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Abstract: The paper describes a two-stage procedure for obtaining piecewise affine approxi-
mations of static nonlinearities obtained from measured data. In the first step we search for a
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1. INTRODUCTION

Hybrid systems (Branicky, 1995) nowadays represent a
proven mathematical framework for modeling of complex
systems which include interconnection between continuous
dynamics and discrete logic. Applications include, but
are not limited to, power electronics (Papafotiou et al.,
2007) or automotive (Corona and De Schutter, 2008)
systems. Popularity of hybrid systems is mainly due to the
fact that they provide an accurate description of plant’s
dynamics while simultaneously allowing for simple analysis
and control synthesis (Bemporad and Morari, 1999).

One of frequently employed modeling frameworks for hy-
brid systems are Piecewise Affine systems (PWA) (Sontag,
1981), where the space of variables is partitioned into a
finite number of non-overlapping regions, each of them
associated with a linear (or affine) expression. The main
advantage of PWA models is their ability to approximate
arbitrary nonlinearities. Therefore, significant research ac-
tivity has been devoted to developing techniques for con-
struction of PWA approximations of nonlinearities. Two
main directions can be found in the literature.

If the analytical form of the nonlinearity is known, one
option is to construct the PWA approximation manu-
ally using the HYSDEL language (Torrisi and Bemporad,
2004). As an alternative, in our previous work (Kvasnica
et al., 2011) we have shown how to build optimal PWA
approximations automatically by solving nonlinear opti-
mization problems.

In many practical instances, though, the nonlinearity to
be approximated is not available in its analytic form.
Alternatively, the analytic form could be known, but its
numerical parameters are not. In such cases one usually
resorts to obtaining PWA approximations directly from
measurements where the nonlinearity characteristics has
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to be extracted from input-output data. Such approaches
are usually at the core of most PWA identification tech-
niques, see e.g. Ferrari-Trecate et al. (2001); Roll et al.
(2004); Paoletti et al. (2007); Gegúndez et al. (2008);
Ohlsson et al. (2010). These approaches, however, have two
crucial downsides. First, they are typically time consuming
since they rely on solving high-dimensional optimization
problems. Second, in order to obtain a well-defined PWA
approximation, the procedure has to determine regions of
the PWA model which do not overlap and whose union
covers the whole space of parameters of interest, without
leaving “holes” where the model would be undefined. The
latter requirement is difficult to guarantee, further increas-
ing complexity of these schemes.

To overcome these difficulties, in this paper we propose to
extend our previous work (Kvasnica et al., 2011) by using
a two-stage optimization-based technique to derive PWA
approximations of static nonlinearities obtained from mea-
sured data. The first part of the procedure is focused on
finding the best fit of measured data by a pre-specified set
of basis functions. A similar idea was suggested in Kozák
and Števek (2011) where the authors employed neural
networks to find the fitting function of a particular struc-
ture. In this paper we advocate to find the fit by solving
standard optimization problems. Moreover, we also show
how to find the fitting function of minimal complexity
by solving a binary optimization problem. The result of
this stage is an analytical formula of the fitting function
which is used as an input to the second step. There,
following our previous work we show how to approximate
an arbitrary nonlinear function by a PWA model such that
the approximation error is minimized. Moreover, we show
that, regardless of dimensionality of the function to be
approximated, the approximation procedure always boils
down to a series of one-dimensional approximations, keep-
ing complexity of the presented approach on acceptable
level. In addition to Kvasnica et al. (2011) we also show
how to derive PWA approximations of nonlinear functions
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which are not separable. This significantly extends scope
of the proposed work.

2. PROBLEM STATEMENT

In this paper we aim at addressing the following problem.
We are given T samples of input data zi ∈ Z ⊂ R

nz from
some closed and bounded set Z, and the corresponding
measurements yi ∈ R, i = 1, . . . , T . We want to fit the
data with a PWA function f̃ : R

nz → R with N regions

f̃(z) =







aT
1 z + c1 if z ∈ R1,

...

aT
Nz + cN if z ∈ RN ,

(1)

which satisfies two design requirements:

R1: f̃ is well-posed (Bemporad and Morari, 1999) on Z,
i.e it satisfies int(Ri) ∩ int(Rj) = ∅, ∀i 6= j and
∪jRj = Z, j = 1, . . . , N .

R2: f̃ is a good fit which achieves a low fitting error

efit =
∑T

i=1(yi − f̃(zi))
2.

Solving this problem (i.e. determining regions Rj ⊆ R
nz

and parameters aj ∈ R
nz , cj ∈ R, j = 1, . . . , N), however,

is not trivial (Kvasnica et al., 2011) if the input samples
zi are vectors, i.e. when nz > 1. The difficult part is how
to divide the domain Z into non-overlapping regions Rj

without creating “holes”, i.e. guaranteeing that the union
∪jRj completely covers Z if dimension(Z) > 1.

To overcome this difficulty, we propose to split the search
for the PWA function f̃ into two steps. In the first stage we
fit the input data, represented by the (zi, yi) pairs, with a
nonlinear function y = f(z), where f : R

nz → R is given
by

f(z) = α1f1(z) + · · · + αnfn(z), (2)

where fi : R
nz → R are pre-specified basis functions, and

αi ∈ R are scalar coefficients.

Problem 2.1. Given are T samples of input-output data
(zi, yi), i = 1, . . . , T . Determine coefficients αi of f in (2)
such that the fitting error

efit =

T∑

i=1

(yi − f(zi))
2 (3)

is minimized.

Once the analytical form of the fitting function f is
available, in the second step we search for its optimal PWA
approximation:

Problem 2.2. Given is a nonlinear function f : R
nz →

R and its domain Z ⊂ R
nz . Find a well-posed PWA

approximation f̃ of pre-specified complexity N as in (1)
such that the approximation error

eaprx =

∫

Z

(f(z) − f̃(z))2dz (4)

is minimized.

3. FUNCTION FITTING

To solve Problem 2.1 we need to determine coefficients
αi ∈ R, i = 1, . . . , n which parametrize f and provide

an optimal fit in the sense of minimizing (3). Needless to
say, selection of the basis functions is crucial in obtaining
a good fit. In many situations the basis is chosen by
hand, employing prior knowledge about the analytical
form of the nonlinearity from which the input-output
data originated. One such an example will be provided
in Section 5.

If this prior information is not available, one can resort
to a rather broad selection of basis functions (Boyd and
Vandenberghe, 2004, Ch. 6). One common subspace of
functions on R consists of polynomials of degree less than
n. The simplest basis consists of the powers, i.e. fi(z) =
zi−1, i = 1, . . . , n. We can also consider polynomials on
R

nz , with a maximum total degree n

fi(z) =
∑

i1+···+in≤n

zi1
1 · · · zin

nz
, (5)

or a maximum degree for each variable.

Regardless of the choice of the basis functions, it is
important to notice that f as in (2) is linear in the
unknown coefficients α1, . . . , αn. Therefore Problem 2.1
can be easily solved by directly minimizing (3) e.g. by
taking the derivative equal to zero.

Problem 2.1 can be further extended as to find f which
consists of the least possible number of basis functions, i.e.
by minimizing the cardinality of the vector of parameters
α = [α1, . . . , αn] in (2). A simple heuristic approach would
be to minimize the 1-norm of α (Boyd and Vandenberghe,
2004):

min

T∑

i=1

(yi − f(zi))
2 + γ‖α‖1, (6)

which can be cast as a constrained quadratic program.
The tuning parameter γ > 0 here acts as a regularization
coefficient.

A more rigorous approach is to directly minimize the
number of non-zero components of α. This can be achieved
by introducing a set of binary indicators δj ∈ {0, 1},
j = 1, . . . , n which fulfill

(αj 6= 0) ⇒ (δj = 1). (7)

By employing the big-M technique (Williams, 1993; Bem-
porad and Morari, 1999) we can rewrite (7) into a set of
inequalities which are linear in δj and αj :

−Mδj ≤ αj ≤ Mδj , (8)

where M is a sufficiently large number. It is then easy to
verify that minimization of the number of nonzero com-
ponents amounts to minimizing the sum of corresponding
binary indicators, i.e.

min

T∑

i=1

(yi − f(zi))
2 + γ

n∑

j=1

δj (9a)

s.t. −Mδj ≤ αj ≤ Mδj , j = 1, . . . , n, (9b)

which provides a good fit of minimal cardinality. Prob-
lem (9) is a mixed-integer quadratic program which
can be solved to global optimality using state-of-the-art
solvers (Löfberg, 2004; ILOG, Inc., 2003). Complexity
of (9) is primarily determined by the number of binary
variables, i.e. by the number n of basis functions consid-
ered in (2).
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4. OPTIMAL PWA APPROXIMATION

In this section we show how to solve Problem 2.2 provided
that the analytical form of f is known. Results of this
section therefore cover the scenario where f was obtained
by the fitting procedure of Section 3, but also apply to
situations where the nonlinearity stems from an a-priori
known analytical relation.

We distinguish between three cases. The first one, de-
scribed in Section 4.1, covers approximation of one-
dimensional functions where f : R → R provided that the
domain of f is connected and closed. Then, in Section 4.2
we show how to extend the procedure to approximation
of multi-variable functions given as products of functions
of single variable. Finally, in Section 4.3 we illustrate how
to solve Problem 2.2 where f is an arbitrarily complex
function, not satisfying any special properties.

4.1 Functions in One Variable

First, we consider the one-dimensional case, i.e. approxi-
mation of a nonlinear function f : R → R, with domain
Z ⊂ R, by a PWA function f̃ as in (1). Since Z is assumed
to be connected and closed, it is a line segment [z, z].
Regions Ri define the partition of such a line into N
non-overlapping parts, i.e. R1 = [z, r1], R2 = [r1, r2],
. . .,RN−1 = [rN−2, rN−1], RN = [rN−1, z]. Such a
subdivision trivially satisfies int(Ri)∩ int(Rj) = ∅, ∀i 6= j
and ∪jRj = Z, j = 1, . . . , N .

Solving Problem 2.2 then becomes to find slopes ai, offsets
ci and breakpoints ri such that the approximation error is
minimized, i.e.

min
ai,ci,ri

N∑

i=1

(∫ ri

ri−1

(
f(z) − (aiz + ci)

)2
dz

)

(10a)

s.t. z ≤ r1 ≤ · · · ≤ rN−1 ≤ z, (10b)

airi + ci = ai+1ri + ci+1, (10c)

with r0 = z and rN = z.

For simple functions f , the integral in (10a) can be ex-
pressed in an analytical form in unknowns ai, ci, ri, along
with the corresponding gradients. For more complex ex-
pressions, the integrals can be evaluated numerically, e.g.
by using the trapezoidal rule. In either case, problem (10)
can be formulated as a nonlinear optimization problem
(NLP) and solved to a local optimality e.g. by using
the fmincon solver of MATLAB. Alternatively, one can
use global optimization methods (Adjiman et al., 1996;
Papamichail and Adjiman, 2004; Chachuat et al., 2006),
which guarantee that an ǫ-neighborhood of the global
optimum can be found.

Remark 4.1. Constraint (10c) guarantees that the PWA
approximation is continuous. If a discontinuous approxi-
mation is desired, the constraint can be omitted or modi-
fied to explicitly account for discontinuity.

Example 4.1. Consider a set of input-output data (zi, yi)
shown in Figure 1(a). To fit these data with a function f as
in (2) we have selected a set of polynomial basis functions
fi(z) = zi−1 with a maximum degree n = 3 such that

f(z) = α1 + α2z + α3z
2 + α4z

3. (11)

By minimizing efit in (3) we have obtained the optimal fit
f(z) = 0.22+0.08z+0.42z2+2.29z3, shown in Figure 1(a).
The simplest possible fit could also be obtained by solv-
ing (9), which resulted in f(z) = 2.40z3. Subsequently, we

have obtained the PWA approximation f̃ by solving the
NLP (10) by considering N = 3 regions of f̃ . The resulting
optimal PWA approximation of this complexity is shown
in Figure 1(b) and is given by

f̃(z) =







38.1041z − 49.1898 if 1 ≤ z ≤ 3.4547

138.0073z − 394.329 if 3.4547 ≤ z ≤ 5.3452

267.9618z − 1088.9654 if 5.3452 ≤ z ≤ 7
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(a) Input-output data (zi, yi)
and optimal fit with a polyno-
mial basis of maximum degree 3.
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(b) Graph of f(z) (solid line) and
its optimal PWA approximation
f̃(z) with 3 regions (red dashed
line).

Fig. 1. One-dimensional fit from Example 4.1.

4.2 Multivariable Separable Functions

Next we show how to derive optimal PWA approximations
of multivariable functions f(z1, . . . , znz

) : R
nz → R with

domain Z ⊂ R
nz , provided that the analytical form of f

satisfies the following condition:

Assumption 4.1. The multivariable nonlinear function f
can be represented as a sum of products of functions in sin-

gle variables, i.e. f(z1, . . . , znz
) =

∑nz

i=1 αi

(
∏qi

j=pi
fj(zj)

)

.

Here, αi are scalar coefficients and fj : R → R are scalar-
valued (possibly nonlinear) basis functions.

One special case of Assumption 4.1 are so-called separable
functions (Williams, 1993) where f can be expressed as a
sum of functions of a single variable, i.e. f(z1, . . . , zn) =
f1(z1) + · · · + fn(zn). If f is readily separable (e.g. when
f(z1, z2) = ez1 +sin (z2)), its optimal PWA approximation
can be easily obtained by applying the 1D scenario of
Section 4.1 to the individual components of the function,
i.e. f̃(z1, . . . , znz

) = f̃1(z1) + · · · + f̃nz
(znz

). The total

number of regions over which the PWA approximation f̃(·)
is defined is hence given by

∑n
j=1 Nj , where Nj is the pre-

specified complexity of the j-th approximation f̃j(zj).

If f is not separable, but satisfies Assumption 4.1, it
can be converted into the separable form by applying a
simple change of variables, elaborated in more details e.g.
in Williams (1993). To illustrate the procedure, consider
a non-separable function f(z1, z2) = z1z2 with domain
Z := [z1, z1] × [z2, z2]. Define two new variables

y1 = (z1 + z2), y2 = (z1 − z2). (12)

Then it is easy to verify that 1/4(y2
1 − y2

2) = z1z2.
The coordinate transformation therefore transforms the
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original function into a separable form, where both terms
(y2

1 and y2
2) are now functions of a single variable. The

procedure of Section 4.1 can thus be applied to compute
PWA approximations of fy1

(y1) := y2
1 and fy2

(y2) :=
y2
2 , where the function arguments relate to z1 and z2

via (12). Important to notice is that fy1
(·) and fy2

(·) have
different domains, therefore their PWA approximations
f̃y1

(y1) ≈ y2
1 and f̃y2

(y2) ≈ y2
2 will, in general, be

different. Specifically, the domain of fy1
(·) is [y

1
, y1] with

y
1

= min{z1 + z2 | z1 ≤ z1 ≤ z1, z2 ≤ z2 ≤ z2} and

y1 = max{z1 +z2 | z1 ≤ z1 ≤ z1, z2 ≤ z2 ≤ z2}. Similarly,
the domain of fy2

(·) is [y
2
, y2], whose boundaries can

be computed by respectively minimizing and maximizing
z1−z2 subject to the constraint [z1, z2]

T ∈ Z. The overall

PWA approximation f̃(z1, z2) ≈ z1z2 then becomes

f̃(z1, z2) = 1/4(f̃y1
(z1 + z2) − f̃y2

(z1 − z2)). (13)

The value of f̃(z1, z2) for any points z1, z2 is obtained by

subtracting the value of the PWA function f̃y2
(·) evaluated

at the point z1 − z2 from the function value of f̃y1
(·)

evaluated at z1 + z2, followed by a linear scaling.

The procedure naturally extends to multivariable func-
tions represented by the product of two nonlinear functions
of a single variable, i.e. f(z1, z2) = f1(z1)f2(z2). Here, the
transformation (12) becomes

y1 = f1(z1) + f2(z2), y2 = f1(z1) − f2(z2). (14)

Therefore, 1/4(y2
1 − y2

2) = f(z1, z2) still holds. Let
fy1

(y1) := y2
1 and fy2

(y2) := y2
2 . The domain of fy1

(·)
is [y

1
, y1] and domfy2

(·) = [y
2
, y2] with

y
1
= min{f1(z1) + f2(z2) | [z1, z2]

T ∈ Z}, (15a)

y1 = max{f1(z1) + f2(z2) | [z1, z2]
T ∈ Z}, (15b)

y
2
= min{f1(z1) − f2(z2) | [z1, z2]

T ∈ Z}, (15c)

y2 = max{f1(z1) − f2(z2) | [z1, z2]
T ∈ Z}, (15d)

which can be computed by solving four NLP problems.
Finally, since all expressions are now functions of a sin-
gle variable, the PWA approximations f̃1(z1) ≈ f1(z1),

f̃2(z2) ≈ f2(z2), f̃y1
(y1) ≈ fy1

(y1), and f̃y2
(y2) ≈ fy2

(y2)
can be computed by solving the NLP (10). The overall

optimal PWA approximation f̃(z1, z2) ≈ f(z1, z2) then
becomes

f̃(z1, z2) = 1/4

(

f̃y1

(
f̃1(z1)+f̃2(z2)

)
−f̃y2

(
f̃1(z1)−f̃2(z2)

))

.

(16)
The evaluation procedure is similar as above. I.e., given
the arguments z1 and z2, one first evaluates z̃1 = f̃1(z1)

and z̃2 = f̃2(z2). Subsequently, one evaluates ỹ1 = f̃y1
(·)

with the argument z̃1 + z̃2, then ỹ2 = f̃y2
(·) at the point

z̃1 − z̃2. Finally, f̃(z1, z2) = 1/4(ỹ1 − ỹ2).

4.3 Multivariable Nonseparable Functions

When the nonlinear function f : R
nz → R to be approx-

imated does not satisfy Assumption 4.1, we propose to
proceed as follows. As a rather general setup, consider that

f(z) = fout,1(fout,2(fout,3(· · · (fin(z))))) (17)

with the inner function fin : R
nz → R satisfying Assump-

tion 4.1 and arbitrary outer functions fout,i : R → R,

i = 1, . . . ,m − 1. This relation can be further generalized
to include sums and/or products of functions.

As a specific example, consider

f(z1, z2) = exp(z1z2), (18)

where fin(z1, z2) = z1z2 and fout(w) = exp(w). To derive

an optimal PWA approximation f̃ of (18) , we introduce
the substitution w = fin(z1, z2). Since fin satisfies As-
sumption 4.1, the procedure of Section 4.2 can be applied
to find its optimal PWA approximation w̃ = f̃in(z1, z2) ≈
z1z2. Define two new variables y1 = (z1+z2) and y2 = (z1−
z2). Then 1/4(y2

1 −y2
2) = z1z2 trivially holds. Subsequently

we can solve the NLP (10) to obtain optimal PWA approxi-

mations f̃y1
(y) ≈ y2 on domain [y

1
, y1] and f̃y2

(y) ≈ y2 on

domain [y
2
, y2]. We remark that although both functions

to be approximated are the same (y2), their respective
domains will be different and are given by (15). Their
PWA approximations will therefore differ as well. Next we
derive a PWA approximation of f̃out(w) ≈ exp(w) again
by solving (10). Value of the overall PWA approximation

f̃(z1, z2) ≈ exp(z1z2) at a particular point (z1, z2) can
then be obtained by evaluating the corresponding 1D
approximations in the following order:

1. ỹ1 = f̃y1
(z1 + z2)

2. ỹ2 = f̃y2
(z1 − z2)

3. w̃ = 1/4(ỹ1 − ỹ2)

4. f̃(z1, z2) = f̃out(w̃)

Such an substitution approach can be generalized to derive
optimal PWA approximations of general nonlinear func-
tions in the form of (17) by the following procedure:

1. Obtain optimal PWA approximation of the inner
function fm(z) using the procedure in Section 4.2.

2. Define new variables wi and approximate the 1D
functions fi(wi), i = m − 1, . . . , 1, by solving (10).

If the multivariable inner function fin : R
nz → R with

domain Z consists of more than two terms, its PWA
approximation can be performed in an inductive manner.
Consider fin(z1, z2, z3) = f1(z1)f2(z2)f3(z3). First, ap-
proximate the product f1(z1)f2(z2) by a PWA function of
the form of (16), which requires four PWA approximations

f̃1(·) ≈ f1(·), f̃2(·) ≈ f2(·), f̃y1
(·) ≈ y2

1 , f̃y2
(·) ≈ y2

2 , where
y1 and y2 are as in (14). Let fa(z1, z2) := f1(z1)f2(z2).
Then f(z1, z2, z3) = fa(z1, z2)f3(z3), which can again be
approximated as a product of two functions. Specifically,
define

y3 = fa(·) + f3(z3), y4 = fa(·) − f3(z3), (19)

and hence fa(z1, z2)f3(z3) = 1/4(y2
3 − y2

4). The domains
over which y2

3 and y2
4 need to be approximated are,

respectively, [y
3
, y3] and [y

4
, y4] with

y
3
= min{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (20a)

y3 = max{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (20b)

y
4
= min{f1(z1)f2(z2) − f3(z3) | z ∈ Z}, (20c)

y4 = max{f1(z1)f2(z2) − f3(z3) | z ∈ Z}, (20d)

and z = [z1, z2, z3]
T . Subsequently, three additional

PWA approximations

f̃y3
(y3) ≈ y2

3 , f̃y4
(y4) ≈ y2

4 , f̃3(z3) ≈ f3(z3)
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need to be computed over the corresponding domains. The
aggregated optimal PWA approximation f̃(z1, z2, z3) ≈
f(z1)f(z2)f(z3) consists of 7 individual approximations
and is given by

f̃in(·) = 1/4

(

f̃y3

(
f̂a + f̃3(z3)

)

︸ ︷︷ ︸

ŷ3

− f̃y4

(
f̂a − f̃4(z3)

)

︸ ︷︷ ︸

ŷ4

)

. (21)

Here, f̂a is the function value of f̃a(z1, z2) ≈ f1(z1)f2(z2)

at z1 and z2, where f̃a(·) is obtained from (16), i.e.:

f̂a = 1/4

(

f̃y1

(
f̃1(z1) + f̃2(z2)

)

︸ ︷︷ ︸

ŷ1

− f̃y2

(
f̃1(z1) − f̃2(z2)

)

︸ ︷︷ ︸

ŷ2

)

.

(22)

The overall PWA approximation f̃in(z1, z2, z3) can then
be evaluated, for any z1, z2, z3 ∈ Z, by computing the
function values of the respective approximations.

Such an inductive procedure can be repeated ad-infinitum
to derive PWA approximations of any multivariable inner
function. In general, the PWA approximation will consists
of 2p + nz + m − 1 individual PWA functions, where nz

is the number of variables, m is the number of functions
in (17) and p is the number of products between individual
subfunctions fj(zj) in the inner function fin. As an exam-
ple, for fin(z) := α1f1(z1)f2(z2)f4(z4)+α2f3(z3)f5(z5) we
have p = 3. We remark that inclusion of scalar multipliers
αj into the PWA description of the form (21)–(22) is
straightforward and only requires linear scaling of the
corresponding terms.

Example 4.2. Consider a set of input-ouput data in R
2. To

fit these data with a PWA function, we have first applied
the procedure of Section 3 to obtain an optimal fit by
the functionf(z) =

∑3

i=1 αifi(z) which consists of basis
functions f1 = 1, f2 = sin(z1z2) and f3 = cos(z1 − z2). By
minimizing (3) we have obtained

f(z1, z2) = 0.02 + 0.08 sin(z1z2) + 1.2 cos(z1 − z2), (23)

shown in Figure 2(a). To derive an optimal PWA approx-
imation of f in (23) we have applied the aforementioned
procedure to approximate sin(z1z2) by first approximating

z1z2 by a PWA function f̃1(z1, z2) and sin(w) by f̃2(w).
Approximation of cos(z1 − z2) was performed in a sim-
ilar manner. The resulting PWA approximation of (23),
consisting of 15 regions, is depicted in Figure 2(b).

(a) Optimal fit with a trigono-
metric polynomial basis.

(b) Graph of optimal PWA ap-
proximation f̃(z1, z2)

Fig. 2. Two-dimensional fit from Example 4.2.

Remark 4.2. Approximation methods based on approxi-
mation of the domain, e.g. Delaunay triangularization is
based on the fact, that each point will be associated with
one triangle. So the number of regions as well as the
parameters of each PWA approximation grows linearly

with the number of points, while our method does not have
to take into account such a restriction. In n-dimensional
case, these methods could have some advantages related
to the number of regions, when the cardinality of the
set, representing the input-output measurements is small.
Nevertheless, obtaining the parameters of the hyperplanes,
representing the PWA approximation in higher dimensions
is trickier, since our method is based on solving a series of
one-dimensional approximation, hence the whole problem
is reduced to seeking the parameters of lines.

5. CASE STUDY

Consider a continuous stirred tank reactor (CSTR) where
the reaction A → B takes place. The source compound
is pumped into the reactor at a constant inflow with a
constant concentration. The chemical reaction is exother-
mic and a coolant liquid is therefore pumped into the
reactor’s jacket to prevent overheating. The input tem-
perature of the coolant is constant, while its flow rate qc

can be manipulated and is considered an exogenous input.
Concentration of the reactant cA inside of the reactor,
temperature of the reactor mixture ϑ, and temperature of
the cooling liquid in the jacket ϑc are the state variables of
the CSTR. The normalized material and energy balances
of such a reactor are then given by

ċA = α1 − α2cA − γ(cA, ϑ),

ϑ̇ = α4 − α5γ(cA, ϑ) + α6ϑ + α7ϑc, (24)

ϑ̇c = α8qc + α9(ϑ − ϑc) − α10ϑcqc,

with γ(ca, ϑ) = α3cAe−β/ϑ. Values of all parameters,
except of α3 and β, are known from available chemical-
engineering sources, but coefficients α3 and β can only be
determined from experimental measurements.

To find an optimal PWA approximation of (24) we have
first applied the procedure of Section 3 to obtain an
analytic expression of the nonlinear function γ, along with
concrete numerical parameters. The obtained optimal fit
was in the form of

γ(cA, ϑ) = 4.7772 · 1013cAe
−11500/ϑ. (25)

Next, we have applied the procedure described in Sec-
tion 4 to obtain an optimal PWA approximation of right-
hand-sides of the nonlinear model (24)-(25). The model
contains two nonlinear terms to be approximated: the
product between jacket temperature and coolant inflow
(ϑcqc) and the nonlinear reaction rate γ(cA, ϑ) in (25). The
first nonlinearity satisfies Assumption 4.1 and its PWA
approximation can therefore be obtained as described in
Section 4.2. Approximation of γ is more involved, since
it does not satisfy Assumption 4.1. Therefore we have
to apply the procedure of Section 4.3 by rewriting (25)
as γ(cA, ϑ) = α3cAfout(fin(ϑ)), where fout(w) = ew and
w = fin(ϑ) = −β/ϑ. Here, the inner function fin(ϑ) is
a function of single variable, therefore its PWA approx-
imation f̃in could be obtained per solving (10). PWA

approximation of the outer function f̃out can be obtained
in the same manner. Finally, the product cAfout(w) meets
requirements of Assumption 4.1 and therefore its optimal
PWA approximation is obtained from (16).
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The overall approximation of the CSTR model (24) is then
given by

ċA ≈ α1 − α2cA − α3γ̃(cA, ϑ),

ϑ̇≈ α4 − α5γ̃(cA, ϑ) + α6ϑ + α7ϑc, (26)

ϑ̇c ≈ α8qc + α9(ϑ − ϑc) − α10f̃(ϑc, qc),

where γ̃ is the approximation of γ and f̃(ϑc, qc) ≈ ϑcqc.
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(b) Reactor temperature ϑ.

Fig. 3. Simulation results for the CSTR: nonlinear
model (24) (red line), PWA approximation (26) (red
dashed line), linear approximation (black dotted line).

To assess approximation accuracy, we have investigated
the open-loop evolution of the original nonlinear model (24)
and compared it to the behavior of its PWA approxima-
tion (26) with 10 regions. Time evolution of two state vari-
ables are shown in Figure 3. To better illustrate advantages
of the PWA approximation, the simulation scenario also
shows evolution of linearized version of (24) around the
nominal steady state As can be seen from the results, the
PWA approximation clearly outperforms the model based
on a single linearization. Important to notice is that the
PWA model consists of 10 local linear models.

6. CONCLUSION

In this paper we have shown how to derive PWA approx-
imations of arbitrary nonlinear relations from measured
data. The procedure consists of two steps. In the first
part the data are first fit with a nonlinear function by
minimizing the fitting error and, alternatively, also min-
imizing complexity of the fitting function. In the second
part we have shown how to employ nonlinear optimiza-
tion to derive optimal PWA approximations of arbitrary
nonlinear functions. Specifically, we have illustrated that
approximation of multivariable functions boils down to a
series of one-dimensional approximations with a favorable
complexity. Moreover, we have reported how to approxi-
mate functions which are not separable. Procedures and
algorithms reported in this paper are available in our
AUTOPROX toolbox, which is available for free down-
load from http://www.kirp.chtf.stuba.sk/~sw/. The
toolbox provides an easy-to-use interface to derivation of
optimal PWA approximations and is also capable to ex-
porting the resulting models into the HYSDEL language.
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