SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

F CHPT

Efficient Modeling of Hybrid Systems

DIPLOMA THESIS

FCHPT-5414-50907

Bratislava 2012 Bc. Jan Drgona



SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

F CHPT

Efficient Modeling of Hybrid Systems

Study programme:

Study field:
Workplace:
Thesis supervisor:

Consultant:

Bratislava 2012

DIPLOMA THESIS

FCHPT-5414-50907

Automation and Informatization in Chemistry and Food Industry
5.2.14 Automation

Linkdping University Sweden

doc. Ing. Michal Kvasnica, PhD.

Dr. Johan Lofberg, PhD.

Bc. Jan Drgona



Slovak University of Technolozy in Braticlava Faculty of Chemical and Food Technology
Institate of Information Engineering, Awntomation snd Mathematics Academic year: 2011/2012

Smdent’s ID:
Study programme:
Smndy field:

Topic:

Feg Mo.: FCHPT-5414-50007

DIPLLOMA THESIS TOPIC

Be. Jin Drgoiia

50907

Automation and Informatization in Chemistry and Food Industry
5.2.14 Automation

doc. Ing. Michal Evasmica, PhD.

Efficient Modeling of Hybrid Systems

Specification of AssiFnrment:

Lenzth of thesis:

Objective of the project is to inmvestipate and propose an efficient mathematical framework for
modeling of hybrid systems represented as finite-state machines (F5M). Such systems are
composed of several local models, interconnected by transitions. It is well known that such
interconnections can be modeled by introducing an additional integer variable, whose value
indicates which local model is active for the current vahie of model varisbles. Traditionally, the
integer is encoded using unary encoding, assigming one binary variable fo each possible valoe of the
integer. An alternative approach is to model the integer by fewer binary variables using a binary
encoding, which only requires log_ 2(M) binaries. The difficulty of this approach is how to indicate
infeasible combinations of bits.

Oijectives of the project are as follows:

1) Provide an implementation of a higher-level interface on top of YATMIP for azsier modeling of
finite state machines.

1) Analyze efficient binary encoding formmlations in F5M formmlations.

3) Validate obtained results on a case study involving a transportation problem.

50

Assimnment procedure from: 13. 02 2012
Date of thesis submission: 19 05. 2012

prof. Ing. Mivoslav Filar, DrSc. prof. Ing. Mireslay Fikar, DrSc.
Head of office Smudy prosramme supervisor



Acknowledgement

| would like to express a deep gratitude to my thesis supervisor doc. Ing. Michal Kvasnica,
PhD., for his patient supervision, for the given opportunity to study abroad and for his

understanding or acceptance of my often excessive jokes and anecdotes.

Also a big gratitude goes to my thesis consultant Dr. Johan L6fberg, PhD., for his substantial

contribution to my thesis and for support during my stay in Sweden.



Abstract

This thesis is dealing with modeling of systems containing continuous and discrete dynamic
behavior simultaneously. Because of their hybrid nature this kind of systems are called
hybrid systems (HS). We highlight several theoretical frameworks for modeling of hybrid
systems, at these days most commonly used and well known modeling frameworks are
discrete hybrid automata (DHA), piecewise affine (PWA) systems and computational
oriented mixed logical dynamical (MLD) systems. Aim of this thesis is to investigate and
propose an efficient mathematical framework for modeling of hybrid systems represented
either as discrete hybrid automata (DHA) or piecewise affine (PWA) systemes. It is well known
that such models involving integer or logical variables can be transformed into the
corresponding mixed integer programming (MIP) optimization problem. For this purpose we
are introducing a technique of Big-M modeling for translating logical statements into
equivalent MIP form. Traditionally in corresponding MIP problem the integer is encoded
using “unary encoding”, assigning one binary variable to each possible value of the integer.
Contribution of this thesis lies in alternative approach, where integer variables can be
modeled by fewer binary variables using a “binary encoding”, which only requires
logarithmical number of original binaries log,(N). The difficulty of this approach is how to
indicate infeasible combinations of bits and separate them from feasible region of resulting
MIP model by adding extra constraints or so called cuts into the model. Finally in the end of
the thesis, we present the implementation of hybrid modeling framework as an extension of
free MATLAB optimization toolbox YALMIP, as well as comparison of resulting computational

models with models created via modeling language HYSDEL.

Keywords: Hybrid systems, Piecewise affine systems, Finite state machine, Mixed integer

programming, Big-M modeling, YALMIP, HYSDEL



Abstrakt

Tato praca sa zaoberd modelovanim takzvanych hybridnych systémov (HS), obsahujucich
sucasne spojité aj diskrétne dynamické spravanie. Pre modelovanie takychto systémov bolo
vyvinutych viacero pristupov, vprvej casti tejto prace pribliZujeme v sucasnosti
najrozsirenejsie a najviac pouzivané teoretické modely, konkrétne ide o diskrétne hybridné
automaty (DHA) , po castiach afinné (PWA) systémy avypoctovo orientované zmieSané
logicko-dynamické (MLD) systémy. Cielom tejto prace je preskiumat a navrhnut efektivny
matematicky pristup k modelovaniu hybridnych systémov reprezentovanych ako diskrétne
hybridné automaty (DHA), alebo po castiach afinné (PWA) systémy. Je vSeobecne zname, Ze
takéto modely, obsahujlce celociselné alebo logické premenné, mozu byt definované vo
forme zmieSaného celociselného (MIP) optimalizacného problému. Pre tento ucel
predstavujeme techniku takzvaného Big-M modelovania, pomocou ktorej sme schopny
transformacie logickych vyrazov do ekvivalentnej formy problému celodiselného
programovania. V probléme zmieSaného celociselného programovania su celociselné
premenné klasicky definované pomocou takzvaného unarneho (jednozlozkového)
kddovania, priradujic prave jednu bindarnu premennu ku kazdej mozinej celociselnej
hodnote. Prispevok tejto prace spociva v alternativhom pristupe kédovania, ked' celociselné
premenné mobieme modelovat s pouZitim mensieho mnoiZstva bindarnych premennych
pomocou takzvaného binarneho kddovania, ktoré vyZzaduje len logaritmické mnoiZstvo
pévodnych binarnych premennych log,(N). Naroc¢nost tohto pristupu spociva v indikacii
nerieSitelnych kombindacii bindrnych premennych a ich separacii z rieSitelnej mnoziny rieSeni
vysledného modelu pomocou pridania extra ohraniceni (tzv. rezov) do prislusSného modelu.
Na zaver predstavujeme programovu realizaciu rozoberanych modelovacich technik ako
rozSirenie volne Siritelného optimalizacného toolboxu YALMIP pre MATLAB, ako aj
porovnanie vyslednych modelov s modelmi vytvorenymi pomocou modelovacieho jazyka

HYSDEL.

Klucové slovd: Hybridné systémy, Po castiach afinné systémy, Automaty, ZmiesSané

celociselné programovanie, Big-M modelovanie, YALMIP, HYSDEL
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Chapter 1

1 Introduction

1.1 Mathematical modeling

Since ancient times people's curiosity led them to exploring the world and try to understand
the laws of the nature, but in the past times it was more about philosophy than about real
science as we know it today. The first steps for distinguishing the real science from scams
and misleading speculations about world was big growth of mathematical knowledge in last
few hundred years and since this time mathematical modeling is taking one of the most
important role in all scientific fields. The mathematical models are used everywhere, from
engineering thru medicine, biology, physics, chemistry, economy and so on. But it is not only
matter of science which handles with mathematical modeling, we are surrounded by

applications based on mathematical models, which are improving quality of our everyday

life.

Mathematical modeling can be conceived as transformation of empirical and practical
knowledge of real systems into the theoretical and simplified models of them, by using
mathematical language. Unfortunately the real world is still far too complicated for our
current mathematical tools to being modeled entirely without any loss of precision,
therefore any model is an abstract simplified description of a real system or physical
phenomena. Usually there are many ways how to describe a single real-world phenomena,
the differences between them are in complexity of particular models and specifications for

concrete fields of interest.

Models should be simple enough to formulate an efficient and solvable analysis and
synthesis problems for available computational capabilities, but also they should be
complicated enough for describing sufficient level of details of the system, what is needed
for reliable description of real system. Compromises are needed to be done during the

process of the mathematical modeling. The first level of compromise is to identify the most
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important parts of the system and include them into the model, the rest less important parts
will be excluded due to decreasing the complexity of the model. On the second level of
compromise we are taking in mind mathematical methods which are available for solving
particular problems. The mathematical procedures for obtaining the model should be
elegant and simple enough as the model itself, but also suitable for computer processing and
numerical solutions. Actually all previous talk can be expressed in few words by following

statements of great man'’s.
“Make everything as simple as possible, but not simpler.”— Albert Einstein

“Challenge in mathematical modeling is not to produce the most comprehensive descriptive
model but to produce the simplest possible model that incorporates the major features of

the phenomenon of interest.” — Howard Emmons

1.2 Classification of dynamical systems

We are using dynamical systems to describe the evolution of some monitored variables,
usually states or outputs of the system over time i.e. from their current state to the future
state. In the concept of a model of a system are these evolutions traditionally described by
differential or difference equations. Therefore most of the theory and tools have been
developed for handling such systems as purely continuous or purely discrete, or only in
continuous and only in discrete time. Although in recent years a significant need for
combining of these two worlds (continuous and discrete) arise from description of some real
systems, which are containing both continuous and also logical parts naturally. By combining
the continuous and discrete behavior together in single system, the third class of dynamical

systems called hybrid systems was born.

Attempt to classify dynamical systems based on the type of their state, appears in the

literature [Lys]:

1. Continuous state, if the state takes values in Euclidean space R" for somen>1. We

will denote x € R" as a state of a continuous dynamical system. Demonstration of

behavior of continuous state variable is shown on figure 1.1 left.
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Discrete state, if the state takes values in a finite set {,,...,b, }. We will denote b as

a state of a discrete system. Demonstration of behavior of discrete state variable is
shown on figure 1.1 right.

Hybrid state variables, if some of the states takes values in R" while another states
takes values in a finite set. For example, the closed loop system for computer control
of an inverted pendulum is hybrid: the state of the pendulum is continuous, while

state of the computer is discrete.

nature of continuous variable nature of discrete variable
2 2

1.5 1.5

0.5 0.5

continuous variable value
discrete variable value
’a]

time time

Figure 1.1: Behavior of continuous (left) and discrete (right) variable.

Classification based on the set of times over which the state evolves [Lys]:

1. Continuous time, if the set of times can take only real continuous values. We will use

t € R to denote continuous time. The evolution of the state x(¢) in a continuous
time system is typically described by an ordinary differential equation (ODE). Where
u(t)is a vector of inputs in a continuous time and f(x(t),u(t),t) can be either linear
or nonlinear state transition function.

x(t) = f(x(0),u(t),t) (1.1a)
x(t)eR" u(t)eR" teR, f:R"™™" > R" (1.1b)
Discrete time, if the set of times is a subset of the integers. We will use k € N to
denote discrete time. The evolution of the state x(k) in a discrete time system is

typically described by a difference equation. Where u(k)is a vector of inputs in a

14
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discrete time and g(x(k),u(k),k) can be either linear or nonlinear state transition

function.
x(k +1) = g(x(k),u(k), k) (1.2a)
x(kye R" u(k)eR" keN,, g:R"" > R (1.2b)

Hybrid time, when the evolution is over continuous time but there are also discrete

moments with special behavior or events.

State systems can be further classified according to the equations used to describe the

evolution of their states [Lys]:

1. Linear, if the evolution is governed by a linear differential equation (continuous time)
or difference equation (discrete time).
2. Nonlinear, if the evolution is governed by a nonlinear differential equation
(continuous time) or difference equation (discrete time).
1.3 Hybrid Systems

Hybrid models are part of dynamical systems which contains both, continuous and discrete

behavior with mutual interactions. Differential or difference equations are used as a typical

representation of continuous dynamics, on the other hand discrete part of hybrid systems

could be represented by discrete dynamics, logic rules (described by temporal logic, finite

state machines, if-then-else conditions, discrete events, etc.) or discrete components (on/off

switches, selectors, digital circuitry, software code, etc.). Hybrid systems has many operating

modes with different dynamical laws, these modes are switched by mode switches which

can be activated by particular state or time events or some external input events [Ant01].

The basic structure of hybrid system is illustrated on Figure 1.2.
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discrete discrete
inputs outputs
>
Discrete

— dynamics |

Mode Events
switches

L5 Continuous

dynamics
< -«
continuous continuous
outputs inputs

Figure 1.2: Basic structure of hybrid system.

1.3.1 Examples of Hybrid Systems

Hybrid systems are all around us, they arise in a large number of application areas, moreover

many physical phenomena admit a natural hybrid description:

Mechanical systems: In these systems the continuous motion may be interrupted by
collisions, or they can work in different modes, what can be described as discrete
events of finite state machine. The example of such system could be a cruise control
system, which controls the transmission gear (discrete input), the engine torque
(continuous input), and the braking force (continuous input) in order to track a
desired vehicle speed while minimizing fuel consumption and emissions [BemDHS].
Transmissions, stepper motors, and other motion controllers are discussed in
literature [Bro01], also as constrained robotic systems [BaGu01]. Another example
which shows naturally hybrid behavior is gasoline engine where the power train, gas
flow, and thermal dynamics are continuous processes, while the pistons have four
discrete operating modes. These systems are logically under deep interest of
automotive industry and considerable research in this field was done during recent
years more about it can be found in this work [BemDHS] and the references in.

Electrical circuits: Here the continuous phenomena such as charging of capacitors,
etc. are interrupted by opening and closing the switches, or diodes going on or off.

Into this category belong systems with relays, switches, and hysteresis or computer

16
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disk drives, for more details we recommend to the reader following article [Bran] and
its references.

e Chemical process control: The continuous evolution of chemical reactions is
controlled by discrete actions like opening valves and pumps. More about examples
for hybrid modeling of chemical processes could be found in publication [Agar].

e Embedded computation systems: When digital computer interacts with a mostly
analogue environment. An embedded system is computer system designed for doing
specified tasks usually as a part within a bigger system. Examples of these systems
we can find everywhere around us, they are taking part in our vehicles, airplanes,
factories and so one as shown on a Figurel.3.

e Networked control systems: are important class of hybrid systems, where sensing,
control, and actuation are not connected directly but they are connected by a shared

network medium [ZhBrPh].

Figure 1.3 [Bran]: Examples of embedded systems.

From theoretical point of view there is a wide range of systems that can be modeled as

hybrid systems [Mig, Bran]:

e Complex systems: organized in hierarchical way, where for example discrete
planning algorithms at the higher level interact with continuous control algorithms

and processes at the lower level [BemDHS]. In engineering practice there was few

17
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attempts to model complex systems like automated highway systems (AHSs) [Lys] or
multi-vehicle formations and coordination [Olaru].

e Multiple model systems: These are systems which general model and their overall
evolution is governed by different sub-models, by partitioning the state space into
regions with assigned sub-models (e.g. piecewise affine systems) or by changing
system parameters according to a given signal (e.g. switched systems or systems with
operating mode changes). Applications of these models appear in engineering
practice for example in flight control and air traffic management systems [Bran,
LysTom].

e Systems with switching components: Systems in this category include switching
elements like relays, dead-zones or hysteresis, more about these examples can be
found again in paper [Bran] and its references. Therefore electrical circuits could be
considered as one of the real world example for these types of hybrid systems.

e Adaptive systems: The hybrid nature of these systems lies in switching rules,
provided e.g. by piecewise affine systems or by finite state machines governing the
adaptation law.

e Systems with modeled failures: In case of sudden or abrupt faults, the occurrence of
a failure in a system can be modeled as a switching signal. The fault-prone system
can be then considered as a hybrid system.

e Systems involving synchronization signals: Such systems arise e.g. in communication

networks.

Even if we formally divided hybrid systems in some specific subclasses and types, it is
important to note, that all kind of hybrid systems are deeply interconnected and equivalent
in their nature. A single real process could be classified as a member of different hybrid

model classifications in the same time.

1.3.2 Motivation for Hybrid Systems

Motivation for initiation of the research and introduction of theoretical fundamentals for
hybrid systems lied in the fact, that there was no known single model capable of capturing
discrete and continuous dynamics together. Efficient tools for modeling analysis and

synthesis of hybrid systems was developed only recently. The theory of hybrid systems is
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connecting contributions from continuous system and control theory with field of computer
science called discrete event system theory. Connecting these two on first look different and
non-connected fields of engineering science was a big challenge. It was crucial to combine
capabilities of different modeling frameworks to be able to describe the behavior of hybrid

systems.

The design and analysis of hybrid systems are in general more difficult than design and
analysis of only discrete or only continuous systems, this is because the discrete dynamics is
affecting the continuous evolution and vice versa [Lys]. The interconnections between
discrete and continuous behavior are mostly very tight, therefore in modeling of discrete-
continuous relations is common to represent the discrete events as instant changes in

continuous dynamics.

Because of this in most practical cases, the synthesis of control schemes for systems having
also a discrete and continuous dynamical nature is still approached with heuristic rules,
usually driven by engineering insight and experience, but consequently this approach
requires long design and verification time. The interest of the control community is
motivated by several clearly apparent trends in industry which is calling for creating new
tools to design control schemes for hybrid systems and to analyze their stability, safety, and
performance. Based on these needs several problems are currently investigated in the
theory of hybrid systems, it is the definition and computation of trajectories, stability and

safety analysis, control, state estimation, etc. [BemDHS].

A simulator is usually used for definition of trajectories of hybrid systems, in general it is a
mathematical prediction model made to compute the time evolution of the variables of the
system, through the simulations we are able to verify and probe the correctness of the
model of the system. Tools like reachability analysis or piecewise quadratic Lyapunov
stability becomes a standard procedures in analysis of hybrid systems, more about this can
be found in literature e.g. [BemDHS, Hys, Mig, Tor] and their references. For controlling of a
hybrid model most of the nonlinear and logically also linear control theory can not be
applied because of special behavior of hybrid systems. At these days as most commonly
used approach for control of hybrid systems is an optimal control theory, which foundations

was laid by Richard Bellman and Lev Pontryagin.
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1.3.3 Modeling frameworks

Several modeling frameworks have been proposed recently to represent hybrid systems.
Each modeling class is usually made for dealing with particular problems, and therefore they
seem to be dissimilar at first look. But recent research shows that all hybrid modeling classes
are equivalent and therefore the models created in different framework can be under
additional assumptions transformed into another model framework. Therefore the same
system can be represented with models of each class. This is very important acquaintance
which allows us to choose most convenient hybrid modeling framework for concrete
problems. The equivalence of hybrid modeling classes has been proved for example in paper

[Equival] or can be found also in works [Mig, HeSBO1].

One of the earliest attempts for creating hybrid modeling framework appeared in the
process literature is called the theory of differential algebraic equations (DAEs) with an index

set, used as possible discrete model of a system [BarPan01].

In literature most commonly used frameworks are timed automata [Silv01, AsarO1] and
hybrid automata [Silv01, AlO1, AIDiO1]. Automata are elegant frameworks for modeling
hybrid systems and become very popular and proved to be successful for formal verification
of the models. We will introduce the discrete hybrid automata (DHA) [BemDHA, Hys, Mig,

Tor] later in Chapter 2.

At these days as most important and well known modeling subclasses we can further
mention are e.g. Mixed logical dynamical (MLD) models [BemMor, BempDHA, Tor, Mig],
piecewise affine (PWA) systems [Sontag], linear complementarity (LC) systems [HeSchW,
CaHeS, He01, AJSMS01, AJSMS02], extended linear complementarity (ELC) systems [SchM02,
Equival], max-min-plus-scaling (MMPS) systems [SchBO1, Equival], first-order linear hybrid

systems with saturation [Sch01] and linear coupled component automata (LCCA) [Agar].

Each modeling subclass has its own specifications and advantages compared the others. For
example, control and verification techniques as reachability/observability analysis for MLD
hybrid models, stability criteria were proposed for PWA systems [BeToMo], and conditions
of existence and uniqueness of solution trajectories (well-posedness) for LC systems and so

on.
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1.3.4 Future of Hybrid Systems

As is apparent from previous talk hybrid models are highly demanding on computation
power due to their complexity. It is important to point that modeling of hybrid systems is
creating mathematical problems which belongs to so called group of NP-hard problems
[wikiNPh], what means that computational time may grow exponentially with dimension
(number of variables) of the problem in worst case. Computational tools sufficient for
dealing with this type of problems become available only recently, what has brought a huge
space of opportunities for exploring and applications of hybrid systems. Therefore hybrid
systems become currently very popular and important field of study among both academic

and industrial researchers.

Ideal theoretical visions to the future are talking about systems as whole entities without
heterogeneous parts [AnNe]. So there will be no need for denoting system to be discrete,
continuous or hybrid, it will be just a system describing and incorporating entire dynamics by

uniform rules.

1.4 Basic Terminology and Definitions

1.4.1 Convex Set

Definition 1.1 [BoyVan]: A set C < R" is convex if the line segment between any two points

in C liesin C,i.e.forany x,,x, € C and any real number 8, where 0 <0 <1, is true
6x,+(1-0)x,eC (1.1)

Roughly speaking a set C is convex if any two points lying in the set x,,x, € C, can be

connected by a straight line which lies entirely within the set C. Examples of convex and

nonconvex sets are shown on following figure 1.4.
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Q&

Figure 1.4: Left - example of convex set. Right - example of nonconvex set.

1.4.2 Convex Hull

Definition 1.2 [BoyVan]: The convex hull of a set C, denoted convC, is the set of all convex
combinations of points x,,...,x, e R" in C:

covvC={0x, +...4+0,x, | x,€C, 0,>0,0,+..0, =1, i=1,..,k} (1.2)

The convex hull is always convex, it is the smallest convex set of any set B, therefore

convB < B . Examples of convex hulls are shown on figure 1.5.

OO

Figure 1.5: Left - Convex hull of set of 15 points. Right — convex hull of nonconvex set.

1.4.3 Polytope

In literature a polytope has two standard representations, the V-representation and H-

representation. All polytopes are convex sets.
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Definition 1.3 [BoyVan]: The H-representation of polytope is defined as a solution set (1.3a)
of linear inequalities and equalities (1.3b). Where x € R", and matrixes 4,B,C,D are

containing real coefficients for linear inequalities and equalities.

P={x|Ax < B,Cx =D} (1.3a)
al b, e/ d,

A= , B= , C=|:| and D=| : (1.3b)
al b, c; d,

Definition 1.4 [BoyVan]: The V-representation of polytope is defined as convex hull (1.4) of

finite number of points in Euclidean n-dimensional space: x,,...,x, € R".

P:conv(x],...,xk) (1.4)

A vertex of polytope, which all components are integers, is called an integral vertex.

1.4.4 General Optimization Problem

Mathematical optimization problem has a form

minimize:  f(x) (1.5a)
subject to: g,(x)<b,, i=1,...,m (1.5b)
h(x)=k,, j=1..,p (1.5¢)

Where the vector x = (x,,...,x, ) is the optimization variable of the problem, f(x): R" — R
is the objective function, gl.(x): R" — R are representing inequality constraint functions,
h; (x): R" — R are representing equality constraint functions, and the constants bl.,kj eR

are bounds for constraints. The vector x * is called an optimal solution of the problem (1.5),

if it has smallest value of objective function (1.5a) while holding the constraints (1.5b,c¢).

1.4.5 Linear Programming

Linear programming (LP) is an important class of optimization problems, in which objective

function and all constraints are linear.
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minimize: c'x+d (1.6a)

subject to:  a/x<b,, i=1,...,m (1.6b)
T .

hix=k;,, j=L...,p (1.6¢)

Where the vectors c,a,,h; € R" and scalars d,b,,k; € R.

1.4.6 Mixed Integer Programming

Mixed-integer programming (MIP) is another important class of optimization problems,
which characteristic hallmark is that they are containing both, real and also integer valued
variables. We are talking about mixed-integer linear programming (MILP) problem, when the

objective function and constraints are linear.

minimize:  f(x) (1.7a)
subject to: g,(x)<b,, i=1,...,m (1.7b)
h(x)=k,, j=1..,p (1.7¢)
x,eN [=1..p (1.7d)

Where x, denotes integer variables.

Because of this mixed nature, MIP problems are suitable for capturing hybrid dynamics and
therefore for modeling of hybrid systems. In this thesis we are dealing with modeling
frameworks which are constructing representing MIP problems for description of hybrid

system.
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Chapter 2

2 Modeling of Hybrid Systems

Efficiency is the most important feature for solving of optimization problems, but for
obtaining efficient solution not only high performance solvers are required, also modeling
issues are playing very important role in optimization process. Different modeling
approaches are providing models with various complexities, and even small changes in the
models structure can cause huge improvement of optimization efficiency. Especially in case
of hybrid models which could be extremely complex and hard to solve, efficiency is crucial

task for each modeling framework.

In this chapter we will describe several hybrid model representations introduced in literature
[BemDHS, BemMor, Tor, Mig]. Particularly we are dealing with discrete hybrid automatas

(DHA), piecewise affine systems (PWA) and mixed logical dynamical systems (MLD).

2.1 Model Classes for Hybrid Systems

As we mentioned in Chapter 1 there is a big amount of divisions and classifications of hybrid
systems. For our purposed is not necessary to mention or describe all of them, in this section
we will focus only on three well known modeling classes of hybrid systems, with which we
are dealing in this work and therefore it will be convenient to spare some words about them.
In following pages we will show how easy it is to describe hybrid systems as discrete hybrid
automatas (DHA). These models can be conceived as general modeling representation for
hybrid systems, and consequently can be easily transformed into other classes of hybrid
systems. DHAs are powerful tool for description of hybrid systems, but due to their hybrid
and autonomous nature they are not suitable for control and properties investigation of
modeled systems. Next modeling framework what we will discuss are piecewise affine
systems (PWA). These models can be widely used for example as approximation of nonlinear
functions, and can be easily transformed into corresponding mixed-integer optimization

problems. The last modeling framework is called mixed logical dynamical systems (MLD),
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models created within this framework are computation oriented, because they are internally
defined in form of mixed-integer inequalities, and therefore are suitable for solving analysis,

optimal control, and receding horizon estimation problems.

2.2 Discrete Hybrid Automata

A discrete hybrid automaton (DHA) is a dynamical system that describes the evolution in
time of the values of a set of discrete and continuous state variables [Lys]. The model is
called hybrid because it combines nonlinear continuous dynamics with the dynamics of
discrete event systems. Continuous part of DHA is represented by switched affine systems
(SAS) which are described by a set of ordinary differential equations and discrete dynamics
of the systems is represented as finite state machine (FSM). Additional elements of DHA are
the event generator (EG) and the mode selector (MS) which provides the interactions
between discrete (FSM) and continuous part of the system (SAS). The EG extracts and
generates logic signals from the continuous part of the system, this is done in form of
non/satisfying of the linear-thresholds for continuous variables (states, inputs, outputs).
Those logic events and other exogenous logic inputs trigger the switch of the state of the
FSM. Then the MS is processing all logic signals (states, inputs, time events, linear-
thresholds) to choose corresponding mode of continuous dynamics for SAS. Block diagram

representation of DHA is shown on figure 2.1.

We are dealing with DHA models because they are fairly rich in descriptive power, also
compilation of such models for description of real systems are usually very intuitive and easy
to do, because of these properties DHA is very popular and widely used as a modeling

framework for hybrid systems among academic and engineering society.
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Event
Generator | zr (k)
(EG) N
Oc(k
su) [
(%) (FSM; @
A O/ \\O
— Switched
Affine
System (SAS)
Mode
-'Ub(k) % Selector )
ub(k) : (MS) ’L(k)
:D—

Figure 2.1 [ToBe]: Representation of DHA as a connection of EG, FSM, SAS and MS.

2.2.1 Switched Affine Systems

A switched affine system (SAS) is a collection of linear affine systems:

x,(k+1)=A4x, (k)+Bu, (k)+ f,(k) (2.1a)
¥, (k)= Cyx, (k) + D, (k) + g,(k) (2.1b)

Where ke N, x, € X, < R"is the continuous state vector, u, e U, < R" is the exogenous
continuous input vector, y. € Y. < R” is the continuous output vector, {Ai’Bi’fnCprgi}
are the matrices of suitable dimensions, and the mode i(k) e [ == {1,..,s} is an input signal
that chooses the linear state update dynamics. When a switch occurs a SAS of the form (2.1)
preserves the value of the state, however it is possible to implement reset maps on a SAS.
The reset can be taken as a special dynamics that is active only for one sampling step. With
using reset maps we are able to model also non continuous dynamics or functions. A SAS can
be rewritten as the combination of linear terms and if-then-else rules: the state-update

Equation (2.1a) is equivalent to
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A, (k) + Bu, (k) + f(k), if (i(k) =1) (2.2a)
z(k) = 0 ,
, otherwise
Ax, (k) + B, (k)+ f.(k), if (i(k)=s) (2.2b)
z,(k) = 0 ,
, otherwise

x(k+1)=Y 7, (k) 2.2¢)

where z,(k) e R" ,i=1,...,5,and (2.1b) admits a similar transformation.

2.2.2 Event Generator

An event generator (EG) is a mathematical object that generates a logic signal according to

the satisfaction of a linear constraint:
5(k) = f,, (x, (k),u, (k),k) (2.3)

Where f, :R"xR" xZ* — D c{0,1]" is a vector of descriptive functions of a linear
hyperplane, and Z* = {0,1,...}is the set of nonnegative integers. In particular, time events
are modeled as: [5’(k)=1]<—)[kTs zzo], where Ts is the sampling time, while threshold

events are modeled as: [5i(k):1]<—>[aTxr(k)+bTur(k)£c], where the superscript i

denotes the i-th component of a vector.

2.2.3 Finite State Machine

A finite state machine (FSM) or automaton is a discrete dynamic process that evolves

according to a logic state update function:
x, (k+1) = fy(x, (k). (k),6(k)) (2.42)

where x, € X, {0,1}"” is the Boolean state, u, €U, {0,1}”” is the exogenous Boolean

input o (k) is the endogenous input coming from the EG, and

fp X, xU,xD— X, is a deterministic logic function. A FSM can be conveniently

represented using an oriented graph. A FSM may also have an associated Boolean output
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vy (k) = g, (x, (k),u, (k),8(k)) (2.4b)

wherey, =Y, {0,1}”” and g, : X, xU,xD —Y,. The idea of transforming a well-posed

FSM into a set of Boolean equalities was already presented in [Parbar01] where the authors
performed model checking using (mixed) integer optimization on an equivalent set of

integer inequalities.

2.2.4 Mode Selector

The mode selector (MS) consist of the logic state x,(k), the Boolean inputs u, (k), and the
events 0(k) which select the dynamic mode i(k) of the SAS through a Boolean function

Ju : X, xU, xD —I.The output of this function i(k),

(k) = oy (6, (K, (K),5(K)) 2.5)
is called active mode. Literature says that a mode switch occurs at step & if i(k) =i(k—1).

In this discrete-time setting a mode switch can only occur at sampling instants, contrarily to

continuous time hybrid models, where switches can occur at any time.

2.2.5 DHA Trajectories

For the given initial condition [x (0);x,(0)]e X,xX, , and for the input
u(k) =[u,(k);ub(k)]e U,xU,, ke N" the state trajectory x(k),k e N*, of the system is
recursively computed as follows:
1. Initialization: x(0) = [xr (0);xb(0)];
2. Recursion:
a. 8(k) =y, (x, ()., (k). k)
b i(k) = £, (x, (k). (k). 5 (k)
c. ».(k)=Cx,(k)+Du,(k)+g,(k)
d. y, (k) = g (x, ()., (k). 5 (k)
e. x (k+1)=A4x, (k)+Bu, (k)+ f, (k)

£ x,(k+1) = f,(x, (K),u, (k),5(k))
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Definition 2.1 [BemDHS, Tor]: A DHA is well-posed on X, xX,, U, xU,, Y xY,, if for all
initial conditions x(0) = [xr (0);x, (0)] e X, xX,, and inputs u(k) = [u,(k);ub (k)] eU, xU,,
keN', the state trajectory x(k)e X, xX,, and output trajectory

y(k) = Ur k), (k)] €Y xY,, are uniquely defined.

This definition can be used also for other types of hybrid models what were introduced
before. In general a hybrid model may not be well-posed, either because the trajectories
stops after a finite time or because of nondeterminism (the successor x(k +1)may be
multiply defined) [BemDHS,Tor]. But note that trajectories of DHA are deterministic,

therefore also well-posed.

2.3 Piecewise Affine Systems

A particular case of DHA is the popular class of piecewise affine (PWA) systems [HeeSchBem,
Son, FTMLMO3, RBLO4]. PWA systems are for short defined by partitioning the space of
states and inputs into polyhedral regions and associating with each region a different linear
state-update equation. Essentially, PWA are switched affine systems whose mode only

depends on the current location of the state vector.

x(k +1) = Ax(k) + Bu(k) + fy, (2.6a)

y(k) = Cx(k)+ Du(k) + g (2.6b)

i(k)
For [x(k); u(k)]e;(l., where x, € X, c R", is the state, ueU c R", is the input and

yeY c R” is the output at time instance k. {ZZ} is a polyhedral partition of the

i=l,....s
state-input space defined by a system of inequalities {Hix+H;u < Ki} and
{Al.,Bl.,fl.,Cl.,Dl.,gl.,Hi,H;,Ki} , are real matrices of suitable dimensions.

PWA systems are the “simplest” extension of linear systems that can still model non-linear

and non-smooth processes with arbitrary accuracy and are capable of handling hybrid

phenomena. For PWA systems, well-posedness [wikiWP01, wikiwP02] is defined as follows.
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Definition 2.1 [BemDHS]: A PWA system is well-posed on (X,U, Y), if for all initial
conditions x(0) = X and for all inputs x(k) € X, forall k € N, the state trajectory x(k) e X

and the output trajectory y(k) € Y are uniquely defined.

When the mode z'(k)z{l,...,s}is an exogenous variable, the condition [x(k); u(k)]e;(l.

disappears and we refer to (2.6) as a switched affine system (SAS).

On figure 2.2 there is shown example of PWA system defined by one variable PWA function

divided into five regions, which are including different dynamical laws.

Piecewise Affine Function

15r .

f(x)

0.5 5

o
-
M
w
SN S ——
w

X

Figure 2.2: Example of one dimensional PWA function with 5 regions.

2.4 Mixed Logical Dynamical Systems

In [BemDHS, BemMor] a class of hybrid systems, called Mixed Logical Dynamical (MLD)
systems, has been introduced in which logic, dynamics and constraints are integrated. An

MLD system is described by the following relations:

x(k +1) = Ax(k) + Byu(k) + B,5(k) + B,z(k) (2.7a)
y(k) = Cx(k) + Du(k) + D,5 (k) + Dyz(k) (2.7b)
E,5(k)+ E,z(k) < E,u(k) + E,x(k) + E, (2.7¢)
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Where x(k) = [xrr (k) x,. (k)]T with states of the system x, (k) € R", x, (k) € {0,1}", outputs
y(k) and inputs u(k) have similar structure as states. Next z(k) € R" are real and
o(k) e {O,l}r” binary auxiliary variables and 4,B,,8,,B,,C,D,,D,,D; E,...E, are real
matrices of suitable dimensions. Auxiliary variables are introduced when translating
propositional logic or PWA functions into linear inequalities. All constraints for variables of
new MLD system are summarized in the mixed-integer linear inequality constraint (2.7c).
The MLD system is considered to be completely well posed if for a given state x(k) and input
u(k) the values of 6(k) and z(k) uniquely defined by the inequality (2.7c). A formal

definition of wellposedness for MLD systems and a algorithm to test the well-posedness

have been presented in [BemMor].

The MLD framework is a powerful tool for modeling discrete-time linear hybrid systems, it
aims at translating a hybrid system in a set of mixed integer linear equalities and
inequalities. Via MLD framework we are able to describe automata, propositional logic, if-
then-else statements and PWA functions. General nonlinear functions cannot be modeled

and have to be approximated by PWA functions.
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Chapter 3

3 Hybrid Systems Modeling Framework

3.1 Introduction

Aim of this Chapter is on investigating and proposing an efficient mathematical framework
for modeling of hybrid systems. The core of this framework will be build on translation
techniques for efficient rearrangement of systems with hybrid dynamics or logical
components defined either as DHA or PWA into corresponding mixed-integer problem, what

is suitable computational representation of hybrid systems solvable by numerical solvers.

At the beginning of this Chapter we are investigating the connections between logic
propositions and mixed-integer linear constraints. First we will highlight a general
propositional calculus for handling the Boolean variables, and then we will focus on
techniques for translation arbitrary Boolean statements or functions into equivalent mixed-
integer linear inequalities. We will also introduce the Big-M conversion, which is efficient
tool for converting a complex, possibly nonconvex or logical constraints and functions into
form of mixed-integer inequalities. Later on we will show how to transform more complex
hybrid systems defined as DHA or PWA into MIP form by using Big-M formulations with
combination of translation techniques defined for Boolean functions. And in the end of this
Chapter we are proposing an attempt to make these general transformation techniques
more efficient by decreasing logarithmically the number of auxiliary binary variables
included in resulting mixed-integer problem. This can be done by “binary encoding” of
integer variables in original model by new auxiliary binary variables. For the purpose of
improvement of efficiency and solvability of resulting model we are also presenting the
cutting-plane approach to eliminate infeasible combinations of new auxiliary binary variables
with focus on minimization of number necessary cuts i.e. extra linear constraints included in

our model.

33



Jan Drgona Diploma Thesis

3.2 Logical Propositions

In the beginning we will start with some basic definitions of Boolean algebra. A variable X is
referred to as a Boolean variable or literal, if X < {0, 1}. Boolean algebra enables statements

to be combined in compound statements by logical operators named in following Table 3.1.

Logical operator Symbol
Logical conjunction - AND A
Logical disjunction — OR %
Logical negation - NOT -
Logical implication - IF —
Logical equivalence — [F AND ONLY IF -
Logical exclusive or - XOR @

Table 3.1: Logical operators and their characters.

Logical operators or connectives have several properties [Chr01] whose allows to transform
compound statements into equivalent statements by using different connectives and
simplify complex statements. It is known that all connectives can be defined in terms of a
subset of them, which is said to be a complete set of connectives{ v, —} [BemMor]. In
literature a minimal representation of Boolean statement is called conjunctive normal form
(CNF), where the only propositional connectives a formula in CNF can contain are AND, OR,

and NOT {/\, Vv, —|} [wWikiCNF]. The Boolean statement F is in CNF (Boolean equivalent of

products of sums) if it is written in following form:

F:Q% (3.1a)
v, =V X, (3.1b)
Jj=1

Where the Boolean formulas y, are named terms of the product, and X, are named terms

of the sum. The formula is in minimal CNF when the formula has minimum number of terms
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of the product and each term has the minimum number of terms of sum [BemDHS]. Every
Boolean expression can be rewritten as a minimal CNF [Koh]. Logical expressions which are
not part of CNF { AV, —|} or complete set of connectives{ Vv, —|}, can be rewritten into these
forms by using logical equivalences between logical expressions as is shown in following
example 3.1. More about logical equivalences you can find in papers [BemMor, Mig] and

their references.

Example 3.1:
Logical statement Equivalent logical statement
X, A X, —(—X, A=X,)
X, =X, —X, &> X,
X, =X, —X, v X,
X, & X, (X, > X,)A(X, > X,)

Table 3.2: Example for equivalency of logical statements.

When a Boolean expression is used to define a Boolean variable X, as a function of

X,,...,X, ,,itisalso called a Boolean function f defined as follows.

X, =f(x.X,,....X, ) (3.2a)
Relations between Boolean variables X,,..., X, can be defined with Boolean formula F .
F(X,X,,...X,)=1 (3.2b)

Where X, 6{0, 1},i:1,...,n. Each Boolean function is also a Boolean formula, but this

statement is not valid conversely i.e. each Boolean formula doesn’t have to be a Boolean
function. Boolean formulas can be equivalently translated into a set of mixed-integer

inequalities (MIP), what we will show in next stage of this thesis.

Complex theory of Boolean calculus can be found in digital circuit design texts, e.g. [Chr01,

Hay01]. And more mathematically rigorous interpretation can be found e.g. [Med01].
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3.3 Propositional Calculus and Mixed-Integer Programming

In this section we are presenting several general techniques for translation of logical
statements into computable form of mixed-integer inequalities. Incentive to do so is that
mixed-integer programming problem has been advocated as an efficient tool to perform
automated deduction of validity of logical propositions [CaPaSo]. For further reading about
techniques of translation process and generalization of some results we recommend to the

reader following works [BempDHS, Mig] and their references.

First we want to point on conversion of basic logical statements into mixed-integer

inequalities what is shown in Table 3.2. Let’s associate with Boolean variable X, a logical

variable 9, € {0, 1} which hasavalueof 1if X, =7 ,and 0if X, = F'.

Operator Logical statement Mixed-integer (in)equality
AND X, nX, 6,=1,6,=1, or 6,+6,22
OR X, vX, 0,+0,2>1
NOT —X, 0,=0, or 1-6,21
XOR X, @X, 0,+90,=1

IMPLIES X, =X, 0,-0,<0
IFF X, X, 0,-0,=0

Table 3.3: Conversion of basic logical statements into mixed-integer inequalities.

In literature [BemDHS, Mig] there are mentioned two general methods for conversion of
logical statements into mixed-integer inequalities. Authors are naming them symbolical and
geometrical method, further we are extending symbolical method to be more general and
applicable on any type of logical statements, and using it as a main translation technique for
our modeling framework. But it is important to mention that all these techniques are in the
end proposing equivalent results, because they are tracking the same objective, which is to

find equivalent mixed-integer linear inequalities for arbitrary Boolean functions (3.2a) or
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formulas (3.2b). Therefore no method is uniformly better than the others and the choice of a

suitable method is dependent on the form of the logical statements.

3.3.1 Symbolical Method

Symbolical or CNF method is based at first on transforming Boolean functions (3.2a) or
Boolean formulas (3.2b) into conjunctive normal form (CNF). This can be done automatically
by using one of the standard well known techniques mentioned in [ChHoo01, Chr01]. Let us

consider to have the CNF defined as following.

/\(VXI. v —|Xl.) (3.32)

j=1\ ieP; ieN,
Where N,,P, c {1,...,n}, Vji=1,...,m.

This CNF than can be transformed into the mixed-integer inequalities with corresponding

binary variables 6, like this

1<>°5,+ Y (1-5,),

ieR ieN,
: (3.3b)
1<>°6,+>.(1-6,).
ieP, ieN,,

3.3.2 Extended Symbolical Method

Disadvantage of previous symbolical method is demand for logical statements to be in CNF.
Therefore we will present extended symbolical method used in this thesis, which is able to
use full scale of logical operators, not only CNF. In the Table 3.4 there are shown few most
commonly used examples of general logical statements transformed into MIP inequalities via

extended symbolical method.

Logical statement Mixed-integer (in)equality
X, <X, 0, 21-6,
X, > X, 0, <1-6,
XO = —|X] 50 = 1 - 5]
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Xo <X, AX AKX,
Xy > X, AX ALX,

Xo=X, "X/ ~n...X,

0, 21+Zn:5i -n

i=l1

5, <6,

8y 21+>.8,-n,8,<6,
i=1

Xo< X, vX v.. X,

Xy > X, vX v.. X,

Xo=X,vX v..X,

5, >,
8, <6,
i=l1

8, <Y.8,,6,26,
i=1

X, <X, 00X @...X,

X, > X, 0X, ®...X,

X, =X, 00X, ®..X,

n
5, <

i=1

8y 26,-2.5,

J#i
0, < n 5, <n+(1-n)s,

i=l1

S, <n+(1-n)s,,8,268 -9,

1
J#i

Table 3.4: Conversion of basic logical statements into mixed-integer inequalities via

3.3.3 Geometrical Method

extended symbolical method.

Geometrical method or truth table method [MoBeMi02] has two steps. First step is that the

set of points in [0,1]" satisfying the Boolean function (3.2a) or Boolean formula (3.2b) is

computed. Each row of the truth table is associated with a vertex of the hypercube{O,l}

n

The vertices are collected in a set J of valid points, the rest of the points {0,1}" \V are

called invalid. The valid point is a satisfying truth assignment for a Boolean formula. The

mixed-integer inequalities are than obtained by computing the convex hull of 7, for which

several tools are available e.g. [FukuO1]. We can define the set of valid integer points as

following

P, = {x elo1] :xe conv(V)}

3.4)
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Where P, is a polytope defined by all the valid points of Boolean formula, and conv(V)

defines a convex hull of the set of valid points V. This method allows an automatic
translation of truth table representing Boolean formulas into mixed-integer linear

inequalities [Mig].

3.4 Big-M modeling

3.4.1 Big-M conversion

We are using so called big-M formulation as a modeling framework for modeling a complex
or logic constraints and functions by converting and reformulating them into form of mixed-
integer models. The idea of big-M formulation is based on forcing different constraints to be
active or inactive by adding extra binary variables as “indicators of validity” for constraints
into the model. By transforming of model of hybrid system into the mixed-integer
inequalities we are able to capture both continuous and also discrete parts of the system

into single by numerical solvers computable and feasible model.

The basic procedure for creating a big-M formulation from any constraint or a function is to
decompose their descriptions into a set of it-then-else conditions, which are easy to model
by using auxiliary binary variables. This is done by adding large positive value of constant M

in each constraint and this value is multiplied by binary variable &, € {0,1}. Let’s have a
function f;(x) which should be active only if binary variable 6, =0 and zero when binary
variable 6, =1. The corresponding big-M formulation of previous if-then-else condition is

following

m(1-68,)< f,(x)<M(1-5,) (3.5)

Notice that even if the method is called big-M, setting the values of the constants (m, M) to
be very large or even infinite can work in theory, but in practice it will cause considerable
numeric drawbacks and most of the solvers will be inefficient or they don’t have to find the
optimal solution at all. On the other hand if the values of constants will be very small, the

optimal solution in the original problem could be cut away and the problem won’t be
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feasible anymore. Therefore it is very important that constants (m, M) should be estimated

so close as possible to lower (3.6a) and upper (3.6b) bounds of function f;(x):
m = min f,(x) (3.6a)

M =max f,(x) (3.6b)

Proper value of (m, M) can be determined by setting numerical constraints or pre-computing
of possible values of functions used in big-M formulation. But this is not always possible for
several reasons as unbounded real variables or unknowing of the behavior of functions used
in big-M formulations. Therefore accurate estimation of (m, M) is a crucial task in
formulation of good big-M formulations. Theoretically, an under (m) or over (M) estimate of
constants suffices for our purpose. However, more realistic estimates provide computational

benefits [Wil01].

3.4.2 DHA, PWA and Big-M Formulation

Big-M conversion can be understood as suitable continuous-logical modeling framework for
hybrid systems represented either as PWA or DHA, what is in the interest of investigation of
this thesis. As we know SAS (part of DHA) or PWA can be rewritten as the combination of
linear terms and if-then-else rules as is shown in Chapter 2 in section Hybrid Models.
Because of this nature, these models are suitable for big-M conversions into the mixed-
integer inequalities by using techniques mentioned in section below called “Big-M models
library”. Moreover the events (2.3) of DHA can be also expressed as big-M formulations in

following form
fr (e, (o) u, (), k)< M(1-5,) (3.7a)
f (x, (k),u, (k). k)= ms, (3.7b)

Conversion of logical statements typical for mode selector (MS) of DHA, can be also easily
done by using techniques mentioned in section named “Propositional calculus and mixed-

integer inequalities”.
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3.4.3 Big-M Models Library

In this section we are representing several big-M models of most commonly used logical
relations between binary variables, linear equalities and inequalities or polytopic constraints.
At first let’s present some basic assumptions, we denote &, € {0, 1} as a binary variable, and
x € X < R, as areal variable. Linear inequality constraint is defined as {aTx—b < 0}, where
a” and b are scalar vectors. Similar we define also linear equality constraint as
{aTx—b = 0}. Multiple linear inequalities i.e. polytope is defined as {Ax—B <069, = 1}
(1.3), where i =1,...,n. And integer linear inequality is defined as {abTx—bb < O}, where
index b denotes that coefficients abT and b, can obtain only integer values. And (m, M) are

positive scalar values set as mentioned in previous section. Than the representation of

corresponding big-M models are shown in following Table 3.5.

Type of statement Big-M model (MIP inequality)

binary variable — linear inequality

a'x-b<M(1-5)
{5—>aTx—bSO}

binary variable — linear equality

T
{6 >a’x-b=0 m(l-8)<a’x-b<M(1-5)

binary variable — polytope inclusion

'x—b, <M/(1-6
{5—>al.rx—bl.S0} G { )

linear inequality — binary variable

{aTx—bSO—nS:l} mé<a'x—b

Integer linear inequality — binary
variable m+l 5+l£arx—b

r 2 2
{abx—bb <0->9 =1}

. . . . ms, —r<a x—b,
linear equality — binary variable ‘ ‘ ‘

(because it is impossible to do this ax—b <r+M (1 - 51.)
directly, we have to use the same
techniques as for polytope inclusion < L
binary variable described below) Gy 21+ Z 6, —n
—r<a’x-b<re8=1
\-rsa’s-bsr ! 5, <8, r>0
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<a'x-
linear inequality < binary variable mé<a x—b

{aTX—bSO‘_)‘S:l} arx—bSM(1—5)

1
Integer linear inequality < binary (m + 5j5 + 3 <a'x-b
variable
{a,fx—bb£0<—>5:1} aTx—bS%+(M+%j(l—5)

ms, <a' x—b,

. . . . airx_biSM(l_ai)
polytope inclusion < binary variable

{4x-B<0 &5, =1 5,21+38,—n

i=1

5, <3,

. . . . . . mé<a'x—b
linear inequality — linear inequality

{aTx—bSO—>ch—dSO} ch—dSM(l—5)

Table 3.5: Big-M models library.

Big-M formulation has proved to be very convenient modeling framework for constructing
MIP problems, but there are still few numerical drawbacks, which arises not from the theory
itself, but from computers nature of representation the numbers. They are lots of references
about computer representation of numbers which can be found on internet, just for

curiosity we recommend to the reader following sources e.g. [ASan01, wikiCoNul].

Each computer is able to work with specified numerical precision and the size of the
numbers which can be processed by computer is also limited. It is impossible to work
directly with numbers like infinity, or zero representation in floating point method is also not
precisely defined. Therefore not all mathematical expressions are available to be
represented in current numerical solvers without losing some precision and even if they are
computable, the computation time needed for processing could be enormously large. In to
the group of “hard to solve” mathematical expressions belongs for example equality

constraints{aTx—b :0}, which are being transformed into two corresponding inequality

constraints (one from each side) to force the expressions to be equal as it is shown in 6" row
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of Table 3.5. Another example is strict inequality constraints {aTx—b < 0}, which need some

small numerical thresholds to be defined around zero value. Several of these techniques for
handling the mathematical expressions to be numerically solvable by numerical solvers are
incorporated in Big-M formulation, as you can see in a Table 3.5. In Big-M modeling there
are also used techniques for conversion of logical expressions into MIP inequalities defined
in Table 3.4. As an example you can look on 9" row of Table 3.5 where is defined Big-M
representation of statement (polytope inclusion €<= binary), where the Big-M conversion of
logical AND operator from Table 3.4 has been used. The reader can found more of practical
examples about Big-M formulation and mixed-integer programming in following references

[YalMIP, YalBigM].

3.5 Efficient Modeling of Hybrid Systems

The complexity of resulting MIP model translated from logical propositions is significantly
determined on number of binary variables included in the model. The complexity of MIP
model rises exponentially with increasing number of involved binary variables, what has
huge impact on speed of solving of the mathematical optimization problems. Solving of MIP
optimization problems is necessary for synthesis, analysis and control of hybrid models.
Therefore a reduction of a size of the model seems to be a crucial task in efficient modeling

approach for these models.

In this chapter we will show that it is possible to encode and replace the binary states of DHA
by fewer new auxiliary binary variables in the form of linear integer inequalities, we are
calling this technique “binary encoding” of integer variables. One original binary variable will
be assigned exactly with one integer inequality. Each inequality will be unique combination
of valid points of truth table (geometrically vertex of a hypercube) composed for Boolean
function of auxiliary variables. By this approach we can reduce the number of necessary
binary variables logarithmically comparing to original MIP problem, as we will show in
following pages of this thesis. Later on we are presenting also efficient technique for
removing the infeasible combinations of new auxiliary variables i.e. invalid points of truth
table from feasible regions of resulting MIP problem. This is done by adding extra constraints

(cuts) into the MIP problem. This procedure is necessary for avoiding the model to be
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declared in infeasible and undefined regions which could appear in MIP formulation, what in
theoretical way should keep correct DHA trajectory and ensure well posedness of the hybrid

model.

As a main reference for this Chapter we should mention work [Olaru], in which is author
investigating and proposing enhanced techniques for hyperplane arrangement in MIP
problems. In this paper are presented ideas for reduction the binaries on logarithmic size by
“binary encoding”, which we are using in our modeling framework and has been also
mentioned earlier in paper [BemMor]. In paper [Olaru] there is also shown technique for
constraints (cuts) reduction, based on grouping the cuts together, when a single cut is used
for separation more than one infeasible combination of auxiliary variables (geometrically
vertex of hypercube). By this approach we can obtain significant decrease of number of used
cuts. Moreover with small changes in cuts creation (by using so called deep cuts) we
improved this technique of “reduced cuts” to technique of “reduced deep cuts”, which are
constructing more suitable representation of MIP model for current numerical solvers. We

are presenting this technique later on in this chapter.

3.5.1 Binary Encoding of Integer State Variables

Here we will present the general technique for binary encoding of original Boolean variables
nq

X, e {0,1}"" by logarithmic number of new auxiliary binary variables 5]. € {0,1} with using

the Truth Table Method (Geometrical Method) defined few sections above. This technique is
based on defining the original binary variable as a Boolean function (3.2a) of new auxiliary

binary variables, where each binary variable X, is associated with one corresponding row of

the truth table, geometrically represented as a vertex of hypercube. Each row of the table is

represented as a unique combination of new variables 5j or it can be conceived also as a
unique Boolean formula of variables 5j . The maximum number of all possible combinations
of variables 5j equals 2" where n, means cardinality of new auxiliary binary variables.
Hence the number of new auxiliary binary variables n, needed for encoding the original

binary variables in cardinality of n_ will be set by relation (3.8), where the brackets |.|

denotes the ceiling operator.
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n, =[log,(n,)] (3.8)

As mentioned before in section about Geometrical Method, the truth table can be set up
e.g. by enumeration of corresponding Boolean formulas. More detailed definition of a truth

table can be also found in work [Mig] or on a web [wikiTT].

For demonstration we will create a table of all possible combinations of three auxiliary

binary variables {5,,5,,5,}. Where each row of the table can be represented as a different

Boolean formula in CNF, therefore we can use a transformation techniques proposed in the
Table 3.4 to transform these Boolean expressions into equivalent mixed-integer linear
inequalities, as is shown in following example 3.2. The ¢> operator means that all

transformation procedures are equivalent and reverse.

Example 3.2:

Truth Table Boolean formula Mixed-integer inequality
o, | 0, | 0

0 0 0 > =0, A=0, A—0, PN -6,-0,-0,20
0 0 1 > =0, A—0, A O, TS -0,-6,+06,2>1
0 1 0 > -0, A0, A0, PN -0,+0,-0,21
0 1 1 > -0, A0, NO, PN -0,+0,+06,2>2
1 0 0 > 0, A=0, A—0, PN 0,—0,—-0,2>1
1 0 1 > 0, A—=0, N0, — 6,—0,+06,=2
1 1 0 “— 0, NO, A0, — 0,+0,—06,2>2
1 1 1 — 0, N0, NO, — 0,+6,+06, 23

Table 3.6: Example for conversion of truth table into equivalent Boolean formulas and

mixed-integer inequalities.

As we can see in previous example for each row of the truth table there is exactly one
corresponding mixed-integer linear inequality, with which we can replace an original binary

variable X, in MIP problem. It is obvious that in this example the number of binaries X,

what we can encode with this approach by three auxiliary binary variables {5],52,53} is set
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by relation 2" defined before, hence equals 2° = 8. On figure 3.1 is show the corresponding

visual representation of hypercube {O,l}3 for truth table from example 3.2.

Figure 3.1: Visual representation of truth table from example 3.2 as a 3-dimensional

hypercube with valid points {O,l}3 .

Technique of “binary encoding” of integer variables allows us to significantly decrease the
number of binaries involved in our model what goes hand in hand with decreasing of
complexity of whole model, but nothing is for free and several drawbacks appears also in

this approach.

First cost what we have to pay is hidden behind new Big-M conversions which need to be
done. In “binary encoding” approach a single binary variable is replaced by corresponding
mixed-integer linear inequality, because of this the logical implications and equivalences
used for modeling are becoming more complex and therefore more difficult to transform
into Big-M formulations as it was with using only single binary variable. For this purposes
there are available efficient transformation techniques for more complex statements (e.g.
integer linear inequality <> binary variable) as is shown in Table 3.5 which is containing the
Big-M models library. So even if we reduce the number of binary variables what decreases
the complexity of the model, the number of MIP inequalities needed for description of the
model is rising, due to more complex Big-M formulations, what has certainly negative effect
on complexity of the model created by this approach. Or sometimes even a new auxiliary
binary variable which is used for description of a complex statement is needed to be

incorporated into the model, what is also increasing the complexity of the model. Here we
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have to be careful and compare the pros (decreased number of binaries) and cons (increased
number of MIP constraints and auxiliary variables) of this approach for particular model

situation and its effect on complexity of resulting model.

Second problem what we have to deal with appears when the number of original binary
variables X, what we want to encode is not equal to powers of two 2" . As we mentioned
before the number of new auxiliary variables needed for encoding n_ states is equal to the

number set by relation (3.8), so the number of auxiliary variables and their descriptive
power is not arbitrary choice. In this approach we may face a situation when there will be
more possible combinations of the auxiliary variables (tuples or nodes) than we actually
need for encoding of original binary variables. And here the problem of infeasible tuples of
auxiliary binary variables or unallocated vertexes of hypercube arises. Note that the number

of unallocated tuples n, may obtain a significant value especially with higher number n_ of
original binary variables. The number 7, is function of n_and is set by following relation
(3.9).

nu — 2|—1ng(nx)—| —n (39)

X

We will demonstrate this problem on following example 3.3.

Example 3.3: Let us consider a model with five binary states X, , where i =1,...,5. These
can be represented by three auxiliary binaries {5,,8,,5,}, for whose the truth table was

shown in example 3.2. To each row of the truth table and to corresponding MIP inequality

we will assign exactly one binary state X,. Note that there are three rows of the table left
without any assignment, therefore these three tuples are unallocated. The number n, =3
fits also with equation (3.9), because in this example n, =3 and n, =5 . But this is

something what a numerical solver can’t realize without our help. The solver will consider
these unallocated nodes as a feasible solutions (because we didn’t say to him opposite), and
could lead the optimization into undefined regions of MIP problem, what will cause the

crash of our model.
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On figure 3.2 is shown the visual representation of hypercube for the example 3.3, with
three unallocated nodes marked with blue crosses. These unallocated nodes are

representing last three rows of truth table from example 3.2.

(1,0,1)

(1,1,1)

1 (1,1,0)

Figure 3.2: Visual representation of hypercube from example 3.3 with three unallocated

tuples {(1,0,1); (1,1,0); (1,1,1)}.

We need to somehow say to the solver that this tuples where no actual binary state is
defined should be put out of feasible regions of constructed MIP problem. The solution of
this problem will be shown in following stage about cuts, where the extra linear constraints
will be added into the model for eliminating these infeasible combinations of auxiliary

variables.

3.5.2 CUTS

By the notion of “cuts” we are meaning extra constraints added to the model to restrict
infeasible integer or possible non-integer solutions that would be solutions of the
continuous relaxation of MIP problem computed by most of the solvers. By this approach we
can ensure that we will find optimal solution and significantly reduce the number of
branches needed to solve MIP problem and consequently improve the speed of obtained
solution. Therefore the demand for finding a “good” cuts and incorporating them into the

model plays very important role in efficient modeling of MIP problems.

In this part of the thesis we are investigating several approaches for removing infeasible
nodes (unallocated vertexes of hypercube) from feasible regions of MIP problem by cuts.
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Visual demonstrations of used techniques will be shown on 3-D hypercube from example 3.3

constructed as a combination of three binary variables {5,,5,,5,}.

3.5.2.1 One node one cut approach

This is a basic approach to solve the problem with unallocated nodes (infeasible integer
solutions). Main idea is to use exactly one mixed integer inequality for cutting away one
particular infeasible node from a model, as can be seen also on figure 3.3. This approach is
very easy to implement, because the representing mixed integer inequalities for a single
node can be found by using transformation techniques shown in Table 3.4. For this purposes

we also present following definition.

Definition 3.1: us consider a collections of all possible combinations of #n binary variables

{5],...,5n} with cardinality £ =1,...,2", which are shaping an n-dimensional hypercube

k
and each of them can be conceived as a vertex of this hypercube. Then we can find a
constraint (3.10) for each vertex, which is putting this particular combination of binaries and

only this combination infeasible.
ny np
-Y5, -3 (1-6,)< - (3.10)
i#j J#i
Note that n, represents the number of binaries in tuple (node), which value is equal to 1 or
TRUE, and n, represents the number of binary variables with O or FALSE value. Then the

total number of binaries in one tuple must hold following equalityn, +n, = n. Geometrical

representation of each constraint of type (3.10) is a hyperplane which is separating the

space in to two half spaces, one feasible and one infeasible.
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Figure 3.3: A single cut (hyperplane - blue) separating one vertex of the hypercube.

Example 3.4: We will demonstrate this basic approach on three infeasible nodes from
Example 3.3, with using three single cuts to restrict them from feasible region of the model.

Corresponding MIP inequalities (3.11) for restricting these nodes are shown in following

Table 3.7.

Infeasible node {5],52,53} Corresponding cut (MIP inequality)
(1,0,1) 0,—-0,+06,<2-¢ (3.11a)
(1,1,0) 0,+06,-06,<2-¢ (3.11b)
(1,1,1) 5,+6,+08,<3-¢ 3.11¢)

Table 3.7: MIP inequalities for restricting infeasible nodes {(1,0,1); (1,1, 0); (1,1, 1) }

Note that there is extra scalar value ¢ € (0,1) deducted from right side of the MIP inequality,
this value says how “deep” the cuts will be and how much space from the feasible region
they will cut. So when the scalar € =0, it means that this cut will be very strict and it will lie
exactly on node that should separate, on the other hand when & =1, it means that this cut
is deep and is cutting away from feasible region as much space as possible. Although the

choice of the value ¢ € (0,1) is arbitrary, it has a huge impact on model efficiency during the

optimization as will be demonstrated later in section about deep cuts approach.

We used value € =0.5 in our example 3.4 just for a demonstration of above mentioned

issues, than the corresponding visual representation of these cuts is shown on figure 3.4. On
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the left picture there are shown three restricted areas of hypercube defined by cuts, which
are containing the infeasible nodes, these infeasible regions are painted by blue color and
the remaining feasible region is painted yellow. On the right picture, there is shown a
polytopic representation of the feasible region for corresponding MIP model after executing
the cuts. Where red nodes are representing feasible integer solutions and blue nodes are

representing non-integer solutions, which are naturally infeasible for MIP problem.

Figure 3.4: Left - Single cut approach for cutting away three nodes by cuts (3.11) from

example 3.4. Right — remaining feasible region with 7 non-integer nodes (blue).

Disadvantage of this approach is that for more complex problems with a lot of unallocated
nodes we need to incorporate a huge number of extra constraints to the model, what is
making the model even more complex and less efficient for solving optimization problems.
The efficient technique for minimizing the number of constraints can be found in paper

[Olaru] and we are describing it in following section named “Reduced cuts approach”.

Second even bigger drawback lies in a polytopic representation of feasible regions for
resulting MIP model. As we can see on right picture from figure 3.4 after adding the cuts in
to the model, new non-integer nodes (blue) appears in geometrical representation of
feasible regions of the model. These nodes obviously can’t be the solutions of the MIP
problem, but for continuous relaxations of MIP problem these nodes are representing
feasible solutions of relaxed LP problem. So for all the current solvers based on algorithms

using LP relaxations of the MIP problem would be this representation of the MIP model

51



Jan Drgona Diploma Thesis

highly inconvenient and inefficient, due to increased number of branches needed to be
checked, or for some advanced solvers there would be need for presenting their own cuts
for restricting these infeasible solutions from continuous relaxations. Therefore for further
use of the model is very important to provide “good” cuts, which will minimize the number
of non-integer nodes in polytopic representation of feasible regions of the MIP model, what
will provide significant relief in number of the LP relaxations of MIP problem needed to be
solved by numerical solvers. We will focus on this issue in following pages of this thesis in
section named “Reduced deep cuts”, where we are trying to combine the technique of
reduced cuts and technique of deep cuts to provide more efficient representations of MIP

models for current numerical solvers.

3.5.2.2 Reduced cuts approach

By this approach we are able to significantly reduce the number of cuts incorporated in the
model. This is done by merging single cuts for particular nodes together to create one

complex cut for cutting away more than one node.

The idea is based on finding and grouping the neighbor nodes of hypercube together and
introducing a single inequality for their restriction from feasible region. By meaning of
neighbor node we mean for example two vertexes which are forming an edge of hypercube,
or four vertexes of hypercube which are forming one plane of a hypercube. So generally we
can group together and separate by single cut 2" nodes, which are forming n-dimensional
hyperplane which is part of a multi-dimensional hypercube representing corresponding

combinations of used binary variables.

Now arise the question what can be the best possible allocation of infeasible nodes in the
hypercube, for grouping as much as possible neighbor nodes together. Even if the allocation
of nodes is arbitrary and one can choose different combinations, we are proposing following
ordering of binary variables to be most favorable for reduced cuts approach, because of the
maximum number of neighbor nodes placed next to each other. The idea is to use basic,
most simple ordering of nodes where we are gradually changing the values of binaries in
descending order from the last binary to first binary one by one, what geometrically means
that we are changing the position from one vertex to another vertex by moving on edges of

the hypercube. You can check that this is true e.g. by enumeration of vertexes of hypercube
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from figure 3.1. We are using this ordering in every example of this thesis and can be seen
e.g. in truth table for example 3.2. With using basic ordering the number of new reduced

cuts n, depends on number of unallocated nodes (3.9) and can be approximately estimated

by following relation (3.12).

n, =[log,(n,)] (3.12)

Note that equation (3.12) is only raw estimation and not a strict relation. Real relation
between number of reduced and number of original cuts, can be seen in Appendix on figure
A.1. Moreover dependence of maximum number of original and reduced cuts on number of

auxiliary binary variables 6 is shown in Appendix on figure A.2.

For better understanding of this technique there are following examples 3.5 and 3.6. In
example 3.5 we are presenting also figures 3.5 and 3.6, with visual demonstrations of
complex cuts for vertexes of 3-dimensional hypercube. And on example 3.6 we are

demonstrating the reducing constraints power of this approach.

Example 3.5: Let us consider a hypercube representation for all possible combinations of

three auxiliary binary variables {3,,8,,8,} , while three of the nodes are infeasible, as shown

on Example 3.3. Separation of the infeasible nodes by single cut approach was demonstrated
on Example 3.4. Now we will show that it is possible to use instead of three MIP inequalities
(3.11) only two MIP inequalities (3.13) for all three nodes, to restrict them from feasible
region. First what we have to realize is which of these nodes lies together an edge of the
hypercube, to be able for us separate them by single cut. On figure 3.5 is clearly visible that
the following pairs of nodes {(1,0,1); (1,1,1)} and {(1,1,0); (1,1,1)} forms together two edges of
the hypercube. Than the corresponding MIP inequalities (3.13) for these edges are defined
in following Table 3.8. Their visual representation is shown on figure 3.5 where on the left
picture there is hypercube with cut defined by inequality (3.13b) and on the right picture is
shown a hypercube with cut defined by inequality (3.13a).

Pair of infeasible nodes Corresponding complex cut
{6,,6,,6,} (MIP inequality)
(1,0,1);(1,1,1) 5,+6,<2-¢ (3.13a)

53




Jan Drgona Diploma Thesis

(LLO);(LLL) 5, +6,<2-¢ (3.13b)

Table 3.8: MIP inequalities for restricting two infeasible edges of hypercube.

For cuts (3.13) demonstrated on figures 3.5 and 3.6 we also used value ¢ =0.5 as in
example 3.4, this was done for a better comparison of these two techniques. Moreover on
figure 3.6 is shown a remaining feasible region after executing these complex cuts (3.13)

with new 6 non-integer nodes.

Figure 3.5: Complex cuts for edges of the hypercube. Left — cut for two nodes defined by
equation (3.13b) with value & =0.5. Right — cut for two nodes defined by equation (3.13a)

with value ¢ =0.5.

10

Figure 3.6: Remaining feasible region after two complex cuts with 6 non-integer nodes
(blue).
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Example 3.6: Assume that we have model with 9 binary states X,,i=1,...,9, and we want
to encode them by using 4 auxiliary binary variables {5],52,53,54}. As we know from

section about binary encoding, 4 extra binaries are providing us space for encoding 2°=16
binary states of the model. Hence after constructing the truth table and associating for each

binary state X, exactly one row of the table, there will be 7 unallocated nodes left in 4-D

hypercube representation. Unfortunately we can’t visualize this example, but corresponding

unallocated combinations of 5j variables and their corresponding cuts (3.14) using basic

“one node one cut” approach, what is shown in following table 3.9.

Infeasible node . . .

{ 5,.,5,,5,, 54} Corresponding cut (MIP inequality)
(1,0,0,1) 6,-0,-0,+0,<2-¢ (3.14a)
(1,0,1,0) 6,=0,+06,-0,<2-¢ (3.14b)
(1,0,1,1) 0,-0,+6,+6,<3-¢ (3.14¢)
(1,1,0,0) 6,+06,-06,-0,<2-¢ (3.14d)
(1,1,0,1) 0,+6,-06,+6,<3-¢ (3.14¢)
(1,1,1,0) 0,+0,+0,-6,<3-¢ (3.140)
(1,1,1,1) 0,+0,+0,+9,<4-¢ (3.14g)

Table 3.9: Example of basic approach with 7 single cuts for 7 infeasible nodes.

Now we apply the results of this section to reduce the number of cuts by merging the
neighbor nodes together and separate them by single cut. In a table 3.10 we can see that for
this particular case we were able to replace 7 single cuts (3.14) constructed by basic
approach just with 3 complex cuts (3.15) constructed by using “reduced cuts” approach.
Note that the group of 4 infeasible nodes (3.15a) is forming one plane of a hypercube and
the pairs of infeasible nodes (3.15b, 3.15c) are forming two edges of a hypercube. The values
of particular binaries highlighted bold are representing common values for the group of

nodes, from which the corresponding MIP inequalities were derived.
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Group of infeasible nodes

(5,,5,,8,,8,} Corresponding cut (MIP inequality)
1,1,0,0); (1,1,0,1);
( & ) 0,+0,<2-¢ (3.152)
(1,1,1,0); (1,1,1,1)
(1,0,1,0); (1,0,1,1) 6,-6,+06,<2-¢ (3.15b)
(1,0,0,1); (1,0,1,1) 0,-06,+0,<2-¢ (3.15¢)

Table 3.10: Example of 3 complex cuts for restricting 7 infeasible nodes.

As shown on example 3.6 this approach provides great improvement in number of
constraints what we have to incorporate into the model, what is decreasing the complexity
of the resulting model. But on the other hand as we can see on example 3.5 exactly on figure
3.6 the number of non-integer vertexes which are created by using this approach is still
considerable large what has negative effect on computing efficiency of the model. We will
show how to easily handle this drawback in next section of this thesis, by providing deep

cuts.

3.5.2.3 Deep cuts approach

In this section we want to prove that reduced cuts approach is obtaining best results with
performing so called deep cuts i.e. with value of ¢ =1 for cuts defined by equation (3.10).
The cut is called deep because is restricting maximum possible space from feasible region

while still holding the condition for cutting away desired nodes.

Using of this approach can be seen on figures 3.7 and 3.8 where we used cuts (3.13) from
example 3.5, the only difference here is that we changed the value of & from 0.5 to 1. Than
we can compare the figures 3.6 and 3.8 with remaining feasible regions after executing cuts
of these two approaches. As is clear from this comparison, with performing deep cuts we are
obviously creating more suitable model for mathematical optimization, because in model
demonstrated by figure 3.8 there are no extra non-integer nodes, which would otherwise

slow down the numerical solvers based on LP relaxations of MIP problem.

Even if we didn’t propose the proof that this approach prevents from creating new non-
integer vertexes in remaining polytopic representation of feasible region, we assume that
the number of them is minimal in comparison with different approaches which were

mentioned in this thesis.
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1 0 3

Figure 3.7: Complex deep cuts for edges of the hypercube. Left — deep cut for two nodes
defined by equation (3.13b) with value & =1. Right — deep cut for two nodes defined by

equation (3.13a) with value ¢ =1.

Figure 3.8: Remaining feasible region after performing two complex deep cuts with no non-

integer nodes.
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Chapter 4

4 Software Tools for Hybrid Modeling

In this chapter we will shortly introduce modeling tools used in this thesis, particularly
modeling languages HYSDEL [Hys] and YALMIP [YAL]. Both tools are shipped with free Multi-
Parametric Toolbox (MPT) for MATLAB [KGBC], designed for analysis and deployment of

optimal controllers for constrained linear and hybrid systems.

In this thesis we are using several MLD models developed in HYSDEL for comparison with

hybrid models created in YALMIP, what will be shown in following pages.

4.1 HYSDEL

HYSDEL (HYbrid Systems DEscription Language) is a high-level modeling language, which
allows describing hybrid dynamics in textual form, than the related compiler is used for
translation of textual form into computational mathematical models of hybrid systems,
particularly into MLD or PWA form. As we demonstrated in chapter 2, system described in
MLD form can be instantly used for optimization to solve e.g. verification or optimal control
synthesis problems. For further reading and better understanding of HYSDEL modeling
language, we highly recommend to the reader following sources [Hys, ToBe, Tor, BemDHS,

Mig].

4.2 YALMIP

YALMIP is a powerful modeling language for advanced modeling and solution of convex and
nonconvex optimization problems. It is implemented as a free (GNU license) MATLAB
toolbox with rapid algorithm development. The language is in accordance with standard
MATLAB syntax, what makes it extremely user friendly for common MATLAB users. The tool
was initially developed in 2001 and over the years has grown enormously and today
supports a broad range of optimization problems. Also a large number of various modeling
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tricks are included, what helps user to focus on high-level modeling, while low-level
modeling is done internally by YALMIP providing as efficient models as possible. Supported
optimization classes are wide, such as linear, quadratic, second order cone, semidefinite,
mixed integer conic, geometric, local and global, polynomial, multiparametric, bilevel and

robust programming [YAL].

One of the central ideas of YALMIP is that it relies on external solvers carrying computation
aspects, while the tool itself is focusing on the language and high-level algorithms. Complete
list of supported external solvers can be found on YALMIP home page [YAL] in section
“solvers”. Moreover YALMIP is also shipped with internal solvers for global optimization,
mixed integer programming, multiparametric programming, sum-of-squares programming

and robust optimization [YAL].

For purposes of hybrid modeling we will naturally focus on construction of mixed integer
models in YALMIP. We highlight the reader on chapter 3 where most important YALMIP
modeling features for MIP problems are presented, especially we refer to Big-M modeling

approach as a main tool used internally in YALMIP for construction of MIP problems.

4.2.1 YALMIP Hybrid Modeling Framework

Main goal of this thesis lies in creating user friendly and efficient computational modeling
framework suitable for creating corresponding MIP models of hybrid systems defined as
DHA or PWA. The idea was driven by exploit capabilities of YALMIP and creating MIP
representations of hybrid systems with using YALMIP modeling features described in chapter
3. Motivation for creating such framework lied in that all current computational hybrid
modeling tools require knowledge of specific language syntax e.g. HYSDEL. In contrast our
YALMIP hybrid modeling framework is completely based on YALMIP syntax, which as
mentioned before is consistent with standard MATLAB syntax, what makes modeling process
in this tool very simple and intuitive for all MATLAB user. We are demonstrating “user
friendliness” of framework syntax on following pages of this thesis, and efficiency of
resulting models in chapter 5 as main powers of this modeling tool. Further in the text we

are denoting this new framework YALMIP-FSM (YALMIP - finite state machine).
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4.2.1.1 YALMIP-FSM Modeling Language Syntax

Modeling syntax consists from creating three basic input objects: variables, states, and

transitions.

Variables object is containing information about variables names, sizes, binary-real
indicators (declaring variable to be binary or real), and variables bounds defined in
parameters section. State object is containing declaration of dynamical behavior for
particular state. Transition object is carrying information about switching condition between
two states and pointers on interconnected states, first for original state and second for
destination state. These three objects (variables, states, transitions) together with declared
time horizon and options are set as inputs for core function of modeling framework, which is

automatically creating resulting hybrid model as a set of MIP constraints.

We will demonstrate framework’s syntax simplicity on following examples 4.1 and 4.2.

Example 4.1: Let us consider a hybrid model of thermostat with 2 discrete states (4.1b)
involving different dynamical behavior. Dynamics in states are defined by difference
equations: x,,, = x, —heat for statel representing cooling, and x,,, = x, + heat for state2
representing heating, where X, is continuous state variable (4.1a) and denotes the

temperature, note that the k-th index denotes a time step for continuous state variables.

Model contains also two transitions (4.1c) with thresholds for switching the states.
Transition from statel to state2 is defined by lower bound (LB) for temperature x, <21°C,
and transition from state2 to statel is set by upper bound (UB) for temperature x, > 23 °C,

for numerical tightness we are using in modeling case (4.1c) tolerance of 0.1°C. Block
diagram for this model is shown on figure 4.1, and moreover for demonstration of
functionality an open loop simulation on time horizon N = 15 with initial conditions

x, =21°C is shown on figure 4.2.

Complete corresponding YALMIP-FSM framework syntax is demonstrated as follows (4.1).
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Declaration of Variables and Parameters: (4.1a)

% x — temperature u - heating switch

names = {'x' 'u' };

varsizes = {[1,1] [1,1] };

indicators = { 'r' 'b' };

% variable parameters — minimal and maximal temperature allowed

param.ineq = { '[ min temp <= x{k} <= max temp ]' };

param.eq = {};

param.val = { 'max temp = 50; min temp = 0; heat = 1;' };

% variables input object

variables = yalmip fsm variables(names, varsizes, indicators, param );
States: (4.1b)

% state 1 - heating off

sl = yalmip fsm state('[x{k+1} == x{k} - heat ]');

% state 2 - heating on

s2 = yalmip fsm state('[x{k+1} == x{k} + heat ]');

states = [ sl1, s2 ];

Transitions: (4.1c)
% transition 12 - jump from state 1 to state 2

tl2 = yalmip fsm transition(sl, s2, '[ x{k} < 21.1 ]");

% transition 21 - jump from state 2 to state 1

t21 = yalmip fsm transition(s2, sl, '[ x{k} > 22.9 ]");

trans = [tl2, t21];

Core Function and Options: (4.1d)
% 'unary' - basic approach; 'binary' - binary encoded states
Options.encoding = 'unary';

% 'basic' - one node one cut; 'enhanced' - reduced cuts

Options.cuts = 'basic';

% 0 - silent, 1 - elapsed time

Options.verbose = 1;

% core modeling function, fsm - outgoing model, V - internal variables
[fsm, V] = yalmip fsm(states, trans , variables, N , Options)

Figure 4.1: Block diagram of hybrid model of a thermostat from example 4.1.
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Figure 4.2: Open loop simulation of hybrid model from example 4.1.

Example 4.2: In this example we assume to have hybrid model of a truck with 4 discrete
states. First state S1 represents a loading of a truck in static loading place (i.e. not moving
original destination: Dy<0). Loading of a truck is represented by difference equation

C,,, =C, +load,, where C, represent capacity (how much load can truck carry) of a truck

in k-th time step. State S2 represents travelling of a truck toward target destination what is
defined by difference equation D,,, = D, +speed,, where D, denotes a distance of a truck
from origin destination in k-th time step. State S3 represents unloading of a truck in static
unloading place (i.e. not moving target destination: D>300). Unloading of a truck is
represented by differential equation C,,, = C, —unload, . State 54 represents travelling of a
truck back to original destination what is defined by equation D,,, = D, —speed, . Switching

conditions for “static” states S1 and S3 to “traveling” states S2 and S4 are represented by
binary variable move,, while switching conditions from states S2 and S3 and from state 54 to

51 are defined by distance thresholds Dy > 300 and D < 0.

Consistent description of the states and switching conditions for this model is demonstrated

on block diagram shown on figure 4.3. Corresponding YALMIP-FSM code, with defined

62



Jan Drgona Diploma Thesis

variables and parameters can be found in Appendix (code A.1). Open loop simulation on
time horizon N = 15 with initial conditions (51=1; loady=0; unload,=0; distance,=0; capacity,

=0) is shown on figures 4.4 and 4.5.

Ci+1=C,t+load,
Dy+1=Dx

Cy+1=Cy
Dy+1=Dy*speedy

&

Cir1=Cy
Di+1=Di-speed,

Cy+1=C,-unload,
Dy+1=Dx

&)

Figure 4.3: Block diagram of hybrid model of a truck from example 4.2.
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Figure 4.4: Continuous states and inputs behavior in open loop simulation of hybrid model of

a truck from example 4.2.
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Figure 4.5: States (S) and transitions (t) behavior in open loop simulation of hybrid model of

a truck from example 4.2.

4.3 Computational Aspects

In this section we computationally test the hybrid models created in HYSDEL and in YALMIP-
FSM framework. For this test we used hybrid model of a truck with 4 binary states defined in
previous section example 4.2, corresponding codes for YALMIP-FSM models (code A.1) and
HYSDEL models (code A.2, code A.3) are enclosed in Appendix. All models were solved using
commercial solver Gurobi 4.6.1 on Intel® Core™ i3 CPU 2.40 GHz 64-bit Windows 7
workstation with 3GB of RAM.

In our test we used four different models, two models with different modeling approaches
defined in chapter 3, for each modeling framework (HYSDEL, YALMIP-FSM). First we used
basic approach with unary encoding of state binary variables, what means that for each
binary state we used exactly one binary variable in model, second used approach was binary
encoding approach of state variables, what means that for each binary variable we allocated
exactly one unique combination of auxiliary binary variables. We solved open loop
simulations for each model with varying prediction horizons from 6 to 16. For better
numerical tightness of results and avoiding of statistical errors, we did 10 repetitions of

solution for each model on particular prediction horizon.
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Results of the test are presented on figures 4.6 and 4.7, which are demonstrating
considerable efficiency improvement of our YALMIP-FSM models with comparison to
HYSDEL models, what is demonstrated on table 4.1. This improvement occurred because of
YALMIP enhanced modeling techniques, where YALMIP during setting of constants (3.6) for
Big-M models is considering parameters appearing in whole model, while HYSDEL during
setting of Big-M constants (3.6) for resulting MIP problem is looking only at parameters
defined in INTERFACE section of model code. Because of this, YALMIP models are
numerically much tighter and therefore more efficient for solvers based on MIP relaxations,

than models created via HYSDEL.

YALMIP-FSM vs HYSDEL

Unary approach ~59 %

Binary approach ~56 %

Table 4.1: Improvement of efficiency of tested YALMIP-FSM models comparing to HYSDEL

models.

Moreover from results of the test is obvious that models using unary encoding approach are
providing better results than models with binary encoding approach. Demonstration of
higher efficiency of unary encoding approach comparing to binary encoding approach is
shown in following table 4.2. However these results are in conflict with primary assumptions
about more efficient models with less binary variables by using binary encoding approach.
Explanation comes with fact, that even if we were able to decrease the number of primary
state binary variables logarithmically, the number of auxiliary binaries has raised in need to
describe more complex logical expressions, what was mentioned in section 3.4 about Big-M

modeling.

Unary Encoding vs Binary Encoding
YALMIP-FSM ~27 %
HYSDEL ~33%

Table 4.2: Comparison of tested models with unary encoding approach with models using

binary encoding approach created in YALMIP-FSM and HYSDEL.
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It is important to note, that differences in solver times for models are growing with rising
prediction horizon, and therefore numbers presented in tables 4.1 and 4.2 are only

estimations based on obtained data from this particular test.

YALMIP-HYSDEL models comparison

10 E T T T T B
| =——HYSDEL unary ]
HYSDEL binary |
=—YALMIP unary i
— YALMIP binary
@ 10" | ]
o : :
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? L
107 E
o ]
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Figure 4.6: Comparison of solver times dependence on prediction horizon, for HYSDEL and

YALMIP-FSM models with unary and binary encoding approaches.

Binary encoded YALMIP model Unary encoded YALMIP model
[}_4 T T T T T

solvertime [s]
solvertime [s]

ol_4 : i i i ol_1 i i i i
6 8 10 12 14 16 6 8 10 12 14 16
pred honzon pred horizon
Binary encoded HYSDEL model Unary encoded HY SDEL model

solvertime [s]
solvertime [s]

6 8 10 12 14 16 6 8 10 12 14 16
pred horizon pred horizon

R 0

Figure 4.7: Maximal, minimal and average values of solver times for all tested models.
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On figure 4.6 there visible that differences in solver times for particular models have
approximately constant values, what means that complexity of models depend primary on
prediction horizon. Figure 4.7 shows errorbars for tested models with maximal, minimal and
average value of solver time for each prediction horizon, where we can observe few
considerable deviations from average values, especially in using of binary encoding. General
deviations were probably caused by random numerical drawbacks resulting from higher
number of optimization problems solved repeatedly, while particularly high deviations for
models with using binary encoding approach could be caused by more complex model
construction, which is more sensitive on numerical tightness of corresponding MIP

relaxations.

Our final recommendations based on test results are to keep using “basic” binary encoding
approach (section 3.4), because these models proved to be more efficient than models using

“enhanced” binary encoding approach (section 3.5), despite the initial assumptions.
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Conclusion

As is well known hybrid models can be represented in form MIP problems, which belong to
class of NP-hard problems. What roughly speaking means that there is no algorithm for
solving this kind of problems in polynomial time, unless P = NP. Therefore efficiency
improvement appears to be a crucial task in modeling of such systems, to provide solvable

computational models.

In first part of the thesis we discussed DHA and PWA systems as theoretical modeling classes
of hybrid systems, together with recently developed MLD systems as efficient highly

computational oriented modeling framework for hybrid systems.

In second part of this thesis we are dealing with main goal of this thesis, which was to
propose an efficient mathematical framework for modeling of hybrid systems represented
either as FSM or PWA systems. For this purpose we introduced and discussed technique of
Big-M modeling, which has proven to be efficient modeling technique for translation of
hybrid models involving propositional logic statements into the MIP form. For enhanced
modeling we proposed technique of “binary encoding” of state binary variables, which
logarithmically decreases number of needed binary variables. Moreover we also introduced
techniques for reducing the number of cuts (MIP inequalities) required for restricting

infeasible combinations of auxiliary binaries from feasible region of resulting MIP model.

Third part of this thesis is introducing new hybrid modeling framework (YALMIP-FSM) based
on modeling techniques mentioned above. This framework was developed as extension of
free MATLAB optimization toolbox YALMIP, therefore is fully consistent with YALMIP and
MATLAB syntax. We are receiving computational MIP model as an output of our framework,
while hybrid system on input can be defined as DHA or PWA system. Moreover all low level
modeling is done automatically and internally by YALMIP functions what gives user
possibility to focus at high level modeling of hybrid systems. All these properties of YALMIP-
FSM framework makes it extremely user friendly without additional need for knowing extra
modeling languages or modeling features. Framework syntax was also demonstrated on two

modeling examples.
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In the end this thesis we computationally tested models created in YALMIP-FSM framework
in comparison with models created in modeling language and compiler HYSDEL. We also
tested enhanced modeling approach of binary encoding of state variables together with
basic unary encoding approach. The results are demonstrating considerable efficiency
improvement of our YALMIP-FSM models comparing to HYSDEL models. We obtained this
improvement due to YALMIP enhanced modeling techniques which is constructing much
tighter models, which are more suitable for solvers based on MIP relaxations. In our
computational study we also obtain one surprising result, enhanced binary encoding
approach has showed to be nearly one-third less efficient than basic unary encoding
approach. This was probably caused by extra auxiliary binaries introduced internally into the
model, necessary for description of more complex logical statements, which appeared with

binary encoding approach.
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Resumé

Hybridné systémy (HS) su systémy obsahujlice sucasne spojité aj diskrétne dynamické
spravanie. V Uvode tejto prace su strucné predstavené zdkladné vlastnosti takychto
systémov, pokus o ich rozdelenie do SpecifickejSich podskupin, spolu s prikladmi systémov
zinZinierskej praxe. Vymenovdvame najpouzivanejsie pristupy k modelovaniu hybridnych
systémov, z ktorych vyberame avdruhej kapitole podrobnejSie opisujeme konkrétne
diskrétne hybridné automaty (DHA) , po castiach afinné (PWA) systémy a vypoctovo

orientované zmieSané logicko-dynamické (MLD) systémy.

V tretej kapitole detailne predstavujeme pristup k modelovaniu hybridnych systémov aich
reprezentdciu vo forme celociselného optimalizacného problému, ktory pouzivame
v praktickej Casti tejto prace. Uvadzame tri transformacné techniky na transformdciu
logickych vyrazov do matematickej reprezentacie zmieSaného celodiselného optimalizacného
problému, definovaného vo forme celoéiselnych linedrnych rovnic anerovnic. Dalej
predstavujeme techniku takzvaného Big-M modelovania, slizZiacu na konstrukciu efektivnych
modelov vo forme zmieSaného celodiselného programovania ako aj ich vztah s modelovymi
pristupmi (DHA, PWA) spomenutymi v druhej kapitole. Na tieto ucely je predstavena kniznica
Big-M modelov, pomocou ktorej sme schopny transformdcie Sirokého spektra logickych
vztahov a vyrazov do prislusnej formy celociselného programovania. Ako uz bolo spomenuté,
v probléme zmieSaného celodiselného programovania su celociselné premenné klasicky
definované pomocou takzvaného unarneho (jednozlozkového) kédovania, priradujic prave
jednu binarnu premennu ku kazdej moznej celodiselnej hodnote. V poslednej sekcii tretej
kapitoly sa venujeme efektivnejsim pristupom k modelovaniu hybridnych modelov, pomocou
takzvaného binarneho kdédovania, ktoré vyzaduje len logaritmické mnoZstvo p6vodnych
binarnych premennych log,(N). TaktiezZ rieSime problémy indikdacie a separacie neriesitelnych
kombinacii bindrnych premennych pomocou extra ohraniceni, takzvanych rezov pridavanych
do modelu. Zakladny pristup spociva podobne ako v unarnom kédovani v priradeni jedného
ohranicenia (rezu) na separaciu prave jednej neriesitelnej kombindcie. Pre zvySenie efektivity
vysledného modelu je vSak vyhodné pouzitie mensieho poctu komplexnych rezov, kazdy rez
pre viacero neriesitelnych kombinacii si¢asne. Preto predstavujeme techniku ,redukovanych

hlbokych rezov” (reduced deep cuts approach) pomocou ktorej sme schopny minimalizovat
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pocet potrebnych ohraniceni priblizne na logaritmickd Uroven z poctu pévodnych ohraniceni,
pricom sa vsak sucasne snaZzime vytvarat efektivne modely pre linedrne relaxacie
celociselného problému s ¢o mozno najmensim pocétom moznych necelociselnych vrcholov

v mnozine moznych rieSeni pre dany model.

Stvrtd kapitola sa zaobera programovou realizdciou modelovych technik a postupov
prezentovanych v kapitole tretej. Prezentujeme vytvoreny programovy balik (YALMIP-FSM)
pre modelovanie hybridnych systémov, ktory je rozSirenim volne Siritelného
optimalizacného toolboxu YALMIP pre MATLAB. Je predstavend jednoduchost
novovytvoreného modelovacieho programového balika, ktorého syntax je zalozend na
syntaxe modelovacieho jazyka YALMIP, ktory je konzistentny sjazykom MATLAB, tieto
vlastnosti robia hybridné modelovanie pomocou YALMIP-FSM extrémne jednoduchym

a intuitivnym pre bezného MATLAB pouZivatela.

Na zaver demonstrujeme funkénost modelovacieho toolboxu YALMIP-FSM na dvoch
prikladoch hybridnych systémov. Taktiez je demonstrované porovnanie vyslednych YALMIP-
FSM modelov s modelmi vytvorenymi pomocou modelovacieho jazyka HYSDEL. Vysledkom
tohto porovnania, je fakt Ze modely vytvorené pomocou nami vytvoreného modelovacieho
programového balika YALMIP-FSM boli zhruba o55% efektivnejSie ako HYSDEL (MLD)
modely, ¢o sme dosiahli len vdaka vysoko efektivnym pokrocilym modelovacim technikdm a
trikom obsiahnutych v toolboxe YALMIP. Avsak porovnanie réznych pristupov kddovania
bindrnych premennych ndm prinieslo mierne prekvapivé vysledky, ked sa zhruba o30%
ukazal byt efektivnejsi zakladny pristup ,,unarneho” kédovania oproti pokrocilému pristupu
,bindrneho” kddovania. Tento fakt si vysvetlujeme automatickym vnutornym priradenim
novych pomocnych bindrnych premennych toolboxom do modelu, ktoré su potrebné na opis

zlozitejsich logickych vyrazov, ktoré sa vyskytuju pri pouziti ,,binarneho” kédovania.
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Appendix

Appendix A: Figures and Codes

Dependance of cuts number on number of encoded states X
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number of original binary states X

Figure A.1: Dependence of number of basic cuts n, and number of reduced cuts n, on

number of original binaries X.

Dependance of number of cuts on number of binaries &
35 T T T T

number of cuts

number of auxiliary binaries &

Figure A.2: Dependence of maximum number of basic cuts n, and maximum number of

reduced cuts n, on number of auxiliary binaries delta.
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Code A.1: YALMIP-FSM code for a truck delivery model from example 4.2:

MODELING OF A TRUCK DELIVERY MODEL
= 15; % prediction horizon

2 oo

o

Declaration of variables

% x = (l)distance, (2)capacity

% u = (1l)load, (2)unload, (3)speed
$ mo = move

names = {'x' 'u' 'mo'};

varsizes = {[2,1] [3,1] [1,1] };
indicators = { 'r' 'r' 'b'};

% params and bounds for variables

param.ineq = { ' [ -0.1*max speed <= x{k} (1) <= (target dis +
0.1*max_speed) , 0 <= x{k}(2) <= max cap]';

'[0 <= u{k} (l)<=max cap, 0 <= u{k} (2)<=max cap , u{k} (3)>=0,
u{k} (3)<=max speed]' };

param.eq = {};
param.val = { ' max cap = 100; max speed = 200; target dis = 300' };
variables = yalmip fsm variables(names, varsizes, indicators, param );

% Declaration of states

sl = yalmip fsm state (' [x{k+1}(2) == x{k} (2)+u{k} (1), u{k}(2) <= 0,
u{k} (3) <= 0, x{k+1} (1) == x{k} (1) 1");

s2 = yalmip fsm state (' [x{k+1} (1) == x{k} (1)+uf{k} (3), u{k}(2) <= 0,
u{k} (1) <= 0, x{k+1}(2) == x{k}(2) 1");

s3 = yalmip fsm state (' [x{k+1}(2) == x{k}(2)-u{k}(2), u{k} (1) <= 0,
u{k} (3) <= 0, x{k+1} (1) == x{k} (1) 1");

s4 = yalmip fsm state (' [x{k+1} (1) == x{k}(1)-u{k}(3), u{k}(2) <= 0,
u{k} (1) <= 0, x{k+1}(2) == x{k}(2) 1");

states = [ sl, s2 , s3, s4];

o)

% Declaration of transitions

tl2 = yalmip fsm transition(sl, s2, '[ mo{k} (1) > 0.5 ]");

t23 = yalmip fsm transition(s2, s3, '[ x{k} (1) >= 300 ]");

t34 = yalmip fsm transition(s3, s4, '[ mo{k} (1) > 0.5 ]1");

t4l = yalmip fsm transition(s4, sl, '[ x{k} (1) <=0 ]1");

trans = [tl2, t23, t34, t4l];

=—————————— MODELING FUNCTION --—-—-—-——=""="""="="="="—"—"—"—"—"—"—"—~—"—~—~——~——————
% 'unary' - basic approach , 'binary' - binary encoded states
Options.encoding = 'unary';

$ cuts: 'basic' - one node one cut, 'enhanced' = reduced cuts
Options.cuts = 'basic';

% 0 - silent, 1 - elapsed time

Options.verbose = 1;

% core modeling function

[fsm, V] = yalmip fsm(states, trans , variables, N, Options );
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Code A.2: HYSDEL code for a unary encoded truck delivery model from example 4.2:

SYSTEM truck ({
/* basic model of a truck */
INTERFACE {

PARAMETER {
REAL sampling = 1;
REAL max capacity = le2;
REAL max speed = 2e2;
REAL eff in = 1;
REAL eff out = 1;
REAL target distance = 300;
}

INPUT {
REAL load [0, max capacity];
REAL unload [0, max capacity];
REAL speed [0, max speed];
BOOL move ;
}

STATE {
/* capacity off truck */
REAL C [0, max capacity];
/* distance */
REAL D [-0.l*max speed, target distance+0.l1*max speed];
/* loading = S1, unloading = S3, traveling = S2, returning = S4
BOOL S1,S2,S3,S4;
}

}
IMPLEMENTATION ({

AUX

/* capacities in individual states */

REAL C1,C2,C3,C4;

/* distances in individual states */

REAL D1,D2,D3,D4;

/* binary indicators for switching the states */
BOOL dl1,d2;

/* binary variables for restrictions */

BOOL no_load, no_unload, no_ speed;

/* auxiliary binary variables for state actualization */
BOOL al, a2, a3, ai4;

}

*/

AD {
dl = D <= 0;
d2 = D >= target distance;
no _unload = unload <= 0;
no load = load <= 0;
no_speed = speed <= 0;
}
LOGIC {
al = (S1 & (~move)) | (S4 & dl);
a2 = (82 & (~d2)) | ( S1 & move ) ;
a3 = (83 & (~move)) | (S2 & d2) ;
ad = (S4 & (~dl)) | ( S3 & move ) ;
}
AUTOMATA {
/*loading = S1, unloading = S3, traveling = S2, returning = S4 */
S1 = al;
S2 = a2;
S3 = a3;
S4 = a4;
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}

DA {
Cl = { IF S1 THEN C+eff in*load ELSE 0 } ;
C2 = { IF S2 THEN C ELSE 0 } ;
C3 = { IF S3 THEN eff out*(C-unload) ELSE 0 } ;
C4 = { IF S4 THEN C ELSE 0 } ;
Dl = { IF S1 THEN D ELSE 0 } ;
D2 = { IF S2 THEN D+sampling*speed ELSE 0 } ;
D3 = { IF S3 THEN D ELSE 0 } ;
D4 = { IF S4 THEN D-sampling*speed ELSE 0 } ;

}
CONTINUOUS {

/* difference equations */
C=2Cl + C2 + C3 + C4;
D = D1 + D2 + D3 + D4;
}

MUST {
1 >= (REAL S1) + (REAL S2) + (REAL S3) + (REAL S4);
1 <= (REAL S1) + (REAL S2) + (REAL S3) + (REAL S4);

S1 -> no_unload;
S2 -> no_unload;
S4 -> no_unload;
S2 -> no_load;
S3 -> no_load;
S4 -> no_load;
S1 -> no_speed;
S3 -> no_speed;

Code A.3: HYSDEL code for a binary encoded truck delivery model from example 4.2:

SYSTEM truck binary {
/* model of a truck with binary encoded states */
INTERFACE {

PARAMETER {
REAL sampling = 1;
REAL max capacity = le2;
REAL max speed = 2e2;
REAL eff in = 1;
REAL eff out = 1;
REAL target distance = 300;
}

INPUT {
REAL load [0, max capacity];
REAL unload [0, max capacity];
REAL speed [0, max speed];
BOOL move ;
}

STATE {
/* capacity off truck */
REAL C [0, max capacity];

/* distance */

REAL D [-2*max_ speed, target distance+2*max_ speed];
/* loading = S1, unloading = S3, traveling = S2, returning = S4%*/
/* variables for binary encoding of states: dA,dB
S1 = ~dA&~dB
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52 = ~dA&dB
S3 = dA&~dB
S4 = dAs&dB  */
BOOL dA, dB;
}
}
IMPLEMENTATION {
AUX {

/* capacities in individual states */
REAL C1,C2,C3;

/* distances in individual states */

REAL D1,D2,D3;

/* conditions for switching the states */

BOOL dl1,d2;
BOOL no_load, no_unload, no_ speed;
BOOL al, a2;
}
AD {
dl = D <= 0;
d2 = D >= target distance;
no _unload = unload <= 0;
no load = load <= 0;
no_speed = speed <= 0;
}
LOGIC {
al = ((~dA & dB) & d2) | (dA & ~dB) | ((dA & dB) & ~dl) ;
a2 = ((~dA & ~dB) & move) | ((~dA & dB) & ~d2) | ((dA & ~dB) & move)
| ((dA & dB) & ~dl);
}
AUTOMATA {
dA = al;
dB = az2;
}
DA {
Cl = { IF (~dA & ~dB) THEN C+eff in*load ELSE 0 } ;
C2 = { IF dB THEN C ELSE 0 } ;
C3 = { IF (dA & ~dB) THEN C-eff out*unload ELSE 0 } ;
Dl = { IF ~dB THEN D ELSE 0 } ;
D2 = { IF (~dA & dB) THEN D+sampling*speed ELSE 0 } ;
D3 = { IF (dA & dB) THEN D-sampling*speed ELSE 0 } ;
}
CONTINUOUS {
/* dif. eq of truck */
C=2¢Cl +C2 + C3 ;
D = D1 + D2 + D3;
}
MUST {
1 >= (REAL (~dA&~dB) )+ (REAL (~dA&dB) ) + (REAL (dA&~dB) ) + (REAL (dA&dB) ) ;
1 <= (REAL(~dA&~dB) )+ (REAL (~dA&dB) )+ (REAL (dA&~dB) ) + (REAL (dA&dB) ) ;
(~dA & ~dB) -> no_unload;
(~dA & dB) -> no_unload;
(dA & dB) -> no_unload;
(~dA & dB) -> no_ load;
(dA & ~dB) -> no_ load;
(dA & dB) -> no_load;
(~dA & ~dB) -> no_speed;
(dA & ~dB) -> no_speed;
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Appendix B: List of software on CD

YALMIP-FSM toolbox:

Core function: yalmip_fsm.m

States creation function: yalmip_fsm_state.m
Transitions creation function: yalmip_fsm_transition.m
Variables declaration function: yalmip_fsm_variables.m
Binary encoding function: binary_encoding_creation.m

Modeling code for a YALMIP-FSM thermostat model from example 4.1:

test_basicl.m

Modeling code for a YALMIP-FSM truck delivery model from example 4.2:

test_truck.m

Modeling code for a HYSDEL truck delivery models from example 4.2:

HYSDEL unary encoded model: truck.hys

HYSDEL binary encoded model: truck_binary.hys
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