

.	.6 �  max� |	�| �1.4�
 
 

 .	.� 

 .	.� 

 .	.6 

 .	 � ;.� 

 .	 � ;.� 

 .	 � ;.6 

 

1.3.2.1 Taxicab norm (<=) 

Taxicab norm (14.a) belongs to piecewise linear cost function, which means that we will 

be using linear programing.  

min .	.� @. �.      $	 � %              A	 � B, 

�1.5
 

where 	 � �	�, 	�, … , 	,�-. If minimization of 1 norm is assumed then the objective function can 

be transformed into the following form. As long as the first norm is defined as (1.4a), our 

objective function can be expressed by equation: 

min |	�| �  |	�|� .  .  . �|	,| �1.6
 

In figure 1.6a is a a graphical representation for one state 	�. To compute taxicab norm in the 

certain point we have to construct epigraph E� which will define area betwen the epigraph and 

y 

x 

y 

x 

y 

x 

x x x 
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the absolute value (figure 1.6b). Minimizing this surface until reaching point 	� will get us the 

value of the Taxicab norm (figure 1.6c). Assume that x is a vector, E is a vector of functions, 

which will substitute the maximum value. Both of them are our optimization variables. 

   

figure 1.6a figure 1.6b figure 1.6c 

Based on this procedure problem (1.5) can be reformulate into: 

min E� �  E�� .  .  . �E, @. �.   $	 � %          A	 � B          �E� � 	� � E� 

        �E� � 	� � E� 

          F                    
        �E, � 	, � E, 

�1.7
 

1.3.2.2 Infinity norm 

Infinity norm (14.c) is similar to Taxicab norm. It also belongs to piecewise linear cost 

function, which means that we will be using linear programing. Difference between them is in 

objective function. In Taxicab norm we have considered E as a vector of functions. In Infinity 

norm E is a scalar that will represent only the worst absolute value among vector x. 

min E @. �.   $	 � %          A	 � B          �E � 	� � E 

          F              
        �E � 	, � E 

�1.8
 

0 	 

|	| 
E� 

min  E� |	�| 

	� 0 	 

|	| E� 

	� 0 	 

|	| 

	� 
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1.3.2.3 Euclidean norm 

Problem that uses the euclidean norm (14.b) will not belong to linear programing since cost is 

neither linear, nor piecewise linear. What is worst, it does not even belong to quadratic 

programing (because of the square root). The most common procedure to transform this norm 

into quadratic programing is to multiply it with itself. In another words we will get the squared 

value of this norm. 

.	.�  I .	.�� �1.9
 

min K	-	 @. �.   $	 � %          A	 � B 

�1.10
 

 

  
min 	-	 @. �.   $	 � %          A	 � B 

�1.11
 

 

This modified form of the norm distorts the true value so that in the interval 	���1; 1
 

values are undervalued while in the interval 	���∞; �1
 N �1; ∞
 values are overvalued. 

1.3.3 Constraints 

For control of real technological processes or technical systems is necessary to meet a number of 

limitations which are defined in advance. The role of constraints in the control design has at least 

three important aspects. 

1. Using restrictions for better representation of physical systems (input saturation) 

2. Using constraints to ensure stable control (constraints in the form of end-stabilizing 

constraints) 

3. Using restrictions for tuning a controller  parameters to achieve better quality control 

In terms of character constraints can be divided into: 

• Physical constraints (eg, we can not affine term the gear lever into a higher level than the 

design allows) 

• Technological constraints (obeying certain speed limitations) 

In practical applications, we often encounter with convex constraints, which are easily solvable. 

A set O P Q, is convex if: 	, ; R O,   S, T ' 0,   S � T � 1 

 S	 � T; R O �1.12
 



22 
 

                       

Figure 1.7: Convex and nonconvex sets 

The most common examples of sets of constraints are: 

• Polytopic 

 	 R Q,      P � U	|$	 � %V  

 

• Box  

$ � W   1  0�1  0
  0  1  0�1  X,  % � Y 	�,Z[\	�,Z[\�	�,Z�,�	�,Z�,

] 

 

• Ellipsoidal – more difficult to solve 

 	 R Q,    ^ � U	|�	 � 	�
_�	 � 	�
 � `V 

 

• Nonconvex – extremly difficult to solve 
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	�,Z�, 

	�,Z[\ 
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P 
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Polytope P represents an area that was created as an intersection of all halfspaces (constraints in 

the form of inequality (1.1b)), while  constraints in a form of equality (1.1c) define an area where 

must lie the optimum (in this case lines p, r, s, t). In figure 1.8 is ilustrated an example of all 

constraints, where permissible area of the problem is highlighted by a red color. 

 
Figure 1.8: Constraints in form of equality and inequality 

1.3.4 Mathematical formulation of the problem 

Optimization problem can be defined as: 

min 1a.b\	cde./ � .bfgcde./hij�
ek�  �1.13

 

 

Objective function 

@. �.   	cd� � $	c � %gc �1.13�
 
 

Plant model 

	c � 	��
 �1.13�
 
 

Initial conditions 

	c R l �1.13m
 
 

State constraints 

gc R n, �1.13o
 
 

Input constraints 

where  

N – Prediction horizon 

P – Norm 

b\, bf – Weighting matrices 

l, n – state and input constraints 

	cde, gcde – values of states and inputs in k-stage of prediction 

p 
r 

s 
t 

P 
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1.4 Basic feature of model predictive control 

Recently, the model predictive control method is being applied to the control systems with fast 

dynamics, hybrid systems, to the precise micro-electro-mechanical systems (MEMS). They are 

also  applied in the development of new advanced control functions of mechatronic systems, 

especially in the automotive industry. These applications are allowed to create or develop new 

numerically efficient methods and model predictive control strategies for minimizing the 

practical control numerical computational load especially in real-time modes at the expense of a 

higher volume of auxiliary calculations carried out in real time mode. In this context, are rapidly 

developing methods aimed at explicit model predictive control using multi-parametric 

programming. [1] 

1.4.1 Comparison of two standard forms of model predictive control 

Classical approach based on on-line computation involves the following steps: 

1. Obtain information about the current state 	��
 (either by direct measurement or 

through a Kalman filter) 

2. Solve the optimization problem  

3. Obtain optimal action inputg��
 

4. Implement current value of the control value into plant 

5. Repeat from step 1 

Explicit model predictive controlled involves the following steps: 

1. Pre-calculate the vectors of optimized problem 

2. Obtain information about the current state 	��
 (either by direct measurement or 

through a Kalman filter) 

3. Obtain optimal  input g��
 

4. Implement input value into plant 

5. Repeat this procedure from step 2 
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As the name implies, the on-line control is carried out continuously during the control of the 

system. This method is usually time consuming, hence the classical on-line approach was mainly 

implemented on slow procesess. Although the level of computer technology now forwarded 

much further, overloading of the computer can  still be ineffective (e.g. in economic terms). In 

the "off-line" control we will  firstly linearize the problem and so we will divide the objective 

function into n-PWA functions. Each region is described by a vector of objective function, which 

is assigned to an adequate vector for the action input. Subsequently, the system will be controlled 

by these pre-made vectors. This method can significantly relieve the processor at cost of 

increased requirements on the memory. The disadvantage of this method is mainly its flexibility 

relative to the changing structure of the system. But if we will be assuming a time invariant 

system, then this problem can be ignored. 

1.4.2 Creation of data for explicit model predictive control 

In this Section will be explained a simplified method of creation of data for explicit model 

predictive control. Let us consider a convex objective function�:; � ��	
, 

 

Figure 1.9: Objective function 

which we will divide into n-PWA functions as follows: 

x 

y 

� 
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Figure 1.10: Linearization of the objective function 

Number of sections affects the quality of the model in proportion, as it is a linearization. So that 

created  piecewise affine objective function � describes our original objective function � with n- 

regions (sections). The function � can be defined as a linear function: 

; � 
�-	 � ��, �1.14
 

 where _� P Q,, 	 R _�characterizes the i-th region, 
� R Q,\�, �� R Q, � � 1, p&&&&& . 

 

Figure 1.11: Piecewise affine objective function 
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Parameters thus obtained are stored in the matrix: 

$ � �
�,  
�, … , 
,
 �1.15
 

% � ���,  ��, … , �,
 �1.16
 

Each region has created its own associated control law, which also can be defined as a linear 

function: 

g � ��-	 � m�, �1.17
 

where _� P Q,, 	 R _� characterizes the i-th region, �� R Q,\�, m� R Q, � � 1, p&&&&& . 

 

Figure 1.12: Control law 

We will also save these parameters into matrices: 

w � ���,  ��, … , �,
 �1.18
 

x � �m�,  m�, … , m,
 �1.19
 

Model expressed by equations (1.14) and (1.17) is also known as piecewise affine (PWA) model 

and falls into the category of hybrid systems 

1.4.3 Processing data of explicit model predictive control 

Let us assume that we have all the necessary data of the hybrid system: A, B, C, D �1.15, 1.16, 1.18, 1.19
. 

x 

u 
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This system will be controlled by using the following steps: 

1. With the initial state 	� we will compute the functional values of each region�: 
���	�
 � 
�-	 � �� �1.20
 

, where 
�and �� are parameters of the given region �. 
2. To find out in which region (p) we currently are, we need to find the maximum value 

among all functional values: 

p � max ���	�
 �1.21
 

3. If the current region is known, the first optimal value of the input will be computed from 

the corresponding equation of the affine function (for a given region): 

g� � �e-	� � me �1.22
 

4. Implementation of the current value of the input to the system lead us to a change in state 

of the system, thus this procedure will be applied again from the first step. 

 

Figure 1.13: Computation of a optimal action inputs 
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1.5 MATLAB 

MATLAB is a programming environment for scientific and technical calculations and modeling, 

design of algorithms, simulations, plotting of functions and data, creation of user interfaces, 

measurement and signal processing. MATLAB is an abbreviation of MATrix LABoratory, 

which corresponds to the fact that key data structures, using in calculation are matrices. It also 

allows to interface with programs written in other languages, including C/C + +, Java and 

Fortran.  

For MATLAB was created numerous number of toolboxes that extend the capabilities of 

programming. One of them is called MPT (The Multi-Parametric Toolbox) for the design, 

analysis and implementation of optimal controllers for a limited (linear, nonlinear and hybrid) 

systems. The effectiveness of the code is guaranteed by an extensive library of algorithms from 

the field of computational geometry and many multiparametric optimization. [3] 
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2 Applicability of model model predictive control 

In the first Chapter we have get familiar with model predictive control as one of the most modern 

control approach that is mostly implemented on industrial systems because of their large time 

constants. Model predictive control is rapidly expanding caused of its effective handling of input 

restrictions and the fact that it is predicting the future of the model. The reason why MPC is not 

implemented into quicker systems can by demonstrated on the following example. Let us say 

that our controlled system is a chemical reactor where we will control temperature of reactor by 

stream of cooling water. Chemical reactions can have realy fast thermal gradients that require 

quick response for cooling. We are talking about exothermic reactions since more intense 

reactions can lead us to produce great amount of heat. If the additional heat that is not required 

for propagation of reaction will not be cooled soon enough the system can reach certain point 

from where it will be unstable. The temperature will grow exponentially until explosion will 

eventually come. This explosion will not only cause economic and environmental losses, but 

may as well cause losses of lives or suing and disintegration of the entire company. So to avoid 

scenario from example 1, our controller has to ensure to compute the correct action inputs to the 

system within a specified period. 

yz � y{, �2.1
 

where yz is time required to compute optimal input and y{ is sampling time of the system. 

Model predictive control is very computationally expensive because several predictions of 

control inputs from certain state are being performed (only the first one is used). This prediction 

is required for better control performance. Of course we can decrease it at the cost of losing one 

of the advantages of this control. From Chapter 1.4 we know that there exist two different 

methods of control. The first one is called on-line method and it computes whole mathematical 

formulation (1.13) several times for each sampling time. On the other hand the second explicit 

method does not compute the whole mathematical formulation, but only simple searching in the 

tables of piecewise affine functions. From this we can deduce that this method is more useful for 

us. From now on we will consider only this method. 
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2.1 Sampling time 

Each discretized system has sampling time that represents period of time where system receives 

information about states, safety sensors and so on. Now we know that the controler must process 

all received informations and use them to determine the appropriate input to the system. Since 

sampling time is directly linked to the speed of the system, it can be read from it. Length of 

sampling time can be determined from following interval: 

y{ R |yv�5 , yv�15 }, �2.2
 

where yv� is time when the step response of the output reached 90% of the steady-state value 

(minimal phases system) or 90% of the maximum amplitude (non-minimal phases system) what 

is sufficient since all characteristics of the system should be described (figure 2.1).  

 

Figure 2.1: Step response of minimal and non-minimal phase system 
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2.2 Computation time of explicit predictive control 

As it was mentioned computation time of explicit predictive control consists of searching values 

in the table. In this table we find matrices (1.15), (1.16), (1.18) and (1.19) via which we express 

equations (1.14) and (1.17). The whole method how we are computation data of predictive 

explicit control is described (graphicly as well) in Chapter 1.4.3. If information about the current 

state is obtained we compute all function values of this state for each region (1.20). By finding 

the maximal value among them we will associate the index of the current state (1.21). Optimal 

input is then simply compute from equation (1.22). From this procedure computation time can be 

expressed as a function of number of regions k: 

yz � ��p
 �2.3
 

Problem can be seen from a diferent perspective if after linearization all regions (their intervals) 

would be saved with matrices (1.15), (1.16), (1.18) and (1.19).  Finding the correct index of the 

region will be defined as assigning current state of the system to the correct interval region. We 

are simply asking whether the state belongs to the first, second, ..., n-th region (figure 2.2). Then, 

if the index is known, the optimal input will be directly calculated from the associated matrices 

(1.17). In this case computation time is expressed as linear function: 

yz � 
 � 1 �z
~

�k� , �2.4
 

where 
 is time required to solve equation of optimal input (1.17), ` represents index of the 
correct region and �z is the time required to determine whether the state of the system lies in one 
region. 

Figure 2.2: Seeking the region of validity 

�� 

	� R �1 

Start �� 
	� � �1 �e 
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Since we do not know in what region we are, we have to count with the worst time. This time 

occurs if and only if the state will be located in the last region and therefore the algorithm will 

have to check every single region. Equation �2.4
 will then have the form: 

yz � p�z � 
, �2.5
 

where p is the number of regions. 

2.3 Reducing the number of regions 

From equation (2.5) is obvious that computation time yz is directly proportional to the number of 

regions p, therefore if we want to met expression (2.1) we need to reduce the number of regions. 

From Chapter 1.4.2 we know that initial data for explicit model predictive control are made of 

linearization of the system (figure 2.3). So from continuous function �:; � ��	
 we will get 

piecewise affine function �, for which applies �1.14
.  This function will be associated with a 

control law expressed by equation �1.17
. 

   

   

Figure 2.3: PWA functions 
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Now if we want to simplify whole formulation of piecewise affine function defined over ten 

regions at figure 2.3, we have to reduce the number of regions. Based on this we will decrease 

requirements for data storage and due to equation �2.5
 computation time will be decreased as 

well. On the other hand innacuracies of linearization and of the performance (optimality) will be 

increased.  

From the procedure, where PWA function described over ten regions � we will get another PWA 

function � described over two regions: 

�: ;� � ���	
   �   �: ;� � ���	
, �2.6
 

which can be seen on figure 2.4. If �: ;� � ���	
 is optimal PWA function, then �: ;� � ���	
 is 

suboptimal PWA function. 

   

   

Figure 2.4: PWA function over 2 regions 
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3 Reconstruction of objective function 

Till now we assumed to have objective function as a continuous function (figure 1.9), but in most 

cases it is not true. In real systems after implementing certain input (inputs), by using feedback 

(observer, kalmans filter ...) we will receive only information about current state (states). For this 

given state (states), we can determine its (their) function value. So basically by implementing 

several inputs (set of inputs) we will get n-coordinates of the objective function as we can see in 

figure 3.1. Now our goal would be to reconstruct objective function by means of these points. 

 

Figure 3.1: Objective function expressed by points 

3.1 Direct construction of piecewise affine objective function  

By using this direct method we will attempt to reconstruct a piecewise affine function directly 

from the given points. Basically what we want to do is to find out all slopes and affine terms of 

each line that will be describing our piecewise affine function. To achieve this we have to 

performe the following steps: 

1. In the first step we will create lines between given point for each 	� � 	�  �� # �. 

��	�
 � ��,�- 	� � ��,� �3.1

 

��	�
 � ��,�- 	� � ��,�, �3.1�
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where 	 are coordinates of points, � is a slope, � is a affine term, i is index of the given 

point, j is index of each further point � � � � 1, �&&&&&&&&&. 

Figure 3.2: Lines leading through given point 

In the figure 3.2 are two examples for first point (� � 1, � � 2,11&&&&&&) and the second point 

(� � 2, � � 3,11&&&&&&). 

2. In the second step we will find out correct slopes and affine terms of each following pair 

of points (each region). 

From equations (3.1) we can express slope by: 

��,� � ��	�
 � ��	�
	� � 	�  �3.2
 

Since we are assuming that objective function is convex, correct slope can be computed 

as a minimum value among all slopes: 

�� � min ���,� 
 �3.3
 

By combining equations (3.2) and (3.3), we will get the equation: 

�� � ��	�
 � ��	�
	� � 	�  �3.4
 

If slopes between two following points are known, then corresponding affine terms can 

be obtained from equation: 
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�� � ��	�
 � ��	� �3.5
 

In figure 3.3 are two examples of correct slope and affine term for the given point. 

Figure 3.3: Line leading through given point 

3. Since that objective function is expressed only as a set of lines (figure 3.4) and not as a 

line in the corresponding regions (figure 1.11), we will have to change it in this last 

(third) step. There exist several methods how to solve this problem. For example we can 

find out regions by intersections where in this case we would find coordinates of our 

starting points as edges of regions.  

 

Figure 3.4: Objective function expressed by lines 
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The method which we are going to use is basically similar to method described in 

Chapter 1.4.3: 

• In the begining we will find polytope Χ which will include all points x: 

	 R Χ       Χ � �x| ��5�5� � x � �55�� �3.6
 

• Then by separating this polytope we will create a large number of small points 

on which we will evaluate the function values of all lines.  

• Then we will find to which line belonged this maximum value. This way we will 

be able to define vertices of regions. 

The result of this procedure is piecewise affine objective function defined over ten 

regions (figure 3.5) 

 

Figure 3.5: Piecewise linear function over 10 regions 
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3.1.1 Formulation in MATLAB 

Consider the symmetric objective function in �� expressed by these points: 

x = [-5 -4 -3 -2 -1 0 1 2 3 4 5]; 
y = [15 11 8 5 2.2 0 2.2 5 8 11 15]; 

If we would like to plot these points, we would get the same result as in figure 3.1. Our first two 

steps (to obtain figure 3.5) we will achieve by the following optimization procedure: 

• First of all we will define each optimized parameter: 

x_length = length(x); 
xlength = x_length - 1; 

nx = size(x,1); 

%% symbolic parameters 

J = sdpvar(xlength,1); 
alfa = sdpvar(xlength,nx); 
beta = sdpvar(xlength,1); 

• As we consider  that the objective function is symmetrical (and that we are in ��), in 

constraints will be included in addition to equations (3.4) and (3.5)  the term: 

�� � �� , �3.7
 

where � � 1, �/2&&&&&&&&, � � �, �/2&&&&&&&& 

%% constraints 
F = []; 
% constraints for alpha 
for i = 1:xlength 
    for j = i+1:xlength + 1 
        F = F + [alfa(i,:) <= (y(j)-y(i))/(x(:,j)-x(:,i))]; 
    end 
    if nx == 1 % symmetrical obj    
        F = F + [alfa(i,:) == -alfa(xlength + 1 - i,:)]; 
    end 
end 

  
% constraints for beta 
for i = 1:xlength 
    F = F + [J(i) == alfa(i,:)*x(:,i) + beta(i)]; 
    if nx == 1 % symmetrical obj  
        F = F + [beta(i) == beta(xlength + 1 - i)]; 
    end 
end 

• The objective function is going to minimize distance of the given point and the function 

value in corresponding line in that point: 
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%% objective function 
obj = 0; 
for i = 1:xlength 
    obj = obj + (J(i) - y(i))^2; 
end 

• If we have defined whole formulation, then we can solve the problem from which we will 

obtain optimal slopes and affine terms: 

%% solve 
info = solvesdp(F,obj); 
if info.problem ~= 0 
    error('Problem is unsolvable !!!') 
end 
alfa = double(alfa); 
beta = double(beta); 

The last (third) step will be achieved by using function f = get_explicit_pwa_max(alpha', 

beta', X), where Χ is a polytope defined by equation (3.6) and represents a convex hull of 

vertices of all regions: 

nx = size(x,1); 
x_max = zeros(1,nx); 
x_min = zeros(1,nx); 
for i = 1:size(x,1) 
    x_max(i) = max(x(i,:)); 
    x_min(i) = min(x(i,:)); 
end 
X = polytope([eye(nx);-eye(nx)],[x_max'; -x_min']); 

  
% obtain the explicit representation of f(x) as 
%   f(x) = c_j*x+d_j if x \in P_j 
f = get_explicit_pwa_max(alpha', beta', X); 

By ploting the result of this function by function plot_pwa(f), we would get the figure 3.5. 

plot_pwa(f); 
grid on 
hold off 

The whole algorithm can be found in the appendix as m-file get_PWA. In table 3.1 the required 

computational time is listed as a function of dimension: 

Dimension �� �� �* 

Elapsed time [s] 4.211420 4.384174 4.459774 
 

Table 3.1: Computation time of the algorithm 



41 
 

3.2 Other methods of construction piecewise affine function 

There are several other methods by means we are able to construct piecewise affine objective 

function. One of the most common techniques is based on approximation of a curve (objective 

function) that will minimize a sum of squared distances between each of those points and the 

curve. This way we will get a function in a polynomial form (figure 3.2). Then we can make the 

same procedure as we did in figure 2.3.  

   

Figure 3.6: Approximating a curve using least squared method 

Advantage of this method is that we can have whole objective function (that does not have to be 

convex) in a form of polynomial (e.g.�: ; � 	� � 2	 � 1). But if we will construct piecewise 

affine function from this polynomial, inaccuracy caused by both in approximation and 

linearization should be higher than in the first (Chapter 3.1) direct method. 
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4 Boundaries 

In order to reduce the number of regions (of the objective function) we have to define a stable 

area in which we may perform this operation. This area will be constructed through the two 

piecewise affine functions (boundaries) � and �. In order to demonstrate these two boundaries we 

are going to use system lti_1d_unstable, which we can find in the appendix. 

4.1 Lower boundary � 

Since the lower boundary represents the optimal objective function, therefore there can not be a 

better (lower placed) objective function such as this one. 

;� ' ;�, �4.1
 

where Κ � U��V , ��: ;� � ���	
 is a set of suboptimal functions and ��: ;� � ��	
 is the optimal 

function. This optimal function ��we can get as a result of optimization problem described in 

Chapter 1.3.4 by equations 1.13. Lower boundary of the system is depicted in figure in figure 

4.1. 

 

Figure 4.1: Lower boundary 
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4.2 Upper boundary �� 
In this Section we will create an upper boundary for objective function. This boundary combined 

with lower boundary will define an admissible area in which stability will be guaranteed by 

Lyapunov function. 

4.2.1 Definitions and theorems [4] 

Let us consider linear discrete time dynamical systems: 

	d � $	 � %g, �4.2
 

where 	 R �,� is the current state, g R �,� is the current control input to the system and 	d is 

the successor state. Then if system (4.2) is controlled by the control law ge � ��	
, the closed 

loop system is defined as: 

	d � $	 � %��	
 �4.3
 

• Positively invariant set – A set l P �,� is positively invariant set of system (4.3), if $	e � %��	e
 R l �	 R l 

• K-class function – A real-valued function �: Q�� � Q�� belongs to class K if it is 

continuous, strictly increasing and ��0
 � 0. Where Q�� is the set of non-negative reals. 

• Lyapunov function – Let l be a positively invariant set for system (4.3) containing 

neighborhood � of the origin in its interior and let α�·
, α�·
 and β�·
 be K-class 

functions. A non-negative function V: l � Q�� with ��0
 � 0 is called a Lyapunov 

function in l if: 

�	 R l:  ��	
 ' α�.x.
  �4.4

 

�	 R �:  ��	
 � α�.x.
 �4.4�
 

�	 R l:  ��	d
 � ��	
 � �β�.x.
 �4.4�
 

• Asymptotic stability – If system (4.3) admits a Lyapunov function in l, then the 

equilibrium point at the origin is asymptotically stable with region of attraction l. 
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4.2.2 MPC formulation 

Let us reformulate (1.13) into: 

  ���	
 � 1 ℓ�	e, ge
ij�
ek�  �4.5

 

 @. �.  	ed� � $	e � %ge �4.5�
 

       	� � 	 �4.5�
 

       	c R l  �4.5m
 

       gc R n, �4.5o
 

where l and n are closed and convex polytopes, containing the origin, $ and % are systems 

matrices, ���	
 is an optimal objective function and ¡�	e, ge
 is a k-stage cost of the objective 

function which can be defined as: 

�	 R l, �g R n       ℓ�	e, ge
 � .b	e./ � .�ge./, �4.5�
 

where b is a positive semi-definite and � is a positive definite weight matrix and ¢ represents 

a norm. In our case only Taxicab (¢ � 1) or Infinite (¢ � ∞) norm. Assuming that objective 

function satisfy conditions of the Lyapunov function, by using formulation (4.5) equation (4.4c) 

can be transformed into: 

�	 R l       ��	ed�
 � ��	e
 � ℓ�	e, ge
 �4.6
 

4.2.3 Creating the upper boundary 

Let us consider the lower boundary � (respectively optimal objective function ��) that is a PWA 

function defined over n-regions. If � � U�	�, ��	�
�, … , �	e, ��	e
�V £ Q,�d� is a set of vertices 

of this function, then ¤ � U¥	¦§ , �a	¦§h¨, … , ¥	¦©ª§ , �a	¦©ª§h¨V £ � is a set of the lower convex 

hull of �. Based on equation (4.6) a set of vertices of the upper boundary is then computed as: 

¤ � «¥	¦§ , �a	¦§h � ℓ�	¦§ , g¦§
¨, … , ¥	¦©ª§ , �a	¦©ª§h � ℓ�	¦©ª§ , g¦©ª§
¨¬, �4.7
 

where �	 R l, �g R n. Vertices 	¦ � 	¦ from now on we can use only 	¦ and the stage cost ℓ 

can be expressed by (4.5f), equation (4.7) can be transformed as: 
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�	 R l, �g R n, � � 1, � � 1       ¤ � �­	¦® , �a	¦®h � ¯b	¦®¯/ � ¯�g¦®¯/°�, �4.8
 

where b is a positive semi-definite and � is a positive definite weighting matrices and ¢ 

represents a norm. To have all informations about the upper boundary we need to compute slopes � and affine terms � from the following equation: 

�	 R l, � � 1, � 
 ������ � ± 	¦®- 1	¦®ª§- 1²j� � ³�³�d��, �4.9
 

where � is the number of regions and ³� � �a	¦®h � ¯b	¦®¯/ � ¯�g¦®¯/. In MATLAB this 

procedure to obtain data of the upper boundary from the informations of the lower boundary is 

implemented in function prepare_data. 

  

Figure 4.2a: Vertices of the lower boundary Figure 4.2b: Lower convex hull of � 

  

Figure 4.2c: Vertices of the upper boundary Figure 4.2d: Upper boundary 
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4.3 Admissible stable area 

Let us assume that the lower � and the upper � boundary is well known, then the admissible 

area ´, where stability is guarantee based on Lyapunov function, is defined as: 

  ´ � Ug| �¡µ¶�	
 � g � �g¢�	
, �	 R lV �4.10
 

Now when the stable area is defined, we are able to fit a new objective function �� with a smaller 

number of regions. We will have to keep in mind that the stability is guaranteed only if  ���	
 R ´, �	 R l is satisfied. 

 

Figure 4.3: Restricted stable area 
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5 Fitting of the new objective function 

Now what we are going to do is to fit a new objective function over fewer regions as the first 

objective function has had (�·� � ��). Since the area where we can perform this operation is 

strictly restricted by two boundaries (figure 4.3), then new piecewise affine objective function 

has to satisfy equations: 

�	:       ��	
 � ��	
 �5.1

 

�	:       ��	
 � ��	
, �5.1�
 

where � is new fitted objective function,  � is a lower boundary and  � is a upper boundary. Since 

the explicit definition of a function is: 

��	
 � maxe��e-	 � �e
, �5.2
 

therefore in order to satisfy the equation (5.1) we have to find coefficients �� and ��  � � 1, p for 

fixed value of p . 

5.1 Objective function and the upper boundary 

Assuming that data of the upper boundary is well known (defined as piecewise affine function 

with slopes w¸  and affine terms x¸), equation (5.1a) can be further formulated as: 

��, �	 R ��:  maxe��e-	 � �e
 � w¸,�- 	 � x¸,�, �5.3
 

where �� is i-th region, �e is k-th slope and �e is k-th affine term of the objective function. From 

equation �5.3
  follows that maximum value of the new fitted objective function has to be lower 

or equale than the function value of the upper boundary. On the right side, it would be the same 

as if we would say that each function value on the left side must be lower or equal than the 

function value on the right side. Equation (5.3) has operator less or equal (�) and as both of 

those functions (�, �) are convex, necessary and sufficient condition are satisfied and the 

equation can be modified as: 

��, �	 R ��, �p:  �e-	 � �e � w¸,�- 	 � x¸,� �5.4
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Equation �5.4
 can be applied on vertices of the upper boundary (instead of whole axis scale) 

and the formulation will be equivalent to: 

��, �¹� R ¹o`����
, �p:  �e-¹� � �e � w¸,�- ¹� � x¸,� �5.5
 

Figure 5.1a: Fitting PWA function 

restricted by upper boundary 

Figure 5.1b: Fitting PWA function 

restricted by upper boundary on the 

whole axis x 

Figure 5.1c: Fitting PWA function 

restricted by upper boundary on the 

verteces 

5.2 Objective function and the lower boundary 

Let us say that data of the lower boundary is well known (defined by matrix wº  for slopes and 

matrix xº for affine terms). Equation (5.1b) can be then further formulated as: 

��, �	 R ��:  wº,�- 	 � xº,� � maxe ��e-	 � �e
 �5.6
 

The unknown variables are on the other side, the operator is now bigger or equal (') than the 

function value of lower boundary. In this case only necessary condition is satisfied and by this 

reason implication is used between equations (5.5) and (5.6): 

��, �¹� R ¹o`����
:  wº,�- ¹� � xº,� � maxe a�e-¹� � �eh �5.7
 

In other words if equation (5.7) is met, then equation (5.6) does not have to be met. Equation 

(5.7) is extreamly difficult to compute, because maximum value is being used.  

  � � max �	�
 �5.8
 

The result from equation (5.8) � is achieved by computation following problem: 
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��:  �»�1 � ¼�
 � � � 	� � »a1 � ¼�h �5.9

 

��, ��, � # �:  	� � 	� �  »�1 � ¼�
, �5.9�
 

where  ∑ ¼¾�¾k� � 1 and ¼¾ � U0,1V. 

Figure 5.2a: Fitting PWA function 

restricted by lower boundary. 

Figure 5.2b: Fitting PWA function 

restricted by lower boundary on the 

whole axis x 

Figure 5.2c: Fitting PWA function 

restricted by lower boundary on the 

verteces 

5.3 Creating a new objective function 

Figure 5.3a: Fitting PWA function 

restricted by vertices of lower and 

upper boundary. 

Figure 5.3b: Badly fitted PWA 

function 

Figure 5.2c: Properly fitted PWA 

function. 

In this Chapter we are going to creating a new objective function. Basically we are going to fit 

new affine lines (regions) restricted by vertices of lower and upper boundary (figure 5.3a). Based 

on these conditions the optimizer can fit badly piecewise affine function as we can see in the 
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figure 5.3b. This wrong approximation is allowed by using implication between equations (5.6) 

and (5.7). While equation (5.7) is satisfied, another equation (5.6) is not. Properly fitted 

piecewise affine function is illustrated in figure 5.2c. 

5.4 Implementation in MATLAB 

Let us consider that data about system and its boundaries are known. To obtain new fitted 

objective function we will define function: 

 [alpha,beta] = fit_PWA(Jup,Jlow,V,K), 

where Jup is an upper boundary, Jlow is a lower boundary, V are verteces of regions and K is 

number of regions of the new fitted function which we have to define. Outputs of this function 

are slopes alpha and affine terms beta. This function is basically MATLAB representation of 

the equations (5.5) and (5.7). We have to keep in mind that even equation (5.7) was used, 

YALMIP will also compute equations (5.9). 

function [alpha,beta] = fit_PWA(Jup,Jlow,V,K,x_up,x_low) 
nx = size(V{1},2); 
% obj. function 
obj = 0; 
% constraints 
F = []; 
% symbolic values 
alpha = sdpvar(nx,K,'full'); 
beta = sdpvar(1,K); 

 
for i = 1:length(V) 
    % Jup 
    for j = 1:length(V{i}) 
        F = F + [(V{i}(j,:)*alpha + beta) <= ... 
            V{i}(j,:)*Jup.C{i} + Jup.D{i}]; 
    end 
    % Jlow 
    for j = 1:length(V{i}) 
        F = F + [max(V{i}(j,:)*alpha + beta) >= ... 
            V{i}(j,:)*Jlow.C{i} + Jlow.D{i}]; 
    end 
end 

  
%% solve 
info = solvesdp(F,obj); 
if info.problem ~= 0 
    error('Problem is unsolvable !!!') 
end 

alpha = double(alpha); 
beta = double(beta); 
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6 Certification 

As we know from Chapter 5.2, equation (5.7) is only necessary condition to expression (5.6) and 

so we can get bad approximation (Figure 5.3b), therefore after every fitted objective function we 

have to check if the equation (5.6) is also satisfied. For the fulfilling of the constraints we will 

use certification. 

6.1 Certification of the upper boundary 

Equation (5.5) is necessary and sufficient condition to expression (5.3), certification for the 

upper boundary is unnecessary. Anyway just to be sure we will apply this certification which can 

be formulated as: 

��, �	 R ��  maxe��e-	 � �e
 ¿ w¸,�- 	 � x¸,�, �6.1
 

where x is a optimization variable which belongs to �� region, �e is set of slopes and �e is set of 

affine terms of the objective function while w¸,� are slopes and x¸,� are affine terms of the upper 

boundary. If exist any solution 	 which will satisfy equation (6.1) it means that at the point with 

coordinates 	 function value of the fitted objective function is greater then function value of the 

upper boundary. For this reason we have to increase the number of the upper boundary vertices 

by this point 	. Then we will try to fit another objective function, but with greater number of 

vertices. Since between equations (5.3) and (5.5) is equivalence, equation (6.1) should not be 

ever satisfied. 

6.1.1 Formulation in MATLAB 

For the certification of the upper boundary (based on the equation (6.1)) we can create function: 

[x] = cert_Jup(alpha,beta,Jup,V),  

where alpha are slopes and beta are affine terms of the fitted objective function, Jup are 

piecewise affine data of the upper boundary and V is vector of vertices (regions). Output x is a 

point where equation (6.1) is satisfied. We have to keep in mind that if optimized problem is 

infeasible then in parameter x will not be saved a value. So after command double(x) zero will 

be received. Then based on the result x will be printed the answer. 
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function [x] = cert_Jup(alpha,beta,Jup,V) 
nx = size(alpha,1); 

  
for i = 1:length(V) 
    x = sdpvar(nx,1); 

     
    obj = 0; 

     
    F = []; 
    F = F + [ismember(x, Jup.R(i))]; 
    F = F + [max(alpha'*x + beta') - (Jup.C{i}'*x + Jup.D{i}) > 1e-5]; 

     
    info = solvesdp(F,obj); 

     
    x = double(x); 
    if info.problem == 0 && x ~= 0 , break;end 
end 

  
if x == 0 
    disp('cert_Jup: Alpha and beta were certificated !!!') 
else 
    disp('cert_Jup: Alpha and beta were not certificated !!!') 
end 

6.2 Certification of the lower boundary 

By certification of the lower boundary we are going to find out if fitted objective function is 

above lower boundary. This procedure is necessary because between equations (5.6) and (5.7) is 

applied implication (5.6 I 5.7) and so equation (5.7) is only necessary condition for equation 

(5.6). This can cause that fitted objective function will not be in the restricted area (figure 5.3b). 

Certification for the lower boundary can be formulated as: 

��, �	 R ��, �p  �e-	 � �e ! wº,�- 	 � xº,�, �6.2
 

where x is optimized point which belongs to �� region, �e is set of slops and �e is set of affine 

terms of the objective function while wº,� are slopes and xº,� are affine terms of the lower 

boundary. Since we want to find point with the greatest deviation from the lower boundary 

equation (6.2) will be transformed into following optimization problem: 

��, �	 R ��  d� � min �E � �wº,�- 	 � xº,�

 �6.3

 

    E ' maxe  ��e-	 � �e
, �6.3�
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where E is the maximum function value of the fitted objective function, 	 is optimized point and d� is an optimal result of this problem. This set of equations can be further reformulated as: 

��, �	 R ��  d� � min �E � �wº,�- 	 � xº,�

 �6.4

 

�p  E ' �e-	 � �e �6.4�
 

If the result of this problem will be negative then objective function is badly fitted with the 

greatest deviation in point 	. Let us apply equations (6.4) on figure 5.3b than as a result we will 

get figure 6.1a. In this figure we can clearly see that new objective function is badly fitted what 

will equation (6.4) find out by negative value of variance d� ! 0. For this reason we have to 

increase the number of the lower boundary vertices by this point 	 � �0,4  (figure 6.1b). Then 

we can try to fit another objective function while this time we can be sure that equations (6.4) 

will not be satisfied in the point 	 (and in its close vicinity). This procedure should be repeated 

until nonnegative variance will be found. It is possible that equations (6.4) will still have 

negative variance which can cause that problem (5.7) illustrated in figure 5.2c will be 

transformed into problem (5.6) illustrated in figure 5.2b. 

  

Figure 6.1a: Certification of the fitted funciton Figure 6.1b: Result of the certification 
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6.2.1 Formulation in MATLAB 

For the certification of the lower boundary (based on equations (6.4)) we can create function: 

[x,d] = cert_Jlow(alpha,beta,Jlow,V), 

where alpha are slopes and beta are affine terms of the fitted objective function, Jlow are 

piecewise affine data of the lower boundary and V is vector of vertices (regions). Output d 

represents variance of the fitted objective function and lower boundary in a point with axis x. 

Based on this variance is also printed to the commandline the answer. 

function [x,d] = cert_Jlow(alpha,beta,Jlow,V) 
nx = size(alpha,1); 
for k = 1:length(V) 
    x = sdpvar(nx,1); 
    eps = sdpvar(1,1); 

     
    obj = eps - (Jlow.C{k}'*x + Jlow.D{k}); 

     
    F = []; 
    F = F + [ismember(x, Jlow.R(k))]; 
    for i = 1:length(alpha) 
        F = F + [eps >= alpha(:,i)'*x + beta(i)]; 
    end 

  
    info = solvesdp(F,obj); 
    if info.problem ~= 0, error('Problem is unsolvable !!!'),end 

  
    x = double(x); d = double(obj); 
    if d < -1e-6, break; end 
end 

  
if d >= -1e-6 
    disp(sprintf('cert_Jlow: Alpha and beta were certificated !!!')) 
else 
    disp('cert_Jlow: Alpha and beta were not certificated !!!') 
    disp(sprintf('           In point x = %d is difference = %d.',x,d)) 
end 

 

6.3 Formulation in MATLAB 

Until now we have certification of upper and lower boundary. But as it was already mentioned in 

both certifications if any of these function will find out x that will satisfy equation (6.1) 

respectively (6.2), then we have to increase number of vertices by this point x. After receive new 

extended vector of vertices we will fit another objective function and then certification can start 

again. This cycle we should perform until fitted objective function will be in the restricted area. 
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Because of certification of the lower boundary problem it is possible that using equations (6.4) 

illustrated in figure 5.2c will be transformed into problem (5.6) illustrated in figure 5.2b. For this 

reason we will define the maximum number of cycles.  Since we are going to send extending 

vertices (x_up, x_low) to the function fit_PWA we have to upgrade it by adding additional 

inputs: 

[alpha,beta] = fit_PWA(Jup,Jlow,V,K,x_up,x_low) 

And by adding additional constraints: 

for i = 1:length(V) 
    % Jup extended vertices 
    for j = 1:length(x_up) 
        F = F + [(x_up(j,:)'*alpha + beta) <= ... 
            x_up(j,:)'*Jup.C{i} + Jup.D{i}]; 
    end 
    % Jlow extended vertices 
    for j = 1:length(x_low) 
        F = F + [max(x_low(j,:)'*alpha + beta) >= ... 
            x_low(j,:)'*Jlow.C{i} + Jlow.D{i}]; 
    end 
end 

To ensure functionality of the mentioned cycles we will use the function: 

[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N), 

where Jup and Jlow are piecewise afiine data for boundaries, V is vector of all vertices 

(regions), K is number of regions of the new fitted function,  x_up and x_low vectors of 

extended vertices (while in the beginning there are empty) and N represents number of maximum 

cycles. Outputs from this function are slopes alpha and affine terms beta of the final fitted 

objective function and vectors of extended vertices x_up and x_low.  

function [alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N) 
[alpha,beta] = fit_PWA(Jup,Jlow,V,K,x_up,x_low); 

 
[x] = cert_Jup(alpha,beta,Jup,V); % cert_Jup: f(x) <= Jup(x) 

if x ~= 0 
    x_up = [x_up; x]; 
    [alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N); 
End 

 
[x,d] = cert_Jlow(alpha,beta,Jlow,V); % cert_Jlow: Jlow(x) <= f(x) 
if d < -1e-6 
    x_low = [x_low; x]; 
    if length(x_low) < N + 1 
        [alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N); 
    elseif length(x_low) == N 
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        fprintf('!!! Lack of iteration steps !!!\n') 
    end 
else  

    fprintf('Jlow(x) <= f(x) <= Jup(x) certified\n') 
end 

In the beginning new objective function will be fitted (fit_PWA). Then certification of the upper 

boundary will be applied (cert_Jup). Based on the result x this function may add another vertex 

and then recursively run function Jlow_Jup once again. If fitted objective function will be under 

upper boundary then certification of the upper boundry will be satisfied and we can start 

certificate lower boundary (cert_Jlow). Based on variance d we may add another vertex and 

again recursively run function Jlow_Jup. If both certificatins are satisfied (or number of cycles 

will run out) we will print the result of the certification. 

To plot last fitted objective function we can use function: 

[VV] = draw_PWA(alpha, beta, X, Jpoly), 
where alpha and beta are slopes and affine terms of fitted objective function, X represents 

edges of axis and Jpoly is a structure where slopes and affine terms of both boundaries have 

been saved. To obtain explicit representation of fitted objective function we will use function 

get_explicit_pwa_max. When boundaries have been plotted by using command plot we can 

plot mentioned fitted objective function through function plot_pwa. In the end we will compute 

vector of all region verteces as the output of this main function draw_PWA. 

% function [VV] = draw_PWA(alpha, beta, X, Jpoly) 
% alpha - slope (f(x) = alpha*x + beta) 
% beta  - affine term (f(x) = alpha*x + beta) 
% X     - Polytop representing range of each axis (in matrix X) 
% VV    - vertices of each new region (from new alpha and beta) 
function [VV] = draw_PWA(alpha, beta, X, Jpoly) 

  
% obtain the explicit representation of f(x) as 
%   f(x) = c_j*x+d_j if x \in P_j 
f = get_explicit_pwa_max(alpha, beta, X); 

  
if gcf==1, plot(Jpoly, 'y'); end 

     
hold on, plot_pwa(f); grid on, hold off 

  
% output 
for i = 1:length(f.R), VV{i} = extreme(f.R(i)); end 
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7 Control law 

In Chapter 1.4.2 was mentioned that each piecewise affine objective function must be associated 

with piecewise affine control law to achieve successfully control of any process. System does not 

care about objective function in the certain state, it requires only optimal input from controller to 

move forward. In this Section we will describe how to obtain control law from objective 

function. 

7.1 Approximate simplical control law [5] 

Let � � U�	�, ��	�
�, … , �	e, ��	e
�V £ Q,d� be a set of vertices of the fitted objective function 

and g� be the optimizer for vertex �	� , ��	�
�. If ¤ � U¥	¦§ , �a	¦§h¨, … , ¥	¦©ª§ , �a	¦©ª§h¨V £ � 

are the vertices contained in a facet of the lower convex hull of �, then the approximate critical 

region defined by ¤ is �·¦ Á �µ�¹ Â\� and the control law is given as: 

�	 R �·¦   g��	
: � Ã¦Ä¦j� �	1�, �7.1
 

where  

Ã¦ Á �g¦§ … g¦©ª§�    

Ä¦ Á ­	¦§ … 	¦©ª§1 … 1 °    

Equation (7.1) defines the approximate control law as the interpolation of the optimal control 

action given at the vertices of each approximate critical region.  

Figure 7.1a: Certificated PWA 

objective function 

Figure 7.1b: Vertices of all  regions 

of  PWA objective functions 

Figure 7.1c: Vertices made of  the 

lower convex hull of vector V 
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Figure 7.2a: Optimized inputs of vector V Figure 7.2b: Control law associated with obj. function 

7.2 Formulation in MATLAB 

First step to implement equation (7.1) will be to prepare vector of the optimized inputs Ã¦ for 

verteces �. For this purpose we use the function: 

[Vu] = get_Vu(VV,sysStruct,probStruct), 
where sysStruct and probStruct are structures of the initial problem (in our case it is 

problem defined in lti_1d_unstable) and VV are vertices of each region (VV � �). Output of 

this function is optimized inputs (Vu � Ã¤) and it will be received as a result of the optimization 

of the particular norm. Overview of the most used norms is mentioned in Chapter 1.3.2, but in 

MATLAB we will use matrix formulation. Full description of each function (norminf, norm1) 

is in the appendix. 

% Vu -> cell of the optimum inputs in all vertices 
function [Vu] = get_Vu(VV,sysStruct,probStruct) 
% objective function and constraints 
if probStruct.norm == inf 
    [Vu] = norminf(VV,sysStruct,probStruct);  
elseif probStruct.norm == 1 
    [Vu] = norm1(VV,sysStruct,probStruct); 
else 
    fprintf('!!! Norm "%d" is not allowed !!!\n',probStruct.norm); 
end 

 If we take a better look to the equation (7.1) we will see that result of the multiplication Ã¦Ä¦j� 

is a matrix which represents slopes and affine terms of the control law. This matrix will be output 

of the following function: 
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[VU,Vu] = get_u(VV,sysStruct,probStruct), 
where inputs are just the same as in the function get_Vu (already described), first output Vu 

represents vector of optimized inputs while the second one represents mentioned matrix of slopes 

and affine terms of the control law (VU � Ã¦Ä¦j�). 

% VU -> cell of the alpha and beta for inputs  
%      (VU{i} = [a1_i, a2_i...;b1_i, b2_i...;]) 
% Vu -> cell of the optimum inputs in all region vertices  from VV 
function [VU,Vu] = get_u(VV,sysStruct,probStruct) 
[Vu] = get_Vu(VV,sysStruct,probStruct); 

  
nx = size(sysStruct.A,2);     % number of states 

 
for i = 1:length(VV) 
    for j = 1:nx  
        X = [VV{i}(:,j)'; ones(1,length(VV{i}(:,j)))]; 
        U = [Vu{i}(:,j)']; 
        C = U*X^-1; 
        VU{i}(:,j) = C'; 
    end 
end 

To plot the final control law can be again used function draw_PWA or alternatively can be used 

following function: 

plot_PWA_u(VV,Vu), 
where VV is vector of vertices of objective function and Vu is vector of vertices of the control 

function. If this function will meet with more than two dimensional problem, it will write 

warning using command fprintf. 

function plot_PWA_u(VV,Vu) 
nx = size(VV{1},2); 

  
if nx == 1 
    figure 
    hold on 
    xlabel('x') 
    ylabel('u') 
    title(sprintf('Control PWA function over %d regions',length(VV))) 

     
    plot([VV{:}],[Vu{:}],'--b','LineWidth',3) 
    legend('u = f(x)') 
    grid 

     
elseif nx == 2 
    temp = ceil(length(VV)/7); 
    color = repmat({'b','g','r','c','m','y','k'},1,temp); 

         
    figure 
    hold on 
    xlabel('x1') 
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    ylabel('x2') 
    zlabel('u') 
    title(sprintf('Control PWA function over %d regions',length(alpha))) 
    grid 

  
    % for u1 
    for i = 1:length(VV) 
        x = VV{i}(:,1); 
        y = VV{i}(:,2); 
        z = Vu{i}(:,1); 

         
        patch(x,y,z,color{i}) 
    end 

     
    if size(Vu{1},2) == 2 
        figure 
        hold on 
        xlabel('x1') 
        ylabel('x2') 
        zlabel('u2') 
        title(sprintf('Control PWA function over %d regions',length(alpha))) 
        grid 

         
        % for u2 
        for i = 1:length(VV) 
            x = VV{i}(:,1); 
            y = VV{i}(:,2); 
            z = Vu{i}(:,2); 

             
            patch(x,y,z,color{i}) 
        end 
    end 

  
else 
    fprintf('!!! Cant plot if nx > 2 !!!\nNumber of states: nx = %d\n',nx) 
end 
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8 Examples 

In Chapter 2 we have analyzed that if we want to control any process equation (2.1) must be 

satistied. To achieve that we have to sometimes decrease computation time at the expense of 

optimality, especially when fast process has to be controlled. By decreasing the number of 

regions we will lower PWA data requirements for process control, but on the other hand 

performance will be decreased as well (figure 2.4). In this Section we will illustrate a few 

examples where this method will be used. 

8.1 Example 1 (lti_1d_stable) 

Let us have an example of linear time-invaiant, one dimensional stable problem defined as 

lti_1d_stable. The result of the call lti_1d_stable can be seen in the figure 8.1a. Our next 

step will be to find upper boundary. Lower boundary is already known since it is represented by 

optimal solution of this problem (figure 8.1a). Both boundaries are plotted in figure 8.1b, where 

the restricted (stable) area is being highlighted. Now if we look at this figure 8.1b more closely 

we should see that this whole problem can be defined even over two regions (Ç �  2) and as this 

problem looks realy simple five iteration steps should be enough (È �  5). This way we can 

reduce data required to store slopes and affine terms to a quarter (and approximately computation 

time as well (2.5)). To get this new simplified objective function we will use function Jlow_Jup, 

where certification is included. If new problem will by certificated or if we will run out of 

iteration steps, final objective function will be plotted (figure 8.1c). As a last step to control this 

system with new suboptimal objective function we need to construct a control law. This 

procedure is described in Chapter 7 and so we should know that if we want to get slopes and 

affine terms of the control law we need to call function get_u and the function plot_PWA_u 

(alternatively function draw_PWA) will plot it (figure 8.1e). From Chapter 2 we know that by 

decreasing number of regions we will also decrease computation time required to assign correct 

input to the system based on current state but at the expense of loosing performance. This loss 

can be seen while comparing optimal and suboptimal control laws (figure 8.1f). 
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Figure 8.1a: Optimal PWA objective function Figure 8.1b: Restricted stable area 

  

Figure 8.1c: Fitted PWA objective function Figure 8.1d: Suboptimal PWA objective function 

  

Figure 8.1e: Control PWA function Figure 8.1f: Comparison of the control laws 
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8.1.1 Formulation in MATLAB 

System lti_1d_stable is defined as: 

clear sysStruct probStruct 

  
sysStruct.A = 0.8; 
sysStruct.B = 1; 
sysStruct.C = 1; 
sysStruct.D = 0; 
sysStruct.umax = 1; 
sysStruct.umin = -1; 
sysStruct.xmax = 5; 
sysStruct.xmin = -5; 

  
probStruct.Q = 1; 
probStruct.R = 1; 
probStruct.norm = 1; 
probStruct.N = 5; 

  
nx = mpt_sysStructInfo(sysStruct); 

 
ctrl = mpt_control(sysStruct, probStruct) 

To create a new suboptimal control law of the system mentioned above we need to call following 

functions: 

close all 
clear all 
clc 

  
lti_1d_stable; 
prepare_data; 

 
N = 5; % number of iteration steps 
K = 2;  % number of approx regions 
x_up = []; % empty extending vertices for the upper boundary 

x_low = []; % empty extending vertices for the lower boundary 

  
[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N); 

  
VV = draw_PWA(alpha, beta, X, Jpoly); 

  
[VU,Vu] = get_u(VV,sysStruct,probStruct); 

  
plot_PWA_u(VV,Vu); 
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8.2 Example 2 (lti_1d_unstable) 

Let us have an example of linear time-invariant, one dimensional unstable problem defined as 

lti_1d_unstable. By calling m-file with this name as this system we will get an explicit form 

of this problem which can be graphically seen in the figure 8.2a. When the lower boundary will 

be found we can highlight stable area. For this purpose we have prepared another m-file 

prepare_data (figure 8.1b). From figure 8.1b we will try to guess the minimal number of 

regions which can be this system defined (Ç �  4). Since this problem is a little bit more difficult 

as example 1 the number of iterations will be doubled (È � 10). To get a new simplified 

objective function we will use function Jlow_Jup in which certification is included (figure 8.2d). 

The only thing what is left to do is to extract control law from the objective function. This step is 

achieved by function get_u and then after using another function plot_PWA_u we will plot it 

(figure 8.2e). In the end we can compare optimal and suboptimal control laws to see the lost of 

the performance caused by this method (figure 8.2f).  

Since optimal objective function is symmetrical we can try to even simplify this computation. If 

we split objective function into two halfs (�� R É�5,0Ê, �� R É0,5Ê), then the result of the first 

half �� will be also result for the other half, but with opposite sign of the slopes. This way fitting 

and the certification should by simplified by a half. To prove this statement we can take a look at 

the table 8.1. Time-inequality of these two methods is caused by MATLAB, which had in the 

case of the asymmetries to use more extended vertices. 

Operation 
Algorithm  that does 

not use symmetry 

Algorithm that use 

symmetry 

Prepare explicit data 5.1 [s] 5.1 [s] 

Fit a new objective function 9.2 [s] 1.1 [s] 

Number of extended vertices 3 0 

Plot objective function 0.2[s] 0.2 [s] 

Extract control law 0.7 [s] 0.6 [s] 

Plot control law 0.1[s] 0.1 [s] 

Total time 15.3 [s] 7.1 [s] 
 

Table 8.1: Comparing time efficiency by using symmetry 
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Figure 8.2a: Optimal PWA objective function Figure 8.2b: Restricted stable area 

  

Figure 8.2c: Fitted PWA objective function Figure 8.2d: Suboptimal PWA objective function 

  

Figure 8.2e: Control PWA function Figure 8.2f: Comparison of the control laws 
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8.2.1 Formulation in MATLAB 

System lti_1d_unstable is defined as: 

clear sysStruct probStruct 

  
sysStruct.A = 1.1; 
sysStruct.B = 1; 
sysStruct.C = 1; 
sysStruct.D = 0; 
sysStruct.umax = 1; 
sysStruct.umin = -1; 
sysStruct.xmax = 5; 
sysStruct.xmin = -5; 

  
probStruct.Q = 1; 
probStruct.R = 1; 
probStruct.norm = 1; 
probStruct.N = 5; 

  
nx = mpt_sysStructInfo(sysStruct); 
ctrl = mpt_control(sysStruct, probStruct) 

To create a new suboptimal control law of the system we need to call following functions 

(function reindex_pwa is attached in the appendix): 

close all, clear all, clc 

  
lti_1d_unstable; 
prepare_data; 

 
N = 10; % number of iteration steps 
K = 4;  % number of approx regions 
x_up = []; x_low = []; % empty extending vertices for boundaries 

 
if nx == 1 % nx is a dimension of the problem 
    [Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V); 
    if smtr == 1 && mod(K,2) == 0, K = K/2; V = V(1:end/2);end 
end 

  
[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N); 

  
if nx == 1 && smtr == 1 && mod(K,2) == 0 
    temp = length(V); 
    for i = 1:temp, V{temp+i} = -V{temp-i+1}; end 
    alpha = [alpha, -alpha]; 
    beta = [beta, beta]; 
end 

 
VV = draw_PWA(alpha, beta, X, Jpoly); 

[VU,Vu] = get_u(VV,sysStruct,probStruct); 

plot_PWA_u(VV,Vu); 
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8.3 Summarization of examples 

Reducing the memory requirements of explicit model predictive control was only a supporting 

role, since our main goal is to reduce computation time of this control. By using results from 

each example we can find the improvement of time-consuming calculation of the required 

optimal input based on current state. In following graphs we will see compared time 

requirements of optimal (��, g�) and suboptimal (��, g�) problems. 

8.3.1 Summarization of example 1 

In this work are mentiond two procedures how we find the input to the system (Chapter 1.4.3 and 

Chapter 2.2), therefore in order to illustrate computation improvement of the result from the 

example 1 we will proceed both of them. While in figures 8.3 is compared time required to 

obtain input to the system in each region, in figure 8.4 we can see the control difference of 

optimal and suboptimal control laws. 

Figure 8.3a: Compared time required to obtain input to 

the system by procedure from Chapter 1.4.3 

Figure 8.3b: Compared time required to obtain input to 

the system by procedure from Chapter 2.2 
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Figure 8.4: Control difference of optimal and suboptimal control laws 

8.3.1.1 Formulation in MATLAB  

Both time comparison procedures can be simple implemented in MATLAB using following 

commands: 

close all 
clear all 
clc 

  
lti_1d_stable; 
prepare_data; 
N = 10; % number of iteration steps 
K = 2;  % number of approx regions 
x_up = []; x_low = []; % empty extending vertices 

 
[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N); 

 
[Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V); 
VV = draw_PWA(alpha, beta, X, Jpoly); 

  
[VU,Vu] = get_u(VV,sysStruct,probStruct); 
[VUU,Vuu] = get_u(V,sysStruct,probStruct); 
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for i = 1:length(alpha) 
    J_alpha{i} = alpha(:,i); 

    J_beta{i} = beta(:,i);  
end 

  
x = [-5:.1:-.1 .1:.1:5]; 
for j = 1:5 
    time_m1 = []; time_m2 = []; 
    for i = 1:length(x) 
        if x(i) == 0, continue;end 
        % Procedure 1 
        [time1,u_opt] = get_time_m1(Jlow.C,Jlow.D,V,VUU,x(i)); 
        [time2,u_sub] = get_time_m1(J_alpha,J_beta,VV,VU,x(i)); 
        time_m1 = [time_m1 [time1;time2]]; 

         
        % Procedure 2 
        [time1,u_opt] = get_time_m2(V,VUU,x(i)); 
        [time2,u_sub] = get_time_m2(VV,VU,x(i)); 
        time_m2 = [time_m2 [time1;time2]]; 
    end 
end 
figure, hold on 
title('Procedure 1'),xlabel('State'),ylabel('Computation time [s]') 
plot(x,time_m1(1,:),'b') 

plot(x,time_m1(2,:),'r') 
legend('Optimal problem','Subptimal problem') 

  
figure, hold on 
title('Procedure 2'),xlabel('State'),ylabel('Computation time [s]') 
plot(x,time_m2(1,:),'b') 

plot(x,time_m2(2,:),'r') 

legend('Optimal problem','Subptimal problem'), 

where function get_time_m1 is defined as: 

function [time,u] = get_time_m2(VV,VU,x) 
tic, 
for i = 1:length(VV) 
    minVV = min(VV{i}); maxVV = max(VV{i});    
    if x <= maxVV && x >= minVV, Ri = i; break; end  
end 
u = VU{Ri}'*[x;1]; % action input 
time = toc; 

and function get_time_m2 is defined as: 

function [time,u] = get_time_m1(alpha,beta,VV,VU,x) 
tic, 
for i = 1: length(VV) 
    Fvalue(i) = x'*alpha{i} + beta{i}; 
end 
MaxF = max(Fvalue);  % maximal function value 
Ri = find(Fvalue == MaxF); % index of region 
u = VU{Ri}'*[x;1]; % action input 
time = toc; 
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Control difference of optimal and suboptimal control laws is implemented in MATLAB by: 

close all 
clear all 
clc 

  
lti_1d_stable; 
prepare_data; 
N = 10; % number of iteration steps 
K = 2;  % number of approx regions 
x_up = []; x_low = []; % empty extending vertices 
[Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V); 

 
[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N); 

 
VV = draw_PWA(alpha, beta, X, Jpoly);  

 
[VU,Vu] = get_u(VV,sysStruct,probStruct); 

  
time = 25; 

 

% optimal control law 
X = [];  

x = -5; 

for i=1:time 
    X = [X x]; x = sysStruct.A*x+sysStruct.B*ctrl(x); 
end 
 

% suboptimal control law 
Y = []; 
x = -5; 
for i = j:time 
    Y = [Y x]; 

 
    % finding u 
    for i = 1:length(VV) 
        VV_min = min(VV{i}); 
        VV_max = max(VV{i}); 
        if (x >= VV_min) && (x <= VV_max) 
            u = VU{i}(1)*x + VU{i}(2); 
        end 
    end 

 
    x = sysStruct.A*x + sysStruct.B*u; 
end 

  
figure 
hold on 
plot(0:time,[X 0],'b','Linewidth',2) 
plot(0:time,[Y 0],'--r','Linewidth',2) 
axis([0 time -5 1]) 
title('Comparation of optimal and suboptimal regulation') 
xlabel('Sampling time'),ylabel('x'),legend('u^*','u^~'),grid 
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8.3.2 Summarization of example 2 

In order to summarize results from second example we will use the same functions as in Chapter 

8.3.1, with exceptions that lti_1d_unstable and K = 4 has been used. 

Figure 8.5a: Compared time required to obtain input to 

the system by procedure from Chapter 1.4.3 

Figure 8.5b: Compared time required to obtain input to 

the system by procedure from Chapter 2.2 

 

Figure 8.6: Control difference of optimal and suboptimal control laws 
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Conclusion 

Predictive control is one of the most modern control approach which differs from other 

conventional methods by its ability to predict the development of states and the fact that 

constraints are directly incorporated into the optimization problem. On the other hand this 

complexity represents the main drawback of this approach, because to solve such complicated 

optimization problem requires large computational demands. In this work we have tried to 

propose a method which allowed implementation of this control approach on systems with fast 

dynamics. 

In the opening Chapters, we have got familiar with model predictive control (its strengths, 

options, mathematical formulations and so on) as well as the reasons why it is necessary to 

propose use of the method which is able to reduce the demands for explicit data storage but at the 

expense of losing performance (optimality). In sequel Chapter we have been searching for an 

appropriate solution which has been dealing with all necessary requirements of this method and 

thus to achieve suboptimal regulator, which would simultaneously guarantee the stability of the 

system in his whole range. In order to define a stable area where a new simplified objective 

function could be fitted, we have used two boundaries. First (lower) boundary was basically the 

optimal objective function, while the other one (upper boundary) was created by moving of the 

system at the limit of stability. In this stable area we were able to approximate a new simplified 

objective function defined over fewer region. Since only necessary condition has been used in 

the lower boundary, correct fitting was not guaranteed (as we could saw in the figures). In order 

to insure that the necessary condition has met the sufficient condition we have defined the 

certification. Right after the newly created function has fulfilled the certification we was able to 

extract a control law from it and thus to obtain a suboptimal regulator. In order to proof the 

functionality of this method we have implemented it into two examples and the results 

graphically illustrated. 

In this work we have proposed a method which is able to reduce the computation time and a 

storage capacity of the explicit data by a great portion, while stability is still guaranteed. Based 

on this reduction the control of the system can be faster, but we have to keep in mind that at the 

expense of losing the performance (optimality). 
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Resumé 
 

Úvod 

Prediktívne riadenie patrí k najmodernejším prístupom riadenia, ktoré sa odlišuje od ostatných 

konvenčných metód riadenia tým, že sekvencia optimálnych vstupov do systému sa vypočíta 

prostredníctvom optimalizácie daného problému na konečnom predikčnom horizonte vzhľadom 

na obmedzenia a za predpokladu, že model procesu, ako aj stav v danom kroku riadenia sú 

známe. V skutočnosti tento fakt predstavuje aj najväčšiu nevýhodu tohto spôsobu riadenia, 

pretože pre výpočet takejto optimalizácie je potrebná výkonná výpočtová technika 

a v neposlednej rade aj efektívny softvér (solver). Z tohto dôvodu sa prediktívne riadenie 

implementovalo prevažne do procesov s pomalou dynamikou, akými sú napríklad priemyselné 

procesy, nakoľko optimálny akčný zásah do daného procesu musí byť vypočítaný do doby 

odobrania ďalšej vzorky (vzorkovacieho času). V posledných rokoch bol však zaznamenaný 

významný pokrok v oblasti zdokonaľovania a vývoja výpočtových prostriedkov vrátene nových 

výkonných numerických metód a z toho hľadiska sa aj tento nedostatok postupne vytráca. 
 

Explicitné prediktívne riadenie 

Poznáme dva prístupy implementácie prediktívneho riadenia. Prvým z nich je klasický prístup 

rovnako označovaný ako on-line riadenie. Druhým prístupom je explicitné riadenie, ktoré je 

taktiež nazývané ako off-line riadenie. Základný rozdiel medzi týmito dvoma spôsobmi riadenia 

je v prístupe vypočítania optimálneho vstupu do systému. Pri on-line prístupe sa optimálny 

akčný zásah vypočíta neustálou optimalizáciou problému (1.13), čo vedie k výraznému 

zaťaženiu výpočtovej techniky. Z tohto dôvodu sa tento klasický prístup riadenia mohol 

implementovať iba do systémov s pomalou dynamikou. Pri explicitnom riadení sa optimalizácia 

vykoná iba raz a to ešte predtým, ako začneme riadiť daný systém (odkiaľ vychádza aj názov 

off-line). Touto optimalizáciou si daný problém vyjadríme ako hybridný systém, ktorého budeme 

môcť riadiť pomocou rovníc (1.14, 1.17). Teda ako systém, ktorého účelová funkcia ako aj 

zákon riadenia budú rozdelené do viacerých po častiach afinných úsekov (regiónov). Údaje 

o každom jednom úseku, teda smernice a posunutie, sú uložené do tabuľky, ktorá bude 

obsahovať matice (1.15), (1.16), (1.18) a (1.19). Akčný zásah sa získa prostredníctvom určenia 
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indexu aktívneho regiónu pre aktuálny stav a to na základe jednoduchých matematických 

výpočtov. Následne sa z tabuľky získajú údaje o zákone riadenia pre daný región a určí sa 

správny akčný zásah. Už teda nebude prebiehať neustala optimalizácia daného problému, čím sa 

výrazne zníži náročnosť na výpočtovú techniku. Na druhej strane, vzhľadom na rozsiahlosť 

tabuľky údajov, sa zvýši pamäťová náročnosť. 
 

Zníženie implementačnej náročnosti explicitného prediktívneho riadenia 

Z teórie vieme, že pri riadení diskrétnych systémov (ktoré sú všetky systémy riadené počítačom) 

sa musí čas, potrebný na výpočet optimálneho akčného zásahu, zmestiť práve do jednej doby 

vzorkovania (2.1), pričom vhodná doba vzorkovania pre daný proces by mala spadať do určitého 

intervalu (2.2). Explicitné prediktívne riadenie je prístup, pri ktorom sa optimálny vstup do 

riadeného procesu vypočíta prostredníctvom hľadania príslušného regiónu v tabuľke údajov 

(obrázok 2.2). Preto môžeme povedať, že čas potrebný na výpočet optimálneho vstupu bude 

priamo úmerný počtu regiónov (2.5). Preto vieme, že ak budeme chcieť implementovať 

explicitné prediktívne riadenie do ľubovoľného systému (s určitou periódou vzorkovania), 

budeme musieť znížiť počet regiónov daného problému až do takej miery, aby bol výpočtový čas 

akčného zásahu menší (nanajvýš rovný) ako doba vzorkovania. Rovnako prostredníctvom 

znižovania počtu regiónov budeme znižovať aj pamäťové nároky, ktoré sú potrebné 

k implementácii daného explicitného prediktívneho riadenia.  

Metóda, ktorá bola navrhnutá v tejto práci, sa snaží znížiť počet regiónov a to takým spôsobom, 

že prvotnú (optimálnu) účelovú funkciu sa pokúsi aproximovať novou (suboptimálnou) účelovou 

funkciou, ktorá bude zadefinovaná prostredníctvom menšieho počtu regiónov. Avšak takáto 

aproximácia nemôže byť vykonaná na ľubovoľnom mieste. Preto je potrebné si najskôr zostrojiť 

hranice stability. Spodnú hranicu tvorí práve naša optimálna účelová funkcia, nakoľko lepšie 

riadenie ako je to optimálne už neexistuje. Hornú hranicu zostrojíme tak, že daný systém 

posunieme až na hranicu stability. Prípustná oblasť, kde bude garantovaná stabilita daného 

systému, vznikne vymedzením práve týchto dvoch hraníc (obrázok 4.3), v ktorej budeme môcť 

aproximovať novú (suboptimálnu) účelovú funkciu. Pre spätnú kontrolu, či takto zostrojená 

funkcia bude podmnožinou stabilného priestoru, sme si zostrojili dva certifikáty. Až keď daná 

funkcia prejde certifikáciou, budeme môcť priradiť k nej suboptimálny zákon riadenia (obrázok 

7.2). 



75 
 

Záver 

V diplomovej práci sme sa zaoberala problematikou znižovania implementačnej náročnosti 

explicitného prediktívneho riadenia. Vysvetlili sme si základné prednosti prediktívneho riadenia 

a následne sme si aj predstavili dva odlišné prístupy pri jeho implementácii. Navrhli sme metódu, 

ktorá na základe redukcie počtu regiónov dokázala znížiť implementačnú náročnosť explicitného 

prediktívneho riadenia, ale to za cenu zníženia kvality riadenia (suboptimality). Funkčnosť tejto 

metódy sme dokázali v poslednej kapitole a to na dvoch príkladoch, pričom výsledky porovnania 

optimálneho a suboptimálneho riadenia boli ilustrované prostredníctvom grafov. 
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Appendix A – Main program 

close all 
clear all 
clc 

  
lti_1d_stable; 
% lti_1d_unstable; 
% lti_2d; 

  
prepare_data; 
N = 10; % number of iteration steps 
K = 2;  % number of approx regions 
x_up = []; x_low = []; % empty extending vertices 

  
nx = size(sysStruct.A,2);   % number of states 

  
if nx == 1 % nx is a dimension of the problem 
    [Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V); 
    if smtr == 1 && mod(K,2) == 0, K = K/2; V = V(1:end/2);end 
end 

  
[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N); 

  
if nx == 1 && smtr == 1 && mod(K,2) == 0 
    temp = length(V); 
    for i = 1:temp 
        V{temp+i} = -V{temp-i+1}; 
    end 
    alpha = [alpha, -alpha]; 
    beta = [beta, beta]; 
end 

  
% VV = draw_PWA_1D(alpha,beta,Jlow,Jup,V); 
VV = draw_PWA(alpha, beta, X, Jpoly); 

  
[VU,Vu] = get_u(VV,sysStruct,probStruct); 

  
plot_PWA_u(VV,Vu); 
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Appendix B – Systems 

lti_1d_stable 

clear sysStruct probStruct 

  
sysStruct.A = 0.8; 
sysStruct.B = 1; 
sysStruct.C = 1; 
sysStruct.D = 0; 
sysStruct.umax = 1; 
sysStruct.umin = -1; 
sysStruct.xmax = 5; 
sysStruct.xmin = -5; 

  
probStruct.Q = 1; 
probStruct.R = 1; 
probStruct.norm = 1; 
probStruct.N = 5; 

  
nx = mpt_sysStructInfo(sysStruct); 
ctrl = mpt_control(sysStruct, probStruct) 

 

lti_1d_unstable 

clear sysStruct probStruct 

  
sysStruct.A = 1.1; 
sysStruct.B = 1; 
sysStruct.C = 1; 
sysStruct.D = 0; 
sysStruct.umax = 1; 
sysStruct.umin = -1; 
sysStruct.xmax = 5; 
sysStruct.xmin = -5; 

  
probStruct.Q = 1; 
probStruct.R = 1; 
probStruct.norm = 1; 
probStruct.N = 5; 

  
nx = mpt_sysStructInfo(sysStruct); 
ctrl = mpt_control(sysStruct, probStruct) 
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Appendix C – prepare_data 

 

% we want to find a_k, b_k, k = 1,...,K of the convex PWA function 
% f(x) := max a_k*x+b_k such that 
%   \forall x: Jlow(x) <= max a_k*x+b_k <= Jup(k) 
%   "K" is minimized (as a heurstics we minimize ||a_k||_1, ||b_k||_1) 
% since Jlow() and Jup() are PWA functions, the first constraint reads 
%   \forall i, x \in R_i: Clow_i*x+Dlow_i <= max a_k*x+b_k <= Cup_i*x+Dup_i 
% 
% in our case, Jlow(x) = V(x), where V(x) is the optimal cost function of a 
% given explicit MPC solution (pretend it's a Lyapunov function for now), 
% and Jup(x) = Jlow(x) + ||Qx|| 
% 
% Jlow() and Jup() are convex PWA functions: 
%   Jlow(x) := Clow_i*x+Dlow_i, if x \in R_i 
%    Jup(x) := Cup_i*x+Dup_i, if x \in R_i 

  
% to construct epigraphs, we need to find the maximum of a PWA function 
% over its domain. for that, we need vertices of the domain 
X = union(ctrl.Pfinal); VX = extreme(X); 

  
% we are going to approximate the cost of a given explicit MPC solution 
Clow = ctrl.Bi; for i = 1:length(Clow), Clow{i} = Clow{i}'; end 
Dlow = ctrl.Ci; 
R = ctrl.Pn; 
V = pelemfun(@extreme, R); 
nR = length(R); 

  
% get Jup(x) = Jlow(x) + ||Qx|| 
[Cup, Dup] = J_add_norm(Clow, Dlow, R, ctrl.probStruct.Q); 

  
% obtain polytopic representation of the epigraphs: 
% * PJ is the epigraph of Jlow(x) 
% * PJN is the epigraph of Jup(x) 
% * Jpoly is the polytopic representation of the difference of the two 
%   functions 
[PJ, PJN, Jpoly, Jmax] = get_J_epigraph(R, X, Clow, Dlow, Cup, Dup); 

  
close all 
plot(Jpoly, 'y'); 

  
Jlow.R = R; 
Jlow.C = Clow; 
Jlow.D = Dlow; 
Jup.R = R; 
Jup.C = Cup; 
Jup.D = Dup; 

 

 

 



80 
 

J_add_norm  

function [c, d] = J_add_norm(c, d, R, Q) 

nx = dimension(R(1)); 
V = pelemfun(@extreme, R); 

  
for k = 1:length(c) 
    W = V{k}'; 
    nv = size(W, 2); 
    J = c{k}'*W + repmat(d{k}, 1, nv); 
    for i = 1:nv 
        J(i) = J(i) + sub_norm(W(:, i), Q, R(k)); 
    end 
    q = [W' ones(nv, 1)]\J'; 
    c{k} = q(1:nx); d{k} = q(end); 
end 

  

  
%------------------------------------------- 
function y = sub_norm(x, Q, R) 

  
x0 = chebyball(R); 
nx = length(x0); 
M = eye(nx); 
for i = 1:nx 
    if x0(i) < 0 
        M(i, i) = -1; 
    end 
end 
y = sum(Q*(M*x)); 

 

get_J_epigraph 

function [PJ, PJN, J, Jmax] = get_J_epigraph(R, B, Clow, Dlow, Cup, Dup) 
nx = dimension(R(1)); 

  
% obtain maximal value of Jup(x) over domain "B" 
V = extreme(B); 
Jmax = 0; 
for i = 1:length(Cup) 
    for j = 1:size(V, 1) 
        Jmax = max(Jmax, Cup{i}'*V(j, :)' + Dup{i}); 
    end 
end 

  
fprintf('Computing epigraph of Jlow(x)...\n'); 
% epigraph of the value function, i.e. 
%  { [x; e] | e >= Jlow(x) } 
x = sdpvar(nx, 1); 
e = sdpvar(1, 1); 
yPJ = [ ismember(x, B); e <= Jmax ]; 
for k = 1:length(Clow) 



81 
 

    yPJ = yPJ + [ e >= Clow{k}'*x + Dlow{k} ]; 
end 
PJ = union(polytope(yPJ)); 

  
fprintf('Computing epigraph of Jup(x)...\n'); 
% epigraph of the shifted value function, i.e.  
%  { [x; e] | e >= J(x) + ||x|| } 
yPJN = [ ismember(x, B); e <= Jmax ]; 
for k = 1:length(Cup) 
    yPJN = yPJN + [ e >= Cup{k}'*x + Dup{k} ]; 
end 
PJN = union(polytope(yPJN)); 

  
fprintf('Computing polytopes of Jup(x)-Jlow(x)...\n'); 
% polytopic representation of J(x)+||x|| - J(x) 
J = polytope; 
V = pelemfun(@polytope, R); 
nR = length(R); 
x = sdpvar(nx, 1); 
e = sdpvar(1, 1); 
for i = 1:nR 
    if i==1 || i == nR || mod(i, 10)==0 
        fprintf('%d / %d\n', i, nR); 
    end 
    Jlow = Clow{i}'*x+Dlow{i}; 
    Jup = Cup{i}'*x+Dup{i}; 
    yJ = [ ismember(x, R(i)); Jlow <= e <= Jup ]; 
    J = [J polytope(yJ)]; 
end 
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Appendix D – reindex_pwa 

% re-index each region from left to right by axis x1 
% check for symmetry (if smtr == 1 => obj function is symmetrical) 
function [Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V) 
% find correct positions of each region 
temp = zeros(1,length(Jlow.R)); 
positions = zeros(1,length(Jlow.R)); 

  
if length(Jlow.C{:,1}) == 1 
    for i = 1:length(Jlow.R) 
        temp(i) = max(extreme(Jlow.R(i))); 
    end 
else 
    for i = 1:length(Jlow.R) 
        tempp = extreme(Jlow.R(i)); 
        temp(i) = max(tempp(1,:)); 
    end 
end 

  
temp2 = sort(temp); k = 1; 
while k <= length(temp2) 
    tempp2 = find(temp == temp2(k)); 
    if length(tempp2) > 1 
        for j = 1:length(tempp2) 
            positions(k+j-1) = tempp2(j); 
        end 
        k = k + length(tempp2); 
    else 
        positions(k) = tempp2; k = k + 1; 
    end 
end 

  
% re-index each region 
Jlow.R = Jlow.R(positions); 
Jlow.C = Jlow.C(positions); 
Jlow.D = Jlow.D(positions); 

  
Jup.R = Jup.R(positions); 
Jup.C = Jup.C(positions); 
Jup.D = Jup.D(positions); 

  
V = V(positions); 
%% checking for symmetry (if smtr == 1 => obj is symmetrical) 
k = length(Jup.R); 
smtr = 1;  

  
for i = 1:k/2 
    if sum(abs(Jup.C{i} + Jup.C{k+1-i}) > 1e-9) > 0, smtr = 0; break; end 
    if sum(abs(Jup.D{i} - Jup.D{k+1-i}) > 1e-9) > 0, smtr = 0; break; end 
    if sum(abs(Jlow.C{i} + Jlow.C{k+1-i}) > 1e-9) > 0, smtr = 0; break; end 
    if sum(abs(Jlow.D{i} - Jlow.D{k+1-i}) > 1e-9) > 0, smtr = 0; break; end      
end 
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Appendix E – Jlow_Jup 

function [alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N) 
[alpha,beta] = fit_PWA(Jup,Jlow,V,K,x_up,x_low); 

  
% cert_Jup: f(x) <= Jup(x) 
[x] = cert_Jup(alpha,beta,Jup,V); 
if x ~= 0 
    x_up = [x_up; x]; 
    [alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N); 
end 

  
% cert_Jlow: Jlow(x) <= f(x) 
[x,d] = cert_Jlow(alpha,beta,Jlow,V); 
disp('======================================') 
alpha 
beta 
x_up 
x_low 
disp('======================================') 

  
if d < -1e-6 
    x_low = [x_low; x]; 
    if length(x_low) < N + 1 
        [alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N); 
    elseif length(x_low) == N 
        fprintf('!!! Lack of iteration steps !!!\n') 
    end 
else 
    fprintf('Jlow(x) <= f(x) <= Jup(x) certified\n') 
end 
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Appendix F – fit_PWA 

function [alpha,beta] = fit_PWA(Jup,Jlow,V,K,x_up,x_low) 
nx = size(V{1},2); 

  
% obj. function 
obj = 0; 

  
% constraints 
F = []; 

  
% symbolic values 
alpha = sdpvar(nx,K,'full'); 
beta = sdpvar(1,K); 

  
for i = 1:length(V) 
    % Jup 
    for j = 1:length(V{i}) 
        F = F + [(V{i}(j,:)*alpha + beta) <= ... 
            V{i}(j,:)*Jup.C{i} + Jup.D{i}]; 
    end 
    for j = 1:length(x_up) 
        F = F + [(x_up(j,:)'*alpha + beta) <= ... 
            x_up(j,:)'*Jup.C{i} + Jup.D{i}]; 
    end 
    % Jlow 
    for j = 1:length(V{i}) 
        F = F + [max(V{i}(j,:)*alpha + beta) >= ... 
            V{i}(j,:)*Jlow.C{i} + Jlow.D{i}]; 
    end 
    for j = 1:length(x_low) 
        F = F + [max(x_low(j,:)'*alpha + beta) >= ... 
            x_low(j,:)'*Jlow.C{i} + Jlow.D{i}]; 
    end 
end 

  
%% solve 
info = solvesdp(F,obj); 
if info.problem ~= 0 
    error('Problem is unsolvable !!!') 
end 
alpha = double(alpha); 
beta = double(beta); 
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Appendix G – Certifications 

cert_Jup 

function [x] = cert_Jup(alpha,beta,Jup,V) 
nx = size(alpha,1); 

  
for i = 1:length(V) 
    x = sdpvar(nx,1); 

     
    obj = 0; F = []; 
    F = F + [ismember(x, Jup.R(i))]; 
    F = F + [max(alpha'*x + beta') - (Jup.C{i}'*x + Jup.D{i}) > 1e-5]; 

     
    info = solvesdp(F,obj); 

     
    x = double(x); 
    if info.problem == 0 && x ~= 0 , break;end 
end 

  
if x == 0, disp('cert_Jup: Alpha and beta were certificated !!!')  
else disp('cert_Jup: Alpha and beta were not certificated !!!') 
end 

cert_Jlow 

function [x,d] = cert_Jlow(alpha,beta,Jlow,V) 
nx = size(alpha,1); 
for k = 1:length(V) 
    x = sdpvar(nx,1); eps = sdpvar(1,1); 

         
    obj = eps - (Jlow.C{k}'*x + Jlow.D{k}); 

     
    F = []; 
    F = F + [ismember(x, Jlow.R(k))]; 
    for i = 1:length(alpha) 
        F = F + [eps >= alpha(:,i)'*x + beta(i)]; 
    end 

  
    info = solvesdp(F,obj); 
    if info.problem ~= 0, error('Problem is unsolvable !!!'),end 

  
    x = double(x); d = double(obj); 
    if d < -1e-6, break; end 
end 

  
if d >= -1e-6, disp('cert_Jlow: Alpha and beta were certificated !!!')  

else 
    disp('cert_Jlow: Alpha and beta were not certificated !!!') 
    fprintf('           In point x = %d is difference = %d. \n',x,d) 
end 
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Appendix H – draw_PWA 

% function [VV] = draw_PWA(alpha, beta, X, Jpoly) 
% alpha - slope (f(x) = alpha*x + beta) 
% beta  - affine term (f(x) = alpha*x + beta) 
% X     - Polytop representing range of each axis (in matrix X) 
% VV    - vertices of each new region (from new alpha and beta) 
function [VV] = draw_PWA(alpha, beta, X, Jpoly) 

  
% obtain the explicit representation of f(x) as 
%   f(x) = c_j*x+d_j if x \in P_j 
f = get_explicit_pwa_max(alpha, beta, X); 

  
if gcf==1, plot(Jpoly, 'y'); end 

     
hold on, plot_pwa(f); grid on, hold off 

  
% output 
for i = 1:length(f.R), VV{i} = extreme(f.R(i)); end 

get_pwa_max 

function fs = get_pwa_max(a, b, X) 

  
nx = dimension(X); 
J = sdpvar(1, 1); 
x = sdpvar(nx, 1); 
F = [ J <= 1e4; ismember(x, X) ]; 
for k = 1:size(a, 2) 
    F = F + [ J >= a(:, k)'*x + b(k) ]; 
end 
sol = solvemp(F, J, sdpsettings, x, J); 
fpwa = mpt_mpsol2ctrl(sol, 1); 
R = fpwa.Pn; 
C = fpwa.Bi; for i = 1:length(C), C{i} = C{i}'; end 
D = fpwa.Ci; 

  
fs.R = R; 
fs.C = C; 
fs.D = D; 



87 
 

Appendix I – get_u 

% VU -> cell of the alpha and beta for inputs  
%      (VU{i} = [a1_i, a2_i...;b1_i, b2_i...;]) 
% Vu -> cell of the optimum inputs in all region vertices  from VV 
function [VU,Vu] = get_u(VV,sysStruct,probStruct) 
[Vu] = get_Vu(VV,sysStruct,probStruct); 

  
nx = size(sysStruct.A,2);     % number of states 
nu = size(sysStruct.B,2);     % number of inputs 

  
for i = 1:length(VV) 
    for j = 1:nx  
        X = [VV{i}(:,j)'; ones(1,length(VV{i}(:,j)))]; 
        U = [Vu{i}(:,j)']; 
        C = U*X^-1; 
        VU{i}(:,j) = C'; 
    end 
end 

get_Vu 

% Vu -> cell of the optimum inputs in all vertices 
function [Vu] = get_Vu(VV,sysStruct,probStruct) 
% objective function and constraints 
if probStruct.norm == inf 
    [Vu] = norminf(VV,sysStruct,probStruct);  
elseif probStruct.norm == 1 
    [Vu] = norm1(VV,sysStruct,probStruct); 
else 
    fprintf('!!! Norm "%d" is not allowed !!!\n',probStruct.norm); 
end 

norminf 

% min  sum(Ex) + sum(Eu) 
% s.t.    X == tA*X+tB*U+tE*xt 
%      tH*X <= tK 
%      tL*U <= tM 
%      -tEx <= tQ*X <= tEx 
%      -tEu <= tR*U <= tEu 
function [Vu] = norminf(VV,sysStruct,probStruct) 
% number of states, number of inputs 
nx = size(sysStruct.A,2);   % number of states 
nu = size(sysStruct.B,2);   % number of inputs 
N = probStruct.N;           % prediction horizon 

  
% matrices for the objective function and the constraints for N = 1 
H = [eye(nx);-eye(nx)]; 
L = [eye(nu);-eye(nu)]; 
K = [sysStruct.xmax; -sysStruct.xmin]; 
M = [sysStruct.umax ; -sysStruct.umin]; 
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% matrices for the objective function and the constraints for N 
tQ = kron(eye(N),probStruct.Q); 
tR = kron(eye(N),probStruct.R); 
tH = kron(eye(N),H); 
tL = kron(eye(N),L); 
tK = kron(ones(N,1),K); 
tM = kron(ones(N,1),M); 
tE1 = eye(nx); 
tE2 = kron(ones(N-1,1),zeros(nx)); 
tE = [tE1;tE2]; 
tA1 = kron(ones(1,N),zeros(nx)); 
tA2 = kron(eye(N-1),sysStruct.A); 
tA3 = kron(ones(N-1,1),zeros(nx)); 
tA = [tA1;tA2 tA3]; 
tB1 = kron(ones(1,N),zeros(nx,nu)); 
tB2 = kron(eye(N-1),sysStruct.B); 
tB3 = kron(ones(N-1,1),zeros(nx,nu)); 
tB = [tB1;tB2 tB3]; 

  
% optimization variables 
U = sdpvar(N*nu,1); 
X = sdpvar(N*nx,1); 
Eu = sdpvar(N,1); 
Ex = sdpvar(N,1); 
tEx = kron(Ex, ones(nx,1)); 
tEu = kron(Eu, ones(nu,1)); 

  
% simulation 
for i = 1:length(VV) 
    u0opt = []; 
    for j = 1:2 
        % objective function and constraints 
        obj = sum(Ex) + sum(Eu); 
        F = [X == tA*X+tB*U+tE*VV{i}(j,:); ... 
            tH*X <= tK; ... 
            tL*U <= tM; ... 
            -tEx <= tQ*X <= tEx; ... 
            -tEu <= tR*U <= tEu]; 
        info = solvesdp(F,obj); 
        if info.problem ~= 0, error('Problem is infeasible'), end 
        u0opt = [u0opt double(U(1:nu))]; 
    end 
    Vu{i} = u0opt'; 
end 

norm1 

% min  c'*Z 
% s.t. AA*Z <= BB 
%      GG*Z = HH 
function [Vu] = norm1(VV,sysStruct,probStruct) 
% number of states, number of inputs 
nx = size(sysStruct.A,2); 
nu = size(sysStruct.B,2); 
N = probStruct.N; 
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% matrices for the objective function and the constraints for N = 1 
H = [eye(nx);-eye(nx)]; 
L = [eye(nu);-eye(nu)]; 
K = [sysStruct.xmax; -sysStruct.xmin]; 
M = [sysStruct.umax ; -sysStruct.umin]; 

  
% matrices for the objective function and the constraints for N 
tQ = kron(eye(N),probStruct.Q); 
tR = kron(eye(N),probStruct.R); 
tH = kron(eye(N),H); 
tL = kron(eye(N),L); 
tK = kron(ones(N,1),K); 
tM = kron(ones(N,1),M); 
tE1 = eye(nx); 
tE2 = kron(ones(N-1,1),zeros(nx)); 
tE = [tE1;tE2]; 
tA1 = kron(ones(1,N),zeros(nx)); 
tA2 = kron(eye(N-1),sysStruct.A); 
tA3 = kron(ones(N-1,1),zeros(nx)); 
tA = [tA1;tA2 tA3]; 
tB1 = kron(ones(1,N),zeros(nx,nu)); 
tB2 = kron(eye(N-1),sysStruct.B); 
tB3 = kron(ones(N-1,1),zeros(nx,nu)); 
tB = [tB1;tB2 tB3]; 

  
% optimization variables 
U = sdpvar(N*nu,1); 
X = sdpvar(N*nx,1); 
Eu = sdpvar(N*nu,1); 
Ex = sdpvar(N*nx,1); 

  
% objective and constraints 
obj = 0; F = []; 

  
ZnuH = zeros(size(tH,1),N*nu); 
ZnxH = zeros(size(tH,1),N*nx); 
ZnxL = zeros(size(tL,1),N*nx); 
ZnuQ = zeros(size(tQ,1),N*nu); 
ZnuL = zeros(size(tL,1),N*nu); 
ZnxR = zeros(size(tR,1),N*nx); 

  
AA = [ZnuH tH ZnuH ZnxH; ... 
    tL ZnxL ZnuL ZnxL; ... 
    ZnuQ tQ ZnuQ -eye(N*nx); ... 
    ZnuQ -tQ ZnuQ -eye(N*nx); ... 
    tR ZnxR -eye(N*nu) ZnxR; ... 
    -tR ZnxR -eye(N*nu) ZnxR]; 

  
BB = [tK;tM;zeros(size(AA,1) - size([tK;tM],1),1)]; 
GG = [-tB (eye(N*nx)-tA) zeros(N*nx,N*nu) zeros(N*nx)]; 
% HH = tE*xt; 
% 
% F = [AA*[U;X;Eu;Ex] <= BB; ... 
%     GG*[U;X;Eu;Ex] == HH]; 
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% simulation 
for i = 1:length(VV) 
    u0opt = []; 
    for j = 1:2 
        HH = tE*VV{i}(j,:); 

         
        F = [AA*[U;X;Eu;Ex] <= BB; ... 
            GG*[U;X;Eu;Ex] == HH]; 

         
        info = solvesdp(F,obj); 
        if info.problem ~= 0, error('Problem is Infeasible'),end 
        u0opt = [u0opt double(U(1:nu))]; 
    end 
    Vu{i} = u0opt'; 
end 

 

 



91 
 

Appendix J – plot_PWA_u 

function plot_PWA_u(VV,Vu) 
nx = size(VV{1},2); 

  
if nx == 1 
    figure 
    hold on 

    
    plot([VV{:}],[Vu{:}],'--b','LineWidth',3) 

 
    xlabel('x'), ylabel('u'), legend('u = f(x)'), grid 
    title(sprintf('Control PWA function over %d regions',length(VV))) 

 
elseif nx == 2 
    temp = ceil(length(VV)/7); 
    color = repmat({'b','g','r','c','m','y','k'},1,temp); 

         
    figure 

    grid, hold on 
    xlabel('x1'), ylabel('x2'), zlabel('u') 

    title(sprintf('Control PWA function over %d regions',length(alpha))) 

 
    % for u1 
    for i = 1:length(VV) 
        x = VV{i}(:,1); 
        y = VV{i}(:,2); 
        z = Vu{i}(:,1); 

         
        patch(x,y,z,color{i}) 
    end 

     
    if size(Vu{1},2) == 2 
        figure 

        grid, hold on 
        xlabel('x1'), ylabel('x2'), zlabel('u2') 

        title(sprintf('Control PWA function over %d regions',length(alpha))) 

         
        % for u2 
        for i = 1:length(VV) 
            x = VV{i}(:,1); 
            y = VV{i}(:,2); 
            z = Vu{i}(:,2); 

             
            patch(x,y,z,color{i}) 
        end 
    end 

  
else 
    fprintf('!!! Cant plot if nx > 2 !!!\nNumber of states: nx = %d\n',nx) 
end 
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Appendix K – get_PWA 

close all 
clear all 
clc 

  
%% 
x = [-5 -4 -3 -2 -1 0 1 2 3 4 5]; 
y = [15 11 8 5 2.2 0 2.2 5 8 11 15]; 

  
% x = [-5 -4 -3 -2 -1 0 1 2 3 4 5; ... 
%     -5 -4 -3 -2 -1 0 1 2 3 4 5]; 
% y = [15 11 8 5 2.2 0 2.2 5 8 11 15]; 

  
[alpha,beta] = Points_into_PWA(x,y); 
%% 
nx = size(x,1); 

  
% if nx == 1, plot_1D_PWA(alpha, beta, x,y),end 

  
x_max = zeros(1,nx); 
x_min = zeros(1,nx); 
for i = 1:size(x,1) 
    x_max(i) = max(x(i,:)); 
    x_min(i) = min(x(i,:)); 
end 
X = polytope([eye(nx);-eye(nx)],[x_max'; -x_min']); 

  
% obtain the explicit representation of f(x) as 
%   f(x) = c_j*x+d_j if x \in P_j 
f = get_explicit_pwa_max(alpha', beta', X); 

  
plot_pwa(f); 
grid on 
hold off 
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Appendix L – Points_into_PWA 

function [alfa,beta] = Points_into_PWA(x,y) 
x_length = length(x); 
y_length = length(y); 
if x_length ~= y_length error('! Length x ~= y !'),end  
%% symbolic parameters 
xlength = x_length - 1; 
nx = size(x,1); 

  
J = sdpvar(xlength,1); 
alfa = sdpvar(xlength,nx); 
beta = sdpvar(xlength,1); 
%% objective function 
obj = 0; 
for i = 1:xlength 
    obj = obj + (J(i) - y(i))^2; 
end 
%% constraints 
F = []; 
for i = 1:xlength 
    for j = i+1:xlength + 1 
        F = F + [alfa(i,:) <= (y(j)-y(i))/(x(:,j)-x(:,i))]; 
    end 
    if nx == 1 % symmetrical obj    
        F = F + [alfa(i,:) == -alfa(xlength + 1 - i,:)]; 
    end 
end 

  
for i = 1:xlength 
    F = F + [J(i) == alfa(i,:)*x(:,i) + beta(i)]; 
    if nx == 1 % symmetrical obj  
        F = F + [beta(i) == beta(xlength + 1 - i)]; 
    end 
end 
%% solve 
info = solvesdp(F,obj); 
if info.problem ~= 0 
    error('Problem is unsolvable !!!') 
end 
alfa = double(alfa); 
beta = double(beta); 
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Appendix M – Commands and functions used in sumarization 

Comparison of time requirements  

close all 
clear all 
clc 

  
lti_1d_stable; 
prepare_data; 
N = 10; % number of iteration steps 
K = 2;  % number of approx regions 
x_up = []; x_low = []; % empty extending vertices 

 
[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N); 
[Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V); 

 
VV = draw_PWA(alpha, beta, X, Jpoly);  

 
[VU,Vu] = get_u(VV,sysStruct,probStruct); 
[VUU,Vuu] = get_u(V,sysStruct,probStruct); 

  
for i = 1:length(alpha) 
    J_alpha{i} = alpha(:,i); J_beta{i} = beta(:,i);  
end 

  
x = [-5:.1:-.1 .1:.1:5]; 
for j = 1:5 
    time_m1 = []; 
    time_m2 = []; 
    for i = 1:length(x) 
        if x(i) == 0, continue;end 
        % Procedure 1 
        [time1,u_opt] = get_time_m1(Jlow.C,Jlow.D,V,VUU,x(i)); 
        [time2,u_sub] = get_time_m1(J_alpha,J_beta,VV,VU,x(i)); 
        time_m1 = [time_m1 [time1;time2]]; 

         
        % Procedure 2 
        [time1,u_opt] = get_time_m2(V,VUU,x(i)); 
        [time2,u_sub] = get_time_m2(VV,VU,x(i)); 
        time_m2 = [time_m2 [time1;time2]]; 
    end 
end 
figure, hold on 
title('Procedure 1'),xlabel('State'),ylabel('Computation time [s]') 
plot(x,time_m1(1,:),'b'), plot(x,time_m1(2,:),'r') 
legend('Optimal problem','Subptimal problem') 

  
figure, hold on 
title('Procedure 2'),xlabel('State'),ylabel('Computation time [s]') 
plot(x,time_m2(1,:),'b'),plot(x,time_m2(2,:),'r') 
legend('Optimal problem','Subptimal problem') 
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get_time_m1 

function [time,u] = get_time_m1(alpha,beta,VV,VU,x) 
tic, 
for i = 1: length(VV) 
    Fvalue(i) = x'*alpha{i} + beta{i}; 
end 
MaxF = max(Fvalue);  % maximal function value 
Ri = find(Fvalue == MaxF); % index of region 
u = VU{Ri}'*[x;1]; % action input 
time = toc; 

get_time_m2 

function [time,u] = get_time_m2(VV,VU,x) 
tic, 
for i = 1:length(VV) 
    minVV = min(VV{i}); maxVV = max(VV{i});    
    if x <= maxVV && x >= minVV, Ri = i; break; end  
end 
u = VU{Ri}'*[x;1]; % action input 
time = toc; 
close all 
clear all 
clc 

Comparition of control laws 

lti_1d_stable; 
prepare_data; 
N = 10; % number of iteration steps 
K = 2;  % number of approx regions 
x_up = []; x_low = []; % empty extending vertices 

[Jlow,Jup,V,smtr] = reindex_pwa(Jlow,Jup,V); 

 
[alpha,beta,x_up,x_low] = Jlow_Jup(Jup,Jlow,V,K,x_up,x_low,N); 

 
VV = draw_PWA(alpha, beta, X, Jpoly);  

 
[VU,Vu] = get_u(VV,sysStruct,probStruct); 
  

time = 25; 

 
% optimal control law 
X = []; 

x = -5; 
for i=1:time 
    X = [X x]; 

    x = sysStruct.A*x+sysStruct.B*ctrl(x); 
End 

 
% suboptimal control law 
Y = []; 
x = -5; 
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for j = 1:time 
    Y = [Y x]; 

 
    % finding u 
    for i = 1:length(VV) 
        VV_min = min(VV{i}); 
        VV_max = max(VV{i}); 
        if (x >= VV_min) && (x <= VV_max) 
            u = VU{i}(1)*x + VU{i}(2); 
        end 
    end 

 
    x = sysStruct.A*x + sysStruct.B*u; 
end 

  
figure 
hold on 
plot(0:time,[X 0],'b','Linewidth',2) 
plot(0:time,[Y 0],'--r','Linewidth',2) 
axis([0 time -5 1]) 
title('Comparation of optimal and suboptimal regulation') 
xlabel('Sampling time'),ylabel('x'),legend('u^*','u^~'),grid 

 

 


