
SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

Efficient Modeling of Hybrid Systems

DIPLOMA THESIS

FCHPT-5414-50907

Bratislava 2012 Bc. Ján Drgoňa

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

Efficient Modeling of Hybrid Systems

DIPLOMA THESIS

FCHPT-5414-50907

Study programme: Automation and Informatization in Chemistry and Food Industry

Study field: 5.2.14 Automation

Workplace: Linköping University Sweden

Thesis supervisor: doc. Ing. Michal Kvasnica, PhD.

Consultant: Dr. Johan Löfberg, PhD.

Bratislava 2012 Bc. Ján Drgoňa

Acknowledgement

I would like to express a deep gratitude to my thesis supervisor doc. Ing. Michal Kvasnica,

PhD., for his patient supervision, for the given opportunity to study abroad and for his

understanding or acceptance of my often excessive jokes and anecdotes.

Also a big gratitude goes to my thesis consultant Dr. Johan Löfberg, PhD., for his substantial

contribution to my thesis and for support during my stay in Sweden.

Abstract

This thesis is dealing with modeling of systems containing continuous and discrete dynamic

behavior simultaneously. Because of their hybrid nature this kind of systems are called

hybrid systems (HS). We highlight several theoretical frameworks for modeling of hybrid

systems, at these days most commonly used and well known modeling frameworks are

discrete hybrid automata (DHA), piecewise affine (PWA) systems and computational

oriented mixed logical dynamical (MLD) systems. Aim of this thesis is to investigate and

propose an efficient mathematical framework for modeling of hybrid systems represented

either as discrete hybrid automata (DHA) or piecewise affine (PWA) systems. It is well known

that such models involving integer or logical variables can be transformed into the

corresponding mixed integer programming (MIP) optimization problem. For this purpose we

are introducing a technique of Big-M modeling for translating logical statements into

equivalent MIP form. Traditionally in corresponding MIP problem the integer is encoded

using “unary encoding”, assigning one binary variable to each possible value of the integer.

Contribution of this thesis lies in alternative approach, where integer variables can be

modeled by fewer binary variables using a “binary encoding”, which only requires

logarithmical number of original binaries log2(N). The difficulty of this approach is how to

indicate infeasible combinations of bits and separate them from feasible region of resulting

MIP model by adding extra constraints or so called cuts into the model. Finally in the end of

the thesis, we present the implementation of hybrid modeling framework as an extension of

free MATLAB optimization toolbox YALMIP, as well as comparison of resulting computational

models with models created via modeling language HYSDEL.

Keywords: Hybrid systems, Piecewise affine systems, Finite state machine, Mixed integer

programming, Big-M modeling, YALMIP, HYSDEL

Abstrakt

Táto práca sa zaoberá modelovaním takzvaných hybridných systémov (HS), obsahujúcich

súčasne spojité aj diskrétne dynamické správanie. Pre modelovanie takýchto systémov bolo

vyvinutých viacero prístupov, v prvej časti tejto práce približujeme v súčasnosti

najrozšírenejšie a najviac používané teoretické modely, konkrétne ide o diskrétne hybridné

automaty (DHA) , po častiach afinné (PWA) systémy a výpočtovo orientované zmiešané

logicko-dynamické (MLD) systémy. Cieľom tejto práce je preskúmať a navrhnúť efektívny

matematický prístup k modelovaniu hybridných systémov reprezentovaných ako diskrétne

hybridné automaty (DHA), alebo po častiach afinné (PWA) systémy. Je všeobecne známe, že

takéto modely, obsahujúce celočíselné alebo logické premenné, môžu byť definované vo

forme zmiešaného celočíselného (MIP) optimalizačného problému. Pre tento účel

predstavujeme techniku takzvaného Big-M modelovania, pomocou ktorej sme schopný

transformácie logických výrazov do ekvivalentnej formy problému celočíselného

programovania. V probléme zmiešaného celočíselného programovania sú celočíselné

premenné klasicky definované pomocou takzvaného unárneho (jednozložkového)

kódovania, priraďujúc práve jednu binárnu premennú ku každej možnej celočíselnej

hodnote. Príspevok tejto práce spočíva v alternatívnom prístupe kódovania, keď celočíselné

premenné môžeme modelovať s použitím menšieho množstva binárnych premenných

pomocou takzvaného binárneho kódovania, ktoré vyžaduje len logaritmické množstvo

pôvodných binárnych premenných log2(N). Náročnosť tohto prístupu spočíva v indikácii

neriešiteľných kombinácií binárnych premenných a ich separácii z riešiteľnej množiny riešení

výsledného modelu pomocou pridania extra ohraničení (tzv. rezov) do príslušného modelu.

Na záver predstavujeme programovú realizáciu rozoberaných modelovacích techník ako

rozšírenie voľne šíriteľného optimalizačného toolboxu YALMIP pre MATLAB, ako aj

porovnanie výsledných modelov s modelmi vytvorenými pomocou modelovacieho jazyka

HYSDEL.

Kľúčové slová: Hybridné systémy, Po častiach afinné systémy, Automaty, Zmiešané

celočíselné programovanie, Big-M modelovanie, YALMIP, HYSDEL

Contents

LIST OF SYMBOLS AND ABBREVIATIONS ..10

SYMBOLS, OPERATORS, FUNCTIONS AND SETS ..10

ABBREVIATIONS ..10

1 INTRODUCTION ...12

1.1 MATHEMATICAL MODELING ..12

1.2 CLASSIFICATION OF DYNAMICAL SYSTEMS ...13

1.3 HYBRID SYSTEMS ...15

1.3.1 Examples of Hybrid Systems .. 16

1.3.2 Motivation for Hybrid Systems ... 18

1.3.3 Modeling frameworks ... 20

1.3.4 Future of Hybrid Systems ... 21

1.4 BASIC TERMINOLOGY AND DEFINITIONS ...21

1.4.1 Convex Set .. 21

1.4.2 Convex Hull ... 22

1.4.3 Polytope .. 22

1.4.4 General Optimization Problem ... 23

1.4.5 Linear Programming .. 23

1.4.6 Mixed Integer Programming .. 24

2 MODELING OF HYBRID SYSTEMS ..25

2.1 MODEL CLASSES FOR HYBRID SYSTEMS ...25

2.2 DISCRETE HYBRID AUTOMATA ...26

2.2.1 Switched Affine Systems .. 27

2.2.2 Event Generator .. 28

2.2.3 Finite State Machine.. 28

2.2.4 Mode Selector ... 29

2.2.5 DHA Trajectories ... 29

2.3 PIECEWISE AFFINE SYSTEMS ...30

2.4 MIXED LOGICAL DYNAMICAL SYSTEMS ..31

3 HYBRID SYSTEMS MODELING FRAMEWORK ...33

3.1 INTRODUCTION ..33

3.2 LOGICAL PROPOSITIONS ...34

3.3 PROPOSITIONAL CALCULUS AND MIXED-INTEGER PROGRAMMING ...36

3.3.1 Symbolical Method .. 37

3.3.2 Extended Symbolical Method ... 37

3.3.3 Geometrical Method ... 38

3.4 BIG-M MODELING ..39

3.4.1 Big-M conversion .. 39

3.4.2 DHA, PWA and Big-M Formulation .. 40

3.4.3 Big-M Models Library .. 41

3.5 EFFICIENT MODELING OF HYBRID SYSTEMS ..43

3.5.1 Binary Encoding of Integer State Variables... 44

3.5.2 CUTS ... 48

3.5.2.1 One node one cut approach .. 49

3.5.2.2 Reduced cuts approach ... 52

3.5.2.3 Deep cuts approach .. 56

4 SOFTWARE TOOLS FOR HYBRID MODELING ...58

4.1 HYSDEL..58

4.2 YALMIP ...58

4.2.1 YALMIP Hybrid Modeling Framework ... 59

4.2.1.1 YALMIP-FSM Modeling Language Syntax ... 60

4.3 COMPUTATIONAL ASPECTS ...64

CONCLUSION..68

RESUMÉ ...70

APPENDIX ..72

APPENDIX A: FIGURES AND CODES ...72

APPENDIX B: LIST OF SOFTWARE ON CD ..77

REFERENCES ...78

Ján Drgoňa Diploma Thesis

10

List of Symbols and Abbreviations

Symbols, Operators, Functions and Sets

TA Transpose of matrix A

k Time step

N Set of integers

 n1,0 Set of vectors with n binaries

R Set of real numbers
nR Set of real vectors with n components

rx Real state variable

bx Binary state variable

ru Real input variable

bu Binary input variable

ry Real output variable

by Binary output variable

i Binary auxiliary variable

iX Boolean variable

i Terms of the product

ijX Terms of the sum

 x The floor function. Gives the largest integer less than or equal to x

 x The ceiling function. Gives the smallest integer greater than or equal to x

Abbreviations

CNF Conjunctive Normal Form

DHA Discrete Hybrid Automata

EG Event Generator

FSM Finite State Machine

LP Linear Programming

Ján Drgoňa Diploma Thesis

11

MIP Mixed Integer Programming

MLD Mixed Logical Dynamical

MS Mode Selector

ODE Ordinary Differential Equation

PWA Piecewise Affine

SAS Switched Affine System

Ján Drgoňa Diploma Thesis

12

Chapter 1

1 Introduction

1.1 Mathematical modeling

Since ancient times people's curiosity led them to exploring the world and try to understand

the laws of the nature, but in the past times it was more about philosophy than about real

science as we know it today. The first steps for distinguishing the real science from scams

and misleading speculations about world was big growth of mathematical knowledge in last

few hundred years and since this time mathematical modeling is taking one of the most

important role in all scientific fields. The mathematical models are used everywhere, from

engineering thru medicine, biology, physics, chemistry, economy and so on. But it is not only

matter of science which handles with mathematical modeling, we are surrounded by

applications based on mathematical models, which are improving quality of our everyday

life.

Mathematical modeling can be conceived as transformation of empirical and practical

knowledge of real systems into the theoretical and simplified models of them, by using

mathematical language. Unfortunately the real world is still far too complicated for our

current mathematical tools to being modeled entirely without any loss of precision,

therefore any model is an abstract simplified description of a real system or physical

phenomena. Usually there are many ways how to describe a single real-world phenomena,

the differences between them are in complexity of particular models and specifications for

concrete fields of interest.

Models should be simple enough to formulate an efficient and solvable analysis and

synthesis problems for available computational capabilities, but also they should be

complicated enough for describing sufficient level of details of the system, what is needed

for reliable description of real system. Compromises are needed to be done during the

process of the mathematical modeling. The first level of compromise is to identify the most

Ján Drgoňa Diploma Thesis

13

important parts of the system and include them into the model, the rest less important parts

will be excluded due to decreasing the complexity of the model. On the second level of

compromise we are taking in mind mathematical methods which are available for solving

particular problems. The mathematical procedures for obtaining the model should be

elegant and simple enough as the model itself, but also suitable for computer processing and

numerical solutions. Actually all previous talk can be expressed in few words by following

statements of great man’s.

 “Make everything as simple as possible, but not simpler.”— Albert Einstein

 “Challenge in mathematical modeling is not to produce the most comprehensive descriptive

model but to produce the simplest possible model that incorporates the major features of

the phenomenon of interest.” — Howard Emmons

1.2 Classification of dynamical systems

We are using dynamical systems to describe the evolution of some monitored variables,

usually states or outputs of the system over time i.e. from their current state to the future

state. In the concept of a model of a system are these evolutions traditionally described by

differential or difference equations. Therefore most of the theory and tools have been

developed for handling such systems as purely continuous or purely discrete, or only in

continuous and only in discrete time. Although in recent years a significant need for

combining of these two worlds (continuous and discrete) arise from description of some real

systems, which are containing both continuous and also logical parts naturally. By combining

the continuous and discrete behavior together in single system, the third class of dynamical

systems called hybrid systems was born.

Attempt to classify dynamical systems based on the type of their state, appears in the

literature [Lys]:

1. Continuous state, if the state takes values in Euclidean space nR for some 1n . We

will denote nRx as a state of a continuous dynamical system. Demonstration of

behavior of continuous state variable is shown on figure 1.1 left.

Ján Drgoňa Diploma Thesis

14

2. Discrete state, if the state takes values in a finite set nbb ,,1 . We will denote b as

a state of a discrete system. Demonstration of behavior of discrete state variable is

shown on figure 1.1 right.

3. Hybrid state variables, if some of the states takes values in nR while another states

takes values in a finite set. For example, the closed loop system for computer control

of an inverted pendulum is hybrid: the state of the pendulum is continuous, while

state of the computer is discrete.

Figure 1.1: Behavior of continuous (left) and discrete (right) variable.

Classification based on the set of times over which the state evolves [Lys]:

1. Continuous time, if the set of times can take only real continuous values. We will use

Rt to denote continuous time. The evolution of the state)(tx in a continuous

time system is typically described by an ordinary differential equation (ODE). Where

)(tu is a vector of inputs in a continuous time and ttutxf),(),(can be either linear

or nonlinear state transition function.

 ttutxftx),(),()((1.1a)

nmn
t

mn RRfRtRtuRtx

1:)()(
0

 (1.1b)

2. Discrete time, if the set of times is a subset of the integers. We will use Nk to

denote discrete time. The evolution of the state)(kx in a discrete time system is

typically described by a difference equation. Where)(ku is a vector of inputs in a

Ján Drgoňa Diploma Thesis

15

discrete time and kkukxg),(),(can be either linear or nonlinear state transition

function.

 kkukxgkx),(),()1((1.2a)

nmn
k

mn RRgNkRkuRkx

1:)()(
0

 (1.2b)

3. Hybrid time, when the evolution is over continuous time but there are also discrete

moments with special behavior or events.

State systems can be further classified according to the equations used to describe the

evolution of their states [Lys]:

1. Linear, if the evolution is governed by a linear differential equation (continuous time)

or difference equation (discrete time).

2. Nonlinear, if the evolution is governed by a nonlinear differential equation

(continuous time) or difference equation (discrete time).

1.3 Hybrid Systems

Hybrid models are part of dynamical systems which contains both, continuous and discrete

behavior with mutual interactions. Differential or difference equations are used as a typical

representation of continuous dynamics, on the other hand discrete part of hybrid systems

could be represented by discrete dynamics, logic rules (described by temporal logic, finite

state machines, if-then-else conditions, discrete events, etc.) or discrete components (on/off

switches, selectors, digital circuitry, software code, etc.). Hybrid systems has many operating

modes with different dynamical laws, these modes are switched by mode switches which

can be activated by particular state or time events or some external input events [Ant01].

The basic structure of hybrid system is illustrated on Figure 1.2.

Ján Drgoňa Diploma Thesis

16

Figure 1.2: Basic structure of hybrid system.

1.3.1 Examples of Hybrid Systems

Hybrid systems are all around us, they arise in a large number of application areas, moreover

many physical phenomena admit a natural hybrid description:

 Mechanical systems: In these systems the continuous motion may be interrupted by

collisions, or they can work in different modes, what can be described as discrete

events of finite state machine. The example of such system could be a cruise control

system, which controls the transmission gear (discrete input), the engine torque

(continuous input), and the braking force (continuous input) in order to track a

desired vehicle speed while minimizing fuel consumption and emissions [BemDHS].

Transmissions, stepper motors, and other motion controllers are discussed in

literature [Bro01], also as constrained robotic systems [BaGu01]. Another example

which shows naturally hybrid behavior is gasoline engine where the power train, gas

flow, and thermal dynamics are continuous processes, while the pistons have four

discrete operating modes. These systems are logically under deep interest of

automotive industry and considerable research in this field was done during recent

years more about it can be found in this work [BemDHS] and the references in.

 Electrical circuits: Here the continuous phenomena such as charging of capacitors,

etc. are interrupted by opening and closing the switches, or diodes going on or off.

Into this category belong systems with relays, switches, and hysteresis or computer

Ján Drgoňa Diploma Thesis

17

disk drives, for more details we recommend to the reader following article [Bran] and

its references.

 Chemical process control: The continuous evolution of chemical reactions is

controlled by discrete actions like opening valves and pumps. More about examples

for hybrid modeling of chemical processes could be found in publication [Agar].

 Embedded computation systems: When digital computer interacts with a mostly

analogue environment. An embedded system is computer system designed for doing

specified tasks usually as a part within a bigger system. Examples of these systems

we can find everywhere around us, they are taking part in our vehicles, airplanes,

factories and so one as shown on a Figure1.3.

 Networked control systems: are important class of hybrid systems, where sensing,

control, and actuation are not connected directly but they are connected by a shared

network medium [ZhBrPh].

Figure 1.3 [Bran]: Examples of embedded systems.

From theoretical point of view there is a wide range of systems that can be modeled as

hybrid systems [Mig, Bran]:

 Complex systems: organized in hierarchical way, where for example discrete

planning algorithms at the higher level interact with continuous control algorithms

and processes at the lower level [BemDHS]. In engineering practice there was few

Ján Drgoňa Diploma Thesis

18

attempts to model complex systems like automated highway systems (AHSs) [Lys] or

multi-vehicle formations and coordination [Olaru].

 Multiple model systems: These are systems which general model and their overall

evolution is governed by different sub-models, by partitioning the state space into

regions with assigned sub-models (e.g. piecewise affine systems) or by changing

system parameters according to a given signal (e.g. switched systems or systems with

operating mode changes). Applications of these models appear in engineering

practice for example in flight control and air traffic management systems [Bran,

LysTom].

 Systems with switching components: Systems in this category include switching

elements like relays, dead-zones or hysteresis, more about these examples can be

found again in paper [Bran] and its references. Therefore electrical circuits could be

considered as one of the real world example for these types of hybrid systems.

 Adaptive systems: The hybrid nature of these systems lies in switching rules,

provided e.g. by piecewise affine systems or by finite state machines governing the

adaptation law.

 Systems with modeled failures: In case of sudden or abrupt faults, the occurrence of

a failure in a system can be modeled as a switching signal. The fault-prone system

can be then considered as a hybrid system.

 Systems involving synchronization signals: Such systems arise e.g. in communication

networks.

Even if we formally divided hybrid systems in some specific subclasses and types, it is

important to note, that all kind of hybrid systems are deeply interconnected and equivalent

in their nature. A single real process could be classified as a member of different hybrid

model classifications in the same time.

1.3.2 Motivation for Hybrid Systems

Motivation for initiation of the research and introduction of theoretical fundamentals for

hybrid systems lied in the fact, that there was no known single model capable of capturing

discrete and continuous dynamics together. Efficient tools for modeling analysis and

synthesis of hybrid systems was developed only recently. The theory of hybrid systems is

Ján Drgoňa Diploma Thesis

19

connecting contributions from continuous system and control theory with field of computer

science called discrete event system theory. Connecting these two on first look different and

non-connected fields of engineering science was a big challenge. It was crucial to combine

capabilities of different modeling frameworks to be able to describe the behavior of hybrid

systems.

The design and analysis of hybrid systems are in general more difficult than design and

analysis of only discrete or only continuous systems, this is because the discrete dynamics is

affecting the continuous evolution and vice versa [Lys]. The interconnections between

discrete and continuous behavior are mostly very tight, therefore in modeling of discrete-

continuous relations is common to represent the discrete events as instant changes in

continuous dynamics.

Because of this in most practical cases, the synthesis of control schemes for systems having

also a discrete and continuous dynamical nature is still approached with heuristic rules,

usually driven by engineering insight and experience, but consequently this approach

requires long design and verification time. The interest of the control community is

motivated by several clearly apparent trends in industry which is calling for creating new

tools to design control schemes for hybrid systems and to analyze their stability, safety, and

performance. Based on these needs several problems are currently investigated in the

theory of hybrid systems, it is the definition and computation of trajectories, stability and

safety analysis, control, state estimation, etc. [BemDHS].

A simulator is usually used for definition of trajectories of hybrid systems, in general it is a

mathematical prediction model made to compute the time evolution of the variables of the

system, through the simulations we are able to verify and probe the correctness of the

model of the system. Tools like reachability analysis or piecewise quadratic Lyapunov

stability becomes a standard procedures in analysis of hybrid systems, more about this can

be found in literature e.g. [BemDHS, Hys, Mig, Tor] and their references. For controlling of a

hybrid model most of the nonlinear and logically also linear control theory can not be

applied because of special behavior of hybrid systems. At these days as most commonly

used approach for control of hybrid systems is an optimal control theory, which foundations

was laid by Richard Bellman and Lev Pontryagin.

Ján Drgoňa Diploma Thesis

20

1.3.3 Modeling frameworks

Several modeling frameworks have been proposed recently to represent hybrid systems.

Each modeling class is usually made for dealing with particular problems, and therefore they

seem to be dissimilar at first look. But recent research shows that all hybrid modeling classes

are equivalent and therefore the models created in different framework can be under

additional assumptions transformed into another model framework. Therefore the same

system can be represented with models of each class. This is very important acquaintance

which allows us to choose most convenient hybrid modeling framework for concrete

problems. The equivalence of hybrid modeling classes has been proved for example in paper

[Equival] or can be found also in works [Mig, HeSB01].

One of the earliest attempts for creating hybrid modeling framework appeared in the

process literature is called the theory of differential algebraic equations (DAEs) with an index

set, used as possible discrete model of a system [BarPan01].

In literature most commonly used frameworks are timed automata [Silv01, Asar01] and

hybrid automata [Silv01, Al01, AlDi01]. Automata are elegant frameworks for modeling

hybrid systems and become very popular and proved to be successful for formal verification

of the models. We will introduce the discrete hybrid automata (DHA) [BemDHA, Hys, Mig,

Tor] later in Chapter 2.

At these days as most important and well known modeling subclasses we can further

mention are e.g. Mixed logical dynamical (MLD) models [BemMor, BempDHA, Tor, Mig],

piecewise affine (PWA) systems [Sontag], linear complementarity (LC) systems [HeSchW,

CaHeS, He01, AJSMS01, AJSMS02], extended linear complementarity (ELC) systems [SchM02,

Equival], max-min-plus-scaling (MMPS) systems [SchB01, Equival], first-order linear hybrid

systems with saturation [Sch01] and linear coupled component automata (LCCA) [Agar].

Each modeling subclass has its own specifications and advantages compared the others. For

example, control and verification techniques as reachability/observability analysis for MLD

hybrid models, stability criteria were proposed for PWA systems [BeToMo], and conditions

of existence and uniqueness of solution trajectories (well-posedness) for LC systems and so

on.

Ján Drgoňa Diploma Thesis

21

1.3.4 Future of Hybrid Systems

As is apparent from previous talk hybrid models are highly demanding on computation

power due to their complexity. It is important to point that modeling of hybrid systems is

creating mathematical problems which belongs to so called group of NP-hard problems

[wikiNPh], what means that computational time may grow exponentially with dimension

(number of variables) of the problem in worst case. Computational tools sufficient for

dealing with this type of problems become available only recently, what has brought a huge

space of opportunities for exploring and applications of hybrid systems. Therefore hybrid

systems become currently very popular and important field of study among both academic

and industrial researchers.

Ideal theoretical visions to the future are talking about systems as whole entities without

heterogeneous parts [AnNe]. So there will be no need for denoting system to be discrete,

continuous or hybrid, it will be just a system describing and incorporating entire dynamics by

uniform rules.

1.4 Basic Terminology and Definitions

1.4.1 Convex Set

Definition 1.1 [BoyVan]: A set nRC is convex if the line segment between any two points

in C lies in C , i.e. for any Cxx 21 , and any real number , where 10 , is true

 Cxx 21 1 (1.1)

Roughly speaking a set C is convex if any two points lying in the set Cxx 21 , , can be

connected by a straight line which lies entirely within the set C . Examples of convex and

nonconvex sets are shown on following figure 1.4.

Ján Drgoňa Diploma Thesis

22

Figure 1.4: Left - example of convex set. Right - example of nonconvex set.

1.4.2 Convex Hull

Definition 1.2 [BoyVan]: The convex hull of a set C , denoted Cconv , is the set of all convex

combinations of points n
k Rxx ,,1 in C :

 kiCxxxCconv kiikk ,,1,1,0,| 111 (1.2)

The convex hull is always convex, it is the smallest convex set of any set B , therefore

BBconv . Examples of convex hulls are shown on figure 1.5.

Figure 1.5: Left - Convex hull of set of 15 points. Right – convex hull of nonconvex set.

1.4.3 Polytope

In literature a polytope has two standard representations, the V-representation and H-

representation. All polytopes are convex sets.

Ján Drgoňa Diploma Thesis

23

Definition 1.3 [BoyVan]: The H-representation of polytope is defined as a solution set (1.3a)

of linear inequalities and equalities (1.3b). Where nRx , and matrixes DCBA ,,, are

containing real coefficients for linear inequalities and equalities.

},|{ DCxBAxxP (1.3a)

T
m

T

a

a
A

1

 ,

mb

b
B

1

 ,

T
p

T

c

c
C

1

 and

pd

d
D

1

 (1.3b)

Definition 1.4 [BoyVan]: The V-representation of polytope is defined as convex hull (1.4) of

finite number of points in Euclidean n-dimensional space: n
k Rxx ,,1 .

 kxxconvP ,,1 (1.4)

A vertex of polytope, which all components are integers, is called an integral vertex.

1.4.4 General Optimization Problem

Mathematical optimization problem has a form

minimize: xf (1.5a)

subject to: mibxg ii ,,1,)((1.5b)

 pjkxh jj ,,1,)((1.5c)

Where the vector nxxx ,,1 is the optimization variable of the problem, RRxf n :

is the objective function, RRxg n
i : are representing inequality constraint functions,

 RRxh n
j : are representing equality constraint functions, and the constants Rkb ji ,

are bounds for constraints. The vector *x is called an optimal solution of the problem (1.5),

if it has smallest value of objective function (1.5a) while holding the constraints (1.5b,c).

1.4.5 Linear Programming

Linear programming (LP) is an important class of optimization problems, in which objective

function and all constraints are linear.

Ján Drgoňa Diploma Thesis

24

minimize: dxcT (1.6a)

subject to: mibxa i
T
i ,,1, (1.6b)

 pjkxh j
T
j ,,1, (1.6c)

Where the vectors n
ji Rhac ,, and scalars Rkbd ji ,, .

1.4.6 Mixed Integer Programming

Mixed-integer programming (MIP) is another important class of optimization problems,

which characteristic hallmark is that they are containing both, real and also integer valued

variables. We are talking about mixed-integer linear programming (MILP) problem, when the

objective function and constraints are linear.

minimize: xf (1.7a)

subject to: mibxg ii ,,1,)((1.7b)

 pjkxh jj ,,1,)((1.7c)

 plNxl ,,1 (1.7d)

Where lx denotes integer variables.

Because of this mixed nature, MIP problems are suitable for capturing hybrid dynamics and

therefore for modeling of hybrid systems. In this thesis we are dealing with modeling

frameworks which are constructing representing MIP problems for description of hybrid

system.

Ján Drgoňa Diploma Thesis

25

Chapter 2

2 Modeling of Hybrid Systems

Efficiency is the most important feature for solving of optimization problems, but for

obtaining efficient solution not only high performance solvers are required, also modeling

issues are playing very important role in optimization process. Different modeling

approaches are providing models with various complexities, and even small changes in the

models structure can cause huge improvement of optimization efficiency. Especially in case

of hybrid models which could be extremely complex and hard to solve, efficiency is crucial

task for each modeling framework.

In this chapter we will describe several hybrid model representations introduced in literature

[BemDHS, BemMor, Tor, Mig]. Particularly we are dealing with discrete hybrid automatas

(DHA), piecewise affine systems (PWA) and mixed logical dynamical systems (MLD).

2.1 Model Classes for Hybrid Systems

As we mentioned in Chapter 1 there is a big amount of divisions and classifications of hybrid

systems. For our purposed is not necessary to mention or describe all of them, in this section

we will focus only on three well known modeling classes of hybrid systems, with which we

are dealing in this work and therefore it will be convenient to spare some words about them.

In following pages we will show how easy it is to describe hybrid systems as discrete hybrid

automatas (DHA). These models can be conceived as general modeling representation for

hybrid systems, and consequently can be easily transformed into other classes of hybrid

systems. DHAs are powerful tool for description of hybrid systems, but due to their hybrid

and autonomous nature they are not suitable for control and properties investigation of

modeled systems. Next modeling framework what we will discuss are piecewise affine

systems (PWA). These models can be widely used for example as approximation of nonlinear

functions, and can be easily transformed into corresponding mixed-integer optimization

problems. The last modeling framework is called mixed logical dynamical systems (MLD),

Ján Drgoňa Diploma Thesis

26

models created within this framework are computation oriented, because they are internally

defined in form of mixed-integer inequalities, and therefore are suitable for solving analysis,

optimal control, and receding horizon estimation problems.

2.2 Discrete Hybrid Automata

A discrete hybrid automaton (DHA) is a dynamical system that describes the evolution in

time of the values of a set of discrete and continuous state variables [Lys]. The model is

called hybrid because it combines nonlinear continuous dynamics with the dynamics of

discrete event systems. Continuous part of DHA is represented by switched affine systems

(SAS) which are described by a set of ordinary differential equations and discrete dynamics

of the systems is represented as finite state machine (FSM). Additional elements of DHA are

the event generator (EG) and the mode selector (MS) which provides the interactions

between discrete (FSM) and continuous part of the system (SAS). The EG extracts and

generates logic signals from the continuous part of the system, this is done in form of

non/satisfying of the linear-thresholds for continuous variables (states, inputs, outputs).

Those logic events and other exogenous logic inputs trigger the switch of the state of the

FSM. Then the MS is processing all logic signals (states, inputs, time events, linear-

thresholds) to choose corresponding mode of continuous dynamics for SAS. Block diagram

representation of DHA is shown on figure 2.1.

We are dealing with DHA models because they are fairly rich in descriptive power, also

compilation of such models for description of real systems are usually very intuitive and easy

to do, because of these properties DHA is very popular and widely used as a modeling

framework for hybrid systems among academic and engineering society.

Ján Drgoňa Diploma Thesis

27

Figure 2.1 [ToBe]: Representation of DHA as a connection of EG, FSM, SAS and MS.

2.2.1 Switched Affine Systems

A switched affine system (SAS) is a collection of linear affine systems:

)()()()1(kfkuBkxAkx iririr (2.1a)

)()()()(kgkuDkxCky iririr (2.1b)

Where Nk , n
rr RXx is the continuous state vector, m

rr RUu is the exogenous

continuous input vector, p
rr RYy is the continuous output vector, iiiiii gDCfBA ,,,,,

are the matrices of suitable dimensions, and the mode sIki ,..,1:)(is an input signal

that chooses the linear state update dynamics. When a switch occurs a SAS of the form (2.1)

preserves the value of the state, however it is possible to implement reset maps on a SAS.

The reset can be taken as a special dynamics that is active only for one sampling step. With

using reset maps we are able to model also non continuous dynamics or functions. A SAS can

be rewritten as the combination of linear terms and if-then-else rules: the state-update

Equation (2.1a) is equivalent to

Ján Drgoňa Diploma Thesis

28

otherwise

kiifkfkuBkxA
kz rr

,0
1)(,)()()(

)(111
1

(2.2a)

otherwise

skiifkfkuBkxA
kz srsrs

s ,0
)(,)()()(

)(
(2.2b)

s

i
i kzkx

1

)()1(
(2.2c)

where siRkz rn
i ,,1,)(, and (2.1b) admits a similar transformation.

2.2.2 Event Generator

An event generator (EG) is a mathematical object that generates a logic signal according to

the satisfaction of a linear constraint:

 kkukxfk rrH),(),()((2.3)

Where nmn
H DZRRf 1,0: is a vector of descriptive functions of a linear

hyperplane, and ,1,0:Z is the set of nonnegative integers. In particular, time events

are modeled as: 01)(tkTk s
i , where Ts is the sampling time, while threshold

events are modeled as: ckubkxak r
T

r
Ti)()(1)(, where the superscript i

denotes the i-th component of a vector.

2.2.3 Finite State Machine

A finite state machine (FSM) or automaton is a discrete dynamic process that evolves

according to a logic state update function:

)(),(),()1(kkukxfkx bbBb (2.4a)

where bn
bb Xx 1,0 is the Boolean state, bu

bb Uu 1,0 is the exogenous Boolean

input)(k is the endogenous input coming from the EG, and

brrB XDUXf : is a deterministic logic function. A FSM can be conveniently

represented using an oriented graph. A FSM may also have an associated Boolean output

Ján Drgoňa Diploma Thesis

29

)(),(),()(kkukxgky bbBb (2.4b)

where bp
bb Yy 1,0 and brrB YDUXg : . The idea of transforming a well-posed

FSM into a set of Boolean equalities was already presented in [Parbar01] where the authors

performed model checking using (mixed) integer optimization on an equivalent set of

integer inequalities.

2.2.4 Mode Selector

The mode selector (MS) consist of the logic state)(kxb , the Boolean inputs)(kub , and the

events)(k which select the dynamic mode)(ki of the SAS through a Boolean function

IDUXf bbM : . The output of this function)(ki ,

)(),(),()(kkukxfki bbM (2.5)

is called active mode. Literature says that a mode switch occurs at step k if)1()(kiki .

In this discrete-time setting a mode switch can only occur at sampling instants, contrarily to

continuous time hybrid models, where switches can occur at any time.

2.2.5 DHA Trajectories

For the given initial condition brbr XXxx)0();0(, and for the input

 ,)();()(brbr UUkukuku
 Nk the state trajectory Nkkx , , of the system is

recursively computed as follows:

1. Initialization: ;)0();0()0(br xxx

2. Recursion:

a. kkukxfk rrH),(),()(

b.)(),(),()(kkukxfki bbM

c.)()()()(kgkuDkxCky iririr

d.)(),(),()(kkukxgky bbBb

e.)()()()1(kfkuBkxAkx iririr

f.)(),(),()1(kkukxfkx bbBb

Ján Drgoňa Diploma Thesis

30

Definition 2.1 [BemDHS, Tor]: A DHA is well-posed on ,br XX ,br UU ,br YY if for all

initial conditions ,)0();0()0(brbr XXxxx and inputs ,)();()(brbr UUkukuku

, Nk the state trajectory ,)(br XXkx and output trajectory

 ,)();()(brbr YYkykyky are uniquely defined.

This definition can be used also for other types of hybrid models what were introduced

before. In general a hybrid model may not be well-posed, either because the trajectories

stops after a finite time or because of nondeterminism (the successor)1(kx may be

multiply defined) [BemDHS,Tor]. But note that trajectories of DHA are deterministic,

therefore also well-posed.

2.3 Piecewise Affine Systems

A particular case of DHA is the popular class of piecewise affine (PWA) systems [HeeSchBem,

Son, FTMLM03, RBL04]. PWA systems are for short defined by partitioning the space of

states and inputs into polyhedral regions and associating with each region a different linear

state-update equation. Essentially, PWA are switched affine systems whose mode only

depends on the current location of the state vector.

)()()()1(kiii fkuBkxAkx (2.6a)

)()()()(kiii gkuDkxCky (2.6b)

For ikukx)();(, where ,nrr RXx is the state, ,mRUu is the input and

pRYy is the output at time instance k . sii ,,1 is a polyhedral partition of the

state-input space defined by a system of inequalities ii
u

i
x KuHxH and

 ii
u

i
xiiiiii KHHgDCfBA ,,,,,,,, , are real matrices of suitable dimensions.

PWA systems are the “simplest” extension of linear systems that can still model non-linear

and non-smooth processes with arbitrary accuracy and are capable of handling hybrid

phenomena. For PWA systems, well-posedness [wikiWP01, wikiWP02] is defined as follows.

Ján Drgoňa Diploma Thesis

31

Definition 2.1 [BemDHS]: A PWA system is well-posed on ,,, YUX if for all initial

conditions Xx)0(and for all inputs Xkx)(, for all Nk , the state trajectory Xkx)(

and the output trajectory Yky)(are uniquely defined.

When the mode ski ,,1)(is an exogenous variable, the condition ikukx)();(

disappears and we refer to (2.6) as a switched affine system (SAS).

On figure 2.2 there is shown example of PWA system defined by one variable PWA function

divided into five regions, which are including different dynamical laws.

Figure 2.2: Example of one dimensional PWA function with 5 regions.

2.4 Mixed Logical Dynamical Systems

In [BemDHS, BemMor] a class of hybrid systems, called Mixed Logical Dynamical (MLD)

systems, has been introduced in which logic, dynamics and constraints are integrated. An

MLD system is described by the following relations:

)()()()()1(321 kzBkBkuBkAxkx (2.7a)

)()()()()(321 kzDkDkuDkCxky (2.7b)

54132)()()()(EkxEkuEkzEkE (2.7c)

Ján Drgoňa Diploma Thesis

32

Where TT
br

T
r kxkxkx)()()(with states of the system br n

b
n

r kxRkx 1,0)(,)(, outputs

)(ky and inputs)(ku have similar structure as states. Next rrRkz)(are real and

 brk 1,0)(binary auxiliary variables and ,,,,,,,,, 51321321 EEDDDCBBBA are real

matrices of suitable dimensions. Auxiliary variables are introduced when translating

propositional logic or PWA functions into linear inequalities. All constraints for variables of

new MLD system are summarized in the mixed-integer linear inequality constraint (2.7c).

The MLD system is considered to be completely well posed if for a given state)(kx and input

)(ku the values of)(k and)(kz uniquely defined by the inequality (2.7c). A formal

definition of wellposedness for MLD systems and a algorithm to test the well-posedness

have been presented in [BemMor].

The MLD framework is a powerful tool for modeling discrete-time linear hybrid systems, it

aims at translating a hybrid system in a set of mixed integer linear equalities and

inequalities. Via MLD framework we are able to describe automata, propositional logic, if-

then-else statements and PWA functions. General nonlinear functions cannot be modeled

and have to be approximated by PWA functions.

Ján Drgoňa Diploma Thesis

33

Chapter 3

3 Hybrid Systems Modeling Framework

3.1 Introduction

Aim of this Chapter is on investigating and proposing an efficient mathematical framework

for modeling of hybrid systems. The core of this framework will be build on translation

techniques for efficient rearrangement of systems with hybrid dynamics or logical

components defined either as DHA or PWA into corresponding mixed-integer problem, what

is suitable computational representation of hybrid systems solvable by numerical solvers.

At the beginning of this Chapter we are investigating the connections between logic

propositions and mixed-integer linear constraints. First we will highlight a general

propositional calculus for handling the Boolean variables, and then we will focus on

techniques for translation arbitrary Boolean statements or functions into equivalent mixed-

integer linear inequalities. We will also introduce the Big-M conversion, which is efficient

tool for converting a complex, possibly nonconvex or logical constraints and functions into

form of mixed-integer inequalities. Later on we will show how to transform more complex

hybrid systems defined as DHA or PWA into MIP form by using Big-M formulations with

combination of translation techniques defined for Boolean functions. And in the end of this

Chapter we are proposing an attempt to make these general transformation techniques

more efficient by decreasing logarithmically the number of auxiliary binary variables

included in resulting mixed-integer problem. This can be done by “binary encoding” of

integer variables in original model by new auxiliary binary variables. For the purpose of

improvement of efficiency and solvability of resulting model we are also presenting the

cutting-plane approach to eliminate infeasible combinations of new auxiliary binary variables

with focus on minimization of number necessary cuts i.e. extra linear constraints included in

our model.

Ján Drgoňa Diploma Thesis

34

3.2 Logical Propositions

In the beginning we will start with some basic definitions of Boolean algebra. A variable X is

referred to as a Boolean variable or literal, if 1,0X . Boolean algebra enables statements

to be combined in compound statements by logical operators named in following Table 3.1.

Logical operator Symbol

Logical conjunction - AND ˄

Logical disjunction – OR ˅

Logical negation - NOT ¬

Logical implication - IF →

Logical equivalence – IF AND ONLY IF ↔

Logical exclusive or - XOR

Table 3.1: Logical operators and their characters.

Logical operators or connectives have several properties [Chr01] whose allows to transform

compound statements into equivalent statements by using different connectives and

simplify complex statements. It is known that all connectives can be defined in terms of a

subset of them, which is said to be a complete set of connectives , [BemMor]. In

literature a minimal representation of Boolean statement is called conjunctive normal form

(CNF), where the only propositional connectives a formula in CNF can contain are AND, OR,

and NOT ,, [wikiCNF]. The Boolean statement F is in CNF (Boolean equivalent of

products of sums) if it is written in following form:

i

n

i
F

1
 (3.1a)

ij

m

ji X
1

(3.1b)

Where the Boolean formulas i are named terms of the product, and ijX are named terms

of the sum. The formula is in minimal CNF when the formula has minimum number of terms

Ján Drgoňa Diploma Thesis

35

of the product and each term has the minimum number of terms of sum [BemDHS]. Every

Boolean expression can be rewritten as a minimal CNF [Koh]. Logical expressions which are

not part of CNF ,, or complete set of connectives , , can be rewritten into these

forms by using logical equivalences between logical expressions as is shown in following

example 3.1. More about logical equivalences you can find in papers [BemMor, Mig] and

their references.

Example 3.1:

Logical statement Equivalent logical statement

21 XX 21 XX

21 XX 12 XX

21 XX 21 XX

21 XX 1221 XXXX

Table 3.2: Example for equivalency of logical statements.

When a Boolean expression is used to define a Boolean variable nX as a function of

11 ,, nXX , it is also called a Boolean function f defined as follows.

 121 ,,, nn XXXfX (3.2a)

Relations between Boolean variables nXX ,,1 , can be defined with Boolean formula F .

 1,,, 21 nXXXF (3.2b)

Where .,,1,1,0 niX i Each Boolean function is also a Boolean formula, but this

statement is not valid conversely i.e. each Boolean formula doesn’t have to be a Boolean

function. Boolean formulas can be equivalently translated into a set of mixed-integer

inequalities (MIP), what we will show in next stage of this thesis.

Complex theory of Boolean calculus can be found in digital circuit design texts, e.g. [Chr01,

Hay01]. And more mathematically rigorous interpretation can be found e.g. [Med01].

Ján Drgoňa Diploma Thesis

36

3.3 Propositional Calculus and Mixed-Integer Programming

In this section we are presenting several general techniques for translation of logical

statements into computable form of mixed-integer inequalities. Incentive to do so is that

mixed-integer programming problem has been advocated as an efficient tool to perform

automated deduction of validity of logical propositions [CaPaSo]. For further reading about

techniques of translation process and generalization of some results we recommend to the

reader following works [BempDHS, Mig] and their references.

First we want to point on conversion of basic logical statements into mixed-integer

inequalities what is shown in Table 3.2. Let’s associate with Boolean variable iX a logical

variable 1,0i which has a value of 1 if TX i , and 0 if FX i .

Operator Logical statement Mixed-integer (in)equality

AND 21 XX 2,1,1 2121 or

OR 21 XX 121

NOT 1X 11,0 11 or

XOR 21 XX 121

IMPLIES 21 XX 021

IFF 21 XX 021

Table 3.3: Conversion of basic logical statements into mixed-integer inequalities.

In literature [BemDHS, Mig] there are mentioned two general methods for conversion of

logical statements into mixed-integer inequalities. Authors are naming them symbolical and

geometrical method, further we are extending symbolical method to be more general and

applicable on any type of logical statements, and using it as a main translation technique for

our modeling framework. But it is important to mention that all these techniques are in the

end proposing equivalent results, because they are tracking the same objective, which is to

find equivalent mixed-integer linear inequalities for arbitrary Boolean functions (3.2a) or

Ján Drgoňa Diploma Thesis

37

formulas (3.2b). Therefore no method is uniformly better than the others and the choice of a

suitable method is dependent on the form of the logical statements.

3.3.1 Symbolical Method

Symbolical or CNF method is based at first on transforming Boolean functions (3.2a) or

Boolean formulas (3.2b) into conjunctive normal form (CNF). This can be done automatically

by using one of the standard well known techniques mentioned in [ChHoo01, Chr01]. Let us

consider to have the CNF defined as following.

 iNiiPi

m

j
XX

jj1 (3.3a)

Where .,,1,,,1, mjnPN jj

This CNF than can be transformed into the mixed-integer inequalities with corresponding

binary variables i like this

m mPi Ni
ii

Pi Ni
ii

.11

,11
1 1

 (3.3b)

3.3.2 Extended Symbolical Method

Disadvantage of previous symbolical method is demand for logical statements to be in CNF.

Therefore we will present extended symbolical method used in this thesis, which is able to

use full scale of logical operators, not only CNF. In the Table 3.4 there are shown few most

commonly used examples of general logical statements transformed into MIP inequalities via

extended symbolical method.

Logical statement Mixed-integer (in)equality

10 XX 10 1

10 XX 10 1

10 XX 10 1

Ján Drgoňa Diploma Thesis

38

nXXXX 110 n
n

i
i

1
0 1

nXXXX 110 i 0

nXXXX 110 n
n

i
i

1
0 1 , i 0

nXXXX 110 i 0

nXXXX 110

n

i
i

1
0

nXXXX 110

n

i
i

1
0 , i 0

nXXXX 110

ij

ji 0

nXXXX 110 0
1

0 1 nn
n

i
i

nXXXX 110 0
1

0 1 nn
n

i
i

 ,

ij

ji 0

Table 3.4: Conversion of basic logical statements into mixed-integer inequalities via

extended symbolical method.

3.3.3 Geometrical Method

Geometrical method or truth table method [MoBeMi02] has two steps. First step is that the

set of points in n1,0 satisfying the Boolean function (3.2a) or Boolean formula (3.2b) is

computed. Each row of the truth table is associated with a vertex of the hypercube n1,0 .

The vertices are collected in a set V of valid points, the rest of the points Vn \1,0 are

called invalid. The valid point is a satisfying truth assignment for a Boolean formula. The

mixed-integer inequalities are than obtained by computing the convex hull of V , for which

several tools are available e.g. [Fuku01]. We can define the set of valid integer points as

following

 VconvxxP n
CH :1,0 (3.4)

Ján Drgoňa Diploma Thesis

39

Where CHP is a polytope defined by all the valid points of Boolean formula, and Vconv

defines a convex hull of the set of valid points V . This method allows an automatic

translation of truth table representing Boolean formulas into mixed-integer linear

inequalities [Mig].

3.4 Big-M modeling

3.4.1 Big-M conversion

We are using so called big-M formulation as a modeling framework for modeling a complex

or logic constraints and functions by converting and reformulating them into form of mixed-

integer models. The idea of big-M formulation is based on forcing different constraints to be

active or inactive by adding extra binary variables as “indicators of validity” for constraints

into the model. By transforming of model of hybrid system into the mixed-integer

inequalities we are able to capture both continuous and also discrete parts of the system

into single by numerical solvers computable and feasible model.

The basic procedure for creating a big-M formulation from any constraint or a function is to

decompose their descriptions into a set of it-then-else conditions, which are easy to model

by using auxiliary binary variables. This is done by adding large positive value of constant M

in each constraint and this value is multiplied by binary variable 1,0i . Let’s have a

function)(xf i which should be active only if binary variable 0i and zero when binary

variable 1i . The corresponding big-M formulation of previous if-then-else condition is

following

 iii Mxfm 1)(1 (3.5)

Notice that even if the method is called big-M, setting the values of the constants (m, M) to

be very large or even infinite can work in theory, but in practice it will cause considerable

numeric drawbacks and most of the solvers will be inefficient or they don’t have to find the

optimal solution at all. On the other hand if the values of constants will be very small, the

optimal solution in the original problem could be cut away and the problem won’t be

Ján Drgoňa Diploma Thesis

40

feasible anymore. Therefore it is very important that constants (m, M) should be estimated

so close as possible to lower (3.6a) and upper (3.6b) bounds of function)(xf i :

)(min xfm i (3.6a)

)(max xfM i (3.6b)

Proper value of (m, M) can be determined by setting numerical constraints or pre-computing

of possible values of functions used in big-M formulation. But this is not always possible for

several reasons as unbounded real variables or unknowing of the behavior of functions used

in big-M formulations. Therefore accurate estimation of (m, M) is a crucial task in

formulation of good big-M formulations. Theoretically, an under (m) or over (M) estimate of

constants suffices for our purpose. However, more realistic estimates provide computational

benefits [Wil01].

3.4.2 DHA, PWA and Big-M Formulation

Big-M conversion can be understood as suitable continuous-logical modeling framework for

hybrid systems represented either as PWA or DHA, what is in the interest of investigation of

this thesis. As we know SAS (part of DHA) or PWA can be rewritten as the combination of

linear terms and if-then-else rules as is shown in Chapter 2 in section Hybrid Models.

Because of this nature, these models are suitable for big-M conversions into the mixed-

integer inequalities by using techniques mentioned in section below called “Big-M models

library”. Moreover the events (2.3) of DHA can be also expressed as big-M formulations in

following form

 irrH Mkkukxf 1),(),((3.7a)

 irrH mkkukxf),(),((3.7b)

Conversion of logical statements typical for mode selector (MS) of DHA, can be also easily

done by using techniques mentioned in section named “Propositional calculus and mixed-

integer inequalities”.

Ján Drgoňa Diploma Thesis

41

3.4.3 Big-M Models Library

In this section we are representing several big-M models of most commonly used logical

relations between binary variables, linear equalities and inequalities or polytopic constraints.

At first let’s present some basic assumptions, we denote 1,0i as a binary variable, and

,RXx as a real variable. Linear inequality constraint is defined as 0bxaT , where

Ta and b are scalar vectors. Similar we define also linear equality constraint as

 .0bxaT Multiple linear inequalities i.e. polytope is defined as 10 0 BAx

(1.3), where ni ,,1 . And integer linear inequality is defined as 0 b
T
b bxa , where

index b denotes that coefficients T
ba and bb can obtain only integer values. And (m, M) are

positive scalar values set as mentioned in previous section. Than the representation of

corresponding big-M models are shown in following Table 3.5.

Type of statement Big-M model (MIP inequality)

binary variable → linear inequality

 0 bxaT
 1MbxaT

binary variable → linear equality
 0 bxaT 11 Mbxam T

binary variable → polytope inclusion

 0 i
T
i bxa

 1ii
T
i Mbxa

linear inequality → binary variable
 10 bxaT bxam T

Integer linear inequality → binary
variable

 10 b
T
b bxa

bxam T

2
1

2
1

linear equality → binary variable
(because it is impossible to do this
directly, we have to use the same

techniques as for polytope inclusion ↔
binary variable described below)

 1 rbxar T

0,

1

1

0

1
0

r

n

Mrbxa

bxarm

i

n

i
i

ii
T
i

i
T
ii

Ján Drgoňa Diploma Thesis

42

linear inequality ↔ binary variable
 10 bxaT

1Mbxa

bxam

T

T

Integer linear inequality ↔ binary
variable

 10 b
T
b bxa

1
2
1

2
1

2
1

2
1

Mbxa

bxam

T

T

polytope inclusion ↔ binary variable

 10 0 BAx

i

n

i
i

ii
T
i

i
T
ii

n

Mbxa

bxam

0

1
0 1

1

linear inequality → linear inequality
 00 dxcbxa TT

1Mdxc

bxam

T

T

Table 3.5: Big-M models library.

Big-M formulation has proved to be very convenient modeling framework for constructing

MIP problems, but there are still few numerical drawbacks, which arises not from the theory

itself, but from computers nature of representation the numbers. They are lots of references

about computer representation of numbers which can be found on internet, just for

curiosity we recommend to the reader following sources e.g. [ASan01, wikiCoNu].

Each computer is able to work with specified numerical precision and the size of the

numbers which can be processed by computer is also limited. It is impossible to work

directly with numbers like infinity, or zero representation in floating point method is also not

precisely defined. Therefore not all mathematical expressions are available to be

represented in current numerical solvers without losing some precision and even if they are

computable, the computation time needed for processing could be enormously large. In to

the group of “hard to solve” mathematical expressions belongs for example equality

constraints 0 bxaT , which are being transformed into two corresponding inequality

constraints (one from each side) to force the expressions to be equal as it is shown in 6th row

Ján Drgoňa Diploma Thesis

43

of Table 3.5. Another example is strict inequality constraints 0 bxaT , which need some

small numerical thresholds to be defined around zero value. Several of these techniques for

handling the mathematical expressions to be numerically solvable by numerical solvers are

incorporated in Big-M formulation, as you can see in a Table 3.5. In Big-M modeling there

are also used techniques for conversion of logical expressions into MIP inequalities defined

in Table 3.4. As an example you can look on 9th row of Table 3.5 where is defined Big-M

representation of statement (polytope inclusion ↔ binary), where the Big-M conversion of

logical AND operator from Table 3.4 has been used. The reader can found more of practical

examples about Big-M formulation and mixed-integer programming in following references

[YalMIP, YalBigM].

3.5 Efficient Modeling of Hybrid Systems

The complexity of resulting MIP model translated from logical propositions is significantly

determined on number of binary variables included in the model. The complexity of MIP

model rises exponentially with increasing number of involved binary variables, what has

huge impact on speed of solving of the mathematical optimization problems. Solving of MIP

optimization problems is necessary for synthesis, analysis and control of hybrid models.

Therefore a reduction of a size of the model seems to be a crucial task in efficient modeling

approach for these models.

In this chapter we will show that it is possible to encode and replace the binary states of DHA

by fewer new auxiliary binary variables in the form of linear integer inequalities, we are

calling this technique “binary encoding” of integer variables. One original binary variable will

be assigned exactly with one integer inequality. Each inequality will be unique combination

of valid points of truth table (geometrically vertex of a hypercube) composed for Boolean

function of auxiliary variables. By this approach we can reduce the number of necessary

binary variables logarithmically comparing to original MIP problem, as we will show in

following pages of this thesis. Later on we are presenting also efficient technique for

removing the infeasible combinations of new auxiliary variables i.e. invalid points of truth

table from feasible regions of resulting MIP problem. This is done by adding extra constraints

(cuts) into the MIP problem. This procedure is necessary for avoiding the model to be

Ján Drgoňa Diploma Thesis

44

declared in infeasible and undefined regions which could appear in MIP formulation, what in

theoretical way should keep correct DHA trajectory and ensure well posedness of the hybrid

model.

As a main reference for this Chapter we should mention work [Olaru], in which is author

investigating and proposing enhanced techniques for hyperplane arrangement in MIP

problems. In this paper are presented ideas for reduction the binaries on logarithmic size by

“binary encoding”, which we are using in our modeling framework and has been also

mentioned earlier in paper [BemMor]. In paper [Olaru] there is also shown technique for

constraints (cuts) reduction, based on grouping the cuts together, when a single cut is used

for separation more than one infeasible combination of auxiliary variables (geometrically

vertex of hypercube). By this approach we can obtain significant decrease of number of used

cuts. Moreover with small changes in cuts creation (by using so called deep cuts) we

improved this technique of “reduced cuts” to technique of “reduced deep cuts”, which are

constructing more suitable representation of MIP model for current numerical solvers. We

are presenting this technique later on in this chapter.

3.5.1 Binary Encoding of Integer State Variables

Here we will present the general technique for binary encoding of original Boolean variables

 xn
iX 1,0 by logarithmic number of new auxiliary binary variables dn

j 1,0 with using

the Truth Table Method (Geometrical Method) defined few sections above. This technique is

based on defining the original binary variable as a Boolean function (3.2a) of new auxiliary

binary variables, where each binary variable iX is associated with one corresponding row of

the truth table, geometrically represented as a vertex of hypercube. Each row of the table is

represented as a unique combination of new variables j or it can be conceived also as a

unique Boolean formula of variables j . The maximum number of all possible combinations

of variables j equals dn2 where dn means cardinality of new auxiliary binary variables.

Hence the number of new auxiliary binary variables dn needed for encoding the original

binary variables in cardinality of xn will be set by relation (3.8), where the brackets .

denotes the ceiling operator.

Ján Drgoňa Diploma Thesis

45

)(log 2 xd nn (3.8)

As mentioned before in section about Geometrical Method, the truth table can be set up

e.g. by enumeration of corresponding Boolean formulas. More detailed definition of a truth

table can be also found in work [Mig] or on a web [wikiTT].

For demonstration we will create a table of all possible combinations of three auxiliary

binary variables 321 ,, . Where each row of the table can be represented as a different

Boolean formula in CNF, therefore we can use a transformation techniques proposed in the

Table 3.4 to transform these Boolean expressions into equivalent mixed-integer linear

inequalities, as is shown in following example 3.2. The ↔ operator means that all

transformation procedures are equivalent and reverse.

Example 3.2:

Truth Table Boolean formula Mixed-integer inequality

1 2 3

0 0 0 ↔ 321 ↔ 0321

0 0 1 ↔ 321 ↔ 1321

0 1 0 ↔ 321 ↔ 1321

0 1 1 ↔ 321 ↔ 2321

1 0 0 ↔ 321 ↔ 1321

1 0 1 ↔ 321 ↔ 2321

1 1 0 ↔ 321 ↔ 2321

1 1 1 ↔ 321 ↔ 3321

Table 3.6: Example for conversion of truth table into equivalent Boolean formulas and

mixed-integer inequalities.

As we can see in previous example for each row of the truth table there is exactly one

corresponding mixed-integer linear inequality, with which we can replace an original binary

variable iX in MIP problem. It is obvious that in this example the number of binaries iX

what we can encode with this approach by three auxiliary binary variables 321 ,, is set

Ján Drgoňa Diploma Thesis

46

by relation dn2 defined before, hence equals 823 . On figure 3.1 is show the corresponding

visual representation of hypercube 31,0 for truth table from example 3.2.

Figure 3.1: Visual representation of truth table from example 3.2 as a 3-dimensional

hypercube with valid points 31,0 .

Technique of “binary encoding” of integer variables allows us to significantly decrease the

number of binaries involved in our model what goes hand in hand with decreasing of

complexity of whole model, but nothing is for free and several drawbacks appears also in

this approach.

First cost what we have to pay is hidden behind new Big-M conversions which need to be

done. In “binary encoding” approach a single binary variable is replaced by corresponding

mixed-integer linear inequality, because of this the logical implications and equivalences

used for modeling are becoming more complex and therefore more difficult to transform

into Big-M formulations as it was with using only single binary variable. For this purposes

there are available efficient transformation techniques for more complex statements (e.g.

integer linear inequality ↔ binary variable) as is shown in Table 3.5 which is containing the

Big-M models library. So even if we reduce the number of binary variables what decreases

the complexity of the model, the number of MIP inequalities needed for description of the

model is rising, due to more complex Big-M formulations, what has certainly negative effect

on complexity of the model created by this approach. Or sometimes even a new auxiliary

binary variable which is used for description of a complex statement is needed to be

incorporated into the model, what is also increasing the complexity of the model. Here we

Ján Drgoňa Diploma Thesis

47

have to be careful and compare the pros (decreased number of binaries) and cons (increased

number of MIP constraints and auxiliary variables) of this approach for particular model

situation and its effect on complexity of resulting model.

Second problem what we have to deal with appears when the number of original binary

variables iX what we want to encode is not equal to powers of two dn2 . As we mentioned

before the number of new auxiliary variables needed for encoding xn states is equal to the

number set by relation (3.8), so the number of auxiliary variables and their descriptive

power is not arbitrary choice. In this approach we may face a situation when there will be

more possible combinations of the auxiliary variables (tuples or nodes) than we actually

need for encoding of original binary variables. And here the problem of infeasible tuples of

auxiliary binary variables or unallocated vertexes of hypercube arises. Note that the number

of unallocated tuples un may obtain a significant value especially with higher number xn of

original binary variables. The number un is function of xn and is set by following relation

(3.9).

x

n
u nn x 2log2 (3.9)

We will demonstrate this problem on following example 3.3.

Example 3.3: Let us consider a model with five binary states iX , where 5,,1i . These

can be represented by three auxiliary binaries 321 ,, , for whose the truth table was

shown in example 3.2. To each row of the truth table and to corresponding MIP inequality

we will assign exactly one binary state iX . Note that there are three rows of the table left

without any assignment, therefore these three tuples are unallocated. The number 3un

fits also with equation (3.9), because in this example 3dn and 5xn . But this is

something what a numerical solver can’t realize without our help. The solver will consider

these unallocated nodes as a feasible solutions (because we didn’t say to him opposite), and

could lead the optimization into undefined regions of MIP problem, what will cause the

crash of our model.

Ján Drgoňa Diploma Thesis

48

On figure 3.2 is shown the visual representation of hypercube for the example 3.3, with

three unallocated nodes marked with blue crosses. These unallocated nodes are

representing last three rows of truth table from example 3.2.

Figure 3.2: Visual representation of hypercube from example 3.3 with three unallocated

tuples 1,1,1;0,1,1;1,0,1 .

We need to somehow say to the solver that this tuples where no actual binary state is

defined should be put out of feasible regions of constructed MIP problem. The solution of

this problem will be shown in following stage about cuts, where the extra linear constraints

will be added into the model for eliminating these infeasible combinations of auxiliary

variables.

3.5.2 CUTS

By the notion of “cuts” we are meaning extra constraints added to the model to restrict

infeasible integer or possible non-integer solutions that would be solutions of the

continuous relaxation of MIP problem computed by most of the solvers. By this approach we

can ensure that we will find optimal solution and significantly reduce the number of

branches needed to solve MIP problem and consequently improve the speed of obtained

solution. Therefore the demand for finding a “good” cuts and incorporating them into the

model plays very important role in efficient modeling of MIP problems.

In this part of the thesis we are investigating several approaches for removing infeasible

nodes (unallocated vertexes of hypercube) from feasible regions of MIP problem by cuts.

Ján Drgoňa Diploma Thesis

49

Visual demonstrations of used techniques will be shown on 3-D hypercube from example 3.3

constructed as a combination of three binary variables 321 ,, .

3.5.2.1 One node one cut approach

This is a basic approach to solve the problem with unallocated nodes (infeasible integer

solutions). Main idea is to use exactly one mixed integer inequality for cutting away one

particular infeasible node from a model, as can be seen also on figure 3.3. This approach is

very easy to implement, because the representing mixed integer inequalities for a single

node can be found by using transformation techniques shown in Table 3.4. For this purposes

we also present following definition.

Definition 3.1: us consider a collections of all possible combinations of n binary variables
 kn ,,1 with cardinality nk 2,,1 , which are shaping an n-dimensional hypercube

and each of them can be conceived as a vertex of this hypercube. Then we can find a

constraint (3.10) for each vertex, which is putting this particular combination of binaries and

only this combination infeasible.

FT n

ij
j

n

ji
i 1 (3.10)

Note that Tn represents the number of binaries in tuple (node), which value is equal to 1 or

TRUE, and Fn represents the number of binary variables with 0 or FALSE value. Then the

total number of binaries in one tuple must hold following equality nnn FT . Geometrical

representation of each constraint of type (3.10) is a hyperplane which is separating the

space in to two half spaces, one feasible and one infeasible.

Ján Drgoňa Diploma Thesis

50

Figure 3.3: A single cut (hyperplane - blue) separating one vertex of the hypercube.

Example 3.4: We will demonstrate this basic approach on three infeasible nodes from

Example 3.3, with using three single cuts to restrict them from feasible region of the model.

Corresponding MIP inequalities (3.11) for restricting these nodes are shown in following

Table 3.7.

Infeasible node 321 ,, Corresponding cut (MIP inequality)

 1,0,1 2321 (3.11a)
 0,1,1 2321 (3.11b)
 1,1,1 3321 (3.11c)

Table 3.7: MIP inequalities for restricting infeasible nodes 1,1,1;0,1,1;1,0,1 .

Note that there is extra scalar value 1,0 deducted from right side of the MIP inequality,

this value says how “deep” the cuts will be and how much space from the feasible region

they will cut. So when the scalar 0 , it means that this cut will be very strict and it will lie

exactly on node that should separate, on the other hand when 1 , it means that this cut

is deep and is cutting away from feasible region as much space as possible. Although the

choice of the value 1,0 is arbitrary, it has a huge impact on model efficiency during the

optimization as will be demonstrated later in section about deep cuts approach.

We used value 5.0 in our example 3.4 just for a demonstration of above mentioned

issues, than the corresponding visual representation of these cuts is shown on figure 3.4. On

Ján Drgoňa Diploma Thesis

51

the left picture there are shown three restricted areas of hypercube defined by cuts, which

are containing the infeasible nodes, these infeasible regions are painted by blue color and

the remaining feasible region is painted yellow. On the right picture, there is shown a

polytopic representation of the feasible region for corresponding MIP model after executing

the cuts. Where red nodes are representing feasible integer solutions and blue nodes are

representing non-integer solutions, which are naturally infeasible for MIP problem.

Figure 3.4: Left - Single cut approach for cutting away three nodes by cuts (3.11) from

example 3.4. Right – remaining feasible region with 7 non-integer nodes (blue).

Disadvantage of this approach is that for more complex problems with a lot of unallocated

nodes we need to incorporate a huge number of extra constraints to the model, what is

making the model even more complex and less efficient for solving optimization problems.

The efficient technique for minimizing the number of constraints can be found in paper

[Olaru] and we are describing it in following section named “Reduced cuts approach”.

Second even bigger drawback lies in a polytopic representation of feasible regions for

resulting MIP model. As we can see on right picture from figure 3.4 after adding the cuts in

to the model, new non-integer nodes (blue) appears in geometrical representation of

feasible regions of the model. These nodes obviously can’t be the solutions of the MIP

problem, but for continuous relaxations of MIP problem these nodes are representing

feasible solutions of relaxed LP problem. So for all the current solvers based on algorithms

using LP relaxations of the MIP problem would be this representation of the MIP model

Ján Drgoňa Diploma Thesis

52

highly inconvenient and inefficient, due to increased number of branches needed to be

checked, or for some advanced solvers there would be need for presenting their own cuts

for restricting these infeasible solutions from continuous relaxations. Therefore for further

use of the model is very important to provide “good” cuts, which will minimize the number

of non-integer nodes in polytopic representation of feasible regions of the MIP model, what

will provide significant relief in number of the LP relaxations of MIP problem needed to be

solved by numerical solvers. We will focus on this issue in following pages of this thesis in

section named “Reduced deep cuts”, where we are trying to combine the technique of

reduced cuts and technique of deep cuts to provide more efficient representations of MIP

models for current numerical solvers.

3.5.2.2 Reduced cuts approach

By this approach we are able to significantly reduce the number of cuts incorporated in the

model. This is done by merging single cuts for particular nodes together to create one

complex cut for cutting away more than one node.

The idea is based on finding and grouping the neighbor nodes of hypercube together and

introducing a single inequality for their restriction from feasible region. By meaning of

neighbor node we mean for example two vertexes which are forming an edge of hypercube,

or four vertexes of hypercube which are forming one plane of a hypercube. So generally we

can group together and separate by single cut n2 nodes, which are forming n-dimensional

hyperplane which is part of a multi-dimensional hypercube representing corresponding

combinations of used binary variables.

Now arise the question what can be the best possible allocation of infeasible nodes in the

hypercube, for grouping as much as possible neighbor nodes together. Even if the allocation

of nodes is arbitrary and one can choose different combinations, we are proposing following

ordering of binary variables to be most favorable for reduced cuts approach, because of the

maximum number of neighbor nodes placed next to each other. The idea is to use basic,

most simple ordering of nodes where we are gradually changing the values of binaries in

descending order from the last binary to first binary one by one, what geometrically means

that we are changing the position from one vertex to another vertex by moving on edges of

the hypercube. You can check that this is true e.g. by enumeration of vertexes of hypercube

Ján Drgoňa Diploma Thesis

53

from figure 3.1. We are using this ordering in every example of this thesis and can be seen

e.g. in truth table for example 3.2. With using basic ordering the number of new reduced

cuts rn depends on number of unallocated nodes (3.9) and can be approximately estimated

by following relation (3.12).

 ur nn 2log (3.12)

Note that equation (3.12) is only raw estimation and not a strict relation. Real relation

between number of reduced and number of original cuts, can be seen in Appendix on figure

A.1. Moreover dependence of maximum number of original and reduced cuts on number of

auxiliary binary variables is shown in Appendix on figure A.2.

For better understanding of this technique there are following examples 3.5 and 3.6. In

example 3.5 we are presenting also figures 3.5 and 3.6, with visual demonstrations of

complex cuts for vertexes of 3-dimensional hypercube. And on example 3.6 we are

demonstrating the reducing constraints power of this approach.

Example 3.5: Let us consider a hypercube representation for all possible combinations of

three auxiliary binary variables 321 ,, , while three of the nodes are infeasible, as shown

on Example 3.3. Separation of the infeasible nodes by single cut approach was demonstrated

on Example 3.4. Now we will show that it is possible to use instead of three MIP inequalities

(3.11) only two MIP inequalities (3.13) for all three nodes, to restrict them from feasible

region. First what we have to realize is which of these nodes lies together an edge of the

hypercube, to be able for us separate them by single cut. On figure 3.5 is clearly visible that

the following pairs of nodes 1,1,1;1,0,1 and 1,1,1;0,1,1 forms together two edges of

the hypercube. Than the corresponding MIP inequalities (3.13) for these edges are defined

in following Table 3.8. Their visual representation is shown on figure 3.5 where on the left

picture there is hypercube with cut defined by inequality (3.13b) and on the right picture is

shown a hypercube with cut defined by inequality (3.13a).

Pair of infeasible nodes

 321 ,,

Corresponding complex cut

(MIP inequality)

 1,1,1;1,0,1 231 (3.13a)

Ján Drgoňa Diploma Thesis

54

 1,1,1;0,1,1 221 (3.13b)

Table 3.8: MIP inequalities for restricting two infeasible edges of hypercube.

For cuts (3.13) demonstrated on figures 3.5 and 3.6 we also used value 5.0 as in

example 3.4, this was done for a better comparison of these two techniques. Moreover on

figure 3.6 is shown a remaining feasible region after executing these complex cuts (3.13)

with new 6 non-integer nodes.

Figure 3.5: Complex cuts for edges of the hypercube. Left – cut for two nodes defined by

equation (3.13b) with value 5.0 . Right – cut for two nodes defined by equation (3.13a)

with value 5.0 .

Figure 3.6: Remaining feasible region after two complex cuts with 6 non-integer nodes

(blue).

Ján Drgoňa Diploma Thesis

55

Example 3.6: Assume that we have model with 9 binary states 9,,1, iX i , and we want

to encode them by using 4 auxiliary binary variables 4321 ,,, . As we know from

section about binary encoding, 4 extra binaries are providing us space for encoding 24=16

binary states of the model. Hence after constructing the truth table and associating for each

binary state iX exactly one row of the table, there will be 7 unallocated nodes left in 4-D

hypercube representation. Unfortunately we can’t visualize this example, but corresponding

unallocated combinations of j variables and their corresponding cuts (3.14) using basic

“one node one cut” approach, what is shown in following table 3.9.

Infeasible node
 4321 ,,, Corresponding cut (MIP inequality)

(1,0,0,1) 24321 (3.14a)
(1,0,1,0) 24321 (3.14b)
(1,0,1,1) 34321 (3.14c)
(1,1,0,0) 24321 (3.14d)
(1,1,0,1) 34321 (3.14e)
(1,1,1,0) 34321 (3.14f)
(1,1,1,1) 44321 (3.14g)

Table 3.9: Example of basic approach with 7 single cuts for 7 infeasible nodes.

Now we apply the results of this section to reduce the number of cuts by merging the

neighbor nodes together and separate them by single cut. In a table 3.10 we can see that for

this particular case we were able to replace 7 single cuts (3.14) constructed by basic

approach just with 3 complex cuts (3.15) constructed by using “reduced cuts” approach.

Note that the group of 4 infeasible nodes (3.15a) is forming one plane of a hypercube and

the pairs of infeasible nodes (3.15b, 3.15c) are forming two edges of a hypercube. The values

of particular binaries highlighted bold are representing common values for the group of

nodes, from which the corresponding MIP inequalities were derived.

Ján Drgoňa Diploma Thesis

56

Group of infeasible nodes
 4321 ,,, Corresponding cut (MIP inequality)

(1,1,0,0); (1,1,0,1);
(1,1,1,0); (1,1,1,1)

 221 (3.15a)

(1,0,1,0); (1,0,1,1) 2321 (3.15b)
(1,0,0,1); (1,0,1,1) 2421 (3.15c)

Table 3.10: Example of 3 complex cuts for restricting 7 infeasible nodes.

As shown on example 3.6 this approach provides great improvement in number of

constraints what we have to incorporate into the model, what is decreasing the complexity

of the resulting model. But on the other hand as we can see on example 3.5 exactly on figure

3.6 the number of non-integer vertexes which are created by using this approach is still

considerable large what has negative effect on computing efficiency of the model. We will

show how to easily handle this drawback in next section of this thesis, by providing deep

cuts.

3.5.2.3 Deep cuts approach

In this section we want to prove that reduced cuts approach is obtaining best results with

performing so called deep cuts i.e. with value of 1 for cuts defined by equation (3.10).

The cut is called deep because is restricting maximum possible space from feasible region

while still holding the condition for cutting away desired nodes.

Using of this approach can be seen on figures 3.7 and 3.8 where we used cuts (3.13) from

example 3.5, the only difference here is that we changed the value of from 0.5 to 1. Than

we can compare the figures 3.6 and 3.8 with remaining feasible regions after executing cuts

of these two approaches. As is clear from this comparison, with performing deep cuts we are

obviously creating more suitable model for mathematical optimization, because in model

demonstrated by figure 3.8 there are no extra non-integer nodes, which would otherwise

slow down the numerical solvers based on LP relaxations of MIP problem.

Even if we didn’t propose the proof that this approach prevents from creating new non-

integer vertexes in remaining polytopic representation of feasible region, we assume that

the number of them is minimal in comparison with different approaches which were

mentioned in this thesis.

Ján Drgoňa Diploma Thesis

57

Figure 3.7: Complex deep cuts for edges of the hypercube. Left – deep cut for two nodes

defined by equation (3.13b) with value 1 . Right – deep cut for two nodes defined by

equation (3.13a) with value 1 .

Figure 3.8: Remaining feasible region after performing two complex deep cuts with no non-

integer nodes.

Ján Drgoňa Diploma Thesis

58

Chapter 4

4 Software Tools for Hybrid Modeling

In this chapter we will shortly introduce modeling tools used in this thesis, particularly

modeling languages HYSDEL [Hys] and YALMIP [YAL]. Both tools are shipped with free Multi-

Parametric Toolbox (MPT) for MATLAB [KGBC], designed for analysis and deployment of

optimal controllers for constrained linear and hybrid systems.

In this thesis we are using several MLD models developed in HYSDEL for comparison with

hybrid models created in YALMIP, what will be shown in following pages.

4.1 HYSDEL

HYSDEL (HYbrid Systems DEscription Language) is a high-level modeling language, which

allows describing hybrid dynamics in textual form, than the related compiler is used for

translation of textual form into computational mathematical models of hybrid systems,

particularly into MLD or PWA form. As we demonstrated in chapter 2, system described in

MLD form can be instantly used for optimization to solve e.g. verification or optimal control

synthesis problems. For further reading and better understanding of HYSDEL modeling

language, we highly recommend to the reader following sources [Hys, ToBe, Tor, BemDHS,

Mig].

4.2 YALMIP

YALMIP is a powerful modeling language for advanced modeling and solution of convex and

nonconvex optimization problems. It is implemented as a free (GNU license) MATLAB

toolbox with rapid algorithm development. The language is in accordance with standard

MATLAB syntax, what makes it extremely user friendly for common MATLAB users. The tool

was initially developed in 2001 and over the years has grown enormously and today

supports a broad range of optimization problems. Also a large number of various modeling

Ján Drgoňa Diploma Thesis

59

tricks are included, what helps user to focus on high-level modeling, while low-level

modeling is done internally by YALMIP providing as efficient models as possible. Supported

optimization classes are wide, such as linear, quadratic, second order cone, semidefinite,

mixed integer conic, geometric, local and global, polynomial, multiparametric, bilevel and

robust programming [YAL].

One of the central ideas of YALMIP is that it relies on external solvers carrying computation

aspects, while the tool itself is focusing on the language and high-level algorithms. Complete

list of supported external solvers can be found on YALMIP home page [YAL] in section

“solvers”. Moreover YALMIP is also shipped with internal solvers for global optimization,

mixed integer programming, multiparametric programming, sum-of-squares programming

and robust optimization [YAL].

For purposes of hybrid modeling we will naturally focus on construction of mixed integer

models in YALMIP. We highlight the reader on chapter 3 where most important YALMIP

modeling features for MIP problems are presented, especially we refer to Big-M modeling

approach as a main tool used internally in YALMIP for construction of MIP problems.

4.2.1 YALMIP Hybrid Modeling Framework

Main goal of this thesis lies in creating user friendly and efficient computational modeling

framework suitable for creating corresponding MIP models of hybrid systems defined as

DHA or PWA. The idea was driven by exploit capabilities of YALMIP and creating MIP

representations of hybrid systems with using YALMIP modeling features described in chapter

3. Motivation for creating such framework lied in that all current computational hybrid

modeling tools require knowledge of specific language syntax e.g. HYSDEL. In contrast our

YALMIP hybrid modeling framework is completely based on YALMIP syntax, which as

mentioned before is consistent with standard MATLAB syntax, what makes modeling process

in this tool very simple and intuitive for all MATLAB user. We are demonstrating “user

friendliness” of framework syntax on following pages of this thesis, and efficiency of

resulting models in chapter 5 as main powers of this modeling tool. Further in the text we

are denoting this new framework YALMIP-FSM (YALMIP - finite state machine).

Ján Drgoňa Diploma Thesis

60

4.2.1.1 YALMIP-FSM Modeling Language Syntax

Modeling syntax consists from creating three basic input objects: variables, states, and

transitions.

Variables object is containing information about variables names, sizes, binary-real

indicators (declaring variable to be binary or real), and variables bounds defined in

parameters section. State object is containing declaration of dynamical behavior for

particular state. Transition object is carrying information about switching condition between

two states and pointers on interconnected states, first for original state and second for

destination state. These three objects (variables, states, transitions) together with declared

time horizon and options are set as inputs for core function of modeling framework, which is

automatically creating resulting hybrid model as a set of MIP constraints.

We will demonstrate framework’s syntax simplicity on following examples 4.1 and 4.2.

Example 4.1: Let us consider a hybrid model of thermostat with 2 discrete states (4.1b)

involving different dynamical behavior. Dynamics in states are defined by difference

equations: heatxx kk 1 for state1 representing cooling, and heatxx kk 1 for state2

representing heating, where kx is continuous state variable (4.1a) and denotes the

temperature, note that the k-th index denotes a time step for continuous state variables.

Model contains also two transitions (4.1c) with thresholds for switching the states.

Transition from state1 to state2 is defined by lower bound (LB) for temperature °C21kx ,

and transition from state2 to state1 is set by upper bound (UB) for temperature °C23kx ,

for numerical tightness we are using in modeling case (4.1c) tolerance of 0.1 °C . Block

diagram for this model is shown on figure 4.1, and moreover for demonstration of

functionality an open loop simulation on time horizon N = 15 with initial conditions

°C210 x is shown on figure 4.2.

Complete corresponding YALMIP-FSM framework syntax is demonstrated as follows (4.1).

Ján Drgoňa Diploma Thesis

61

Declaration of Variables and Parameters: (4.1a)

% x – temperature u - heating switch
names = {'x' 'u' };
varsizes = {[1,1] [1,1] };
indicators = { 'r' 'b' };
% variable parameters – minimal and maximal temperature allowed
param.ineq = { '[min_temp <= x{k} <= max_temp]' };
param.eq = {};
param.val = { 'max_temp = 50; min_temp = 0; heat = 1;' };
% variables input object
variables = yalmip_fsm_variables(names, varsizes, indicators, param);

States: (4.1b)

% state 1 - heating off
s1 = yalmip_fsm_state('[x{k+1} == x{k} - heat]');
% state 2 - heating on
s2 = yalmip_fsm_state('[x{k+1} == x{k} + heat]');
states = [s1, s2];

Transitions: (4.1c)

% transition 12 – jump from state 1 to state 2
t12 = yalmip_fsm_transition(s1, s2, '[x{k} < 21.1]');
% transition 21 – jump from state 2 to state 1
t21 = yalmip_fsm_transition(s2, s1, '[x{k} > 22.9]');
trans = [t12, t21];

Core Function and Options: (4.1d)

% 'unary' - basic approach; 'binary' - binary encoded states
Options.encoding = 'unary';
% 'basic' - one node one cut; 'enhanced' – reduced cuts
Options.cuts = 'basic';
% 0 - silent, 1 - elapsed time
Options.verbose = 1;
% core modeling function, fsm – outgoing model, V - internal variables
[fsm, V] = yalmip_fsm(states, trans , variables, N , Options)

Figure 4.1: Block diagram of hybrid model of a thermostat from example 4.1.

Ján Drgoňa Diploma Thesis

62

Figure 4.2: Open loop simulation of hybrid model from example 4.1.

Example 4.2: In this example we assume to have hybrid model of a truck with 4 discrete

states. First state S1 represents a loading of a truck in static loading place (i.e. not moving

original destination: Dk≤0). Loading of a truck is represented by difference equation

kkk loadCC 1 , where kC represent capacity (how much load can truck carry) of a truck

in k-th time step. State S2 represents travelling of a truck toward target destination what is

defined by difference equation kkk speedDD 1 , where kD denotes a distance of a truck

from origin destination in k-th time step. State S3 represents unloading of a truck in static

unloading place (i.e. not moving target destination: Dk≥300). Unloading of a truck is

represented by differential equation kkk unloadCC 1 . State S4 represents travelling of a

truck back to original destination what is defined by equation kkk speedDD 1 . Switching

conditions for “static” states S1 and S3 to “traveling” states S2 and S4 are represented by

binary variable movek, while switching conditions from states S2 and S3 and from state S4 to

S1 are defined by distance thresholds Dk ≥ 300 and Dk ≤ 0.

Consistent description of the states and switching conditions for this model is demonstrated

on block diagram shown on figure 4.3. Corresponding YALMIP-FSM code, with defined

Ján Drgoňa Diploma Thesis

63

variables and parameters can be found in Appendix (code A.1). Open loop simulation on

time horizon N = 15 with initial conditions (S1=1; load0 =0; unload0 =0; distance0 =0; capacity0

=0) is shown on figures 4.4 and 4.5.

Figure 4.3: Block diagram of hybrid model of a truck from example 4.2.

Figure 4.4: Continuous states and inputs behavior in open loop simulation of hybrid model of

a truck from example 4.2.

Ján Drgoňa Diploma Thesis

64

Figure 4.5: States (S) and transitions (t) behavior in open loop simulation of hybrid model of

a truck from example 4.2.

4.3 Computational Aspects

In this section we computationally test the hybrid models created in HYSDEL and in YALMIP-

FSM framework. For this test we used hybrid model of a truck with 4 binary states defined in

previous section example 4.2, corresponding codes for YALMIP-FSM models (code A.1) and

HYSDEL models (code A.2, code A.3) are enclosed in Appendix. All models were solved using

commercial solver Gurobi 4.6.1 on Intel® Core™ i3 CPU 2.40 GHz 64-bit Windows 7

workstation with 3GB of RAM.

In our test we used four different models, two models with different modeling approaches

defined in chapter 3, for each modeling framework (HYSDEL, YALMIP-FSM). First we used

basic approach with unary encoding of state binary variables, what means that for each

binary state we used exactly one binary variable in model, second used approach was binary

encoding approach of state variables, what means that for each binary variable we allocated

exactly one unique combination of auxiliary binary variables. We solved open loop

simulations for each model with varying prediction horizons from 6 to 16. For better

numerical tightness of results and avoiding of statistical errors, we did 10 repetitions of

solution for each model on particular prediction horizon.

Ján Drgoňa Diploma Thesis

65

Results of the test are presented on figures 4.6 and 4.7, which are demonstrating

considerable efficiency improvement of our YALMIP-FSM models with comparison to

HYSDEL models, what is demonstrated on table 4.1. This improvement occurred because of

YALMIP enhanced modeling techniques, where YALMIP during setting of constants (3.6) for

Big-M models is considering parameters appearing in whole model, while HYSDEL during

setting of Big-M constants (3.6) for resulting MIP problem is looking only at parameters

defined in INTERFACE section of model code. Because of this, YALMIP models are

numerically much tighter and therefore more efficient for solvers based on MIP relaxations,

than models created via HYSDEL.

YALMIP-FSM vs HYSDEL

Unary approach ~ 59 %

Binary approach ~ 56 %

Table 4.1: Improvement of efficiency of tested YALMIP-FSM models comparing to HYSDEL

models.

Moreover from results of the test is obvious that models using unary encoding approach are

providing better results than models with binary encoding approach. Demonstration of

higher efficiency of unary encoding approach comparing to binary encoding approach is

shown in following table 4.2. However these results are in conflict with primary assumptions

about more efficient models with less binary variables by using binary encoding approach.

Explanation comes with fact, that even if we were able to decrease the number of primary

state binary variables logarithmically, the number of auxiliary binaries has raised in need to

describe more complex logical expressions, what was mentioned in section 3.4 about Big-M

modeling.

Unary Encoding vs Binary Encoding

YALMIP-FSM ~ 27 %

HYSDEL ~ 33 %

Table 4.2: Comparison of tested models with unary encoding approach with models using

binary encoding approach created in YALMIP-FSM and HYSDEL.

Ján Drgoňa Diploma Thesis

66

It is important to note, that differences in solver times for models are growing with rising

prediction horizon, and therefore numbers presented in tables 4.1 and 4.2 are only

estimations based on obtained data from this particular test.

Figure 4.6: Comparison of solver times dependence on prediction horizon, for HYSDEL and

YALMIP-FSM models with unary and binary encoding approaches.

Figure 4.7: Maximal, minimal and average values of solver times for all tested models.

Ján Drgoňa Diploma Thesis

67

On figure 4.6 there visible that differences in solver times for particular models have

approximately constant values, what means that complexity of models depend primary on

prediction horizon. Figure 4.7 shows errorbars for tested models with maximal, minimal and

average value of solver time for each prediction horizon, where we can observe few

considerable deviations from average values, especially in using of binary encoding. General

deviations were probably caused by random numerical drawbacks resulting from higher

number of optimization problems solved repeatedly, while particularly high deviations for

models with using binary encoding approach could be caused by more complex model

construction, which is more sensitive on numerical tightness of corresponding MIP

relaxations.

Our final recommendations based on test results are to keep using “basic” binary encoding

approach (section 3.4), because these models proved to be more efficient than models using

“enhanced” binary encoding approach (section 3.5), despite the initial assumptions.

Ján Drgoňa Diploma Thesis

68

Conclusion

As is well known hybrid models can be represented in form MIP problems, which belong to

class of NP-hard problems. What roughly speaking means that there is no algorithm for

solving this kind of problems in polynomial time, unless P = NP. Therefore efficiency

improvement appears to be a crucial task in modeling of such systems, to provide solvable

computational models.

In first part of the thesis we discussed DHA and PWA systems as theoretical modeling classes

of hybrid systems, together with recently developed MLD systems as efficient highly

computational oriented modeling framework for hybrid systems.

In second part of this thesis we are dealing with main goal of this thesis, which was to

propose an efficient mathematical framework for modeling of hybrid systems represented

either as FSM or PWA systems. For this purpose we introduced and discussed technique of

Big-M modeling, which has proven to be efficient modeling technique for translation of

hybrid models involving propositional logic statements into the MIP form. For enhanced

modeling we proposed technique of “binary encoding” of state binary variables, which

logarithmically decreases number of needed binary variables. Moreover we also introduced

techniques for reducing the number of cuts (MIP inequalities) required for restricting

infeasible combinations of auxiliary binaries from feasible region of resulting MIP model.

Third part of this thesis is introducing new hybrid modeling framework (YALMIP-FSM) based

on modeling techniques mentioned above. This framework was developed as extension of

free MATLAB optimization toolbox YALMIP, therefore is fully consistent with YALMIP and

MATLAB syntax. We are receiving computational MIP model as an output of our framework,

while hybrid system on input can be defined as DHA or PWA system. Moreover all low level

modeling is done automatically and internally by YALMIP functions what gives user

possibility to focus at high level modeling of hybrid systems. All these properties of YALMIP-

FSM framework makes it extremely user friendly without additional need for knowing extra

modeling languages or modeling features. Framework syntax was also demonstrated on two

modeling examples.

Ján Drgoňa Diploma Thesis

69

In the end this thesis we computationally tested models created in YALMIP-FSM framework

in comparison with models created in modeling language and compiler HYSDEL. We also

tested enhanced modeling approach of binary encoding of state variables together with

basic unary encoding approach. The results are demonstrating considerable efficiency

improvement of our YALMIP-FSM models comparing to HYSDEL models. We obtained this

improvement due to YALMIP enhanced modeling techniques which is constructing much

tighter models, which are more suitable for solvers based on MIP relaxations. In our

computational study we also obtain one surprising result, enhanced binary encoding

approach has showed to be nearly one-third less efficient than basic unary encoding

approach. This was probably caused by extra auxiliary binaries introduced internally into the

model, necessary for description of more complex logical statements, which appeared with

binary encoding approach.

Ján Drgoňa Diploma Thesis

70

Resumé

Hybridné systémy (HS) sú systémy obsahujúce súčasne spojité aj diskrétne dynamické

správanie. V úvode tejto práce sú stručné predstavené základné vlastnosti takýchto

systémov, pokus o ich rozdelenie do špecifickejších podskupín, spolu s príkladmi systémov

z inžinierskej praxe. Vymenovávame najpoužívanejšie prístupy k modelovaniu hybridných

systémov, z ktorých vyberáme a v druhej kapitole podrobnejšie opisujeme konkrétne

diskrétne hybridné automaty (DHA) , po častiach afinné (PWA) systémy a výpočtovo

orientované zmiešané logicko-dynamické (MLD) systémy.

V tretej kapitole detailne predstavujeme prístup k modelovaniu hybridných systémov a ich

reprezentáciu vo forme celočíselného optimalizačného problému, ktorý používame

v praktickej časti tejto práce. Uvádzame tri transformačné techniky na transformáciu

logických výrazov do matematickej reprezentácie zmiešaného celočíselného optimalizačného

problému, definovaného vo forme celočíselných lineárnych rovníc a nerovníc. Ďalej

predstavujeme techniku takzvaného Big-M modelovania, slúžiacu na konštrukciu efektívnych

modelov vo forme zmiešaného celočíselného programovania ako aj ich vzťah s modelovými

prístupmi (DHA, PWA) spomenutými v druhej kapitole. Na tieto účely je predstavená knižnica

Big-M modelov, pomocou ktorej sme schopný transformácie širokého spektra logických

vzťahov a výrazov do príslušnej formy celočíselného programovania. Ako už bolo spomenuté,

v probléme zmiešaného celočíselného programovania sú celočíselné premenné klasicky

definované pomocou takzvaného unárneho (jednozložkového) kódovania, priraďujúc práve

jednu binárnu premennú ku každej možnej celočíselnej hodnote. V poslednej sekcii tretej

kapitoly sa venujeme efektívnejším prístupom k modelovaniu hybridných modelov, pomocou

takzvaného binárneho kódovania, ktoré vyžaduje len logaritmické množstvo pôvodných

binárnych premenných log2(N). Taktiež riešime problémy indikácie a separácie neriešiteľných

kombinácií binárnych premenných pomocou extra ohraničení, takzvaných rezov pridávaných

do modelu. Základný prístup spočíva podobne ako v unárnom kódovaní v priradení jedného

ohraničenia (rezu) na separáciu práve jednej neriešiteľnej kombinácie. Pre zvýšenie efektivity

výsledného modelu je však výhodné použitie menšieho počtu komplexných rezov, každý rez

pre viacero neriešiteľných kombinácií súčasne. Preto predstavujeme techniku „redukovaných

hlbokých rezov“ (reduced deep cuts approach) pomocou ktorej sme schopný minimalizovať

Ján Drgoňa Diploma Thesis

71

počet potrebných ohraničení približne na logaritmickú úroveň z počtu pôvodných ohraničení,

pričom sa však súčasne snažíme vytvárať efektívne modely pre lineárne relaxácie

celočíselného problému s čo možno najmenším počtom možných neceločíselných vrcholov

v množine možných riešení pre daný model.

Štvrtá kapitola sa zaoberá programovou realizáciou modelových techník a postupov

prezentovaných v kapitole tretej. Prezentujeme vytvorený programový balík (YALMIP-FSM)

pre modelovanie hybridných systémov, ktorý je rozšírením voľne šíriteľného

optimalizačného toolboxu YALMIP pre MATLAB. Je predstavená jednoduchosť

novovytvoreného modelovacieho programového balíka, ktorého syntax je založená na

syntaxe modelovacieho jazyka YALMIP, ktorý je konzistentný s jazykom MATLAB, tieto

vlastnosti robia hybridné modelovanie pomocou YALMIP-FSM extrémne jednoduchým

a intuitívnym pre bežného MATLAB používateľa.

Na záver demonštrujeme funkčnosť modelovacieho toolboxu YALMIP-FSM na dvoch

príkladoch hybridných systémov. Taktiež je demonštrované porovnanie výsledných YALMIP-

FSM modelov s modelmi vytvorenými pomocou modelovacieho jazyka HYSDEL. Výsledkom

tohto porovnania, je fakt že modely vytvorené pomocou nami vytvoreného modelovacieho

programového balíka YALMIP-FSM boli zhruba o 55% efektívnejšie ako HYSDEL (MLD)

modely, čo sme dosiahli len vďaka vysoko efektívnym pokročilým modelovacím technikám a

trikom obsiahnutých v toolboxe YALMIP. Avšak porovnanie rôznych prístupov kódovania

binárnych premenných nám prinieslo mierne prekvapivé výsledky, keď sa zhruba o 30%

ukázal byť efektívnejší základný prístup „unárneho“ kódovania oproti pokročilému prístupu

„binárneho“ kódovania. Tento fakt si vysvetľujeme automatickým vnútorným priradením

nových pomocných binárnych premenných toolboxom do modelu, ktoré sú potrebné na opis

zložitejších logických výrazov, ktoré sa vyskytujú pri použití „binárneho“ kódovania.

Ján Drgoňa Diploma Thesis

72

Appendix

Appendix A: Figures and Codes

Figure A.1: Dependence of number of basic cuts nu and number of reduced cuts nr on

number of original binaries X.

Figure A.2: Dependence of maximum number of basic cuts nu and maximum number of

reduced cuts nr on number of auxiliary binaries delta.

Ján Drgoňa Diploma Thesis

73

Code A.1: YALMIP-FSM code for a truck delivery model from example 4.2:

% MODELING OF A TRUCK DELIVERY MODEL
N = 15; % prediction horizon

% Declaration of variables
% x = (1)distance, (2)capacity
% u = (1)load, (2)unload, (3)speed
% mo = move
names = {'x' 'u' 'mo'};
varsizes = {[2,1] [3,1] [1,1] };
indicators = { 'r' 'r' 'b'};
% params and bounds for variables
param.ineq = { ' [-0.1*max_speed <= x{k}(1) <= (target_dis +
0.1*max_speed) , 0 <= x{k}(2) <= max_cap]';
'[0 <= u{k}(1)<=max_cap, 0 <= u{k}(2)<=max_cap , u{k}(3)>=0,
u{k}(3)<=max_speed]' };
param.eq = {};
param.val = { ' max_cap = 100; max_speed = 200; target_dis = 300' };
variables = yalmip_fsm_variables(names, varsizes, indicators, param);

% Declaration of states
s1 = yalmip_fsm_state('[x{k+1}(2) == x{k}(2)+u{k}(1), u{k}(2) <= 0,
u{k}(3) <= 0, x{k+1}(1) == x{k}(1)]');
s2 = yalmip_fsm_state('[x{k+1}(1) == x{k}(1)+u{k}(3), u{k}(2) <= 0,
u{k}(1) <= 0, x{k+1}(2) == x{k}(2)]');
s3 = yalmip_fsm_state('[x{k+1}(2) == x{k}(2)-u{k}(2), u{k}(1) <= 0,
u{k}(3) <= 0, x{k+1}(1) == x{k}(1)]');
s4 = yalmip_fsm_state('[x{k+1}(1) == x{k}(1)-u{k}(3), u{k}(2) <= 0,
u{k}(1) <= 0, x{k+1}(2) == x{k}(2)]');
states = [s1, s2 , s3, s4];

% Declaration of transitions
t12 = yalmip_fsm_transition(s1, s2, '[mo{k}(1) > 0.5]');
t23 = yalmip_fsm_transition(s2, s3, '[x{k}(1) >= 300]');
t34 = yalmip_fsm_transition(s3, s4, '[mo{k}(1) > 0.5]');
t41 = yalmip_fsm_transition(s4, s1, '[x{k}(1) <= 0]');
trans = [t12, t23, t34, t41];

%----------- MODELING FUNCTION ---------------------------------
% 'unary' - basic approach , 'binary' - binary encoded states
Options.encoding = 'unary';
% cuts: 'basic' – one node one cut, 'enhanced' = reduced cuts
Options.cuts = 'basic';
% 0 - silent, 1 - elapsed time
Options.verbose = 1;
% core modeling function
[fsm, V] = yalmip_fsm(states, trans , variables, N, Options);

Ján Drgoňa Diploma Thesis

74

Code A.2: HYSDEL code for a unary encoded truck delivery model from example 4.2:

SYSTEM truck {
 /* basic model of a truck */
 INTERFACE {
 PARAMETER {
 REAL sampling = 1;
 REAL max_capacity = 1e2;
 REAL max_speed = 2e2;
 REAL eff_in = 1;
 REAL eff_out = 1;
 REAL target_distance = 300;
 }
 INPUT {
 REAL load [0, max_capacity];
 REAL unload [0, max_capacity];
 REAL speed [0, max_speed];
 BOOL move ;
 }
 STATE {
 /* capacity off truck */
 REAL C [0, max_capacity];
 /* distance */
 REAL D [-0.1*max_speed, target_distance+0.1*max_speed];
 /* loading = S1, unloading = S3, traveling = S2, returning = S4 */
 BOOL S1,S2,S3,S4;
 }
 }
 IMPLEMENTATION {
 AUX {
 /* capacities in individual states */
 REAL C1,C2,C3,C4;
 /* distances in individual states */
 REAL D1,D2,D3,D4;
 /* binary indicators for switching the states */
 BOOL d1,d2;
 /* binary variables for restrictions */
 BOOL no_load, no_unload, no_speed;
 /* auxiliary binary variables for state actualization */
 BOOL a1, a2, a3, a4;
 }
 AD {
 d1 = D <= 0;
 d2 = D >= target_distance;
 no_unload = unload <= 0;
 no_load = load <= 0;
 no_speed = speed <= 0;
 }
 LOGIC {
 a1 = (S1 & (~move)) | (S4 & d1);
 a2 = (S2 & (~d2)) | (S1 & move) ;
 a3 = (S3 & (~move)) | (S2 & d2) ;
 a4 = (S4 & (~d1)) | (S3 & move) ;
 }
 AUTOMATA {
 /*loading = S1, unloading = S3, traveling = S2, returning = S4 */
 S1 = a1;
 S2 = a2;
 S3 = a3;
 S4 = a4;

Ján Drgoňa Diploma Thesis

75

 }
 DA {
 C1 = { IF S1 THEN C+eff_in*load ELSE 0 } ;
 C2 = { IF S2 THEN C ELSE 0 } ;
 C3 = { IF S3 THEN eff_out*(C-unload) ELSE 0 } ;
 C4 = { IF S4 THEN C ELSE 0 } ;
 D1 = { IF S1 THEN D ELSE 0 } ;
 D2 = { IF S2 THEN D+sampling*speed ELSE 0 } ;
 D3 = { IF S3 THEN D ELSE 0 } ;
 D4 = { IF S4 THEN D-sampling*speed ELSE 0 } ;
 }
 CONTINUOUS {
 /* difference equations */
 C = C1 + C2 + C3 + C4;
 D = D1 + D2 + D3 + D4;
 }
 MUST {
 1 >= (REAL S1) + (REAL S2) + (REAL S3) + (REAL S4);
 1 <= (REAL S1) + (REAL S2) + (REAL S3) + (REAL S4);
 S1 -> no_unload;
 S2 -> no_unload;
 S4 -> no_unload;
 S2 -> no_load;
 S3 -> no_load;
 S4 -> no_load;
 S1 -> no_speed;
 S3 -> no_speed;
 }
 }
}

Code A.3: HYSDEL code for a binary encoded truck delivery model from example 4.2:

SYSTEM truck_binary {
 /* model of a truck with binary encoded states */
 INTERFACE {
 PARAMETER {
 REAL sampling = 1;
 REAL max_capacity = 1e2;
 REAL max_speed = 2e2;
 REAL eff_in = 1;
 REAL eff_out = 1;
 REAL target_distance = 300;
 }
 INPUT {
 REAL load [0, max_capacity];
 REAL unload [0, max_capacity];
 REAL speed [0, max_speed];
 BOOL move ;
 }
 STATE {
 /* capacity off truck */
 REAL C [0, max_capacity];
 /* distance */
 REAL D [-2*max_speed, target_distance+2*max_speed];
 /* loading = S1, unloading = S3, traveling = S2, returning = S4*/
 /* variables for binary encoding of states: dA,dB
 S1 = ~dA&~dB

Ján Drgoňa Diploma Thesis

76

 S2 = ~dA&dB
 S3 = dA&~dB
 S4 = dA&dB */
 BOOL dA,dB;
 }
 }
 IMPLEMENTATION {
 AUX {
 /* capacities in individual states */
 REAL C1,C2,C3;
 /* distances in individual states */
 REAL D1,D2,D3;
 /* conditions for switching the states */
 BOOL d1,d2;
 BOOL no_load, no_unload, no_speed;
 BOOL a1, a2;
 }
 AD {
 d1 = D <= 0;
 d2 = D >= target_distance;
 no_unload = unload <= 0;
 no_load = load <= 0;
 no_speed = speed <= 0;
 }
 LOGIC {
 a1 = ((~dA & dB) & d2) | (dA & ~dB) | ((dA & dB) & ~d1) ;
 a2 = ((~dA & ~dB) & move) | ((~dA & dB) & ~d2) | ((dA & ~dB) & move)
| ((dA & dB) & ~d1);
 }
 AUTOMATA {
 dA = a1;
 dB = a2;
 }
 DA {
 C1 = { IF (~dA & ~dB) THEN C+eff_in*load ELSE 0 } ;
 C2 = { IF dB THEN C ELSE 0 } ;
 C3 = { IF (dA & ~dB) THEN C-eff_out*unload ELSE 0 } ;
 D1 = { IF ~dB THEN D ELSE 0 } ;
 D2 = { IF (~dA & dB) THEN D+sampling*speed ELSE 0 } ;
 D3 = { IF (dA & dB) THEN D-sampling*speed ELSE 0 } ;
 }
 CONTINUOUS {
 /* dif. eq of truck */
 C = C1 + C2 + C3 ;
 D = D1 + D2 + D3;
 }
 MUST {
 1 >= (REAL(~dA&~dB))+(REAL(~dA&dB))+(REAL(dA&~dB))+(REAL(dA&dB));
 1 <= (REAL(~dA&~dB))+(REAL(~dA&dB))+(REAL(dA&~dB))+(REAL(dA&dB));
 (~dA & ~dB) -> no_unload;
 (~dA & dB) -> no_unload;
 (dA & dB) -> no_unload;
 (~dA & dB) -> no_load;
 (dA & ~dB) -> no_load;
 (dA & dB) -> no_load;
 (~dA & ~dB) -> no_speed;
 (dA & ~dB) -> no_speed;
 }
 }
}

Ján Drgoňa Diploma Thesis

77

Appendix B: List of software on CD

YALMIP-FSM toolbox:

Core function: yalmip_fsm.m

States creation function: yalmip_fsm_state.m

Transitions creation function: yalmip_fsm_transition.m

Variables declaration function: yalmip_fsm_variables.m

Binary encoding function: binary_encoding_creation.m

Modeling code for a YALMIP-FSM thermostat model from example 4.1:

test_basic1.m

Modeling code for a YALMIP-FSM truck delivery model from example 4.2:

test_truck.m

Modeling code for a HYSDEL truck delivery models from example 4.2:

HYSDEL unary encoded model: truck.hys

HYSDEL binary encoded model: truck_binary.hys

Ján Drgoňa Diploma Thesis

78

References

[Agar] Ashish Agarwal - Logical Modeling Frameworks for the Optimization of Discrete

Continuous Systems, Pittsburgh, PA, U.S.A.

[AJSMS01] A.J. van der Schaft and J.M. Schumacher. - An Introduction to Hybrid Dynamical

Systems, volume 251 of Lecture Notes in Control and Information Sciences. Springer,

London, 2000.

[AJSMS02] A.J. van der Schaft and J.M. Schumacher. - Complementarity modelling of hybrid

systems. IEEE Transactions on Automatic Control, 1998.

[Al01] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.H. Ho. - Hybrid automata: an

algorithmic approach to the specification and verification of hybrid systems. Springer Verlag,

1993.

[AlDi01] Alur, R. and Dill, D. L. - A theory of timed automata, Theoretical Computer Science,

1994.

[AnNe] Antsaklis, P. and Nerode, A. (eds): IEEE Transactions on Automatic Control {

Special Issue on Hybrid Control Systems, IEEE, 1998.

[Ant01] P.J. Antsaklis. - A brief introduction to the theory and applications of hybrid systems.

Proc. IEEE, Special Issue on Hybrid Systems: Theory and Applications, July 2000.

[ASan01] Adrian Sandu - Computer Representation of Numbers and Computer Arithmetic,

February 2008.

[Asar01] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, A. Pnueli, and A. Rasse. - Data-structures

for the verification of timed automata. In O. Maler, editor, Hybrid and Real-Time Systems,

volume 1201 of Lecture Notes in Computer Science. Springer Verlag, 1997.

[BaGu01] Back, A., Guckenheimer, J., and Myers, M. - A dynamical simulation facility for

hybrid systems. In: Grossman, R., Nerode, A., Ravn, A., and Rischel, H. (eds) Hybrid Systems.

Springer, New York, 1993.

[BarPan01] Barton, P. I. and Pantelides, C. C. - Modeling of combined discrete-continuous

processes, AIChE Journal, 1994.

Ján Drgoňa Diploma Thesis

79

[BemDHS] A.Bemporad – Modeling, Control, and Reachability Analysis of Discrete-Time

Hybrid Systems, March 25, 2003

[BemMor] A.Bemporad , Morari – Control systems integrated logic, dynamics and

constraints, Automatica, 1999.

[BemMPC] A.Bemporad – Model Predictive Control of Hybrid Systems Lectures

[BeToMo] A. Bemporad, F.D. Torrisi, and M. Morari. - Discrete-time hybrid modeling and

verification of the batch evaporator process benchmark. European Journal of Control, July

2001.

[BoyVan] Stephen Boyd , Lieven Vandenberghe - Convex Optimization, Cambridge University

Press 2004.

[Bran] Michael S. Branicky - Introduction to Hybrid Systems, Cleveland, OH 44106, U.S.A.

[Bro01] Brockett, R.W. - Hybrid models for motion control systems. In: Trentelman, H.L., and

Willems, J.C. (eds) Essays in Control, Boston, 1993.

[CaHeS] M.K. Camlıbel, W.P.M.H. Heemels, and J.M. Schumacher. - Consistency of a time-

stepping method for a class of piecewise linear networks. To appear in IEEE Trans. Circuits

Syst. – I, 2002.

[CaPaSo] Cavalier, T., Pardalos, P. and Soyster, A. - Modeling and integer programming

techniques applied to propositional calculus, Computers and Operations Research, 1990.

[Eqvival] Equivalence of hybrid dynamical Models - W.P.M.H. Heemels, B. De Schutter, and

A. Bemporad, Automatica, vol. 37, no. 7, July 2001.

[FTMLM03] Ferrari-Trecate, G., M. Muselli, D. Liberati and M. Morari - A clustering technique

for the identification

[Fuku01] K. Fukuda. - cdd/cdd+ Reference Manual. Institute for Operations Research,

ETHZentrum, CH-8092 Zurich, Switzerland, December 1997.

[Hay01] Hayes, J. - Introduction to Digital Logic Design, Addison-Wesley Publishing Company,

Inc. 1993.

[He01] W.P.M.H. Heemels. - Linear complementarity systems: a study in hybrid dynamics.

PhD thesis, Dept. of Electrical Engineering, Eindhoven University of Technology, 1999.

Ján Drgoňa Diploma Thesis

80

[HeSB01] W.P.H.M Heemels, B. de Schutter, and A. Bemporad. - On the equivalence of

classes of hybrid dynamical models. In Proc. 40th IEEE Conf. on Decision and Control,

Orlando, Florida, 2001.

[HeSchW] W.P.M.H. Heemels, J.M. Schumacher, and S.Weiland. - Linear complementarity

systems. SIAM Journal on Applied Mathematics, 2000.

[Hyb] http://control.ee.ethz.ch/~hybrid/

[Hys] HYSDEL 2.0.6 – User Manual - Fabio Danilo Torrisi, Alberto Bemporad, Gioele Bertini,

Peter Hertach, Dominic Jost, Domenico Mignone October 10, 2011

[ChHoo01] V. Chandru and J.N. Hooker. - Optimization methods for logical inference. Wiley-

Interscience, 1999.

[Chr01] D. Christiansen. - Electronics Engineers’ Handbook, 4th edition. IEEE Press/ Mc- Graw

Hill, Inc., 1997.

[Chris] Frank J. Christophersen - Optimal Control and Analysis for Constrained Piecewise

Affine Systems, ETH Zurich, 2006.

[KGBC] Kvasnica, M., P. Grieder, M. Baotic and F. J. Christophersen - Multi-Parametric

Toolbox (MPT). Automatic Control Laboratory, ETH Zurich, March 2006.

[Koh] Kohavi, Z. - Switching and Finite Automata Theory, McGraw-Hill, 1978.

[Lys] John Lygeros - Lecture Notes on Hybrid Systems, Department of Electrical and

Computer Engineering, University of Patras, Greece, 2004

[LysTom] John Lygeros, Shankar Sastry, and Claire Tomlin – Hybrid Systems: Foundations,

advanced topics and applications, April 29, 2010

[Med01] Mendelson, E. - Introduction to mathematical logic, Van Nostrand, 1964.

[Mig] Domenico Mignone – Control and estimation of hybrid systems, ETH Zurich, January,

2002.

[MoBeMi02] M. Morari, A. Bemporad, and D. Mignone - A framework for control, state

estimation, fault detection, and verification of hybrid systems, 1999.

Ján Drgoňa Diploma Thesis

81

[Olaru] S. Olaru, I. Prodan, F. Stoican - Enhancements on the hyperplane arrangements in

mixed integer techniques, 2011 50th IEEE Conference on Decision and Control and European

Control Conference (CDC-ECC) Orlando, FL, USA, December 12-15, 2011

[Parbar01] T. Park and P.I. Barton - Implicit model checking of logic-based control systems.

AIChE Journal, 1997.

[PoMuZu] B. Potocnik, G. Music, B. Zupancic - A New Technique for Translating Discrete

Hybrid Automata into Piecewise Affine Systems, Mathematical and Computer Modelling of

Dynamical Systems 2004.

[RBL04] Roll, J., A. Bemporad, L. Ljung: Identification of piecewise affine systems

via mixed-integer programming. Automatica, 2004.

[Sontag] E.D. Sontag - Nonlinear regulation The piecewise linear approach. IEEE Transactions

on Automatic Control, 26(2):346–358, April 1981.

[SchM02] B. De Schutter and B. De Moor - The extended linear complementarity problem

and the modeling and analysis of hybrid systems. In P. Antsaklis, W. Kohn, M. Lemmon, A.

Nerode, and S. Sastry, editors, Hybrid Systems V, volume 1567 of Lecture Notes in Computer

Science. Springer, 1999.

[SchB01] B. De Schutter and T. van den Boom - On model predictive control for max-min-

plus-scaling discrete event systems. Automatica, , 2001.

[Silv01] B.I. Silva, O. Stursberg, B.H. Krogh, and S. Engell - An assessment of the current

status of algorithmic approaches to the verification of hybrid systems. In Proc. 40th IEEE

Conf. on Decision and Control, Orlando, Florida, December 2001.

[Sch01] B. De Schutter - Optimal control of a class of linear hybrid systems with saturation.

SIAM J. Control Optim., 2000.

[ToBe] Fabio Danilo Torrisi and Alberto Bemporad – HYSDEL - A Tool for Generating

Computational Hybrid Models for Analysis and Synthesis Problems, IEEE Transactions on

control systems technology, March 2004

[Torr] Fabio Danilo Torrisi - Modeling and Reach-Set Computation for Analysis and Optimal

Control of Discrete Hybrid Automata, ETH Zurich, 2003.

Ján Drgoňa Diploma Thesis

82

[wikiWP01] http://wiki.math.toronto.edu/DispersiveWiki/index.php/Well-posedness

[wikiWP02] http://en.wikipedia.org/wiki/Well-posed_problem

[wikiNPh] http://en.wikipedia.org/wiki/NP-hard

[wikiCNF] http://en.wikipedia.org/wiki/Conjunctive_normal_form

[wikiCoNu] http://en.wikipedia.org/wiki/Computer_number_format

[wikiTT] http://en.wikipedia.org/wiki/Truth_table

[Wil01] Williams, H. - Model Building in Mathematical Programming, John Wiley & Sons,

Third Edition, 1993.

[YAL] http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Main.HomePage

[YalBigM] http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Tutorials.Big-M

[YalMIP] http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Tutorials.MixedInteger

Representations

[ZhBrPh] Zhang, W., Branicky, M.S., and Phillips, S.M. - Stability of networked control

systems. IEEE Control Systems Magazine, 2001.

