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Abstract 

This thesis is dealing with modeling of systems containing continuous and discrete dynamic 

behavior simultaneously. Because of their hybrid nature this kind of systems are called 

hybrid systems (HS). We highlight several theoretical frameworks for modeling of hybrid 

systems, at these days most commonly used and well known modeling frameworks are 

discrete hybrid automata (DHA), piecewise affine (PWA) systems and computational 

oriented mixed logical dynamical (MLD) systems. Aim of this thesis is to investigate and 

propose an efficient mathematical framework for modeling of hybrid systems represented 

either as discrete hybrid automata (DHA) or piecewise affine (PWA) systems. It is well known 

that such models involving integer or logical variables can be transformed into the 

corresponding mixed integer programming (MIP) optimization problem. For this purpose we 

are introducing a technique of Big-M modeling for translating logical statements into 

equivalent MIP form. Traditionally in corresponding MIP problem the integer is encoded 

using “unary encoding”, assigning one binary variable to each possible value of the integer. 

Contribution of this thesis lies in alternative approach, where integer variables can be 

modeled by fewer binary variables using a “binary encoding”, which only requires 

logarithmical number of original binaries log2(N). The difficulty of this approach is how to 

indicate infeasible combinations of bits and separate them from feasible region of resulting 

MIP model by adding extra constraints or so called cuts into the model. Finally in the end of 

the thesis, we present the implementation of hybrid modeling framework as an extension of 

free MATLAB optimization toolbox YALMIP, as well as comparison of resulting computational 

models with models created via modeling language HYSDEL. 

 

Keywords: Hybrid systems, Piecewise affine systems, Finite state machine, Mixed integer 

programming, Big-M modeling, YALMIP, HYSDEL 

 

  



 

Abstrakt 

Táto práca sa zaoberá modelovaním takzvaných hybridných systémov (HS), obsahujúcich 

súčasne spojité aj diskrétne dynamické správanie. Pre modelovanie takýchto systémov bolo 

vyvinutých viacero prístupov, v prvej časti tejto práce približujeme v súčasnosti 

najrozšírenejšie a najviac používané teoretické modely, konkrétne ide o diskrétne hybridné 

automaty (DHA) , po častiach afinné (PWA) systémy a výpočtovo orientované zmiešané 

logicko-dynamické (MLD) systémy. Cieľom tejto práce je preskúmať a navrhnúť efektívny 

matematický prístup k modelovaniu hybridných systémov reprezentovaných ako diskrétne 

hybridné automaty (DHA), alebo po častiach afinné (PWA) systémy. Je všeobecne známe, že 

takéto modely, obsahujúce celočíselné  alebo logické premenné, môžu byť definované vo 

forme zmiešaného celočíselného (MIP) optimalizačného problému. Pre tento účel 

predstavujeme techniku takzvaného Big-M modelovania, pomocou ktorej sme schopný 

transformácie logických výrazov do ekvivalentnej formy problému celočíselného 

programovania. V probléme zmiešaného celočíselného programovania sú celočíselné 

premenné klasicky definované pomocou takzvaného unárneho (jednozložkového) 

kódovania, priraďujúc práve jednu binárnu premennú ku každej možnej celočíselnej 

hodnote. Príspevok tejto práce spočíva v alternatívnom prístupe kódovania, keď celočíselné 

premenné môžeme modelovať s použitím menšieho množstva binárnych premenných 

pomocou takzvaného binárneho kódovania, ktoré vyžaduje len logaritmické množstvo 

pôvodných binárnych premenných log2(N). Náročnosť tohto prístupu spočíva v indikácii 

neriešiteľných kombinácií binárnych premenných a ich separácii z riešiteľnej množiny riešení 

výsledného modelu pomocou pridania extra ohraničení (tzv. rezov) do príslušného modelu. 

Na záver predstavujeme programovú realizáciu rozoberaných modelovacích techník ako 

rozšírenie voľne šíriteľného optimalizačného toolboxu YALMIP pre MATLAB, ako aj 

porovnanie výsledných modelov s modelmi vytvorenými pomocou modelovacieho jazyka 

HYSDEL. 

 

Kľúčové slová: Hybridné systémy, Po častiach afinné systémy, Automaty, Zmiešané 

celočíselné programovanie, Big-M modelovanie, YALMIP, HYSDEL  



 

Contents 

LIST OF SYMBOLS AND ABBREVIATIONS ..............................................................................10 

SYMBOLS, OPERATORS, FUNCTIONS AND SETS ..............................................................................10 

ABBREVIATIONS ....................................................................................................................10 

1 INTRODUCTION .................................................................................................................12 

1.1 MATHEMATICAL MODELING ................................................................................................12 

1.2 CLASSIFICATION OF DYNAMICAL SYSTEMS ...............................................................................13 

1.3 HYBRID SYSTEMS .............................................................................................................15 

1.3.1 Examples of Hybrid Systems .......................................................................................................... 16 

1.3.2 Motivation for Hybrid Systems ....................................................................................................... 18 

1.3.3 Modeling frameworks ................................................................................................................... 20 

1.3.4 Future of Hybrid Systems ............................................................................................................... 21 

1.4 BASIC TERMINOLOGY AND DEFINITIONS .................................................................................21 

1.4.1 Convex Set .................................................................................................................................... 21 

1.4.2 Convex Hull ................................................................................................................................... 22 

1.4.3 Polytope ........................................................................................................................................ 22 

1.4.4 General Optimization Problem ....................................................................................................... 23 

1.4.5 Linear Programming ...................................................................................................................... 23 

1.4.6 Mixed Integer Programming .......................................................................................................... 24 

2 MODELING OF HYBRID SYSTEMS ......................................................................................25 

2.1 MODEL CLASSES FOR HYBRID SYSTEMS .................................................................................25 

2.2 DISCRETE HYBRID AUTOMATA .............................................................................................26 

2.2.1 Switched Affine Systems ................................................................................................................ 27 

2.2.2 Event Generator ............................................................................................................................ 28 

2.2.3 Finite State Machine...................................................................................................................... 28 

2.2.4 Mode Selector ............................................................................................................................... 29 



 

2.2.5 DHA Trajectories ........................................................................................................................... 29 

2.3 PIECEWISE AFFINE SYSTEMS ...............................................................................................30 

2.4 MIXED LOGICAL DYNAMICAL SYSTEMS ..................................................................................31 

3 HYBRID SYSTEMS MODELING FRAMEWORK .....................................................................33 

3.1 INTRODUCTION ................................................................................................................33 

3.2 LOGICAL PROPOSITIONS .....................................................................................................34 

3.3 PROPOSITIONAL CALCULUS AND MIXED-INTEGER PROGRAMMING ...............................................36 

3.3.1 Symbolical Method ........................................................................................................................ 37 

3.3.2 Extended Symbolical Method ......................................................................................................... 37 

3.3.3 Geometrical Method ..................................................................................................................... 38 

3.4 BIG-M MODELING ............................................................................................................39 

3.4.1 Big-M conversion .......................................................................................................................... 39 

3.4.2 DHA, PWA and Big-M Formulation ................................................................................................ 40 

3.4.3 Big-M Models Library .................................................................................................................... 41 

3.5 EFFICIENT MODELING OF HYBRID SYSTEMS ............................................................................43 

3.5.1 Binary Encoding of Integer State Variables..................................................................................... 44 

3.5.2 CUTS ............................................................................................................................................. 48 

3.5.2.1 One node one cut approach ...................................................................................... 49 

3.5.2.2 Reduced cuts approach ............................................................................................. 52 

3.5.2.3 Deep cuts approach .................................................................................................. 56 

4 SOFTWARE TOOLS FOR HYBRID MODELING .....................................................................58 

4.1 HYSDEL........................................................................................................................58 

4.2 YALMIP .......................................................................................................................58 

4.2.1 YALMIP Hybrid Modeling Framework ............................................................................................. 59 

4.2.1.1 YALMIP-FSM Modeling Language Syntax ................................................................... 60 

4.3 COMPUTATIONAL ASPECTS .................................................................................................64 

CONCLUSION........................................................................................................................68 



 

RESUMÉ ...............................................................................................................................70 

APPENDIX ............................................................................................................................72 

APPENDIX A: FIGURES AND CODES .............................................................................................72 

APPENDIX B: LIST OF SOFTWARE ON CD ......................................................................................77 

REFERENCES .........................................................................................................................78 

 

 

 

 

 



Ján Drgoňa  Diploma Thesis 

10 

List of Symbols and Abbreviations 

Symbols, Operators, Functions and Sets 

TA  Transpose of matrix A  

k  Time step 

N  Set of integers 

 n1,0  Set of vectors with n binaries 

R  Set of real numbers 
nR  Set of real vectors with n components 

rx  Real state variable 

bx  Binary state variable 

ru  Real input variable 

bu  Binary input variable 

ry  Real output variable 

by  Binary output variable 

i  Binary auxiliary variable 

iX  Boolean variable 

i  Terms of the product  

ijX  Terms of the sum 

 x  The floor function. Gives the largest integer less than or equal to x  

 x  The ceiling function. Gives the smallest integer greater than or equal to x  

Abbreviations  

CNF Conjunctive Normal Form 

DHA Discrete Hybrid Automata 

EG Event Generator 

FSM Finite State Machine 

LP Linear Programming 
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MIP Mixed Integer Programming 

MLD Mixed Logical Dynamical 

MS Mode Selector 

ODE Ordinary Differential Equation 

PWA Piecewise Affine 

SAS Switched Affine System 
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Chapter 1 

1 Introduction  

1.1 Mathematical modeling 

Since ancient times people's curiosity led them to exploring the world and try to understand 

the laws of the nature, but in the past times it was more about philosophy than about real 

science as we know it today. The first steps for distinguishing the real science from scams 

and misleading speculations about world was big growth of mathematical knowledge in last 

few hundred years and since this time mathematical modeling is taking one of the most 

important role in all scientific fields. The mathematical models are used everywhere, from 

engineering thru medicine, biology, physics, chemistry, economy and so on. But it is not only 

matter of science which handles with mathematical modeling, we are surrounded by 

applications based on mathematical models, which are improving quality of our everyday 

life.  

Mathematical modeling can be conceived as transformation of empirical and practical 

knowledge of real systems into the theoretical and simplified models of them, by using 

mathematical language. Unfortunately the real world is still far too complicated for our 

current mathematical tools to being modeled entirely without any loss of precision, 

therefore any model is an abstract simplified description of a real system or physical 

phenomena. Usually there are many ways how to describe a single real-world phenomena, 

the differences between them are in complexity of particular models and specifications for 

concrete fields of interest.  

Models should be simple enough to formulate an efficient and solvable analysis and 

synthesis problems for available computational capabilities, but also they should be 

complicated enough for describing sufficient level of details of the system, what is needed 

for reliable description of real system. Compromises are needed to be done during the 

process of the mathematical modeling. The first level of compromise is to identify the most 
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important parts of the system and include them into the model, the rest less important parts 

will be excluded due to decreasing the complexity of the model. On the second level of 

compromise we are taking in mind mathematical methods which are available for solving 

particular problems. The mathematical procedures for obtaining the model should be 

elegant and simple enough as the model itself, but also suitable for computer processing and 

numerical solutions. Actually all previous talk can be expressed in few words by following 

statements of great man’s.  

 “Make everything as simple as possible, but not simpler.”— Albert Einstein 

 “Challenge in mathematical modeling is not to produce the most comprehensive descriptive 

model but to produce the simplest possible model that incorporates the major features of 

the phenomenon of interest.” — Howard Emmons 

1.2 Classification of dynamical systems 

We are using dynamical systems to describe the evolution of some monitored variables, 

usually states or outputs of the system over time i.e. from their current state to the future 

state. In the concept of a model of a system are these evolutions traditionally described by 

differential or difference equations. Therefore most of the theory and tools have been 

developed for handling such systems as purely continuous or purely discrete, or only in 

continuous and only in discrete time. Although in recent years a significant need for 

combining of these two worlds (continuous and discrete) arise from description of some real 

systems, which are containing both continuous and also logical parts naturally. By combining 

the continuous and discrete behavior together in single system, the third class of dynamical 

systems called hybrid systems was born. 

Attempt to classify dynamical systems based on the type of their state, appears in the 

literature [Lys]: 

1. Continuous state, if the state takes values in Euclidean space nR  for some 1n . We 

will denote nRx  as a state of a continuous dynamical system. Demonstration of 

behavior of continuous state variable is shown on figure 1.1 left. 
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2. Discrete state, if the state takes values in a finite set  nbb ,,1  . We will denote b  as 

a state of a discrete system. Demonstration of behavior of discrete state variable is 

shown on figure 1.1 right. 

3. Hybrid state variables, if some of the states takes values in nR  while another states 

takes values in a finite set. For example, the closed loop system for computer control 

of an inverted pendulum is hybrid: the state of the pendulum is continuous, while 

state of the computer is discrete. 

 

Figure 1.1: Behavior of continuous (left) and discrete (right) variable. 

Classification based on the set of times over which the state evolves [Lys]: 

1. Continuous time, if the set of times can take only real continuous values. We will use 

Rt  to denote continuous time. The evolution of the state )(tx  in a continuous 

time system is typically described by an ordinary differential equation (ODE). Where 

)(tu is a vector of inputs in a continuous time and  ttutxf ),(),(  can be either linear 

or nonlinear state transition function. 

 ttutxftx ),(),()(   (1.1a) 

nmn
t

mn RRfRtRtuRtx  


1:)()(
0

 (1.1b) 

2. Discrete time, if the set of times is a subset of the integers. We will use Nk  to 

denote discrete time. The evolution of the state )(kx  in a discrete time system is 

typically described by a difference equation. Where )(ku is a vector of inputs in a 
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discrete time and  kkukxg ),(),(  can be either linear or nonlinear state transition 

function. 

 kkukxgkx ),(),()1(   (1.2a) 

nmn
k

mn RRgNkRkuRkx  


1:)()(
0

 (1.2b) 

3. Hybrid time, when the evolution is over continuous time but there are also discrete 

moments with special behavior or events.  

State systems can be further classified according to the equations used to describe the 

evolution of their states [Lys]: 

1. Linear, if the evolution is governed by a linear differential equation (continuous time) 

or difference equation (discrete time).  

2. Nonlinear, if the evolution is governed by a nonlinear differential equation 

(continuous time) or difference equation (discrete time). 

1.3 Hybrid Systems 

Hybrid models are part of dynamical systems which contains both, continuous and discrete 

behavior with mutual interactions.  Differential or difference equations are used as a typical 

representation of continuous dynamics, on the other hand discrete part of hybrid systems 

could be represented by discrete dynamics, logic rules (described by temporal logic, finite 

state machines, if-then-else conditions, discrete events, etc.) or discrete components (on/off 

switches, selectors, digital circuitry, software code, etc.). Hybrid systems has many operating 

modes with different dynamical laws, these modes are switched by mode switches which 

can be activated by particular state or time events or some external input events [Ant01]. 

The basic structure of hybrid system is illustrated on Figure 1.2. 
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Figure 1.2: Basic structure of hybrid system. 

1.3.1 Examples of Hybrid Systems 

Hybrid systems are all around us, they arise in a large number of application areas, moreover 

many physical phenomena admit a natural hybrid description: 

 Mechanical systems: In these systems the continuous motion may be interrupted by 

collisions, or they can work in different modes, what can be described as discrete 

events of finite state machine. The example of such system could be a cruise control 

system, which controls the transmission gear (discrete input), the engine torque 

(continuous input), and the braking force (continuous input) in order to track a 

desired vehicle speed while minimizing fuel consumption and emissions [BemDHS]. 

Transmissions, stepper motors, and other motion controllers are discussed in 

literature [Bro01], also as constrained robotic systems [BaGu01]. Another example 

which shows naturally hybrid behavior is gasoline engine where the power train, gas 

flow, and thermal dynamics are continuous processes, while the pistons have four 

discrete operating modes. These systems are logically under deep interest of 

automotive industry and considerable research in this field was done during recent 

years more about it can be found in this work [BemDHS] and the references in.  

 Electrical circuits: Here the continuous phenomena such as charging of capacitors, 

etc. are interrupted by opening and closing the switches, or diodes going on or off. 

Into this category belong systems with relays, switches, and hysteresis or computer 
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disk drives, for more details we recommend to the reader following article [Bran] and 

its references. 

 Chemical process control: The continuous evolution of chemical reactions is 

controlled by discrete actions like opening valves and pumps. More about examples 

for hybrid modeling of chemical processes could be found in publication [Agar]. 

 Embedded computation systems: When digital computer interacts with a mostly 

analogue environment. An embedded system is computer system designed for doing 

specified tasks usually as a part within a bigger system. Examples of these systems 

we can find everywhere around us, they are taking part in our vehicles, airplanes, 

factories and so one as shown on a Figure1.3. 

 Networked control systems: are important class of hybrid systems, where sensing, 

control, and actuation are not connected directly but they are connected by a shared 

network medium [ZhBrPh]. 

 

Figure 1.3 [Bran]: Examples of embedded systems. 

From theoretical point of view there is a wide range of systems that can be modeled as 

hybrid systems [Mig, Bran]: 

 Complex systems: organized in hierarchical way, where for example discrete 

planning algorithms at the higher level interact with continuous control algorithms 

and processes at the lower level [BemDHS]. In engineering practice there was few 
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attempts to model complex systems like automated highway systems (AHSs) [Lys] or 

multi-vehicle formations and coordination [Olaru]. 

 Multiple model systems: These are systems which general model and their overall 

evolution is governed by different sub-models, by partitioning the state space into 

regions with assigned sub-models (e.g. piecewise affine systems) or by changing 

system parameters according to a given signal (e.g. switched systems or systems with 

operating mode changes). Applications of these models appear in engineering 

practice for example in flight control and air traffic management systems [Bran, 

LysTom]. 

 Systems with switching components: Systems in this category include switching 

elements like relays, dead-zones or hysteresis, more about these examples can be 

found again in paper [Bran] and its references. Therefore electrical circuits could be 

considered as one of the real world example for these types of hybrid systems. 

 Adaptive systems: The hybrid nature of these systems lies in switching rules, 

provided e.g. by piecewise affine systems or by finite state machines governing the 

adaptation law. 

 Systems with modeled failures: In case of sudden or abrupt faults, the occurrence of 

a failure in a system can be modeled as a switching signal. The fault-prone system 

can be then considered as a hybrid system. 

 Systems involving synchronization signals: Such systems arise e.g. in communication 

networks. 

Even if we formally divided hybrid systems in some specific subclasses and types, it is 

important to note, that all kind of hybrid systems are deeply interconnected and equivalent 

in their nature. A single real process could be classified as a member of different hybrid 

model classifications in the same time. 

1.3.2 Motivation for Hybrid Systems 

Motivation for initiation of the research and introduction of theoretical fundamentals for 

hybrid systems lied in the fact, that there was no known single model capable of capturing 

discrete and continuous dynamics together. Efficient tools for modeling analysis and 

synthesis of hybrid systems was developed only recently. The theory of hybrid systems is 
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connecting contributions from continuous system and control theory with field of computer 

science called discrete event system theory. Connecting these two on first look different and 

non-connected fields of engineering science was a big challenge. It was crucial to combine 

capabilities of different modeling frameworks to be able to describe the behavior of hybrid 

systems. 

The design and analysis of hybrid systems are in general more difficult than design and 

analysis of only discrete or only continuous systems, this is because the discrete dynamics is 

affecting the continuous evolution and vice versa [Lys]. The interconnections between 

discrete and continuous behavior are mostly very tight, therefore in modeling of discrete-

continuous relations is common to represent the discrete events as instant changes in 

continuous dynamics. 

Because of this in most practical cases, the synthesis of control schemes for systems having 

also a discrete and continuous dynamical nature is still approached with heuristic rules, 

usually driven by engineering insight and experience, but consequently this approach 

requires long design and verification time. The interest of the control community is 

motivated by several clearly apparent trends in industry which is calling for creating new 

tools to design control schemes for hybrid systems and to analyze their stability, safety, and 

performance. Based on these needs several problems are currently investigated in the 

theory of hybrid systems, it is the definition and computation of trajectories, stability and 

safety analysis, control, state estimation, etc. [BemDHS].  

A simulator is usually used for definition of trajectories of hybrid systems, in general it is a 

mathematical prediction model made to compute the time evolution of the variables of the 

system, through the simulations we are able to verify and probe the correctness of the 

model of the system. Tools like reachability analysis or piecewise quadratic Lyapunov 

stability becomes a standard procedures in analysis of hybrid systems, more about this can 

be found in literature e.g. [BemDHS, Hys, Mig, Tor] and their references. For controlling of a 

hybrid model most of the nonlinear and logically also linear control theory can not be 

applied because of special behavior of hybrid systems. At these days as most commonly 

used approach for control of hybrid systems is an optimal control theory, which foundations 

was laid by Richard Bellman and Lev Pontryagin. 
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1.3.3 Modeling frameworks 

Several modeling frameworks have been proposed recently to represent hybrid systems. 

Each modeling class is usually made for dealing with particular problems, and therefore they 

seem to be dissimilar at first look. But recent research shows that all hybrid modeling classes 

are equivalent and therefore the models created in different framework can be under 

additional assumptions transformed into another model framework. Therefore the same 

system can be represented with models of each class. This is very important acquaintance 

which allows us to choose most convenient hybrid modeling framework for concrete 

problems. The equivalence of hybrid modeling classes has been proved for example in paper 

[Equival] or can be found also in works [Mig, HeSB01].  

One of the earliest attempts for creating hybrid modeling framework appeared in the 

process literature is called the theory of differential algebraic equations (DAEs) with an index 

set, used as possible discrete model of a system [BarPan01]. 

In literature most commonly used frameworks are timed automata [Silv01, Asar01] and 

hybrid automata [Silv01, Al01, AlDi01]. Automata are elegant frameworks for modeling 

hybrid systems and become very popular and proved to be successful for formal verification 

of the models. We will introduce the discrete hybrid automata (DHA) [BemDHA, Hys, Mig, 

Tor] later in Chapter 2. 

At these days as most important and well known modeling subclasses we can further 

mention are e.g. Mixed logical dynamical (MLD) models [BemMor, BempDHA, Tor, Mig], 

piecewise affine (PWA) systems [Sontag], linear complementarity (LC) systems [HeSchW, 

CaHeS, He01, AJSMS01, AJSMS02], extended linear complementarity (ELC) systems [SchM02, 

Equival], max-min-plus-scaling (MMPS) systems [SchB01, Equival], first-order linear hybrid 

systems with saturation [Sch01] and linear coupled component automata (LCCA) [Agar]. 

Each modeling subclass has its own specifications and advantages compared the others. For 

example, control and verification techniques as reachability/observability analysis for MLD 

hybrid models, stability criteria were proposed for PWA systems [BeToMo], and conditions 

of existence and uniqueness of solution trajectories (well-posedness) for LC systems and so 

on. 
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1.3.4 Future of Hybrid Systems  

As is apparent from previous talk hybrid models are highly demanding on computation 

power due to their complexity. It is important to point that modeling of hybrid systems is 

creating mathematical problems which belongs to so called group of NP-hard problems 

[wikiNPh], what means that computational time may grow exponentially with dimension 

(number of variables) of the problem in worst case. Computational tools sufficient for 

dealing with this type of problems become available only recently, what has brought a huge 

space of opportunities for exploring and applications of hybrid systems. Therefore hybrid 

systems become currently very popular and important field of study among both academic 

and industrial researchers. 

Ideal theoretical visions to the future are talking about systems as whole entities without 

heterogeneous parts [AnNe]. So there will be no need for denoting system to be discrete, 

continuous or hybrid, it will be just a system describing and incorporating entire dynamics by 

uniform rules. 

1.4 Basic Terminology and Definitions   

1.4.1 Convex Set  

Definition 1.1 [BoyVan]: A set nRC   is convex if the line segment between any two points 

in C  lies in C , i.e. for any Cxx 21 ,  and any real number  , where 10   , is true 

  Cxx  21 1   (1.1) 

Roughly speaking a set C  is convex if any two points lying in the set Cxx 21 , , can be 

connected by a straight line which lies entirely within the set C . Examples of convex and 

nonconvex sets are shown on following figure 1.4. 
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Figure 1.4: Left - example of convex set. Right - example of nonconvex set. 

1.4.2 Convex Hull 

Definition 1.2 [BoyVan]: The convex hull of a set C , denoted Cconv , is the set of all convex 

combinations of points n
k Rxx ,,1   in C : 

 kiCxxxCconv kiikk ,,1,1,0,| 111     (1.2) 

The convex hull is always convex, it is the smallest convex set of any set B , therefore 

BBconv  . Examples of convex hulls are shown on figure 1.5. 

 

Figure 1.5: Left - Convex hull of set of 15 points. Right – convex hull of nonconvex set. 

1.4.3 Polytope 

In literature a polytope has two standard representations, the V-representation and H-

representation. All polytopes are convex sets. 
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Definition 1.3 [BoyVan]: The H-representation of polytope is defined as a solution set (1.3a) 

of linear inequalities and equalities (1.3b). Where nRx , and matrixes DCBA ,,, are 

containing real coefficients for linear inequalities and equalities.  

},|{ DCxBAxxP   (1.3a) 
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Definition 1.4 [BoyVan]: The V-representation of polytope is defined as convex hull (1.4) of 

finite number of points in Euclidean n-dimensional space: n
k Rxx ,,1  . 

 kxxconvP ,,1   (1.4) 

A vertex of polytope, which all components are integers, is called an integral vertex. 

1.4.4 General Optimization Problem 

Mathematical optimization problem has a form 

minimize:        xf  (1.5a) 

subject to:       mibxg ii ,,1,)(   (1.5b) 

                        pjkxh jj ,,1,)(   (1.5c) 

Where the vector  nxxx ,,1   is the optimization variable of the problem,   RRxf n :  

is the objective function,   RRxg n
i :  are representing inequality constraint functions, 

  RRxh n
j :  are representing equality constraint functions, and the constants Rkb ji ,  

are bounds for constraints. The vector *x  is called an optimal solution of the problem (1.5), 

if it has smallest value of objective function (1.5a) while holding the constraints (1.5b,c). 

1.4.5 Linear Programming 

Linear programming (LP) is an important class of optimization problems, in which objective 

function and all constraints are linear. 
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minimize:       dxcT   (1.6a) 

subject to:       mibxa i
T
i ,,1,   (1.6b) 

                        pjkxh j
T
j ,,1,   (1.6c) 

Where the vectors n
ji Rhac ,,  and scalars Rkbd ji ,, . 

1.4.6 Mixed Integer Programming 

Mixed-integer programming (MIP) is another important class of optimization problems, 

which characteristic hallmark is that they are containing both, real and also integer valued 

variables. We are talking about mixed-integer linear programming (MILP) problem, when the 

objective function and constraints are linear. 

minimize:        xf  (1.7a) 

subject to:       mibxg ii ,,1,)(   (1.7b) 

                        pjkxh jj ,,1,)(   (1.7c) 

                        plNxl ,,1  (1.7d) 

Where lx  denotes integer variables.  

Because of this mixed nature, MIP problems are suitable for capturing hybrid dynamics and 

therefore for modeling of hybrid systems. In this thesis we are dealing with modeling 

frameworks which are constructing representing MIP problems for description of hybrid 

system.  
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Chapter 2 

2 Modeling of Hybrid Systems  

Efficiency is the most important feature for solving of optimization problems, but for 

obtaining efficient solution not only high performance solvers are required, also modeling 

issues are playing very important role in optimization process. Different modeling 

approaches are providing models with various complexities, and even small changes in the 

models structure can cause huge improvement of optimization efficiency. Especially in case 

of hybrid models which could be extremely complex and hard to solve, efficiency is crucial 

task for each modeling framework. 

In this chapter we will describe several hybrid model representations introduced in literature 

[BemDHS, BemMor, Tor, Mig]. Particularly we are dealing with discrete hybrid automatas 

(DHA), piecewise affine systems (PWA) and mixed logical dynamical systems (MLD). 

2.1 Model Classes for Hybrid Systems  

As we mentioned in Chapter 1 there is a big amount of divisions and classifications of hybrid 

systems. For our purposed is not necessary to mention or describe all of them, in this section 

we will focus only on three well known modeling classes of hybrid systems, with which we 

are dealing in this work and therefore it will be convenient to spare some words about them. 

In following pages we will show how easy it is to describe hybrid systems as discrete hybrid 

automatas (DHA). These models can be conceived as general modeling representation for 

hybrid systems, and consequently can be easily transformed into other classes of hybrid 

systems. DHAs are powerful tool for description of hybrid systems, but due to their hybrid 

and autonomous nature they are not suitable for control and properties investigation of 

modeled systems. Next modeling framework what we will discuss are piecewise affine 

systems (PWA). These models can be widely used for example as approximation of nonlinear 

functions, and can be easily transformed into corresponding mixed-integer optimization 

problems. The last modeling framework is called mixed logical dynamical systems (MLD), 
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models created within this framework are computation oriented, because they are internally 

defined in form of mixed-integer inequalities, and therefore are suitable for solving analysis, 

optimal control, and receding horizon estimation problems. 

2.2 Discrete Hybrid Automata 

A discrete hybrid automaton (DHA) is a dynamical system that describes the evolution in 

time of the values of a set of discrete and continuous state variables [Lys]. The model is 

called hybrid because it combines nonlinear continuous dynamics with the dynamics of 

discrete event systems. Continuous part of DHA is represented by switched affine systems 

(SAS) which are described by a set of ordinary differential equations and discrete dynamics 

of the systems is represented as finite state machine (FSM). Additional elements of DHA are 

the event generator (EG) and the mode selector (MS) which provides the interactions 

between discrete (FSM) and continuous part of the system (SAS). The EG extracts and 

generates logic signals from the continuous part of the system, this is done in form of 

non/satisfying of the linear-thresholds for continuous variables (states, inputs, outputs). 

Those logic events and other exogenous logic inputs trigger the switch of the state of the 

FSM. Then the MS is processing all logic signals (states, inputs, time events, linear-

thresholds) to choose corresponding mode of continuous dynamics for SAS. Block diagram 

representation of DHA is shown on figure 2.1. 

We are dealing with DHA models because they are fairly rich in descriptive power, also 

compilation of such models for description of real systems are usually very intuitive and easy 

to do, because of these properties DHA is very popular and widely used as a modeling 

framework for hybrid systems among academic and engineering society. 
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Figure 2.1 [ToBe]: Representation of DHA as a connection of EG, FSM, SAS and MS.  

2.2.1 Switched Affine Systems 

A switched affine system (SAS) is a collection of linear affine systems: 

)()()()1( kfkuBkxAkx iririr   (2.1a) 

)()()()( kgkuDkxCky iririr   (2.1b) 

Where  Nk , n
rr RXx  is the continuous state vector, m

rr RUu   is the exogenous 

continuous input vector, p
rr RYy   is the continuous output vector,  iiiiii gDCfBA ,,,,,  

are the matrices of suitable dimensions, and the mode  sIki ,..,1:)(   is an input signal 

that chooses the linear state update dynamics. When a switch occurs a SAS of the form (2.1) 

preserves the value of the state, however it is possible to implement reset maps on a SAS.  

The reset can be taken as a special dynamics that is active only for one sampling step. With 

using reset maps we are able to model also non continuous dynamics or functions. A SAS can 

be rewritten as the combination of linear terms and if-then-else rules: the state-update 

Equation (2.1a) is equivalent to 
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where siRkz rn
i ,,1,)(  , and (2.1b) admits a similar transformation. 

2.2.2 Event Generator 

An event generator (EG) is a mathematical object that generates a logic signal according to 

the satisfaction of a linear constraint: 

 kkukxfk rrH ),(),()(   (2.3) 

Where  nmn
H DZRRf 1,0:    is a vector of descriptive functions of a linear 

hyperplane, and  ,1,0:Z is the set of nonnegative integers. In particular, time events 

are modeled as:    01)( tkTk s
i  , where Ts is the sampling time, while threshold 

events are modeled as:    ckubkxak r
T

r
Ti  )()(1)( , where the superscript i 

denotes the  i-th component of a vector. 

2.2.3 Finite State Machine  

A finite state machine (FSM) or automaton is a discrete dynamic process that evolves 

according to a logic state update function: 

 )(),(),()1( kkukxfkx bbBb   (2.4a) 

where   bn
bb Xx 1,0 is the Boolean state,   bu

bb Uu 1,0  is the exogenous Boolean 

input )(k is the endogenous input coming from the EG, and  

brrB XDUXf :  is a deterministic logic function. A FSM can be conveniently 

represented using an oriented graph. A FSM may also have an associated Boolean output 
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 )(),(),()( kkukxgky bbBb   (2.4b) 

where   bp
bb Yy 1,0 and brrB YDUXg : . The idea of transforming a well-posed 

FSM into a set of Boolean equalities was already presented in [Parbar01] where the authors 

performed model checking using (mixed) integer optimization on an equivalent set of 

integer inequalities. 

2.2.4 Mode Selector  

The mode selector (MS) consist of the logic state )(kxb , the Boolean inputs )(kub , and the 

events )(k which select the dynamic mode )(ki of the SAS through a Boolean function 

IDUXf bbM : . The output of this function )(ki , 

 )(),(),()( kkukxfki bbM   (2.5) 

is called active mode. Literature says that a mode switch occurs at step k  if )1()(  kiki .  

In this discrete-time setting a mode switch can only occur at sampling instants, contrarily to 

continuous time hybrid models, where switches can occur at any time. 

2.2.5 DHA Trajectories  

For the given initial condition   brbr XXxx )0();0( , and for the input

  ,)();()( brbr UUkukuku   
 Nk  the state trajectory    Nkkx , , of the system is 

recursively computed as follows: 

1. Initialization:   ;)0();0()0( br xxx   

2. Recursion: 

a.  kkukxfk rrH ),(),()(   

b.  )(),(),()( kkukxfki bbM   

c. )()()()( kgkuDkxCky iririr   

d.  )(),(),()( kkukxgky bbBb   

e. )()()()1( kfkuBkxAkx iririr   

f.  )(),(),()1( kkukxfkx bbBb   
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Definition 2.1 [BemDHS, Tor]: A DHA is well-posed on ,br XX  ,br UU  ,br YY   if for all 

initial conditions   ,)0();0()0( brbr XXxxx   and inputs   ,)();()( brbr UUkukuku    

, Nk the state trajectory ,)( br XXkx  and output trajectory 

  ,)();()( brbr YYkykyky   are uniquely defined. 

This definition can be used also for other types of hybrid models what were introduced 

before. In general a hybrid model may not be well-posed, either because the trajectories 

stops after a finite time or because of nondeterminism (the successor )1( kx may be 

multiply defined) [BemDHS,Tor]. But note that trajectories of DHA are deterministic, 

therefore also well-posed. 

2.3 Piecewise Affine Systems 

A particular case of DHA is the popular class of piecewise affine (PWA) systems [HeeSchBem, 

Son, FTMLM03, RBL04]. PWA systems are for short defined by partitioning the space of 

states and inputs into polyhedral regions and associating with each region a different linear 

state-update equation. Essentially, PWA are switched affine systems whose mode only 

depends on the current location of the state vector.  

)()()()1( kiii fkuBkxAkx   (2.6a) 

)()()()( kiii gkuDkxCky   (2.6b) 

For   ikukx )();( , where ,nrr RXx   is the state, ,mRUu  is the input and 

pRYy   is the output at time instance k .   sii ,,1  is a polyhedral partition of the 

state-input space defined by a system of inequalities  ii
u

i
x KuHxH  and

 ii
u

i
xiiiiii KHHgDCfBA ,,,,,,,,  , are real matrices of suitable dimensions. 

PWA systems are the “simplest” extension of linear systems that can still model non-linear 

and non-smooth processes with arbitrary accuracy and are capable of handling hybrid 

phenomena. For PWA systems, well-posedness [wikiWP01, wikiWP02] is defined as follows. 
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Definition 2.1 [BemDHS]: A PWA system is well-posed on  ,,, YUX  if for all initial 

conditions Xx )0(  and for all inputs Xkx )( , for all Nk , the state trajectory Xkx )(

and the output trajectory Yky )(  are uniquely defined. 

When the mode  ski ,,1)(  is an exogenous variable, the condition   ikukx )();(

disappears and we refer to (2.6) as a switched affine system (SAS). 

On figure 2.2 there is shown example of PWA system defined by one variable PWA function 

divided into five regions, which are including different dynamical laws. 

 

Figure 2.2: Example of one dimensional PWA function with 5 regions. 

2.4 Mixed Logical Dynamical Systems 

In [BemDHS, BemMor] a class of hybrid systems, called Mixed Logical Dynamical (MLD) 

systems, has been introduced in which logic, dynamics and constraints are integrated. An 

MLD system is described by the following relations: 

)()()()()1( 321 kzBkBkuBkAxkx    (2.7a) 

)()()()()( 321 kzDkDkuDkCxky    (2.7b) 

54132 )()()()( EkxEkuEkzEkE   (2.7c) 
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Where  TT
br

T
r kxkxkx )()()(   with states of the system   br n

b
n

r kxRkx 1,0)(,)(  , outputs 

)(ky  and inputs )(ku  have similar structure as states. Next rrRkz )( are real and 

  brk 1,0)(   binary auxiliary variables and ,,,,,,,,, 51321321 EEDDDCBBBA  are real 

matrices of suitable dimensions. Auxiliary variables are introduced when translating 

propositional logic or PWA functions into linear inequalities. All constraints for variables of 

new MLD system are summarized in the mixed-integer linear inequality constraint (2.7c). 

The MLD system is considered to be completely well posed if for a given state )(kx  and input 

)(ku  the values of )(k  and )(kz  uniquely defined by the inequality (2.7c). A formal 

definition of wellposedness for MLD systems and a algorithm to test the well-posedness 

have been presented in [BemMor]. 

The MLD framework is a powerful tool for modeling discrete-time linear hybrid systems, it 

aims at translating a hybrid system in a set of mixed integer linear equalities and 

inequalities. Via MLD framework we are able to describe automata, propositional logic, if-

then-else statements and PWA functions. General nonlinear functions cannot be modeled 

and have to be approximated by PWA functions.  
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Chapter 3 

3 Hybrid Systems Modeling Framework 

3.1 Introduction 

Aim of this Chapter is on investigating and proposing an efficient mathematical framework 

for modeling of hybrid systems. The core of this framework will be build on translation 

techniques for efficient rearrangement of systems with hybrid dynamics or logical 

components defined either as DHA or PWA into corresponding mixed-integer problem, what 

is suitable computational representation of hybrid systems solvable by numerical solvers.  

At the beginning of this Chapter we are investigating the connections between logic 

propositions and mixed-integer linear constraints. First we will highlight a general 

propositional calculus for handling the Boolean variables, and then we will focus on 

techniques for translation arbitrary Boolean statements or functions into equivalent mixed-

integer linear inequalities. We will also introduce the Big-M conversion, which is efficient 

tool for converting a complex, possibly nonconvex or logical constraints and functions into 

form of mixed-integer inequalities. Later on we will show how to transform more complex 

hybrid systems defined as DHA or PWA into MIP form by using Big-M formulations with 

combination of translation techniques defined for Boolean functions. And in the end of this 

Chapter we are proposing an attempt to make these general transformation techniques 

more efficient by decreasing logarithmically the number of auxiliary binary variables 

included in resulting mixed-integer problem. This can be done by “binary encoding” of 

integer variables in original model by new auxiliary binary variables. For the purpose of 

improvement of efficiency and solvability of resulting model we are also presenting the 

cutting-plane approach to eliminate infeasible combinations of new auxiliary binary variables 

with focus on minimization of number necessary cuts i.e. extra linear constraints included in 

our model. 
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3.2 Logical Propositions 

In the beginning we will start with some basic definitions of Boolean algebra. A variable X  is 

referred to as a Boolean variable or literal, if  1,0X . Boolean algebra enables statements 

to be combined in compound statements by logical operators named in following Table 3.1. 

Logical operator Symbol 

Logical conjunction - AND ˄ 

Logical disjunction – OR ˅ 

Logical negation - NOT ¬ 

Logical implication - IF → 

Logical equivalence – IF AND ONLY IF ↔ 

Logical exclusive or - XOR   

Table 3.1: Logical operators and their characters. 

Logical operators or connectives have several properties [Chr01] whose allows to transform 

compound statements into equivalent statements by using different connectives and 

simplify complex statements. It is known that all connectives can be defined in terms of a 

subset of them, which is said to be a complete set of connectives ,  [BemMor].  In 

literature a minimal representation of Boolean statement is called conjunctive normal form 

(CNF), where the only propositional connectives a formula in CNF can contain are AND, OR, 

and NOT   ,,  [wikiCNF]. The Boolean statement F is in CNF (Boolean equivalent of 

products of sums) if it is written in following form: 

i

n

i
F 

1
  (3.1a) 

ij

m

ji X
1


 
(3.1b) 

Where the Boolean formulas i  are named terms of the product, and ijX  are named terms 

of the sum. The formula is in minimal CNF when the formula has minimum number of terms 
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of the product and each term has the minimum number of terms of sum [BemDHS]. Every 

Boolean expression can be rewritten as a minimal CNF [Koh]. Logical expressions which are 

not part of CNF   ,,  or complete set of connectives , , can be rewritten into these 

forms by using logical equivalences between logical expressions as is shown in following 

example 3.1. More about logical equivalences you can find in papers [BemMor, Mig] and 

their references. 

Example 3.1: 

Logical statement Equivalent logical statement 

21 XX    21 XX   

21 XX   12 XX   

21 XX   21 XX   

21 XX      1221 XXXX   

Table 3.2: Example for equivalency of logical statements. 

When a Boolean expression is used to define a Boolean variable nX  as a function of

11 ,, nXX  , it is also called a Boolean function f  defined as follows. 

 121 ,,,  nn XXXfX   (3.2a) 

Relations between Boolean variables nXX ,,1  , can be defined with Boolean formula F . 

  1,,, 21 nXXXF   (3.2b) 

Where   .,,1,1,0 niX i   Each Boolean function is also a Boolean formula, but this 

statement is not valid conversely i.e. each Boolean formula doesn’t have to be a Boolean 

function. Boolean formulas can be equivalently translated into a set of mixed-integer 

inequalities (MIP), what we will show in next stage of this thesis. 

Complex theory of Boolean calculus can be found in digital circuit design texts, e.g. [Chr01, 

Hay01]. And more mathematically rigorous interpretation can be found e.g. [Med01]. 
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3.3 Propositional Calculus and Mixed-Integer Programming  

In this section we are presenting several general techniques for translation of logical 

statements into computable form of mixed-integer inequalities. Incentive to do so is that 

mixed-integer programming problem has been advocated as an efficient tool to perform 

automated deduction of validity of logical propositions [CaPaSo]. For further reading about 

techniques of translation process and generalization of some results we recommend to the 

reader following works [BempDHS, Mig] and their references.  

First we want to point on conversion of basic logical statements into mixed-integer 

inequalities what is shown in Table 3.2. Let’s associate with Boolean variable iX  a logical 

variable  1,0i  which has a value of 1 if TX i  , and 0 if FX i  . 

Operator Logical statement Mixed-integer (in)equality 

AND 21 XX   2,1,1 2121   or  

OR 21 XX   121   

NOT 1X  11,0 11   or  

XOR 21 XX   121   

IMPLIES 21 XX   021   

IFF 21 XX   021   

Table 3.3: Conversion of basic logical statements into mixed-integer inequalities. 

In literature [BemDHS, Mig] there are mentioned two general methods for conversion of 

logical statements into mixed-integer inequalities. Authors are naming them symbolical and 

geometrical method, further we are extending symbolical method to be more general and 

applicable on any type of logical statements, and using it as a main translation technique for 

our modeling framework. But it is important to mention that all these techniques are in the 

end proposing equivalent results, because they are tracking the same objective, which is to 

find equivalent mixed-integer linear inequalities for arbitrary Boolean functions (3.2a) or 
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formulas (3.2b). Therefore no method is uniformly better than the others and the choice of a 

suitable method is dependent on the form of the logical statements. 

3.3.1 Symbolical Method 

Symbolical or CNF method is based at first on transforming Boolean functions (3.2a) or 

Boolean formulas (3.2b) into conjunctive normal form (CNF). This can be done automatically 

by using one of the standard well known techniques mentioned in [ChHoo01, Chr01]. Let us 

consider to have the CNF defined as following. 







 

 iNiiPi

m

j
XX

jj1  (3.3a) 

Where   .,,1,,,1, mjnPN jj    

This CNF than can be transformed into the mixed-integer inequalities with corresponding 

binary variables i  like this 

 

  

 

 

 





m mPi Ni
ii

Pi Ni
ii

.11

,11
1 1





  (3.3b) 

3.3.2 Extended Symbolical Method 

Disadvantage of previous symbolical method is demand for logical statements to be in CNF. 

Therefore we will present extended symbolical method used in this thesis, which is able to 

use full scale of logical operators, not only CNF. In the Table 3.4 there are shown few most 

commonly used examples of general logical statements transformed into MIP inequalities via 

extended symbolical method.  

Logical statement Mixed-integer (in)equality 

10 XX   10 1    

10 XX   10 1    

10 XX   10 1    
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nXXXX  110  n
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ij

ji  0  

Table 3.4: Conversion of basic logical statements into mixed-integer inequalities via 

extended symbolical method. 

3.3.3 Geometrical Method 

Geometrical method or truth table method [MoBeMi02] has two steps. First step is that the 

set of points in   n1,0  satisfying the Boolean function (3.2a) or Boolean formula (3.2b) is 

computed. Each row of the truth table is associated with a vertex of the hypercube n1,0 . 

The vertices are collected in a set V of valid points, the rest of the points   Vn \1,0  are 

called invalid. The valid point is a satisfying truth assignment for a Boolean formula. The 

mixed-integer inequalities are than obtained by computing the convex hull of V , for which 

several tools are available e.g. [Fuku01]. We can define the set of valid integer points as 

following 

    VconvxxP n
CH  :1,0  (3.4) 
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Where CHP  is a polytope defined by all the valid points of Boolean formula, and  Vconv  

defines a convex hull of the set of valid points V . This method allows an automatic 

translation of truth table representing Boolean formulas into mixed-integer linear 

inequalities [Mig].  

3.4 Big-M modeling 

3.4.1 Big-M conversion 

We are using so called big-M formulation as a modeling framework for modeling a complex 

or logic constraints and functions by converting and reformulating them into form of mixed-

integer models.  The idea of big-M formulation is based on forcing different constraints to be 

active or inactive by adding extra binary variables as “indicators of validity” for constraints 

into the model. By transforming of model of hybrid system into the mixed-integer 

inequalities we are able to capture both continuous and also discrete parts of the system 

into single by numerical solvers computable and feasible model.  

The basic procedure for creating a big-M formulation from any constraint or a function is to 

decompose their descriptions into a set of it-then-else conditions, which are easy to model 

by using auxiliary binary variables.  This is done by adding large positive value of constant M 

in each constraint and this value is multiplied by binary variable  1,0i . Let’s have a 

function )(xf i  which should be active only if binary variable 0i  and zero when binary 

variable 1i . The corresponding big-M formulation of previous if-then-else condition is 

following 

   iii Mxfm   1)(1  (3.5) 

Notice that even if the method is called big-M, setting the values of the constants (m, M) to 

be very large or even infinite can work in theory, but in practice it will cause considerable 

numeric drawbacks and most of the solvers will be inefficient or they don’t have to find the 

optimal solution at all. On the other hand if the values of constants will be very small, the 

optimal solution in the original problem could be cut away and the problem won’t be 
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feasible anymore. Therefore it is very important that constants (m, M) should be estimated 

so close as possible to lower (3.6a) and upper (3.6b) bounds of function )(xf i : 

)(min xfm i  (3.6a) 

)(max xfM i  (3.6b) 

Proper value of (m, M) can be determined by setting numerical constraints or pre-computing 

of possible values of functions used in big-M formulation. But this is not always possible for 

several reasons as unbounded real variables or unknowing of the behavior of functions used 

in big-M formulations. Therefore accurate estimation of (m, M) is a crucial task in 

formulation of good big-M formulations. Theoretically, an under (m) or over (M) estimate of 

constants suffices for our purpose. However, more realistic estimates provide computational 

benefits [Wil01]. 

3.4.2 DHA, PWA and Big-M Formulation 

Big-M conversion can be understood as suitable continuous-logical modeling framework for 

hybrid systems represented either as PWA or DHA, what is in the interest of investigation of 

this thesis. As we know SAS (part of DHA) or PWA can be rewritten as the combination of 

linear terms and if-then-else rules as is shown in Chapter 2 in section Hybrid Models. 

Because of this nature, these models are suitable for big-M conversions into the mixed-

integer inequalities by using techniques mentioned in section below called “Big-M models 

library”. Moreover the events (2.3) of DHA can be also expressed as big-M formulations in 

following form 

   irrH Mkkukxf  1),(),(  (3.7a) 

  irrH mkkukxf ),(),(  (3.7b) 

Conversion of logical statements typical for mode selector (MS) of DHA, can be also easily 

done by using techniques mentioned in section named “Propositional calculus and mixed-

integer inequalities”. 
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3.4.3 Big-M Models Library 

In this section we are representing several big-M models of most commonly used logical 

relations between binary variables, linear equalities and inequalities or polytopic constraints. 

At first let’s present some basic assumptions, we denote  1,0i  as a binary variable, and 

,RXx  as a real variable. Linear inequality constraint is defined as  0bxaT , where 

Ta and b  are scalar vectors. Similar we define also linear equality constraint as 

 .0bxaT  Multiple linear inequalities i.e. polytope is defined as  10 0  BAx  

(1.3), where ni ,,1 .  And integer linear inequality is defined as  0 b
T
b bxa , where 

index b denotes that coefficients T
ba  and bb  can obtain only integer values. And (m, M) are 

positive scalar values set as mentioned in previous section. Than the representation of 

corresponding big-M models are shown in following Table 3.5. 

Type of statement Big-M model (MIP inequality) 

binary variable → linear inequality 

 0 bxaT  
  1MbxaT  

binary variable → linear equality
 0 bxaT       11 Mbxam T  

binary variable → polytope inclusion 

 0 i
T
i bxa  

  1ii
T
i Mbxa  

linear inequality → binary variable
 10  bxaT  bxam T   

Integer linear inequality → binary 
variable 

 10  b
T
b bxa  

bxam T 





 

2
1

2
1

  

linear equality → binary variable 
(because it is impossible to do this 
directly, we have to use the same 

techniques as for polytope inclusion ↔ 
binary variable described below)  

 1 rbxar T  

 

0,

1

1

0

1
0
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linear inequality ↔ binary variable
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Table 3.5: Big-M models library. 

Big-M formulation has proved to be very convenient modeling framework for constructing 

MIP problems, but there are still few numerical drawbacks, which arises not from the theory 

itself, but from computers nature of representation the numbers. They are lots of references 

about computer representation of numbers which can be found on internet, just for 

curiosity we recommend to the reader following sources e.g. [ASan01, wikiCoNu]. 

Each computer is able to work with specified numerical precision and the size of the 

numbers which can be processed by computer is also limited. It is impossible to work 

directly with numbers like infinity, or zero representation in floating point method is also not 

precisely defined. Therefore not all mathematical expressions are available to be 

represented in current numerical solvers without losing some precision and even if they are 

computable, the computation time needed for processing could be enormously large. In to 

the group of “hard to solve” mathematical expressions belongs for example equality 

constraints 0 bxaT , which are being transformed into two corresponding inequality 

constraints (one from each side) to force the expressions to be equal as it is shown in 6th row 
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of Table 3.5. Another example is strict inequality constraints 0 bxaT , which need some 

small numerical thresholds to be defined around zero value. Several of these techniques for 

handling the mathematical expressions to be numerically solvable by numerical solvers are 

incorporated in Big-M formulation, as you can see in a Table 3.5. In Big-M modeling there 

are also used techniques for conversion of logical expressions into MIP inequalities defined 

in Table 3.4. As an example you can look on 9th row of Table 3.5 where is defined Big-M 

representation of statement (polytope inclusion ↔ binary), where the Big-M conversion of 

logical AND operator from Table 3.4 has been used. The reader can found more of practical 

examples about Big-M formulation and mixed-integer programming in following references 

[YalMIP,  YalBigM]. 

3.5 Efficient Modeling of Hybrid Systems 

The complexity of resulting MIP model translated from logical propositions is significantly 

determined on number of binary variables included in the model. The complexity of MIP 

model rises exponentially with increasing number of involved binary variables, what has 

huge impact on speed of solving of the mathematical optimization problems. Solving of MIP 

optimization problems is necessary for synthesis, analysis and control of hybrid models. 

Therefore a reduction of a size of the model seems to be a crucial task in efficient modeling 

approach for these models.  

In this chapter we will show that it is possible to encode and replace the binary states of DHA 

by fewer new auxiliary binary variables in the form of linear integer inequalities, we are 

calling this technique “binary encoding” of integer variables. One original binary variable will 

be assigned exactly with one integer inequality. Each inequality will be unique combination 

of valid points of truth table (geometrically vertex of a hypercube) composed for Boolean 

function of auxiliary variables. By this approach we can reduce the number of necessary 

binary variables logarithmically comparing to original MIP problem, as we will show in 

following pages of this thesis. Later on we are presenting also efficient technique for 

removing the infeasible combinations of new auxiliary variables i.e. invalid points of truth 

table from feasible regions of resulting MIP problem. This is done by adding extra constraints 

(cuts) into the MIP problem. This procedure is necessary for avoiding the model to be 
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declared in infeasible and undefined regions which could appear in MIP formulation, what in 

theoretical way should keep correct DHA trajectory and ensure well posedness of the hybrid 

model. 

As a main reference for this Chapter we should mention work [Olaru], in which is author 

investigating and proposing enhanced techniques for hyperplane arrangement in MIP 

problems. In this paper are presented ideas for reduction the binaries on logarithmic size by 

“binary encoding”, which we are using in our modeling framework and has been also 

mentioned earlier in paper [BemMor].  In paper [Olaru] there is also shown technique for 

constraints (cuts) reduction, based on grouping the cuts together, when a single cut is used 

for separation more than one infeasible combination of auxiliary variables (geometrically 

vertex of hypercube). By this approach we can obtain significant decrease of number of used 

cuts. Moreover with small changes in cuts creation (by using so called deep cuts) we 

improved this technique of “reduced cuts” to technique of “reduced deep cuts”, which are 

constructing more suitable representation of MIP model for current numerical solvers. We 

are presenting this technique later on in this chapter. 

3.5.1 Binary Encoding of Integer State Variables 

Here we will present the general technique for binary encoding of original Boolean variables 

  xn
iX 1,0  by logarithmic number of new auxiliary binary variables   dn

j 1,0  with using 

the Truth Table Method (Geometrical Method) defined few sections above. This technique is 

based on defining the original binary variable as a Boolean function (3.2a) of new auxiliary 

binary variables, where each binary variable iX  is associated with one corresponding row of 

the truth table, geometrically represented as a vertex of hypercube. Each row of the table is 

represented as a unique combination of new variables j  or it can be conceived also as a 

unique Boolean formula of variables j . The maximum number of all possible combinations 

of variables j  equals dn2  where dn  means cardinality of new auxiliary binary variables. 

Hence the number of new auxiliary binary variables dn  needed for encoding the original 

binary variables in cardinality of xn  will be set by relation (3.8), where the brackets  .  

denotes the ceiling operator. 
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 )(log 2 xd nn   (3.8) 

As mentioned before in section about Geometrical Method, the truth table can be set up 

e.g. by enumeration of corresponding Boolean formulas. More detailed definition of a truth 

table can be also found in work [Mig] or on a web [wikiTT].  

For demonstration we will create a table of all possible combinations of three auxiliary 

binary variables  321 ,,  . Where each row of the table can be represented as a different 

Boolean formula in CNF, therefore we can use a transformation techniques proposed in the 

Table 3.4 to transform these Boolean expressions into equivalent mixed-integer linear 

inequalities, as is shown in following example 3.2. The ↔ operator means that all 

transformation procedures are equivalent and reverse. 

Example 3.2: 

Truth Table  Boolean formula  Mixed-integer inequality 

1  2  3     

0 0 0 ↔ 321    ↔ 0321    

0 0 1 ↔ 321    ↔ 1321    

0 1 0 ↔ 321    ↔ 1321    

0 1 1 ↔ 321    ↔ 2321    

1 0 0 ↔ 321    ↔ 1321    

1 0 1 ↔ 321    ↔ 2321    

1 1 0 ↔ 321    ↔ 2321    

1 1 1 ↔ 321    ↔ 3321    

Table 3.6: Example for conversion of truth table into equivalent Boolean formulas and 

mixed-integer inequalities. 

As we can see in previous example for each row of the truth table there is exactly one 

corresponding mixed-integer linear inequality, with which we can replace an original binary 

variable iX  in MIP problem. It is obvious that in this example the number of binaries iX  

what we can encode with this approach by three auxiliary binary variables  321 ,,   is set 
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by relation dn2 defined before, hence equals 823  . On figure 3.1 is show the corresponding 

visual representation of hypercube  31,0  for truth table from example 3.2. 

 

Figure 3.1: Visual representation of truth table from example 3.2 as a 3-dimensional 

hypercube with valid points 31,0 . 

Technique of “binary encoding” of integer variables allows us to significantly decrease the 

number of binaries involved in our model what goes hand in hand with decreasing of 

complexity of whole model, but nothing is for free and several drawbacks appears also in 

this approach. 

First cost what we have to pay is hidden behind new Big-M conversions which need to be 

done. In “binary encoding” approach a single binary variable is replaced by corresponding 

mixed-integer linear inequality, because of this the logical implications and equivalences 

used for modeling are becoming more complex and therefore more difficult to transform 

into Big-M formulations as it was with using only single binary variable. For this purposes 

there are available efficient transformation techniques for more complex statements (e.g. 

integer linear inequality ↔ binary variable) as is shown in Table 3.5 which is containing the 

Big-M models library. So even if we reduce the number of binary variables what decreases 

the complexity of the model, the number of MIP inequalities needed for description of the 

model is rising, due to more complex Big-M formulations, what has certainly negative effect 

on complexity of the model created by this approach. Or sometimes even a new auxiliary 

binary variable which is used for description of a complex statement is needed to be 

incorporated into the model, what is also increasing the complexity of the model. Here we 
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have to be careful and compare the pros (decreased number of binaries) and cons (increased 

number of MIP constraints and auxiliary variables) of this approach for particular model 

situation and its effect on complexity of resulting model. 

Second problem what we have to deal with appears when the number of original binary 

variables iX  what we want to encode is not equal to powers of two dn2 . As we mentioned 

before the number of new auxiliary variables needed for encoding xn  states is equal to the 

number set by relation (3.8), so the number of auxiliary variables and their descriptive 

power is not arbitrary choice. In this approach we may face a situation when there will be 

more possible combinations of the auxiliary variables (tuples or nodes) than we actually 

need for encoding of original binary variables. And here the problem of infeasible tuples of 

auxiliary binary variables or unallocated vertexes of hypercube arises. Note that the number 

of unallocated tuples un  may obtain a significant value especially with higher number xn  of 

original binary variables. The number un  is function of xn and is set by following relation 

(3.9). 

  
x

n
u nn x  2log2  (3.9) 

We will demonstrate this problem on following example 3.3.  

Example 3.3: Let us consider a model with five binary states iX  , where 5,,1i . These 

can be represented by three auxiliary binaries  321 ,,  , for whose the truth table was 

shown in example 3.2. To each row of the truth table and to corresponding MIP inequality 

we will assign exactly one binary state iX . Note that there are three rows of the table left 

without any assignment, therefore these three tuples are unallocated. The number 3un  

fits also with equation (3.9), because in this example 3dn  and 5xn . But this is 

something what a numerical solver can’t realize without our help. The solver will consider 

these unallocated nodes as a feasible solutions (because we didn’t say to him opposite), and 

could lead the optimization into undefined regions of MIP problem, what will cause the 

crash of our model.  
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On figure 3.2 is shown the visual representation of hypercube for the example 3.3, with 

three unallocated nodes marked with blue crosses. These unallocated nodes are 

representing last three rows of truth table from example 3.2. 

 

Figure 3.2: Visual representation of hypercube from example 3.3 with three unallocated 

tuples       1,1,1;0,1,1;1,0,1 . 

We need to somehow say to the solver that this tuples where no actual binary state is 

defined should be put out of feasible regions of constructed MIP problem. The solution of 

this problem will be shown in following stage about cuts, where the extra linear constraints 

will be added into the model for eliminating these infeasible combinations of auxiliary 

variables. 

3.5.2 CUTS 

By the notion of “cuts” we are meaning extra constraints added to the model to restrict 

infeasible integer or possible non-integer solutions that would be solutions of the 

continuous relaxation of MIP problem computed by most of the solvers. By this approach we 

can ensure that we will find optimal solution and significantly reduce the number of 

branches needed to solve MIP problem and consequently improve the speed of obtained 

solution. Therefore the demand for finding a “good” cuts and incorporating them into the 

model plays very important role in efficient modeling of MIP problems. 

In this part of the thesis we are investigating several approaches for removing infeasible 

nodes (unallocated vertexes of hypercube) from feasible regions of MIP problem by cuts. 
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Visual demonstrations of used techniques will be shown on 3-D hypercube from example 3.3 

constructed as a combination of three binary variables  321 ,,  . 

3.5.2.1 One node one cut approach  

This is a basic approach to solve the problem with unallocated nodes (infeasible integer 

solutions). Main idea is to use exactly one mixed integer inequality for cutting away one 

particular infeasible node from a model, as can be seen also on figure 3.3. This approach is 

very easy to implement, because the representing mixed integer inequalities for a single 

node can be found by using transformation techniques shown in Table 3.4. For this purposes 

we also present following definition. 

Definition 3.1: us consider a collections of all possible combinations of n  binary variables 
 kn ,,1   with cardinality nk 2,,1 , which are shaping an n-dimensional hypercube 

and each of them can be conceived as a vertex of this hypercube. Then we can find a 

constraint (3.10) for each vertex, which is putting this particular combination of binaries and 

only this combination infeasible. 

    


FT n

ij
j

n

ji
i 1  (3.10) 

Note that Tn  represents the number of binaries in tuple (node), which value is equal to 1 or 

TRUE, and Fn  represents the number of binary variables with 0 or FALSE value. Then the 

total number of binaries in one tuple must hold following equality nnn FT  . Geometrical 

representation of each constraint of type (3.10) is a hyperplane which is separating the 

space in to two half spaces, one feasible and one infeasible. 
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Figure 3.3: A single cut (hyperplane - blue) separating one vertex of the hypercube. 

Example 3.4: We will demonstrate this basic approach on three infeasible nodes from 

Example 3.3, with using three single cuts to restrict them from feasible region of the model. 

Corresponding MIP inequalities (3.11) for restricting these nodes are shown in following 

Table 3.7. 

Infeasible node  321 ,,   Corresponding cut (MIP inequality)  

 1,0,1    2321  (3.11a) 
 0,1,1    2321  (3.11b) 
 1,1,1    3321  (3.11c) 

Table 3.7: MIP inequalities for restricting infeasible nodes       1,1,1;0,1,1;1,0,1 . 

Note that there is extra scalar value  1,0  deducted from right side of the MIP inequality, 

this value says how “deep” the cuts will be and how much space from the feasible region 

they will cut. So when the scalar 0 , it means that this cut will be very strict and it will lie 

exactly on node that should separate, on the other hand when 1 , it means that this cut 

is deep and is cutting away from feasible region as much space as possible. Although the 

choice of the value  1,0  is arbitrary, it has a huge impact on model efficiency during the 

optimization as will be demonstrated later in section about deep cuts approach.  

We used value 5.0  in our example 3.4 just for a demonstration of above mentioned 

issues, than the corresponding visual representation of these cuts is shown on figure 3.4. On 
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the left picture there are shown three restricted areas of hypercube defined by cuts, which 

are containing the infeasible nodes, these infeasible regions are painted by blue color and 

the remaining feasible region is painted yellow. On the right picture, there is shown a 

polytopic representation of the feasible region for corresponding MIP model after executing 

the cuts. Where red nodes are representing feasible integer solutions and blue nodes are 

representing non-integer solutions, which are naturally infeasible for MIP problem. 

 

Figure 3.4: Left - Single cut approach for cutting away three nodes by cuts (3.11) from 

example 3.4. Right – remaining feasible region with 7 non-integer nodes (blue). 

Disadvantage of this approach is that for more complex problems with a lot of unallocated 

nodes we need to incorporate a huge number of extra constraints to the model, what is 

making the model even more complex and less efficient for solving optimization problems. 

The efficient technique for minimizing the number of constraints can be found in paper 

[Olaru] and we are describing it in following section named “Reduced cuts approach”. 

Second even bigger drawback lies in a polytopic representation of feasible regions for 

resulting MIP model. As we can see on right picture from figure 3.4 after adding the cuts in 

to the model, new non-integer nodes (blue) appears in geometrical representation of 

feasible regions of the model. These nodes obviously can’t be the solutions of the MIP 

problem, but for continuous relaxations of MIP problem these nodes are representing 

feasible solutions of relaxed LP problem. So for all the current solvers based on algorithms 

using LP relaxations of the MIP problem would be this representation of the MIP model 
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highly inconvenient and inefficient, due to increased number of branches needed to be 

checked, or for some advanced solvers there would be need for presenting their own cuts 

for restricting these infeasible solutions from continuous relaxations. Therefore for further 

use of the model is very important to provide “good” cuts, which will minimize the number 

of non-integer nodes in polytopic representation of feasible regions of the MIP model, what 

will provide significant relief in number of the LP relaxations of MIP problem needed to be 

solved by numerical solvers. We will focus on this issue in following pages of this thesis in 

section named “Reduced deep cuts”, where we are trying to combine the technique of 

reduced cuts and technique of deep cuts to provide more efficient representations of MIP 

models for current numerical solvers. 

3.5.2.2 Reduced cuts approach 

By this approach we are able to significantly reduce the number of cuts incorporated in the 

model. This is done by merging single cuts for particular nodes together to create one 

complex cut for cutting away more than one node. 

The idea is based on finding and grouping the neighbor nodes of hypercube together and 

introducing a single inequality for their restriction from feasible region. By meaning of 

neighbor node we mean for example two vertexes which are forming an edge of hypercube, 

or four vertexes of hypercube which are forming one plane of a hypercube. So generally we 

can group together and separate by single cut n2  nodes, which are forming n-dimensional 

hyperplane which is part of a multi-dimensional hypercube representing corresponding 

combinations of used binary variables.  

Now arise the question what can be the best possible allocation of infeasible nodes in the 

hypercube, for grouping as much as possible neighbor nodes together. Even if the allocation 

of nodes is arbitrary and one can choose different combinations, we are proposing following 

ordering of binary variables to be most favorable for reduced cuts approach, because of the 

maximum number of neighbor nodes placed next to each other. The idea is to use basic, 

most simple ordering of nodes where we are gradually changing the values of binaries in 

descending order from the last binary to first binary one by one, what geometrically means 

that we are changing the position from one vertex to another vertex by moving on edges of 

the hypercube. You can check that this is true e.g. by enumeration of vertexes of hypercube 
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from figure 3.1. We are using this ordering in every example of this thesis and can be seen 

e.g. in truth table for example 3.2. With using basic ordering the number of new reduced 

cuts rn  depends on number of unallocated nodes (3.9) and can be approximately estimated 

by following relation (3.12). 

  ur nn 2log  (3.12) 

Note that equation (3.12) is only raw estimation and not a strict relation. Real relation 

between number of reduced and number of original cuts, can be seen in Appendix on figure 

A.1. Moreover dependence of maximum number of original and reduced cuts on number of 

auxiliary binary variables   is shown in Appendix on figure A.2. 

For better understanding of this technique there are following examples 3.5 and 3.6. In 

example 3.5 we are presenting also figures 3.5 and 3.6, with visual demonstrations of 

complex cuts for vertexes of 3-dimensional hypercube. And on example 3.6 we are 

demonstrating the reducing constraints power of this approach. 

Example 3.5: Let us consider a hypercube representation for all possible combinations of 

three auxiliary binary variables  321 ,,   , while three of the nodes are infeasible, as shown 

on Example 3.3. Separation of the infeasible nodes by single cut approach was demonstrated 

on Example 3.4. Now we will show that it is possible to use instead of three MIP inequalities 

(3.11) only two MIP inequalities (3.13) for all three nodes, to restrict them from feasible 

region. First what we have to realize is which of these nodes lies together an edge of the 

hypercube, to be able for us separate them by single cut. On figure 3.5 is clearly visible that 

the following pairs of nodes     1,1,1;1,0,1  and     1,1,1;0,1,1  forms together two edges of 

the hypercube. Than the corresponding MIP inequalities (3.13) for these edges are defined 

in following Table 3.8. Their visual representation is shown on figure 3.5 where on the left 

picture there is hypercube with cut defined by inequality (3.13b) and on the right picture is 

shown a hypercube with cut defined by inequality (3.13a). 

Pair of infeasible nodes 

 321 ,,   

Corresponding complex cut  

(MIP inequality) 

 

   1,1,1;1,0,1    231  (3.13a) 
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   1,1,1;0,1,1    221  (3.13b) 

Table 3.8: MIP inequalities for restricting two infeasible edges of hypercube. 

For cuts (3.13) demonstrated on figures 3.5 and 3.6 we also used value 5.0  as in 

example 3.4, this was done for a better comparison of these two techniques. Moreover on 

figure 3.6 is shown a remaining feasible region after executing these complex cuts (3.13) 

with new 6 non-integer nodes. 

 
Figure 3.5: Complex cuts for edges of the hypercube. Left – cut for two nodes defined by 

equation (3.13b) with value 5.0 . Right – cut for two nodes defined by equation (3.13a) 

with value 5.0 . 

 
Figure 3.6: Remaining feasible region after two complex cuts with 6 non-integer nodes 

(blue). 
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Example 3.6: Assume that we have model with 9 binary states 9,,1, iX i , and we want 

to encode them by using 4 auxiliary binary variables  4321 ,,,  . As we know from 

section about binary encoding, 4 extra binaries are providing us space for encoding 24=16 

binary states of the model. Hence after constructing the truth table and associating for each 

binary state iX  exactly one row of the table, there will be 7 unallocated nodes left in 4-D 

hypercube representation. Unfortunately we can’t visualize this example, but corresponding 

unallocated combinations of j  variables and their corresponding cuts (3.14) using basic 

“one node one cut” approach, what is shown in following table 3.9. 

Infeasible node 
 4321 ,,,   Corresponding cut (MIP inequality) 

 

(1,0,0,1)   24321  (3.14a) 
(1,0,1,0)   24321  (3.14b) 
(1,0,1,1)   34321  (3.14c) 
(1,1,0,0)   24321  (3.14d) 
(1,1,0,1)   34321  (3.14e) 
(1,1,1,0)   34321  (3.14f) 
(1,1,1,1)   44321  (3.14g) 

Table 3.9: Example of basic approach with 7 single cuts for 7 infeasible nodes. 

Now we apply the results of this section to reduce the number of cuts by merging the 

neighbor nodes together and separate them by single cut. In a table 3.10 we can see that for 

this particular case we were able to replace 7 single cuts (3.14) constructed by basic 

approach just with 3 complex cuts (3.15) constructed by using “reduced cuts” approach. 

Note that the group of 4 infeasible nodes (3.15a) is forming one plane of a hypercube and 

the pairs of infeasible nodes (3.15b, 3.15c) are forming two edges of a hypercube. The values 

of particular binaries highlighted bold are representing common values for the group of 

nodes, from which the corresponding MIP inequalities were derived. 
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Group of infeasible nodes 
 4321 ,,,   Corresponding cut (MIP inequality) 

 

(1,1,0,0); (1,1,0,1); 
(1,1,1,0); (1,1,1,1) 

  221  (3.15a) 

(1,0,1,0); (1,0,1,1)   2321  (3.15b) 
(1,0,0,1); (1,0,1,1)   2421  (3.15c) 

Table 3.10: Example of 3 complex cuts for restricting 7 infeasible nodes. 

As shown on example 3.6 this approach provides great improvement in number of 

constraints what we have to incorporate into the model, what is decreasing the complexity 

of the resulting model. But on the other hand as we can see on example 3.5 exactly on figure 

3.6 the number of non-integer vertexes which are created by using this approach is still 

considerable large what has negative effect on computing efficiency of the model. We will 

show how to easily handle this drawback in next section of this thesis, by providing deep 

cuts. 

3.5.2.3 Deep cuts approach 

In this section we want to prove that reduced cuts approach is obtaining best results with 

performing so called deep cuts i.e. with value of 1  for cuts defined by equation (3.10). 

The cut is called deep because is restricting maximum possible space from feasible region 

while still holding the condition for cutting away desired nodes. 

Using of this approach can be seen on figures 3.7 and 3.8 where we used cuts (3.13) from 

example 3.5, the only difference here is that we changed the value of   from 0.5 to 1. Than 

we can compare the figures 3.6 and 3.8 with remaining feasible regions after executing cuts 

of these two approaches. As is clear from this comparison, with performing deep cuts we are 

obviously creating more suitable model for mathematical optimization, because in model 

demonstrated by figure 3.8 there are no extra non-integer nodes, which would otherwise 

slow down the numerical solvers based on LP relaxations of MIP problem.  

Even if we didn’t propose the proof that this approach prevents from creating new non-

integer vertexes in remaining polytopic representation of feasible region, we assume that 

the number of them is minimal in comparison with different approaches which were 

mentioned in this thesis. 
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Figure 3.7: Complex deep cuts for edges of the hypercube. Left – deep cut for two nodes 

defined by equation (3.13b) with value 1 . Right – deep cut for two nodes defined by 

equation (3.13a) with value 1 . 

 

Figure 3.8: Remaining feasible region after performing two complex deep cuts with no non-

integer nodes. 
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Chapter 4 

4 Software Tools for Hybrid Modeling  

In this chapter we will shortly introduce modeling tools used in this thesis, particularly 

modeling languages HYSDEL [Hys] and YALMIP [YAL]. Both tools are shipped with free Multi-

Parametric Toolbox (MPT) for MATLAB [KGBC], designed for analysis and deployment of 

optimal controllers for constrained linear and hybrid systems.  

In this thesis we are using several MLD models developed in HYSDEL for comparison with 

hybrid models created in YALMIP, what will be shown in following pages.  

4.1 HYSDEL 

HYSDEL (HYbrid Systems DEscription Language) is a high-level modeling language, which 

allows describing hybrid dynamics in textual form, than the related compiler is used for 

translation of textual form into computational mathematical models of hybrid systems, 

particularly into MLD or PWA form. As we demonstrated in chapter 2, system described in 

MLD form can be instantly used for optimization to solve e.g. verification or optimal control 

synthesis problems. For further reading and better understanding of HYSDEL modeling 

language, we highly recommend to the reader following sources [Hys, ToBe, Tor, BemDHS, 

Mig]. 

4.2 YALMIP 

YALMIP is a powerful modeling language for advanced modeling and solution of convex and 

nonconvex optimization problems. It is implemented as a free (GNU license) MATLAB 

toolbox with rapid algorithm development. The language is in accordance with standard 

MATLAB syntax, what makes it extremely user friendly for common MATLAB users. The tool 

was initially developed in 2001 and over the years has grown enormously and today 

supports a broad range of optimization problems. Also a large number of various modeling 
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tricks are included, what helps user to focus on high-level modeling, while low-level 

modeling is done internally by YALMIP providing as efficient models as possible. Supported 

optimization classes are wide, such as linear, quadratic, second order cone, semidefinite, 

mixed integer conic, geometric, local and global, polynomial, multiparametric, bilevel and 

robust programming [YAL]. 

One of the central ideas of YALMIP is that it relies on external solvers carrying computation 

aspects, while the tool itself is focusing on the language and high-level algorithms. Complete 

list of supported external solvers can be found on YALMIP home page [YAL] in section 

“solvers”. Moreover YALMIP is also shipped with internal solvers for global optimization, 

mixed integer programming, multiparametric programming, sum-of-squares programming 

and robust optimization [YAL]. 

For purposes of hybrid modeling we will naturally focus on construction of mixed integer 

models in YALMIP. We highlight the reader on chapter 3 where most important YALMIP 

modeling features for MIP problems are presented, especially we refer to Big-M modeling 

approach as a main tool used internally in YALMIP for construction of MIP problems.  

4.2.1 YALMIP Hybrid Modeling Framework  

Main goal of this thesis lies in creating user friendly and efficient computational modeling 

framework suitable for creating corresponding MIP models of hybrid systems defined as 

DHA or PWA. The idea was driven by exploit capabilities of YALMIP and creating MIP 

representations of hybrid systems with using YALMIP modeling features described in chapter 

3. Motivation for creating such framework lied in that all current computational hybrid 

modeling tools require knowledge of specific language syntax e.g. HYSDEL. In contrast our 

YALMIP hybrid modeling framework is completely based on YALMIP syntax, which as 

mentioned before is consistent with standard MATLAB syntax, what makes modeling process 

in this tool very simple and intuitive for all MATLAB user. We are demonstrating “user 

friendliness” of framework syntax on following pages of this thesis, and efficiency of 

resulting models in chapter 5 as main powers of this modeling tool. Further in the text we 

are denoting this new framework YALMIP-FSM (YALMIP - finite state machine). 
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4.2.1.1 YALMIP-FSM Modeling Language Syntax  

Modeling syntax consists from creating three basic input objects: variables, states, and 

transitions.  

Variables object is containing information about variables names, sizes, binary-real 

indicators (declaring variable to be binary or real), and variables bounds defined in 

parameters section. State object is containing declaration of dynamical behavior for 

particular state. Transition object is carrying information about switching condition between 

two states and pointers on interconnected states, first for original state and second for 

destination state. These three objects (variables, states, transitions) together with declared 

time horizon and options are set as inputs for core function of modeling framework, which is 

automatically creating resulting hybrid model as a set of MIP constraints. 

We will demonstrate framework’s syntax simplicity on following examples 4.1 and 4.2. 

Example 4.1: Let us consider a hybrid model of thermostat with 2 discrete states (4.1b) 

involving different dynamical behavior. Dynamics in states are defined by difference 

equations: heatxx kk 1  for state1 representing cooling, and heatxx kk 1  for state2 

representing heating, where kx  is continuous state variable (4.1a) and denotes the 

temperature, note that the k-th index denotes a time step for continuous state variables. 

Model contains also two transitions (4.1c) with thresholds for switching the states. 

Transition from state1 to state2 is defined by lower bound (LB) for temperature °C21kx  , 

and transition from state2 to state1 is set by upper bound (UB) for temperature °C23kx  , 

for numerical tightness we are using in modeling case (4.1c) tolerance of 0.1 °C . Block 

diagram for this model is shown on figure 4.1, and moreover for demonstration of 

functionality an open loop simulation on time horizon N = 15 with initial conditions 

°C210 x   is shown on figure 4.2. 

Complete corresponding YALMIP-FSM framework syntax is demonstrated as follows (4.1).  
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Declaration of Variables and Parameters: (4.1a) 

% x – temperature  u - heating switch  
names = {'x' 'u' }; 
varsizes = {[1,1] [1,1] }; 
indicators = { 'r' 'b' }; 
% variable parameters – minimal and maximal temperature allowed 
param.ineq = { '[ min_temp <= x{k} <= max_temp ]' }; 
param.eq = {};  
param.val = { 'max_temp = 50; min_temp = 0; heat = 1;' }; 
% variables input object  
variables = yalmip_fsm_variables(names, varsizes, indicators, param ); 

States: (4.1b) 

% state 1 - heating off  
s1 = yalmip_fsm_state('[x{k+1} == x{k} - heat ]'); 
% state 2 - heating on 
s2 = yalmip_fsm_state('[x{k+1} == x{k} + heat ]'); 
states = [ s1, s2 ]; 

Transitions: (4.1c) 

% transition 12 – jump from state 1 to state 2 
t12 = yalmip_fsm_transition(s1, s2, '[ x{k} < 21.1 ]'); 
% transition 21 – jump from state 2 to state 1 
t21 = yalmip_fsm_transition(s2, s1, '[ x{k} > 22.9 ]'); 
trans = [t12, t21]; 

Core Function and Options: (4.1d) 

% 'unary' - basic approach; 'binary' - binary encoded states 
Options.encoding = 'unary'; 
% 'basic' - one node one cut; 'enhanced' – reduced cuts 
Options.cuts = 'basic'; 
% 0 - silent, 1 - elapsed time 
Options.verbose = 1; 
% core modeling function, fsm – outgoing model, V - internal variables 
[fsm, V] = yalmip_fsm(states, trans , variables, N , Options) 

 

 

Figure 4.1: Block diagram of hybrid model of a thermostat from example 4.1. 
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Figure 4.2: Open loop simulation of hybrid model from example 4.1. 

Example 4.2: In this example we assume to have hybrid model of a truck with 4 discrete 

states. First state S1 represents a loading of a truck in static loading place (i.e. not moving 

original destination: Dk≤0). Loading of a truck is represented by difference equation 

kkk loadCC 1 , where kC  represent capacity (how much load can truck carry) of a truck 

in k-th time step. State S2 represents travelling of a truck toward target destination what is 

defined by difference equation kkk speedDD 1 , where kD  denotes a distance of a truck 

from origin destination in k-th time step. State S3 represents unloading of a truck in static 

unloading place (i.e. not moving target destination: Dk≥300). Unloading of a truck is 

represented by differential equation kkk unloadCC 1 . State S4 represents travelling of a 

truck back to original destination what is defined by equation kkk speedDD 1 . Switching 

conditions for “static” states S1 and S3 to “traveling” states S2 and S4 are represented by 

binary variable movek, while switching conditions from states S2 and S3 and from state S4 to 

S1 are defined by distance thresholds Dk ≥ 300 and Dk ≤ 0.  

Consistent description of the states and switching conditions for this model is demonstrated 

on block diagram shown on figure 4.3. Corresponding YALMIP-FSM code, with defined 
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variables and parameters can be found in Appendix (code A.1). Open loop simulation on 

time horizon N = 15 with initial conditions (S1=1; load0 =0; unload0 =0; distance0 =0; capacity0 

=0) is shown on figures 4.4 and 4.5. 

 

Figure 4.3: Block diagram of hybrid model of a truck from example 4.2. 

 

Figure 4.4: Continuous states and inputs behavior in open loop simulation of hybrid model of 

a truck from example 4.2. 
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Figure 4.5: States (S) and transitions (t) behavior in open loop simulation of hybrid model of 

a truck from example 4.2. 

4.3 Computational Aspects 

In this section we computationally test the hybrid models created in HYSDEL and in YALMIP-

FSM framework. For this test we used hybrid model of a truck with 4 binary states defined in 

previous section example 4.2, corresponding codes for YALMIP-FSM models (code A.1) and 

HYSDEL models (code A.2, code A.3) are enclosed in Appendix. All models were solved using 

commercial solver Gurobi 4.6.1 on Intel® Core™ i3 CPU 2.40 GHz 64-bit Windows 7 

workstation with 3GB of RAM.  

In our test we used four different models, two models with different modeling approaches 

defined in chapter 3, for each modeling framework (HYSDEL, YALMIP-FSM). First we used 

basic approach with unary encoding of state binary variables, what means that for each 

binary state we used exactly one binary variable in model, second used approach was binary 

encoding approach of state variables, what means that for each binary variable we allocated 

exactly one unique combination of auxiliary binary variables. We solved open loop 

simulations for each model with varying prediction horizons from 6 to 16. For better 

numerical tightness of results and avoiding of statistical errors, we did 10 repetitions of 

solution for each model on particular prediction horizon.  
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Results of the test are presented on figures 4.6 and 4.7, which are demonstrating 

considerable efficiency improvement of our YALMIP-FSM models with comparison to 

HYSDEL models, what is demonstrated on table 4.1. This improvement occurred because of 

YALMIP enhanced modeling techniques, where YALMIP during setting of constants (3.6) for 

Big-M models is considering parameters appearing in whole model, while HYSDEL during 

setting of Big-M constants (3.6) for resulting MIP problem is looking only at parameters 

defined in INTERFACE section of model code. Because of this, YALMIP models are 

numerically much tighter and therefore more efficient for solvers based on MIP relaxations, 

than models created via HYSDEL. 

YALMIP-FSM vs HYSDEL 

Unary approach ~ 59 %  

Binary approach ~ 56 % 

Table 4.1: Improvement of efficiency of tested YALMIP-FSM models comparing to HYSDEL 

models. 

Moreover from results of the test is obvious that models using unary encoding approach are 

providing better results than models with binary encoding approach. Demonstration of 

higher efficiency of unary encoding approach comparing to binary encoding approach is 

shown in following table 4.2. However these results are in conflict with primary assumptions 

about more efficient models with less binary variables by using binary encoding approach. 

Explanation comes with fact, that even if we were able to decrease the number of primary 

state binary variables logarithmically, the number of auxiliary binaries has raised in need to 

describe more complex logical expressions, what was mentioned in section 3.4 about Big-M 

modeling. 

Unary Encoding vs Binary Encoding 

YALMIP-FSM ~ 27 %  

HYSDEL ~ 33 % 

Table 4.2: Comparison of tested models with unary encoding approach with models using 

binary encoding approach created in YALMIP-FSM and HYSDEL. 
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It is important to note, that differences in solver times for models are growing with rising 

prediction horizon, and therefore numbers presented in tables 4.1 and 4.2 are only 

estimations based on obtained data from this particular test. 

 

Figure 4.6: Comparison of solver times dependence on prediction horizon, for HYSDEL and 

YALMIP-FSM models with unary and binary encoding approaches. 

 

Figure 4.7: Maximal, minimal and average values of solver times for all tested models. 
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On figure 4.6 there visible that differences in solver times for particular models have 

approximately constant values, what means that complexity of models depend primary on 

prediction horizon. Figure 4.7 shows errorbars for tested models with maximal, minimal and 

average value of solver time for each prediction horizon, where we can observe few 

considerable deviations from average values, especially in using of binary encoding. General 

deviations were probably caused by random numerical drawbacks resulting from higher 

number of optimization problems solved repeatedly, while particularly high deviations for 

models with using binary encoding approach could be caused by more complex model 

construction, which is more sensitive on numerical tightness of corresponding MIP 

relaxations.  

Our final recommendations based on test results are to keep using “basic” binary encoding 

approach (section 3.4), because these models proved to be more efficient than models using 

“enhanced” binary encoding approach (section 3.5), despite the initial assumptions.  
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Conclusion 

As is well known hybrid models can be represented in form MIP problems, which belong to 

class of NP-hard problems. What roughly speaking means that there is no algorithm for 

solving this kind of problems in polynomial time, unless P = NP. Therefore efficiency 

improvement appears to be a crucial task in modeling of such systems, to provide solvable 

computational models. 

In first part of the thesis we discussed DHA and PWA systems as theoretical modeling classes 

of hybrid systems, together with recently developed MLD systems as efficient highly 

computational oriented modeling framework for hybrid systems. 

In second part of this thesis we are dealing with main goal of this thesis, which was to 

propose an efficient mathematical framework for modeling of hybrid systems represented 

either as FSM or PWA systems. For this purpose we introduced and discussed technique of 

Big-M modeling, which has proven to be efficient modeling technique for translation of 

hybrid models involving propositional logic statements into the MIP form. For enhanced 

modeling we proposed technique of “binary encoding” of state binary variables, which 

logarithmically decreases number of needed binary variables. Moreover we also introduced 

techniques for reducing the number of cuts (MIP inequalities) required for restricting 

infeasible combinations of auxiliary binaries from feasible region of resulting MIP model. 

Third part of this thesis is introducing new hybrid modeling framework (YALMIP-FSM) based 

on modeling techniques mentioned above. This framework was developed as extension of 

free MATLAB optimization toolbox YALMIP, therefore is fully consistent with YALMIP and 

MATLAB syntax. We are receiving computational MIP model as an output of our framework, 

while hybrid system on input can be defined as DHA or PWA system. Moreover all low level 

modeling is done automatically and internally by YALMIP functions what gives user 

possibility to focus at high level modeling of hybrid systems. All these properties of YALMIP-

FSM framework makes it extremely user friendly without additional need for knowing extra 

modeling languages or modeling features. Framework syntax was also demonstrated on two 

modeling examples. 
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In the end this thesis we computationally tested models created in YALMIP-FSM framework 

in comparison with models created in modeling language and compiler HYSDEL. We also 

tested enhanced modeling approach of binary encoding of state variables together with 

basic unary encoding approach. The results are demonstrating considerable efficiency 

improvement of our YALMIP-FSM models comparing to HYSDEL models. We obtained this 

improvement due to YALMIP enhanced modeling techniques which is constructing much 

tighter models, which are more suitable for solvers based on MIP relaxations. In our 

computational study we also obtain one surprising result, enhanced binary encoding 

approach has showed to be nearly one-third less efficient than basic unary encoding 

approach. This was probably caused by extra auxiliary binaries introduced internally into the 

model, necessary for description of more complex logical statements, which appeared with 

binary encoding approach.  
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Resumé 

Hybridné systémy (HS) sú systémy obsahujúce súčasne spojité aj diskrétne dynamické 

správanie. V úvode tejto práce sú stručné predstavené základné vlastnosti takýchto 

systémov, pokus o ich rozdelenie do špecifickejších podskupín, spolu s príkladmi systémov 

z inžinierskej praxe. Vymenovávame najpoužívanejšie prístupy k modelovaniu hybridných 

systémov, z ktorých vyberáme a v druhej kapitole podrobnejšie opisujeme konkrétne 

diskrétne hybridné automaty (DHA) , po častiach afinné (PWA) systémy a výpočtovo 

orientované zmiešané logicko-dynamické (MLD) systémy. 

V tretej kapitole detailne predstavujeme prístup k modelovaniu hybridných systémov a ich 

reprezentáciu vo forme celočíselného optimalizačného problému, ktorý používame 

v praktickej časti tejto práce. Uvádzame tri transformačné techniky na transformáciu 

logických výrazov do matematickej reprezentácie zmiešaného celočíselného optimalizačného 

problému, definovaného vo forme celočíselných lineárnych rovníc a nerovníc. Ďalej 

predstavujeme techniku takzvaného Big-M modelovania, slúžiacu na konštrukciu efektívnych 

modelov vo forme zmiešaného celočíselného programovania ako aj ich vzťah s modelovými 

prístupmi (DHA, PWA) spomenutými v druhej kapitole. Na tieto účely je predstavená knižnica 

Big-M modelov, pomocou ktorej sme schopný transformácie širokého spektra logických 

vzťahov a výrazov do príslušnej formy celočíselného programovania. Ako už bolo spomenuté, 

v probléme zmiešaného celočíselného programovania sú celočíselné premenné klasicky 

definované pomocou takzvaného unárneho (jednozložkového) kódovania, priraďujúc práve 

jednu binárnu premennú ku každej možnej celočíselnej hodnote. V poslednej sekcii tretej 

kapitoly sa venujeme efektívnejším prístupom k modelovaniu hybridných modelov, pomocou 

takzvaného binárneho kódovania, ktoré vyžaduje len logaritmické množstvo pôvodných 

binárnych premenných log2(N). Taktiež riešime problémy indikácie a separácie neriešiteľných 

kombinácií binárnych premenných pomocou extra ohraničení, takzvaných rezov pridávaných 

do modelu. Základný prístup spočíva podobne ako v unárnom kódovaní v priradení jedného 

ohraničenia (rezu) na separáciu práve jednej neriešiteľnej kombinácie. Pre zvýšenie efektivity 

výsledného modelu je však výhodné použitie menšieho počtu komplexných rezov, každý rez 

pre viacero neriešiteľných kombinácií súčasne. Preto predstavujeme techniku „redukovaných 

hlbokých rezov“ (reduced deep cuts approach) pomocou ktorej sme schopný minimalizovať 
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počet potrebných ohraničení približne na logaritmickú úroveň z počtu pôvodných ohraničení, 

pričom sa však súčasne snažíme vytvárať efektívne modely pre lineárne relaxácie 

celočíselného problému s čo možno najmenším počtom možných neceločíselných vrcholov 

v množine možných riešení pre daný model. 

Štvrtá kapitola sa zaoberá programovou realizáciou modelových techník a postupov 

prezentovaných v kapitole tretej. Prezentujeme vytvorený programový balík (YALMIP-FSM) 

pre modelovanie hybridných systémov, ktorý je rozšírením voľne šíriteľného 

optimalizačného toolboxu YALMIP pre MATLAB. Je predstavená jednoduchosť 

novovytvoreného modelovacieho programového balíka, ktorého syntax je založená na 

syntaxe modelovacieho jazyka YALMIP, ktorý je konzistentný s jazykom MATLAB, tieto 

vlastnosti robia hybridné modelovanie pomocou YALMIP-FSM extrémne jednoduchým 

a intuitívnym pre bežného MATLAB používateľa. 

Na záver demonštrujeme funkčnosť modelovacieho toolboxu YALMIP-FSM na dvoch  

príkladoch hybridných systémov. Taktiež je demonštrované porovnanie výsledných YALMIP-

FSM modelov s modelmi vytvorenými pomocou modelovacieho jazyka HYSDEL. Výsledkom 

tohto porovnania, je fakt že modely vytvorené pomocou nami vytvoreného modelovacieho 

programového balíka YALMIP-FSM boli zhruba o 55% efektívnejšie ako HYSDEL (MLD) 

modely, čo sme dosiahli len vďaka vysoko efektívnym pokročilým modelovacím technikám a 

trikom obsiahnutých v toolboxe YALMIP. Avšak porovnanie rôznych prístupov kódovania 

binárnych premenných nám prinieslo mierne prekvapivé výsledky, keď sa zhruba o 30% 

ukázal byť efektívnejší základný prístup „unárneho“ kódovania oproti pokročilému prístupu 

„binárneho“ kódovania. Tento fakt si vysvetľujeme automatickým vnútorným priradením 

nových pomocných binárnych premenných toolboxom do modelu, ktoré sú potrebné na opis 

zložitejších logických výrazov, ktoré sa vyskytujú pri použití „binárneho“ kódovania.  
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Appendix 

Appendix A: Figures and Codes 

 

Figure A.1: Dependence of number of basic cuts nu and number of reduced cuts nr on 

number of original binaries X. 

 

Figure A.2: Dependence of maximum number of basic cuts nu and maximum number of 

reduced cuts nr on number of auxiliary binaries delta.  
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Code A.1: YALMIP-FSM code for a truck delivery model from example 4.2: 

% MODELING OF A TRUCK DELIVERY MODEL 
N = 15;  % prediction horizon 
 
% Declaration of variables 
% x = (1)distance, (2)capacity  
% u = (1)load, (2)unload, (3)speed 
% mo = move 
names = {'x' 'u' 'mo'}; 
varsizes = {[2,1] [3,1] [1,1] }; 
indicators = { 'r' 'r' 'b'}; 
%  params and bounds for variables 
param.ineq = { ' [ -0.1*max_speed <= x{k}(1) <= (target_dis + 
0.1*max_speed) , 0 <= x{k}(2) <= max_cap]';  
'[0 <= u{k}(1)<=max_cap, 0 <= u{k}(2)<=max_cap , u{k}(3)>=0, 
u{k}(3)<=max_speed]' }; 
param.eq = {};  
param.val = { ' max_cap = 100; max_speed = 200; target_dis = 300' }; 
variables = yalmip_fsm_variables(names, varsizes, indicators, param ); 
 
% Declaration of states 
s1 = yalmip_fsm_state('[x{k+1}(2) == x{k}(2)+u{k}(1), u{k}(2) <= 0, 
u{k}(3) <= 0, x{k+1}(1) == x{k}(1) ]'); 
s2 = yalmip_fsm_state('[x{k+1}(1) == x{k}(1)+u{k}(3), u{k}(2) <= 0, 
u{k}(1) <= 0, x{k+1}(2) == x{k}(2) ]'); 
s3 = yalmip_fsm_state('[x{k+1}(2) == x{k}(2)-u{k}(2), u{k}(1) <= 0, 
u{k}(3) <= 0, x{k+1}(1) == x{k}(1) ]'); 
s4 = yalmip_fsm_state('[x{k+1}(1) == x{k}(1)-u{k}(3), u{k}(2) <= 0, 
u{k}(1) <= 0, x{k+1}(2) == x{k}(2) ]');  
states = [ s1, s2 , s3, s4]; 
 
% Declaration of transitions 
t12 = yalmip_fsm_transition(s1, s2, '[ mo{k}(1) > 0.5 ]'); 
t23 = yalmip_fsm_transition(s2, s3, '[ x{k}(1) >= 300 ]'); 
t34 = yalmip_fsm_transition(s3, s4, '[ mo{k}(1) > 0.5 ]'); 
t41 = yalmip_fsm_transition(s4, s1, '[ x{k}(1) <= 0 ]'); 
trans = [t12, t23, t34, t41]; 
 
%----------- MODELING FUNCTION --------------------------------- 
% 'unary' - basic approach , 'binary' - binary encoded states 
Options.encoding = 'unary'; 
% cuts: 'basic' – one node one cut, 'enhanced' = reduced cuts 
Options.cuts = 'basic'; 
% 0 - silent, 1 - elapsed time  
Options.verbose = 1; 
% core modeling function 
[fsm, V] = yalmip_fsm(states, trans , variables, N, Options ); 
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Code A.2:  HYSDEL code for a unary encoded truck delivery model from example 4.2: 

SYSTEM truck { 
  /* basic model of a truck */ 
  INTERFACE { 
    PARAMETER { 
      REAL sampling = 1; 
      REAL max_capacity = 1e2; 
      REAL max_speed = 2e2; 
      REAL eff_in = 1; 
      REAL eff_out = 1; 
      REAL target_distance = 300;  
      } 
    INPUT {  
      REAL load [0, max_capacity];  
      REAL unload [0, max_capacity];  
      REAL speed  [0, max_speed];  
      BOOL move ; 
      }        
    STATE { 
      /* capacity off truck */ 
      REAL C [0, max_capacity]; 
      /* distance */ 
      REAL D [-0.1*max_speed, target_distance+0.1*max_speed];   
      /*  loading = S1, unloading = S3, traveling = S2, returning = S4  */ 
      BOOL S1,S2,S3,S4;       
      }     
    }  
  IMPLEMENTATION { 
        AUX { 
        /* capacities in individual states */ 
        REAL C1,C2,C3,C4; 
        /* distances in individual states */ 
        REAL D1,D2,D3,D4; 
        /* binary indicators for switching the states */ 
        BOOL d1,d2; 
        /* binary variables for restrictions */ 
        BOOL no_load, no_unload, no_speed; 
        /* auxiliary binary variables for state actualization */ 
        BOOL a1, a2, a3, a4;    
        }     
        AD {         
             d1 = D <= 0;     
             d2 = D >= target_distance;   
             no_unload = unload <= 0; 
             no_load = load <= 0; 
             no_speed = speed <= 0; 
        }  
        LOGIC { 
        a1 = (S1 & (~move)) | (S4 & d1); 
        a2 = (S2 & (~d2)) | ( S1 & move ) ; 
        a3 = (S3 & (~move)) | (S2 & d2) ; 
        a4 = (S4 & (~d1)) | ( S3 & move ) ; 
        } 
        AUTOMATA { 
        /*loading = S1, unloading = S3, traveling = S2, returning = S4 */ 
           S1 = a1; 
           S2 = a2; 
           S3 = a3; 
           S4 = a4; 
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        } 
        DA { 
           C1 = { IF S1 THEN C+eff_in*load ELSE 0 } ; 
           C2 = { IF S2 THEN C ELSE 0 } ; 
           C3 = { IF S3 THEN eff_out*(C-unload) ELSE 0 } ; 
           C4 = { IF S4 THEN C ELSE 0 }  ; 
           D1 = { IF S1 THEN D ELSE 0 }  ; 
           D2 = { IF S2 THEN D+sampling*speed ELSE 0 }  ; 
           D3 = { IF S3 THEN D ELSE 0 } ; 
           D4 = { IF S4 THEN D-sampling*speed ELSE 0 }  ; 
        } 
       CONTINUOUS { 
         /* difference equations */ 
            C = C1 + C2 + C3 + C4; 
            D = D1 + D2 + D3 + D4; 
       }      
       MUST { 
        1 >= (REAL S1) + (REAL S2) + (REAL S3) + (REAL S4); 
        1 <= (REAL S1) + (REAL S2) + (REAL S3) + (REAL S4); 
        S1 -> no_unload; 
        S2 -> no_unload; 
        S4 -> no_unload; 
        S2 -> no_load; 
        S3 -> no_load; 
        S4 -> no_load; 
        S1 -> no_speed; 
        S3 -> no_speed; 
     }    
  } 
} 

Code A.3: HYSDEL code for a binary encoded truck delivery model from example 4.2: 

SYSTEM truck_binary { 
  /* model of a truck with binary encoded states */ 
  INTERFACE {        
    PARAMETER {          
      REAL sampling = 1; 
      REAL max_capacity = 1e2; 
      REAL max_speed = 2e2;      
      REAL eff_in = 1; 
      REAL eff_out = 1; 
      REAL target_distance = 300;  
      } 
    INPUT {    
      REAL load [0, max_capacity];  
      REAL unload [0, max_capacity];  
      REAL speed  [0, max_speed];  
      BOOL move ; 
      }        
    STATE { 
      /* capacity off truck */ 
      REAL C [0, max_capacity]; 
        /* distance */ 
      REAL D [-2*max_speed, target_distance+2*max_speed];         
      /* loading = S1, unloading = S3, traveling = S2, returning = S4*/ 
      /* variables for binary encoding of states: dA,dB  
      S1 = ~dA&~dB  
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      S2 = ~dA&dB  
      S3 = dA&~dB  
      S4 = dA&dB  */ 
      BOOL dA,dB;        
      }     
    }   
  IMPLEMENTATION { 
    AUX { 
    /* capacities in individual states */ 
    REAL C1,C2,C3; 
    /* distances in individual states */ 
    REAL D1,D2,D3; 
    /* conditions for switching the states */ 
    BOOL d1,d2; 
    BOOL no_load, no_unload, no_speed; 
    BOOL a1, a2;   
    } 
    AD {      
         d1 = D <= 0;     
         d2 = D >= target_distance;                                       
         no_unload = unload <= 0; 
         no_load = load <= 0; 
         no_speed = speed <= 0; 
    }  
    LOGIC { 
    a1 = ((~dA & dB) & d2) | (dA & ~dB) | ((dA & dB) & ~d1)  ; 
    a2 =  ((~dA & ~dB) & move) | ((~dA & dB) & ~d2) | ((dA & ~dB) & move)    
| ((dA & dB) & ~d1); 
    } 
    AUTOMATA { 
           dA = a1; 
           dB = a2; 
    } 
    DA {       
       C1 = { IF (~dA & ~dB) THEN C+eff_in*load ELSE 0 } ; 
       C2 = { IF  dB  THEN C ELSE 0 } ; 
       C3 = { IF (dA & ~dB) THEN C-eff_out*unload ELSE 0 } ; 
       D1 = { IF ~dB THEN D ELSE 0 }  ; 
       D2 = { IF (~dA & dB) THEN D+sampling*speed ELSE 0 }  ; 
       D3 = { IF (dA & dB) THEN D-sampling*speed ELSE 0 }  ;     
    } 
       CONTINUOUS { 
      /* dif. eq of truck */ 
            C = C1 + C2 + C3 ; 
            D = D1 + D2 + D3; 
       }      
     MUST { 
     1 >= (REAL(~dA&~dB))+(REAL(~dA&dB))+(REAL(dA&~dB))+(REAL(dA&dB)); 
     1 <= (REAL(~dA&~dB))+(REAL(~dA&dB))+(REAL(dA&~dB))+(REAL(dA&dB)); 
        (~dA & ~dB) -> no_unload; 
        (~dA & dB) -> no_unload; 
        (dA & dB)  -> no_unload; 
        (~dA & dB) -> no_load; 
        (dA & ~dB) -> no_load; 
        (dA & dB) -> no_load;    
        (~dA & ~dB) -> no_speed;    
        (dA & ~dB)  -> no_speed; 
     }     
  } 
} 
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Appendix B: List of software on CD 

YALMIP-FSM toolbox: 

Core function: yalmip_fsm.m 

States creation function: yalmip_fsm_state.m 

Transitions creation function: yalmip_fsm_transition.m 

Variables declaration function: yalmip_fsm_variables.m 

Binary encoding function: binary_encoding_creation.m 

Modeling code for a YALMIP-FSM thermostat model from example 4.1: 

test_basic1.m 

Modeling code for a YALMIP-FSM truck delivery model from example 4.2: 

test_truck.m 

Modeling code for a HYSDEL truck delivery models from example 4.2: 

HYSDEL unary encoded model: truck.hys 

HYSDEL binary encoded model: truck_binary.hys 
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