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Abstract

This work considers the problem of finding the optimal control of batch membrane diafil-

tration processes. Diafiltration is known as an effective method to separate at least two

solutes from given solution (liquor) at the base of their different molecular (particle) ef-

fective sizes. The goal is to concentrate (increase the concentration of) the solute(s) with

bigger particle size(s) usually called macro-solute and to remove impurities, i.e. to dilute

(decrease the concentration of) solute(s) with smaller particle size(s) traditionally denoted

as micro-solute. The whole process is described by the set of ordinary differential equa-

tions and thus methods of dynamic optimization (open-loop optimal control) can be used

to establish optimal operation of these processes.

Our task is to determine how a solute-free solvent (diluant) should be dynamically

added to feed solution tank throughout the process run to achieve given separation goal in

minimum time or with minimum amount of added diluant. We use analytical approach,

Pontryagin’s Minimum Principle, to identify candidates for optimal control taking into

account the necessary conditions for optimality. Based on these, we derive optimal opera-

tional policies for batch membrane processes of several types. Direct (discrete) numerical

method of dynamic optimization, Control Vector Parameterization, is then used to confirm

the theoretical findings and to obtain the optimal diluant utilization for particular process

and instance.

Keywords: Optimal Control, Dynamic Optimization, Membrane Filtration, Pontryagin’s

Minimum Principle, Control Vector Parameterization, Diafiltration



Abstrakt

Táto práca sa zaoberá problémom nájdenia optimálneho riadenia vsádzkových membrá-

nových diafiltračných procesov. Diafiltrácia je známa ako efekt́ıvna metóda separácie na-

jmenej dvoch rozpustených zložiek danej zmesi (roztoku) na základe rozdielnej účinnej

vel’kosti ich čast́ıc. Jej ciel’om je koncentrovat’ rozpustené zložky s väčšou vel’kost’ou čast́ıc

a odstránit’ nečistoty, teda zńıžit’ koncentráciu rozpustených zložiek s menšou vel’kost’ou

čast́ıc. Celý proces je oṕısaný súborom obyčajných diferenciálnych rovńıc a teda je možné

použit’ metódy dynamickej optimalizácie na určenie optimálneho riadenia týchto procesov.

Našim ciel’om je určit’ ako by malo byt’ do nádrže s roztokom v závislosti od času pridávané

rozpúšt’adlo, počas behu samotného procesu, tak, aby sa dosiahlo splnenie požadovaného

separačného zámeru v minimálnom čase alebo s použit́ım minimálneho množstva pridá-

vaného rozpúšt’adla. Použit́ım analytického pŕıstupu, Pontrjaginovho prinćıpu minima,

identifikujeme kandidátov pre optimálne riadenie berúc do úvahy nevyhnutné podmienky

optimality. Na základe týchto odvod́ıme optimálnu réžiu pre vsádzkové membránové pro-

cesy viacerých typov. Následne je použitá priama (diskrétna) metóda dynamickej optimal-

izácie, Parametrizácia vektora riadenia, ktorá potvrd́ı teoretické zistenia a pomocou ktorej

źıskame optimálne použitie rozpúšt’adla pre konrétny proces a zadanie úlohy optimálneho

riadenia.

Kl’účové slová: Optimálne riadenie, Dynamická optimalizácia, Membránová filtrácia,

Pontrjaginov prinćıp minima, Parametrizácia vektora riadenia, Diafiltrácia
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Chapter 1
Introduction

“See first, think later, then test. But always see first.

Otherwise you will only see what you were expecting.”

Douglas Adams (1952 - 2001)

Principles of optimality govern our everyday life. Any natural or artificial system, which

surrounds us or influences our closest vicinity, tends to operate optimally, i.e. it tries to

maximize or minimize some given function under present constraints. This can be seen

even in such microscopic phenomena as bonding of atoms to form molecules in order to

minimize the overall potential energy (function). Neural network in human body uses

minimum wiring material (neuron connections) under constraint of amount of transfered

information. Seeds in flower of sunflower are collocated in order to maximize their number

subject to the given area and the seed shape. In these cases, it is nature which decided,

using evolutionary (trial and error, survival of the fittest) principle, about optimal design

of such systems.

Artificial systems, such as traffic, electricity, or logistic networks, are designed by en-

gineers who express the objective and constraints in mathematical form of functions and

equations. Using such mathematical model of the reality, actual design problem can be

then solved by exploiting tools (e.g. algorithms) provided by mathematics and computer

science. Solution is then given by a set of discrete values of decision (optimization) vari-

ables. Once this is done, we are sure that nothing better is possible to achieve for the

actual form of objective and constraint functions and for the actual state of the system.

23



24 CHAPTER 1. INTRODUCTION

But what if system state or any of these functions involved in optimization problem

are changing over the time? Then, we obviously need to repeat the whole optimal design

procedure at each time instant. From practical point of view, we no longer speak about

discrete decision (control) actions but we consider the corresponding time-dependent tra-

jectories. We attribute all dynamic changes happening at observed system to an entity

which we call process. Again, since our goal is the optimization of the system, we need to

come up with mathematical model of the reality, dynamic (process) model.

It is interesting to note that a variety of problems of design of optimal process operation

(i.e. optimal process control) problems arises in fields of engineering (chemical, mechanical,

optical, . . . ), computer science, economics, finance, operations research and management

science, astronomy, physics, structural and molecular biology, medicine, and material sci-

ence. Such problems include finding of optimal control strategy which minimizes energy or

raw material consumptions during the production processes, maximizes production profit,

or leads to optimal process model identification (optimal experiment design, parameter

estimation). Even that similar concepts from static design apply for this optimization

problem, the situation is slightly complicated by the presence of dynamic forms of system

state and objective and constraint functions.

Tools for solving static optimal design problem are dated back to the end of first half of

the last century. Development of linear programing methods, followed soon by non-linear

programming (NLP) ones, enabled for effective computer solving of various engineering

problems arising in many fields. Dynamic optimization represents a mathematical approach

for solving problems of open-loop optimal process control. In principle, there are two

different approaches in effort to solve DO problems, namely deterministic and stochastic

ones. In this work we investigate only deterministic approaches; for stochastic approaches

(those which simulate decision processes of nature) see Chang (2004); Fleming and Rishel

(1975).

The techniques utilized to solve DO problems in class of deterministic approaches fall

under two broad frameworks: variational (indirect) methods and discretization (direct)

methods. Variational methods address the DO problem in its original infinite–dimensional

form exploiting the classical calculus of variations together with dynamic programming

or Pontryagin’s maximum/minimum principle (Pontryagin et al., 1962). A big advantage

of this is that we are looking for an exact solution to problem without any transforma-

tions. On the other hand, use of these approaches can get difficult if we want to solve DO
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problem for not quite simple systems. Then a discretization plays important role since

original infinite dimensional problem is transformed to a non-linear programing problem.

Once transformed into static form, DO problem can be solved approximatively by means

of static optimization just like in static optimal design. It is then only a matter of uti-

lized degree and form of discretization how close will obtained solution be to the original

problem. Discretization methods can be subdivided into two broad classifications known

as simultaneous and sequential.

The simultaneous method is a complete discretization of both state and control vari-

ables often achieved via collocation (Tsang et al., 1975). While completely transforming a

dynamic system into a system of algebraic equations eliminates the problem of optimizing

in an infinite dimensional space, simultaneous discretization has the unfortunate side effect

of generating a multitude of additional variables yielding large, unwieldy NLPs that are

often impractical to solve numerically.

Sequential discretization, usually achieved via control parameterization (Brusch and

Schappelle, 1973), is a discretization approach in which the control variable profiles are

approximated by a sum of basis functions in terms of a finite set of real parameters. These

parameters then become the decision variables in a dynamic embedded NLP. Function

(functional) evaluations are provided to this NLP via numerical solution of a fully de-

termined initial value problem (IVP), which is given by fixing the control profiles. This

method has the advantages of yielding a relatively small NLP and exploiting the robustness

and efficiency of modern IVP and sensitivity solvers (Chachuat et al., 2006).

In this work, we deal with membrane processes which stand for an emerging technology

in chemical and bioprocess industry used both in production and down-stream processing.

Membrane processes, such as membrane distillation, pervaporation, membrane purification,

diafiltration and processes exploiting membrane-equipped reactors, are receiving growing

attention mainly due to reduced energy demands and higher efficiency of the achieved

separation or processing goals. These systems, however, did not receive much attention

from process optimization community and that is why they provide many opportunities

e.g. for development of optimal operation design.

Despite that literature on optimal control of membrane processes is not very rich, var-

ious dynamic optimization problems were already solved. These applications include opti-

mization of membrane reactors performance (Parvasi et al., 2009; Rahimpour and Behjati,

2009), other membrane-assisted processes (Bui et al., 2010; Kuhn et al., 2009), membrane
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separation (Fikar et al., 2010) as well as membrane fouling and cleaning (Blankert et al.,

2006; Boxtel and Otten, 1993; Zondervan and Roffel, 2008). This study concentrates on

finding of general optimal operation of batch diafiltration processes which are a particular

class of membrane separation/purification processes.

Purification of solution can be achieved by employing semi-permeable membrane which

retains or concentrates (in)valuable species. Diafiltration process combines two possible

ways of how to treat a solution to concentrate its valuable components and to dilute

(dispose off) present impurities. It can be performed continuously or discontinuously. This

depends on several physical factors and on properties of initial solution as well as final

product. This process can be controlled, either in continuous or batch setup, by influencing

concentrations by using of solute-free solvent (diluant). Utilization of this diafiltration

buffer can be dynamically adjusted to optimize the process performance, e.g. minimum

time or minimum diluant operation can be reached.

This work is organized as follows. First part introduces theory of optimal control, DO,

and membrane processes in a way to provide tools which are exploited in the second part

for finding of optimal operation of batch diafiltration processes. The theory involves intro-

duction to problems of dynamic optimization mainly from an chemical engineering point

of view. It is followed by explanation of methods (analytical and numerical ones) which

can be exploited to treat problems of optimal control of membrane processes introduced in

the last section of theoretical part.

Implementation and advanced utilization of numerical methods of dynamic optimization

were published in:

• Paulen, R. – Fikar, M. – Čižniar, M. – Latifi, M. A.: Global Optimization for Pa-

rameter Estimation of Dynamic Systems. AT&P Journal Plus, no. 2, pp. 71-78,

2009.

• Paulen, R. – Fikar, M. – Latifi, M. A.: Dynamic Optimization of a Polymerization

Reactor. In 18th Mediterranean Conference on Control and Automation, Marrakech,

Morocco, pp. 733-738, 2010.

• Paulen, R. – Fikar, M.: Tighter Convex Relaxations for Global Optimization Using

alphaBB Based Approach. Editor(s): Fikar, M., Kvasnica. M., In Proceedings of the

18th International Conference on Process Control, Slovak University of Technology

in Bratislava, Tatranská Lomnica, Slovakia, pp. 537-542, 2011.
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Second part then builds upon the theoretical basis and uses it to establish solution

to treated problems. Finally, multiple case studies are shown in order to present various

aspects of considered optimal control problems and to discuss possible advantages and

drawbacks of real implementation of optimal operation of diafiltration processes.

Numerical as well as analytical ways of finding an optimal control of diafiltration pro-

cesses were showed in:

• Paulen, R. – Fikar, M. – Kovács, Z. – Czermak, P.: Optimal Control of Diafiltration

Process for Albumin Production. In Preprints of the 18th IFAC World Congress

Milano (Italy) August 28 – September 2, 2011, pp. 14007-14012, 2011.

• Paulen, R. – Fikar, M. – Kovács, Z. – Czermak, P.: Process optimization of diafil-

tration with time-dependent water adding for albumin production. Chemical Engi-

neering and Processing: Process Intensification, no. 8, vol. 50, pp. 815-821, 2011.

• Paulen, R. – Fikar, M. – Foley, G. – Kovács, Z. – Czermak, P.: Time-optimal di-

afiltration under gel polarization conditions. In ICOM 2011 - Book of abstracts, pp.

379-380, 2011.

• Paulen, R. – Foley, G. – Fikar, M. – Kovács, Z. – Czermak, P.: Minimizing the process

time for ultrafiltration/diafiltration under gel polarization conditions. Journal of

Membrane Science, no. 1-2, vol. 380, pp. 148-154, 2011.
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Goals of the Thesis

The main aim of this thesis is to study dynamic optimization and control of batch di-

afiltration processes, to explore the existing operation practice, and to provide improved

operation based on the optimal control theory.
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In detail, the objectives can be summarized as follows:

• Study of optimal control for general diafiltration processes

• Derivation of analytical solution for most common class of batch diafiltration pro-

cesses

• Proposition of a simple numerical approach to treat the general case of optimal

operation finding for batch diafiltration processes

• Comparison the resulting optimal operation with the standard control techniques

and giving insightful discussion of advantages of optimal operation and of future

challenges for optimal operation of diafiltration processes



Part I

Theory
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Chapter 2
Optimal Control Problem

Optimal control of any process can be achieved either in open or closed loop. In this

work we concentrate far more on the first class. However, the same optimality principles

mentioned apply analogously for the closed-loop schemes as well. This chapter is devoted to

definition of open-loop optimal control (dynamic optimization) problems. Next chapter is

then concerned with practical ways (techniques) which can be used to solve such problems.

We introduce three basic parts of the optimal control problem (OCP): objective func-

tional, constraint functions, and process model and their common mathematical forms.

Objective functional, optimization criterion, or performance index represents mathemat-

ical expression of phenomenon which minimum (or maximum) we want to attain. The

constraint functions of various types determine a search space of decision (optimization)

variables which time evolutions or values are searched for. Process model function ties

inputs, states and outputs of the process together and determines a search domain for

optimization procedure in a similar way the constraint functions do.

2.1 Objective Functional

Objective functional expresses costs or benefits of a process which one wants to either avoid

or reach. Dynamic optimization objective functional can be in general defined in three

different forms which can be converted easily one to another (Kirk, 1970). Mathematical

representation of these form follows together with the year of approximate first appearance

in the literature.
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Lagrange form (1780)

J =

∫ tf

t0

F (x(t),u(t),p, t) dt, (2.1a)

Mayer form (1890)

J = G (x(tf),p, tf) , (2.1b)

Bolza form (1900)

J = G (x(tf),p, tf) +

∫ tf

t0

F (x(t),u(t),p, t) dt. (2.1c)

Here t represents independent time variable, indices �0 and �f indicate initial and final

process state respectively, x(t) ∈ R
nx is a vector of state variables, u(t) ∈ R

nu denotes a

vector of control variables which are going to be optimized1. Time independent decision

variables, traditionally called parameters, are denoted by p ∈ R
np. J , G(·) and F(·) are

then real-valued functions (functionals) since G : Rnx ×R
np ×R → R and F : Rnx ×R

nu ×

R
np × [t0, tf] → R.

2.1.1 Typical Optimal Control Tasks

One chooses an approach of solving OCP based on the type (structure) of this problem.

There are several types of optimal control tasks which are distinguished e.g. by fixed/free

initial/terminal time/state. Initial time is usually fixed since it is either the time when we

start to observe the process or the time when some previous process (which duration may

have been optimized) ends. Many applications consider initial state to be a free parameter

which is chosen such that designed process is optimal. However this is omitted in Fig. 2.1

where we show schematic representation of the most common optimal control tasks.

Using different forms of objective functionals one can consider different control prob-

lems. Historically the first form of functional, Lagrange form, can be used, according to

mathematical form of F(·) in (2.1a), for the following ones:

(i) Minimum control effort problem

F ≡ ‖u‖. (2.2a)

1Explicit time-dependency of state and control variables will be usually omitted in this study for the

purpose of better readability of the text. Hence it holds that x(t) ≡ x and u(t) ≡ u.
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xf

x0

tft0 t

x(t)

(a) Fixed terminal time and terminal state.

xf

x0

t0 t

x(t)

(b) Free terminal time, fixed terminal state.

x0

tft0 t

x(t)

(c) Fixed terminal time, free terminal state.

x0

t0 t

x(t)

(d) Free terminal time and terminal state.

Figure 2.1: Typical optimal control tasks.

With ‖ · ‖ being appropriate norm, this form of functional represents an approach of

direct minimization of process expenses since the goal is to minimize control effort

(e.g. energy) needed for transfer state x(t) from specified point x0 to required xf in

given or unspecified time tf. This is visualized in Fig. 2.1(a) and 2.1(b).

(ii) Minimum time problem

F ≡ 1. (2.2b)

represents historically the first optimal control problem treated (brachistochrone

problem proposed by Johan Bernoulli). For the optimization of chemical processes,

use of this functional is one possibility of how indirectly (but globally) minimize oper-

ational process expenses such as electricity needed to power the pumps and heaters,

amount of heating and cooling media used and so on. This problem is to find such

control which drive process from given initial state x0 to prescribed (fixed) final state

xf in minimum time possible. This can be schematically represented by Fig. 2.1(b)

as finding of time-optimal transition trajectory between x0 and xf.
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(iii) LQ (linear-quadratic) problem

F ≡
1

2
(xTQx+ uTRu). (2.2c)

This problem considers linear process model (to be defined later herein) and quadratic

criterion such that Q ∈ S
nx and R ∈ S

nu are symmetric positive semi-definite and

positive definite matrices respectively which weight the steering from point x0 to point

as close as possible to the origin (zero) and the control used for this task. Terminal

time is usually specified for this kind of problem and it is then desired to choose

one of the admissible state trajectories (shown in Fig. 2.1(c)) which minimizes the

functional. This type of functional is often used in closed-loop optimal control since

it yields Lyapunov function which properties guarantee the stability of closed-loop

control system.

Mayer form allows for optimization of some final point criterion and can used as a

criterion for many optimal control tasks.

(i) Minimum time problem

G ≡ tf. (2.3a)

This represents the very same problem as discussed before (2.2b) and thus an example

of how considered functional forms are closely connected and interchangeable. Indeed,

the correct approach of interchanging those forms is to provide an additional ODE

such as ẋnx+1 = 1 and to state the criterion in Mayer form as G ≡ xnx+1(tf) which

equivalent to (2.3a).

(ii) Terminal control problem

G ≡ ‖x(tf)− xf‖. (2.3b)

This form of functional represents direct expression of goals of the process itself

which are to be maximized or minimized. If speaking about chemical processes,

this might represent minimization of the difference between desired and achieved

purity or quantity of product or the same on the side of some unwanted by-products.

Graphically this OCP can be represented by Figs. 2.1(c) and 2.1(d).

Bolza form of objective functional combines Lagrange and Mayer form and thus stands for

the most general form. It is considered in our further discussions on optimal control since

it comprises all possible objective functional forms.
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2.2 Constraints

As stated above, constraint functions determine the optimization search space and can take

various forms in general. Different equality and inequality constraints may be considered

to bound the values of decision as well as state variables to respect safety or environmental

safeguards, to state certain setpoints in control loop, and so on. Following list covers all

types of considered constraints:

(i) Infinite dimensional equality constraint

h(x,u,p, t) = 0, ∀t ∈ [tc,0, tc,f], [tc,0, tc,f] ⊆ [t0, tf], (2.4a)

is typically present in chemical processes. An example of using such kind of con-

straints is gas mixture separation where sum of mole fractions of all components,

1Tx, must be equal to one at each time instance of the process.

(ii) Infinite dimensional inequality constraint

g(x,u,p, t) ≤ 0, ∀t ∈ [tc,0, tc,f], [tc,0, tc,f] ⊆ [t0, tf], (2.4b)

is also of great practical interest since it may express a limit of some resource which

may not be overrun. Traditionally such kind of constraints is present as of so-called

box constraints of a form x ∈ [xmin,xmax], where xmin and xmax denote lower and

upper bounds on x respectively.

(iii) Point equality constraint

h(x,u,p, tc) = 0, tc ∈ [t0, tf], (2.4c)

is used to determine specific value (set of values) state/decision variables at distinct

time points. This constraint is commonly used when we solve fixed terminal point

problem, e.g. concentration of product is restricted to some value at the end of the

reaction.

(iv) Point inequality constraint

g(x,u,p, tc) ≤ 0, tc ∈ [t0, tf], (2.4d)

may be used in a similar way as the previous type, to ensure that some quantity

does not exceed the specified limit at some distinct time point. For example, we may

express required purity of the product of separation by this kind of constraint.
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We note that all of these constraints can be expressed in the standard canonical form,

an equivalent to the functional form (2.1c)

Jc = Gc (x(tc),p, tc) +

∫ tc,f

tc,0

Fc (x,u,p, t) dt, (2.5)

where c = 1, . . . , nc and nc is the number of constraints. Constraints (2.4) can be rewritten

into the canonical form such that for:

(i) Infinite dimensional equality constraint

Gc = 0, Fc = ω (h(x,u,p, t))2 , Jc = 0. (2.6a)

where ω is zero if t runs outside the interval [tc,0, tc,f ]. Otherwise it is an empirical

positive and adjustable weighting factor which is used to improve the numerical

accuracy.

(ii) Infinite dimensional inequality constraint

Gc = 0, Fc = ωmax (0, g(x,u,p, t)) , Jc = 0, (2.6b)

(iii) Point equality constraint

Gc = h (x,u,p, tc) , Fc = 0, Jc = 0, (2.6c)

(iv) Point inequality constraint

Gc = g (x,u,p, tc) , Fc = 0, Jc ≤ 0, (2.6d)

These can be adjoined to the cost functional J by a vector of Lagrange multipliers ν ∈ R
nc

to form an augmented functional J̄

J̄ = J +

nc
∑

c=1

νcJc. (2.7)

Equivalently this functional can be written as

J̄ = Ḡ +

∫ tf

t0

F̄ dt. (2.8)

with

Ḡ = G +

nc
∑

c=1

νcGc, and F̄ = F +

nc
∑

c=1

νcFc. (2.9)
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2.3 Process Model

In principle, process model represents additional set of equality constraints since in general

it consists of a set of algebraic, differential, and/or functional equations which, if satisfied,

give input-output or inner mathematical description of phenomena taking place in observed

system.

While we study dynamic optimization of processes running in continuous time, a con-

tinuous time-dependent (dynamical) models are involved. The simplest type of the model

which will guarantee these properties is model described by a set of ordinary differential

equations (ODEs)

ẋ = f (x,u,p, t) , ∀t ∈ [t0, tf]. (2.10a)

Here the vector function f(·) is such that f : Rnx × R
nu × R

np × [t0, tf] → R
nx . If the

solution x(t) to (2.10a) additionally satisfies the initial condition

x(t0,p) = x0(p), (2.10b)

where x0(·) is such that x0 : Rnp → R
nx , it is a solution to initial value problem (IVP)

defined by (2.10).

Hence that, equation (2.10a) is written in the form we classify as non-autonomous

differential equation. However, majority of physical processes are described by autonomous

ODEs in the following form

ẋ = f (x,u,p) , ∀t ∈ [t0, tf]. (2.11)

This means that dynamics of the process are affected just by dynamics of process states

and inputs, and by parameters, not by the time itself. Simply spoken, for the distinct

process state, an action (control) performed at time τ has the same effect as the same

action carried out at time τ +∆τ where ∆τ is arbitrary.

It is often the case that the structure of process model affects the complexity of optimal

control problem dramatically. This is why the particular type of process model may decide

about the optimization strategy used for solving of OCP.

2.3.1 Linear Time-Invariant System

A common approach to represent linear time-invariant systems is the state-space form

ẋ = Ax+Bu, x(t0) = x0, (2.12)
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with state matrix A ∈ R
nx×nx and input matrix B ∈ R

nx×nu. Solution of such set of ODEs

is usually easily found to be:

x(t) = eAtx0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ, (2.13)

where matrix eAt is traditionally called fundamental matrix of a system. Existence of such

explicit solution gives certain advantage and implies that it is somewhat easier to find

optimal control of processes which can be modeled in stated manner. This is why these

kinds of models are widely used for representing processes behavior in optimal, robust, or

feedback control. Moreover, equation (2.12) yields a set of convex equality constraints and

therefore, provided that other considered constraints (2.4) are convex and the objective

functional is of the form (2.2) or (2.3), the resulting optimal control problem is convex. In

general, it is easier to solve convex rather than non-convex problem.

2.3.2 Input Affine System

In this work, majority of the interest is devoted to systems of a form

ẋ = a(x) +B(x)u, x(t0) = x0, (2.14)

where a(·) and B(·) represent non-linear vector and matrix functions respectively such that

a : Rnx → R
nx and B : Rnx → R

nx×nu . Presence of non-linearities in such set of ODEs

establishes the fact that in general no analytical solution can be given and we usually

rely on numerical techniques. These numerical techniques, described in detail in Brenan

et al. (1989), include use of Euler explicit/implicit, Runge-Kutta, Backward differentiation

formula, and Adams-Moulton method.

2.4 Summary of Problem Definition

We have introduced various forms of three basic parts of DO problem (objective func-

tional (2.1), constraints (2.4), and process model in Section 2.3). These can be summarized

to general OCP of following form
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min
u(t),p

{

G(x(tf),p) +

∫ tf

t0

F(x,u,p, t) dt

}

,

s.t. ẋ = f (x,u,p), ∀t ∈ [t0, tf],

x(t0,p) = x0(p),

h(x,u,p, t) = 0, ∀t ∈ [t0, tf], (2.15)

g(x,u,p, t) ≤ 0, ∀t ∈ [t0, tf],

u(t) ∈ [umin(t),umax(t)],

p ∈ [pmin,pmax].

In order to find solution to this problem, one can exploit various techniques, stochastic

(such as genetic algorithms, simulated annealing, etc.) or deterministic ones. Determin-

istic methods, in scope of this work, are based on following three principles: variational

calculus (developed by Euler and Lagrange), dynamic programming (Bellman, 1957) and

Pontryagin’s minimum principle (Pontryagin et al., 1962). The latest one gave rise to

most popular numerical techniques such as control vector parameterization, control vec-

tor iteration, boundary condition iteration, orthogonal collocation, and multiple shooting

techniques.





Chapter 3
Solution of Optimal Control Problems

In this part we derive necessary conditions for optimality (NCO), which can identify can-

didates for solution of OCP. We introduce analytical methods of solving the OCPs. Next,

we discuss how gradients to optimization criterion w.r.t. optimization variables can be

gathered. These represent a key issue in solving the OCP numerically. Finally, we present

a few most popular numerical methods used to solve the problem of optimal control.

3.1 Necessary Conditions for Optimality

Assume a minimization of functional of the form (2.7). For simplicity we will consider

unconstrained case, however, we have already shown (in Section 2.2) that any constraint

can be converted into canonical form of functional and thus NCO derived here easily extend

to constrained cases. We point out any differences between constrained and unconstrained

version of following derivation at appropriate places.

Minimized functional can be joined together with process equations (2.11) introducing

vector of adjoint variables λ(t) ∈ R
nx (Note the same size of adjoint variables vector and

states vector. That is why adjoint variables are sometimes called co-state variables.) such

as

J = G +

∫ tf

t0

[F + λT (f − ẋ)] dt. (3.1)

We define Hamiltonian function as

H(x,λ,u,p, t) ≡ F(x,u,p, t) + λTf (x,u,p). (3.2)

41
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In constrained case, Hamiltonian is defined in similar way and vector of adjoint variables

is introduced likewise. Augmented forms of the Hamiltonian and the vector of adjoint

variables can be defined similarly to augmented functional (2.8).

Now the minimized functional (3.1) takes form

J (u,p) = G(x(tf),x(ti),p, tf, ti) +

∫ tf

t0

[H(x,λ,u,p, t)− λT ẋ] dt, (3.3)

where i ∈ {1, . . . , ni} represents interior points considered. These represents either points

where possible discontinuity in control profiles may arise or they can be considered as

points where point constraints are evaluated.

For derivation of NCO of this functional we will assume type of problem of optimal

process control where

• initial time is fixed (usually t0 = 0),

• initial conditions are free (x(t0,p) = x0(p)),

• as well as final conditions (x(tf) = xf),

• and final time (tf).

Differential of functional (3.3) can be expressed as1

dJ = dG +

∫ tf

t0

δH dt−

∫ tf

t0

δ(λT ẋ) dt+ (H − λT ẋ)|tf dtf +

ni
∑

i=1

[H − λT ẋ]
t−i
t+i
dti. (3.4)

Consider now the term
∫ tf
t0
δ(λT ẋ) dt which can be transformed using integration by parts

into

−

∫ tf

t0

δ(λT ẋ) dt = −

∫ tf

t0

(δλT ẋ+ λT δẋ) dt, (3.5)

=

∫ tf

t0

(λ̇
T
δx− δλT ẋ) dt− [λT δx]tft0 −

ni
∑

i=1

[λT δx]
t−i
t+i
.

Expressing all differentials and variations in (3.4) and considering (3.5) we obtain (Please

note that for purpose of better readability we use following notation ati ≡ a(ti), where a

1For further explanation see Hull (2003).



3.1. NECESSARY CONDITIONS FOR OPTIMALITY 43

stands for arbitrary variable and ti may represent arbitrary time point.)

dJ =
∂G

∂xT

∣

∣

∣

∣

t=tf

dxtf +

ni
∑

i=1

∂G

∂xT

∣

∣

∣

∣

t=ti

dxti +
∂G

∂pT
dp+

∂G

∂tf
dtf +

ni
∑

i=1

∂G

∂ti
dti

+

∫ tf

t0

(

∂H

∂xT
δx+

∂H

∂λT
δλ+

∂H

∂uT
δu+

∂H

∂pT
δp+ λ̇

T
δx− δλT ẋ

)

dt (3.6)

− λT
tf
δxtf + λT

t0
δxt0 +

ni
∑

i=1

(λT
t+i
δxt+i

− λT
t−i
δxt−i

) +Htfdtf − λT
tf
ẋtfdtf

+

ni
∑

i=1

(Ht−i
−Ht+i

) dti +

ni
∑

i=1

(λT
t+
i

ẋt+i
− λT

t−
i

ẋt−i
) dti.

Regrouping the corresponding terms together, noting that dxti = δxt±i
+ ẋt±i

dti and equat-

ing δxt0 =
(

∂xT
0

∂p

)T

dp we get

dJ =

(

∂G

∂xT

∣

∣

∣

∣

tf

− λT
tf

)

dxtf +

(

∂G

∂tf
+Htf

)

dtf +

(

∂G

∂p
+

∫ tf

t0

∂H

∂p
dt +

∂xT
0

∂p
λt0

)

dpT

+

ni
∑

i=1

(

∂G

∂xT

∣

∣

∣

∣

t=ti

+ λT
t+i

− λT
t−i

)

dxti +

ni
∑

i=1

(

∂G

∂ti
+Ht−i

−Ht+i

)

dti (3.7)

+

∫ tf

t0

[(

∂H

∂xT
+ λ̇

T
)

δx+

(

∂H

∂λT
− ẋT

)

δλ+
∂H

∂uT
δu

]

dt.

The conditions for optimality follow directly from the equation (3.7). Differential of func-

tional J must be zero at optimum. That is why all bracketed terms in equation (3.7) must

be zero which gives necessary conditions for optimality in following form

• optimality (extremal) condition for control variables

∂H

∂u
= 0, ∀t ∈ [t0, tf], (3.8a)

• optimality condition for parameters

∂G

∂p
−

∫ tf

t0

∂H

∂p
dt +

∂xT
0

∂p
λ(t0) = 0, (3.8b)

• adjoint variables definition

λ̇ = −
∂H

∂x
, ∀t ∈ [t0, tf], (3.8c)
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• adjoint variables boundary conditions

λtf =
∂G

∂x

∣

∣

∣

∣

t=tf

, (3.8d)

• optimality condition for final time

∂G

∂tf
+H(tf) = 0, (3.8e)

• optimality conditions for switching times

∂G

∂ti
+H(t−i )−H(t+i ) = 0, ∀i ∈ 1, ni, (3.8f)

• adjoint variables switching conditions

∂G

∂x

∣

∣

∣

∣

t=ti

+ λ(t+i )− λ(t−i ) = 0, ∀i ∈ 1, ni, (3.8g)

• condition for optimal state variables

ẋ =
∂H

∂λ
, ∀t ∈ [t0, tf], (3.8h)

• condition for Lagrange multipliers (Karush-Kuhn-Tucker conditions):

νcJc = 0, νc ≥ 0, ∀c ∈ I, (3.8i)

where I represents set of point inequality constraints. These conditions give so-called

complementary slackness condition and they apply only in the case of minimization

of constrained functionals.

Moreover, if treated OCP is in autonomous form, i.e. functions f (·) and F(·) are not

explicit functions of time, we can use conditions (3.8c) and (3.8h) to state that

dH

dt
=

∂H

∂xT
ẋ+

∂H

∂λT
λ̇+

∂H

∂uT
u̇+

∂H

∂pT
ṗ = 0, ∀t ∈ [t0, tf], (3.9)

and so optimal Hamiltonian is constant over the time.

It should be noted that (Bryson, Jr. and Ho, 1975) necessary condition for minimum

of functional may be established with second-order conditions as

∂2H

∂u∂uT
≥ 0, ∀t ∈ [t0, tf], (3.10)

where the used inequality denotes positive semi-definiteness of the matrix.
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3.2 Analytical Methods

Historically, the development of analytical methods for solving OCPs had always reflected

the current needs of optimization theory and engineering. Variational calculus, created by

Euler and Lagrange, represented the first standalone framework to find trajectories with

specified minimum/maximum properties. They aimed to provide mathematical apparatus

for treating mainly theoretical problems such as brachistochrone problem, finding the shape

of a wire along which the point-like body move from one given point to another under the

action of gravity force in minimum time.

Their work was further extended by the works of Legendre, Hamilton, and Weierstrass.

The last century saw an enormous rise of interest in flight and rocket industry as well as in

space research. All these fields required to solve various optimal control problems. However,

variational calculus appeared to be either impractical to use or its important features were

overlooked. These circumstances gave rise to theory of dynamic programming by american

school of Richard Bellman (in 1950s) and maximum/minimum principle by russian group

of Lev Semyonovich Pontryagin (in 1960s).

3.2.1 Calculus of Variations

As mentioned above, calculus of variations represents a theoretical tool for optimizing

trajectories and so the fundamental problem of calculus of variations may be written in

following form

min
x(t)

∫ tf

t0

F(ẋ,x, t) dx. (3.11)

This functional does not involve control u, however, this can be easily incorporated as

shown in Pontryagin et al. (1962). The same applies for vector of parameters p. The main

result of calculus of variations is Euler-Lagrange equation

∂F

∂x
−

d

dt

∂F

∂ẋ
= 0, (3.12)

which gives necessary condition of optimality which can be shown to be equivalent to the

condition (3.8c). The drawback of the method of calculus of variations lies in inability to

tackle the problem of constrained control which appears naturally in most of the problems

arising in practical (engineering) applications.
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3.2.2 Dynamic Programming

This method is based on the Bellman’s principle of optimality (Bellman, 1957) which says

that “Optimal trajectory is piece-wise optimal.”. Dynamic Programming defines a concept

of optimal cost-to-go or value function as

J ⋆(x, t) = min
u∈[umin,umax]
p∈[pmin,pmax]

{
∫ tf

t

F(x,u,p, τ) dτ + G(x(tf),p, tf)

}

. (3.13)

According to this function, the optimal control u is found as a solution Hamilton-Jacobi-

Bellman partial differential equation

−
∂J ⋆(x, t)

∂t
= min

u∈[umin,umax]
p∈[pmin,pmax]

{

F(x,u,p, t) +
∂J ⋆(x, t)

∂xT
f(x,u,p)

}

. (3.14)

This equation provides sufficient condition of optimality when solved over the whole state

space. However, with higher state dimensions this may become impractical. This feature

is referred, by own words of Richard Bellman, as a curse of dimensionality.

3.2.3 Pontryagin’s Minimum Principle

This principle, formulated in Pontryagin et al. (1962), can be regarded as an extension to

method of calculus of variations for problems with constrained controls. In certain sense,

it stands as an alternative to Dynamic Programming which can be shown to be equivalent

to this principle. It can be proven that optimal control is the one which solves this problem

min
u∈[umin,umax]
p∈[pmin,pmax]

H(x,λ,u,p, t) (3.15)

s.t. ẋ = f (x,u,p), x(t0,p) = x0(p), (3.16)

λ̇ = −
∂H

∂x
, λ(tf) =

∂G

∂x

∣

∣

∣

∣

tf

. (3.17)

Pontryagin’s Minimum Principle (PMP) stands for necessary condition of optimality and

therefore the pair of controls u∗ and parameters p∗ which solve the problem is a candidate

for solution of OCP (2.15). Our further discussions on OCPs consider use of this principle

in preference.
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Example 1: PMP for quadratic Lagrange functional and linear time invariant

process model.

The problem is to minimize functional (2.2c) subject to process model (2.12). The Hamil-

tonian, in this case, reads as

H ≡
1

2
xTQx+

1

2
uTRu+ λT (Ax+Bu). (3.18)

Hamiltonian is convex quadratic function and thus its minimum is bounded from below

and it is achieved via satisfaction of NCO which give

−
∂H

∂x
= λ̇ = −Qx −ATλ, λ(tf) = 0, (3.19)

∂H

∂u
= 0 = Ru+BTλ. (3.20)

These conditions give expressions for optimal control variables (if these are unconstrained)

u∗ = −R−1BTλ, (3.21)

and for state and adjoint variables such that

ẋ∗ = Ax∗ −BR−1BTλ∗, x∗(t0) = x0, (3.22a)

λ̇
∗
= −Qx∗ −ATλ∗, λ∗(tf) = 0. (3.22b)

This system of linear ODEs with boundary conditions represents two-point boundary value

problem (TPBVP) which requires to be resolved in order to find optimal trajectories of

x∗, u∗, and λ∗. In closed-loop optimal control, this leads to solving of Ricatti matrix

differential equation to arrive at expression for optimal feedback control law in the form

u∗ = Kx∗, where K ∈ R
nu×nx.

Example 2: PMP for control affine Lagrange functional and control affine pro-

cess model.

The problem is to find such optimal control which will minimize the functional

F ≡ F0(x) +

nu
∑

i=1

Fi(x)ui (3.23)
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which may represent minimum control effort problem2 (2.2a) or minimum time prob-

lem (2.2b) as well. This minimization is done subject to the input (control) affine process

model (2.14) which final state x(tf) may be fixed or free.

Use of PMP results in

min
u∈[umin,umax]

H ≡ min
u∈[umin,umax]

{

H0(x,λ) +

nu
∑

i=1

Hi(x,λ)ui

}

(3.24)

s.t. ẋ = a(x) +B(x)u, x(t0) = x0, (3.25)

λ̇ = −
∂H

∂x
, λ(tf) =







∂G
∂xi

∣

∣

tf
, if xi(tf) is free,

νi, if xi(tf) is fixed.
(3.26)

where

H0(x,λ) =F0(x) + λTa(x), (3.27)

Hi(x,λ) =Fi(x) + λTbi(x), (3.28)

and bi(x) stands for the ith column of B(x). Hamiltonian is affine in control variables and

thus its minimization is achieved by following conditions for optimal control

u∗i =



















ui,min if Hi(x,λ) > 0,

ui,max if Hi(x,λ) < 0,

? if Hi(x,λ) = 0.

(3.29)

Hence, the optimal control is either hitting the constraints (bang-bang control) or it is un-

determined (so-called singular control or control on singular arc, using) when the switching

function Hi(x,λ) = 0.

In order to determine the singular control, we use switching function and its derivatives

w.r.t. time such that

Hi(x,λ) = Ḣi(x,λ) = Ḧi(x,λ) = · · · = 0. (3.30)

It can be easily shown that such conditions yield system of homogeneous equations lin-

ear in λ. Such system, A(x,u)λ = 0, possesses a non-trivial solution if and only if

det(A(x,u)) = 0. Using this condition, singular control, using, can be found as a function

of state variables (state feedback control law).

2In this case, an ℓ1 norm is used in the objective and controls are restricted to not change a sign.
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3.3 Numerical Methods

Here, we present the most popular numerical methods which are based on PMP and NCO.

As mentioned above, there are various numerical methods which are capable of solving

OCPs. Even though these methods provide approximate solution, in practice they can

converge very closely to the exact solution based on the selected accuracy.

They are based either on indirect (optimize-then-discretize) or direct (discretize-then-

optimize) approaches. Indirect approaches evaluate optimality conditions at first and then

try to resolve resulting TPBVP, which arise typically (as we have seen in examples on the

use of PMP). This resolution is then done by iterative calculus which uses techniques like

discretization and/or gradient-based resolution.

Direct approaches use discretization of control variables (sequential approach) or con-

trol and state variables (simultaneous approach) first in order to translate the problem of

dynamic optimization into the static one. Approximate solution to OCP is then obtained

as a solution of the problem of non-linear programming (NLP) which uses gradient-based

techniques to arrive at optimum. There exists a large number of papers which classifies

the numerical methods and discusses their advantages and drawbacks (Bryson, Jr. and

Ho, 1975; Goh and Teo, 1988; Srinivasan et al., 2003). Such methods include:

• Indirect Methods

Control Vector Iteration (CVI)

Boundary Condition Iteration (BCI)

• Direct Methods

Complete Discretization

Control Vector Parameterization (CVP)

Direct Multiple Shooting

3.3.1 Control Vector Iteration

The CVI method is based on resolution of TPBVP by adapting the control trajectories

using direct sensitivity of the Hamiltonian to the control. New guess for control trajectories

uk+1 is computed using the old one, uk, by following adaptation formula

uk+1 = uk − γ
∂H

∂u
, (3.31)
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where γ ∈ (0, 1] is a numerical parameter, in fact the length of the step. The whole

procedure is initialized by the guess u0. The main part of this procedure then resolves

process model equations (using ODE solver) by forward integration. Next, ODEs for

adjoint variables are integrated backwards. Finally, new guess for control trajectories is

taken and whole procedure is repeated until the optimality condition (3.8a) is satisfied.

3.3.2 Boundary Condition Iteration

This method solves the TPBVP by successive update of the guesses for boundary conditions

λ(t0). Initially, the guess λ0(t0) is used to integrate the systems of ODEs for state and

adjoint variables forward in time. Values of λ0(tf) obtained by integration is then compared

with optimality condition (3.8d). If these are not in accord, a new guess of initial conditions

for adjoint variables is made and the whole procedure is repeated until they are equal within

specified tolerance. This update may be done e.g. using evaluated sensitivity of the λ(t)

trajectory to this initial condition.

3.3.3 Complete Discretization

Complete discretization, known as well as simultaneous approach, is based on discretization

of both state and control trajectories (Biegler, 1984; Tsang et al., 1975; Čižniar et al.,

2005). This can be efficiently done by using orthogonal collocation (OC) on finite elements

to establish a piece-wise polynomial approximation of these trajectories on some chosen

number (ne) of intervals (elements). Approximation of the state and control trajectories

on the kth interval is then as follows

x̂k(t) =

ncp
∑

i=0

x̂k
i φi(t), with φi(t) =

ncp
∏

j=0,j 6=i

t− tkj
tki − tkj

, (3.32a)

ûk(t) =

ncp
∑

i=1

ûk
i ψi(t), with ψi(t) =

ncp
∏

j=1,j 6=i

t− tkj
tki − tkj

, (3.32b)

where x̂k
i (ûk

i ) represents vector of approximated values of state (control) variables at

the ith collocation point, i.e. at time tki and functions φi(t) and ψi(t) represent Lagrange

polynomials which is the set of basis polynomial functions usually used by this method.

This is illustrated in Figure 3.1 which shows three consecutive intervals of approximation

of trajectory of an arbitrary state variable. Points tki are usually chosen as roots of ncp–th
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tk−1
0 tk−1
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Figure 3.1: Schematic representation of the orthogonal collocation on finite elements.

degree Legendre polynomial. Using this piece-wise polynomial approximation, we can

reformulate OCP (2.15) into the algebraic form

min
x̂
k
i ,û

k
i ,p

∀i∈1,ncp, ∀k∈1,ne

{

G(x̂ne(tne

f ),p) +

ne
∑

k=1

∫ tk
f

tk
0

F(x̂k, ûk,p, t) dt

}

,

s.t. ˙̂xk = f(x̂k, ûk,p), ∀i ∈ 1, ncp, ∀k ∈ 1, ne,

x̂1(t10,p) = x0(p),

x̂k(tk0) = x̂k−1(tk−1
f ), ∀k ∈ 2, ne, (3.33)

h(x̂k, ûk,p, t) = 0, ∀t ∈ [tk0, t
k
f ], ∀k ∈ 1, ne,

g(x̂k, ûk,p, t) ≤ 0, ∀t ∈ [tk0, t
k
f ], ∀k ∈ 1, ne,

ûk
i ∈ [ûk

i,min, û
k
i,max], ∀i ∈ 1, ncp, ∀k ∈ 1, ne,

p ∈ [pmin,pmax].

The resulting NLP program can be handled using standard techniques, such as by se-

quential quadratic programming (SQP) or interior-point (IP) solvers. Size of the problem

depends on chosen accuracy of the approximation (number of elements and collocation

points). Although the resulting NLP may become quite big, if high accuracy of the polyno-

mial approximation is desired, it would be sparse as well and such feature can be efficiently

exploited by modern NLP solvers. This property together with no need to solve any IVPs

(if their solution is costly or numerically unstable) makes complete discretization and OC
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approaches of the most popular frameworks in numerical dynamic optimization. On the

other hand, this approach is of so-called infeasible type, i.e. the process model equations

are satisfied only if the optimal solution is found.

3.3.4 Control Vector Parameterization

This method, see Goh and Teo (1988); Hirmajer et al. (2008), is among the most popular

numerical procedures for handling the OCP because of the straightforward nature of the

idea behind and due to the relative easiness of implementation.

In the first step of this method, control trajectory u(t) is discretized (parameterized)

on finite number (ne) of intervals considering polynomial control on each of these intervals

(segments). Resulting control approximation is of piece-wise polynomial nature. We may

consider

• piece-wise constant (PWC) segments

û(t) =
ne
∑

k=1

ûkχk(t), χk(t) =







1 if t ∈ [tk−1, tk],

0 otherwise,
(3.34)

• piece-wise affine segments

û(t) = ûk−1 +
ûk − ûk−1

tk − tk−1
(t− tk−1), ∀k ∈ 1, ne. (3.35)

• general piece-wise polynomial segments – we may adopt the approximation by La-

grange polynomials (3.32b)

In this work, we are mostly dealing with PWC control. Using this approach we aim to

numerically determine the optimal values of a vector of parameters

y = (û1, û2, . . . , ûne,∆t1,∆t2, . . . ,∆tne ,p)T

with constant control over kth interval (k = 1, . . . , ne) with length ∆tk = tkf − tk0. Using

proposed discretization (parameterization) the problem (2.15) is transformed into NLP
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problem of the form

min
y

{

G(x(tne

f ),p) +
ne
∑

k=1

∫ tk
f

tk
0

F(x, ûk,p, t) dt

}

,

s.t. ẋ = f(x, ûk,p), ∀t ∈ [tk0, t
k
f ], ∀k ∈ 1, ne,

x(t10,p) = x0(p),

h(x, ûk,p, t) = 0, ∀t ∈ [t0, tf], ∀k ∈ 1, ne, (3.36)

g(x, ûk,p, t) ≤ 0, ∀t ∈ [tk0, t
k
f ], ∀k ∈ 1, ne,

ûk(t) ∈ [ûk
min(t), û

k
max(t)], ∀k ∈ 1, ne,

p ∈ [pmin,pmax].

This is a static NLP problem with embedded set of differential equations. It can be resolved

by any gradient–based method (SQP or IP method) while using some efficient numerical

differential equation solver.

The evaluation of objective function is carried out by solving an IVP problem and

gradients of the objective function and constraints w.r.t.decision variables can be evaluated

by using of the finite differences (FD), sensitivity equations (SE) (Feehery, 1998), or adjoint

variables (AV) (Hirmajer and Fikar, 2007) method. These methods are associated with

additional solving of IVPs and will be explained later in this text.

CVP method algorithm. Optimization procedure is depicted in Figure (3.2) and can

be described in following steps:

Step 1. Make initial guess for values of y.

Step 2. Solve the process model, use ODE solver to integrate IVP (2.10).

Step 3. Evaluate objective functional and constraint functions.

Step 4. Use FD, SE, or AV method to gather the gradients.

Step 5.
If the optimality conditions are satisfied then quit.

Else, use NLP solver to get new guess for y and go to Step 2.

3.3.5 Direct Multiple Shooting

This method stands in the middle of latter two methods. Direct Multiple Shooting, in-

troduced by Bock and Plitt (1984), considers piece-wise polynomial parameterization of

control trajectories. State variables trajectories are, however, considered to be sequentially

numerically integrated on some chosen number of time intervals, ne.
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x
(t
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û
(t
)

FD/SE/AV Method State Variables

Control Variables

Gradients
Objective Function

NLP Solver

Constraints

Dynamic System
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t

Figure 3.2: Control vector parameterization algorithm.
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Figure 3.3: Principle of direct multiple shooting.

This is illustrated in Fig. 3.3. The vector of initial conditions (x̂1
0, x̂

2
0, . . . , x̂

ne

0 )T is

considered to be joined among the vector of decision variables, y. Additional set of affine

constraints is then considered to enforce the continuity state trajectories. The resulting

NLP problem reads as follows

min
y

{

G(x(tne

f ),p) +

ne
∑

k=1

∫ tk
f

tk
0

F(x, ûk,p, t) dt

}

,

s.t. ẋ = f(x, ûk,p), ∀t ∈ [tk0, t
k
f ], ∀k ∈ 1, ne,

x̂1
0 = x0(p),

x(tk0) = x̂k
0, ∀k ∈ 1, ne,

x(tk−1
f ) = x̂k

0, ∀k ∈ 2, ne, (3.37)

h(x, ûk,p, t) = 0, ∀t ∈ [t0, tf], ∀k ∈ 1, ne,

g(x, ûk,p, t) ≤ 0, ∀t ∈ [tk0, t
k
f ], ∀k ∈ 1, ne,

ûk(t) ∈ [ûk,L(t), ûk,U(t)], ∀k ∈ 1, ne,

p ∈ [pmin,pmax].

where y = (x̂1
0, x̂

2
0, . . . , x̂

ne

0 , û
1, û2, . . . , ûne ,∆t1,∆t2, . . . ,∆tne,p)T if we consider ne PWC

segments. The optimization algorithm presented earlier, for the case of CVP method,
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applies here directly without any major change. The sequential integration of the set of

ODEs (2.11) may have several distinct advantages. Numerical stability of integration of

stiff systems may be dramatically improved. Moreover, such formulation allow to optimize

dynamically unstable systems. Finally, such lifting approach (enlargement of decision

variable space by addition of new variables) results in sparse NLP problems which can be

in many cases resolved more efficiently than their condensed (dense) alternatives. These

features make Direct Multiple Shooting to receive growing attention in the scientific and

process engineering community.

3.4 Methods for Computing Gradients

The latter two direct methods of solving an OCP, we presented, require solving of NLP

problems. This resolution requires gradient information with regard to dynamic system

embedded in the problem.

According to Rosen and Luus (1991), these gradients can be deterministically computed

by using of one of the following approaches

(i) Finite differences method

is based on integration of the system (2.10) repetitively with slightly changed (per-

turbed) value of one of the optimized parameters y. The gradients to objective

function can be then computed in the following way

∇yiJ =
J (yi−, yi +∆yi)− J (y)

∆yi
, (3.38)

where yi− = (y1, y2, . . . , yi−1, yi+1, . . . , yny
) and ny denotes the number of optimized

variables. Gradients to constraint functions can be derived similarly since we have

shown (in Section 2.2) that any constraint can be rewritten into the form of objective

criterion.

The advantage of this method lies in the fact that it does not require adding of any

additional differential states or equations. On the other hand, the entire ODE system

has to be integrated ny times for each small perturbation of the parameter. Method

of finite differences is generally very inaccurate but easily implementable and can

be used in combination with other gradient methods in order to improve supplied

gradient information accuracy.
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(ii) Sensitivity equations method

is mainly used for problems embedded with possibly large number of differential

equations but preferably small number of parameters. The gradients of objective

function are computed as

∂J

∂yi
=
∂G

∂x

∣

∣

∣

∣

tf

∂x

∂yi
+
∂G

∂p

∂p

∂yi
+

∫ tf

t0

∂F

∂x

∂x

∂yi
+
∂F

∂u

∂u

∂yi
+
∂F

∂p

∂p

∂yi
dt, (3.39)

where parametric sensitivities ∂x/∂yi are computed from

d

dt

∂x

∂yi
=
∂f

∂x

∂x

∂yi
+
∂f

∂u

∂u

∂yi
+
∂f

∂p

∂p

∂yi
,

∂x

∂yi

∣

∣

∣

∣

t0

=
∂x0

∂p

∂p

∂yi
. (3.40)

This method thus requires solving of additional (nx × np) differential equations. The

main disadvantage of sensitivity equations method then lies in creation of a large

system of differential equations because for each optimized parameter a new set of

nx sensitivity equations is added. The number of additional ODEs is, however, not

affected by the number of constraints associated with the optimization problem and

this is why the usage of sensitivity equations method is convenient for problems with

large number of constraints.

(iii) Adjoint variables method

exploits the properties of NCO and adjoint variables, previously described in Sec-

tion 3.1. It can be effectively used for systems with rather small number of constraints

and large number of parameters. The gradients of objective function are computed

this way

∂J

∂tf
=
∂G

∂tf
+H(tf),

∂J

∂ti
=
∂G

∂ti
+H(t−i )−H(t+i ), (3.41)

∂J

∂p
=
∂G

∂p
− Jp(t0) +

∂xT
0

∂p
λ(t0),

∂J

∂ui
=Ju(ti−1)− Ju(ti),
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where

J̇u =
∂H

∂u
, Ju(tf) = 0, (3.42)

J̇p =
∂H

∂p
, Jp(tf) = 0. (3.43)

The number of additional ODEs which must be integrated backward in time is

(nx × nc) + np + nu. Equations are integrated separately because the process model

IVP is integrated forward while the system of adjoint variables and auxiliary vari-

ables is integrated backward in time. Thus this method requires more effort on

implementation side than the previous ones.



Chapter 4
Membrane Processes

This chapter is devoted to present basic theory of membrane separation and some of well-

established membrane processes. Majority of attention is dedicated to diafiltration pro-

cesses.

Membrane processes are used in the context of filtration of liquid or gas mixtures

and their purification. They find applications mainly in biotechnology, pharmaceutical,

and food industry, where fairly high purity conditions for the final product are required

or where the products can be degraded by purification (e.g. proteins) using any of the

standard separation techniques (e.g. distillation). Current membrane technologies exploit a

great variety of membrane processes. These involve processes based on membrane reactors,

diafiltration, pervaporation, membrane distillation, electrodialysis, etc. Common feature

of these processes is the employment of the membrane separation principle.

4.1 Membrane Separation

Filtration theory defines membrane to be a thin, film-like structure which stands in between

two, usually fluid, phases and separates them. This structure is, however, at the same time

made porous to allow for passage of some fluid from one side of the membrane to the other

one. Thus, it can act as a selective barrier which can be used for separation of particles

(or chemicals). It can prevent to pass the particles with size bigger than the pores of the

membrane, traditionally referred as macro-solutes, and obviously it allows the particles

with smaller size, typically denoted as micro-solutes, to get through (to permeate). This is

a fundamental principle of all membrane separation processes which can be distinguished

59
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by the actual type and pore sizes of a used membrane (Cheryan, 1998). This can be seen

in Fig. 4.1 where we observe that for:

• microfiltration (MF) membrane

– macro-solutes are represented by suspended particles and bacteria bodies

– micro-solutes are represented by macromolecules and species with smaller par-

ticle sizes

• ultrafiltration (UF) membrane

– macro-solutes represent macromolecules (typically proteins) and species with

larger particle sizes

– micro-solutes represent dissociated acids, divalent salts, sugars, and species with

smaller particle sizes

• nanofiltration (NF) membrane

– dissociated acids, divalent salts, sugars, and species with larger particle sizes are

retained by the membrane

– undissociated acids and monovalent salts can be pass through the membrane

• reverse osmosis (RO) membrane

– only water passes through membrane and thus term macro-solutes stands for

any other species in solution

This classification considers only filtration of liquid solutions since gas separation is out

of the scope of this study.

Membrane separation is an external force driven process. This force may be applied

in form of increased/decreased transmembrane pressure (that is the most common case),

increased/decreased temperature (e.g. membrane distillation) or by electric field (electro-

dialysis).

There are two main ways of filtering a feed solution through the membrane, dead-

end and cross-flow filtration. In dead-end filtration, treated solution is present on one

side of the membrane at the beginning of the operation. Then, certain amount of force

(usually increased pressure) is applied to enforce the filtration. This is done until some
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Figure 4.1: Classification of membranes with regard to pore size and filterable/retained

components.

required concentration of micro- or macro-solute is achieved. Then, it is usually necessary

to remove a filtration cake (i.e. accumulated matter) consisting of retained macro-solute

and the membrane is prepared for another operation (batch).

In cross-flow filtration, solution is continuously transfered to the membrane module

which is usually a tube with membrane on the inner side. The term “cross-flow” is used

since the permeate (stream that passes through the membrane) flows perpendicularly to the

feed stream. Unlike dead-end filtration, this setup is obviously suitable for both continuous

and discontinuous (batch) treatment of solutions.

4.2 Modeling of Membrane Processes

In the last century, many theories have been developed and presented to describe the

complex phenomena happening in the system: solution – membrane – permeate. The

most evolved theoretical concept is using classical (stagnant) film theory (Zydney, 1997)

which predicts a flow through ultrafiltration membrane (flux, q) to be given by

q = k ln
clim
c1
, (4.1)
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where k is mass transfer coefficient, c1 is macro-solute concentration in the feed stream

and clim represent limiting concentration of macro-solute. Term “limiting concentration”

basically stands for the maximal concentration of macro-solute that can be attained in the

system. Note that once this concentration is reached, the flux is zero. Historically, clim has

been denoted as wall concentration cw or gel concentration cg to express the phenomena

which cause such effects. Practical filtrations, however, did not follow such behavior of

the membranes in many cases and that is why terms such “limiting concentration” and

“limiting flux” are being used today.

There are theoretical methods that enable for prediction of the values of mass trans-

fer coefficient and limiting concentration of macrosolute. These are based on analysis of

e.g. viscosity of the solution, flow regime (this applies for the case of cross-flow filtration),

and osmotic phenomena. On the other hand, mathematical form of Eq. (4.1) makes it pos-

sible to identify k and clim using experimental measurements and linear regression. This

can be seen if Eq.(4.1) is rewritten such that −k is a slope of the affine function in ln c1

and k ln clim is y-intercept of this function.

Practical limitations of this model of membrane flux are evident. It considers k and

clim to be constant and thus neglects any e.g. viscosity effects or transmembrane pres-

sure changes. To overcome these issues, various analogies of Eq. (4.1) have been pro-

posed (Aimar and Field, 1992; Mulder, 1996). There is also no exact theoretical approach

for dealing with fouling phenomena connected to aging of the membrane and dynamical

changes that vary membrane conformation and characteristics.

Another popular theoretical approach for modeling (RO, NF, UF, MF) membrane re-

sponse is so-called osmotic pressure model. According to this model, membrane flux can

be written as

q =
∆P − π

µRm

, (4.2)

where ∆P stands for transmembrane pressure, π denotes osmotic pressure, µ is solution

viscosity, and Rm represents resistance of the membrane. This model became popular since

it can be applied for the wide range of operational conditions (e.g. pressures). Moreover, its

form can be explained very naturally, i.e. applied transmembrane pressure should overcome

reversely-acting osmotic pressure. The inverse proportionality of flux versus viscosity and

membrane resistance is also evident and logical.

On the other hand, both above mentioned type of models a priori assume that rejection

of macro-solute by membrane is complete. The rejection of particular solute by membrane,
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Ri, is defined by

Ri = 1−
cpi
ci
, (4.3)

where i refers to the ith component of the solution (i = 1 for macro-solute, i = 2 for

micro-solute) and cpi denotes its concentration in the permeate. From the process point of

view, it is obvious that in order to reach better separation performance, used membrane

and designed operation conditions should be such that they imply maximal rejection of

macro-solute (ideally R1 = 1) and the lowest possible rejection of micro-solute (in ideal

case R2 = 0).

If the operational conditions, such as pressure, temperature, and hydrodynamic condi-

tions are fixed, membrane rejection of particular species can in principle vary with varying

concentrations in the system. The same concept applies for modeling of membrane flux.

It is then usually preferred to model membrane behavior (permeation/retention response

to various concentrations) by fitting of experimental data to arbitrarily (but conveniently)

chosen linear or non-linear mathematical model (Caoa and Henson, 2003; Chatterjee et al.,

2004). Such form of the model is unlike to directly interpret natural phenomena but

provides very good alternative in situations where there are no practically applicable the-

oretical models to predict complex membrane response (flux and rejection).

4.3 Diafiltration Process

Diafiltration is known as an effective membrane process for separation of two or more

solutes from a solution. Currently, it is well established in chemical, biochemical, food and

pharmaceutical industries (Lipnizki et al., 2002). Its aim is the increase of concentration of

a desired product together with the simultaneous decrease of concentration of impurities

in solution. It was described as “Killing two birds with one stone” method in Jönsson and

Träg̊ardh (1990).

Some of the most important applications in this field include antigen purification (Schu

and Mitra, 2001), fractionation of whey protein isolate (Cheang and Zydney, 2004), albu-

min production from human blood plasma for medical use (Jaffrin and Charrier, 1994) and

recovery of animal blood proteins from slaughterhouse effluents (Belhocine et al., 1998),

separation of protease from tuna spleen extract (Li et al., 2006), recovery of β-galactosidase

from PEG-rich top-phase of fermentation broth extract (Veide et al., 1989), production of



64 CHAPTER 4. MEMBRANE PROCESSES

recombinant DNA derived human protein pharmaceuticals (van Reis et al., 1997) and an-

tibody preparation (Luo et al., 2004), purification of soybean lecithin (Basso et al., 2009)

and leaf proteins (Dutré et al., 1994), or concentration and desalination of gelatin (Simon

et al., 2002).

Diafiltration process may be implemented as continuous or discontinuous (batch) while

the current setup is case-by-case dependent on the scale, physical properties of the system

(e.g. solution viscosity and stability), and overall economics.

This work deals with the discontinuous application of diafiltration. In comparison with

continuous processes, batch operations allow to use membranes with reduced area in order

to reach the target product quality, that usually leads to smaller space requirement and

lower investment costs (Lipnizki et al., 2002). Moreover, batch processing is particularly

suited for applications where the process liqueur is manufactured in batches or lots before

any subsequent separation is undertaken.

A schematic diagram of a discontinuous membrane diafiltration process is shown in

Figure 4.2.

permeateretentatediluant

feed tank

membrane
module

qu

Figure 4.2: Schematic representation of a generalized batch diafiltration process.

Considering a process liqueur with two solutes, the general purpose of such batch plant

can be summarized as to increase the macro-solute concentration from c1,0 to c1,f and to

reduce the micro-solute concentration from c2,0 to c2,f. The fractionation is accomplished

by performing a so called diafiltration mode in which the micro-solute is washed out of

the process liqueur by introducing fresh buffer (i.e. diluant), of certain flowrate u(t), into
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the feed reservoir while simultaneously removing the permeate with very low macro-solute

content.

Most diafiltration processes operate with constant transmembrane pressure that is

achieved by simply adjusting the pressure with the retentate valve. We note here that

other types of process control strategies, such as constant flux or constant wall concentra-

tion control, are also implemented in engineering practice. These are normally preferred

when unfavorable effects such as enhanced fouling or product quality deterioration are as-

sociated with high concentration of retained species at the membrane wall. For instance,

when animal cell damage (Maiorella et al., 1991) or denaturation/adsorption of high-value

protein pharmaceuticals (van Reis et al., 1997) are of major concern. The work presented

here examines the constant pressure approach.

4.3.1 Process Model

We consider a membrane filtration plant (for RO, UF, NF, or MF) with a given membrane

area that operates under fixed operating conditions. The studied filtration system applies a

cross-flow and pressure setpoint, and the permeate flows uncontrolled out of the membrane

module. We assume that the system is well-mixed, and the introduction of diluant causes

no local concentration differences. The balance of each solute can be written as

dci
dt

=
ciq

V
(Ri − α), ci(t0) = ci0, i = 1, 2 (4.4)

where V is the retentate volume at time t. The rejection coefficient Ri(c1, c2) is assumed to

be a function of both concentrations. The same holds for the permeate flowrate q(c1, c2).

Variable α(t) is a dimensionless variable which is defined as a fraction between diluant

flowrate and flux

α(t) =
u(t)

q(t)
. (4.5)

The volume balance can be written as

dV

dt
= (α− 1)q, V (t0) = V0. (4.6)

Note that the time-dependent variables (i.e. permeate flux and the solute rejections)

are solely a functions of feed concentrations in the process model. Thus according to our

previous assumptions, the model in its current form does not encounter changes in process

parameters (pressure, temperature, hydrodynamic conditions, etc.) that might influence
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the membrane response during the process run. Furthermore, the model is limited to

applications where fouling is not pronounced. This means that the findings are restricted to

applications where (i) fouling does not occur, (ii) the impact of fouling on flux is sufficiently

less than the impact induced by changes in feed composition, or (iii) fouling occurs rapidly

within the time-scale of the entire process, and Eqs. (4.4) and (4.6) representing the fouled

membrane are given.

4.3.2 Operational Modes of Diafiltration

Choosing the right diluant utilization strategy is a critical aspect to consider in diafiltration

process control. Batch processing can be performed in different ways depending on how the

addition of the diluant (diafiltration or washing solvent) into the feed tank is scheduled.

The standard way of reaching the dual objective of fractionation and concentration is to

α

C-CVD-C

C-VVD

VVD

time
0

1

Figure 4.3: Representation of classical three-step processing (C-CVD-C), pre-concentration

combined with variable-volume diafiltration (C-VVD), and variable-volume di-

afiltration (VVD) operation in terms of the α function.

perform a multi-step process including pre-concentration (C), constant-volume diafiltration

(CVD), and post-concentration steps. Other strategies include variable-volume diafiltration

(VVD) Jaffrin and Charrier (1994), or a variation of it, pre-concentration followed by

variable-volume diafiltration (C-VVD) Foley (2006). These processes are best described

with α (i.e. the ratio of diluant flow to permeate flow) as a function of operation time as

shown in Figure 4.3.

Once we are concerned with optimal performance of a diafiltration, it has been pointed

out in Fikar et al. (2010) that the best time-varying profile of the diluant addition needs not

necessarily be one of the pre-defined profiles depicted in Figure 4.3. The optimal control
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trajectory of α(t) (or equivalently the diluant flow) can be determined by formulating an

optimization problem subject to process model described by a set of differential equations.

The diafiltration process, that is designed by the evaluation of the optimal time-varying

profile of the diluant flow, has been then referred to as dynamic-volume diafiltration (DVD).

4.3.3 Optimization of Diafiltration Process

The wash-water utilization strategy of DVD may differ from conventional diafiltration

processes. However, in many cases it may be attractive to implement the optimal trajectory

since it can lead to reduced operation time, diluant consumption, and product losses. The

diluant consumption and operation time minimizations are generally of major concern.

Batch production takes place periodically; when the production is complete, the plant

and equipment are available for the next batch. Processing time is then a key factor to

increase production throughput. Moreover, diafiltration is commonly associated with high

consumption of diafiltration solvent. This liquid is commonly water with strict quality

requirements regarding bacteriological contamination and organic/inorganic solute con-

tent (Madsen, 2001). Thus, the production of diafiltration liquid can contribute signifi-

cantly to the overall operating costs of the plant.

As far as time minimization problem considered, it has been previously demonstrated

that optimum diafiltration strategy can be found for filtration processes operating in dis-

continuous manner. The patent by Lutz (1997) provides an implementation procedure and

a general formula for determining the optimal diafiltration path using idea of maximization

of mass flux of permeable component through the membrane. Despite that this approach

provides certain level of intuition and insight on time-optimal filtration control, its extend-

ability onto different optimization tasks and more complex process setups is questionable.

Next, we introduce mathematical definitions of above mentioned process optimization

problems. In the first one, minimum time problem, optimal trajectory of function α(t) is

computed in order to minimize running time of batch diafiltration process. The second

considers minimization of diluant consumption during the diafiltration process. Both of

these problems involve, of course, restrictions to achieving given separation goal, i.e. driving

the concentrations from initial to final state.
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Minimum Time Problem

Mathematical formulation of this OCP is as follows

J1 =min
α(t)

tf = min
α(t)

∫ tf

t0

1 dt. (4.7a)

s.t.

ċ1 =
c1q

V
(R1 − α), c1(t0) = c1,0, c1(tf) = c1,f, (4.7b)

ċ2 =
c2q

V
(R2 − α), c2(t0) = c2,0, c2(tf) = c2,f, (4.7c)

V̇ = (α− 1)q, V (t0) = V0, (4.7d)

α ∈ [αmin, αmax], (4.7e)

where αmin and αmax represent lower and upper constraints on the value of α respectively.

Lower bound, αmin, obviously stands for pre/post-concentration mode when α = 0. Value

of upper constraint, αmax, may vary from one application to another.

Some applications require that α does not overcome 1. Other ones do not impose

any upper bound on the value of α which in principle means that αmax = ∞. This can

have a special meaning if it happens at the beginning or at the end of the operation. We

will speak about a pure dilution mode where a certain volume of diluant is added into the

system instantaneously. This can happen in a separate equipment not related to membrane

equipment.

Minimum Diluant Problem

The second problem addresses minimization of total amount of diluant, u(t) = α(t)q(t),

used to drive the process from initial state to a prescribed terminal state assuming that

the final time tf is a free variable. Mathematical formulation (4.7) remains unchanged in

this case except for the cost function

J2 = min
α(t)

∫ tf

t0

α(t)q(t) dt. (4.8)

In both optimization problems, a special input-affine structure can be immediately

recognized (control variable α enters linearly both problems, (4.7) and (4.8)). Recalling

statements of previous chapter, it is convenient to approach the finding of optimal α using

analytical Pontryagin’s minimum principle.
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Chapter 5
Optimal Operation of Diafiltration Processes

Optimal operation of batch diafiltration processes may be found by using of numerical

techniques such as orthogonal collocation (as showed in Fikar et al. (2010)) or control

vector parameterization (used in Paulen et al. (2011a)). In Paulen et al. (2012), we showed

how analytical approach of dynamic optimization may be used either to solve or to simplify

the problem. Most of the material presented in this chapter has been published in Paulen

et al. (2012).

We make use of Pontryagin’s minimum principle (Bryson, Jr. and Ho, 1975; Pontryagin

et al., 1962) in order to solve the optimization problems (4.7) and (4.8) specified in previous

chapter and in order to find the optimal operation of generalized batch diafiltration process.

We may follow the procedure stated for control affine OCP in Example 2 in section 3.2.3.

Considering TPBVP (4.7b)–(4.7d) with state vector x = (c1, c2, V )
T and scalar control

α, we can write necessary conditions for optimality as derived in Pontryagin’s minimum

principle

α∗ = arg min
α∈[αmin,αmax]

H(x,λ, α) ≡ arg min
α∈[αmin,αmax]

{H0(x,λ) +Hα(x,λ)α} , (5.1a)

ẋ =
∂H

∂λ
, x(t0) = x0, x(tf) = xf, (5.1b)

λ̇ = −
∂H

∂x
, (5.1c)

H = 0, ∀t ∈ [t0, tf]. (5.1d)

The last condition arises because of the synergy of two facts: optimal Hamiltonian is

constant over the whole time horizon since it is not an explicit function of time and it

71
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is zero at final time since the final time is free in all treated optimization problems (see

Eq. (3.8e)).

The Hamiltonian is linear in α. Thus, its minimum will be attained with α∗ being

either on its boundaries or singular such as

α∗ =



















αmin if Hα > 0,

αmax if Hα < 0,

αsing if Hα = 0.

(5.2)

In case of Hα = 0 the Hamiltonian is singular and does not depend on α. According

to Johnson and Gibson (1963) and Srinivasan et al. (2003), it may be possible to construct

optimal (singular) surface S(x) = 0 corresponding to singular control that depends on

state variables only. Once S(x) = 0 is known, we have all necessary information to switch

between control arcs.

We use the fact that the condition Hα = 0 implies (because of (5.1d)) that H0 = 0

and also their derivatives w.r.t. time are equal to zero as well. We will make use of the

following equations

H0(x,λ) = 0, (5.3a)

Hα(x,λ) = 0, (5.3b)

diH0

dti
(x,λ, α) = 0, (5.3c)

diHα

dti
(x,λ, α) = 0, (5.3d)

to eliminate the adjoint variables λ = (λ1, λ2, λ3)
T where ith order time derivatives will be

considered with i ∈ {1, 2, . . .} taking the necessary value. We note that it is not possible to

use both conditions (5.3c) and (5.3d) simultaneously since they are linearly dependent on

each other and thus contain the same information about singular arc. This can be shown

for i = 1 using (5.1d) and its time derivative

dH

dt
=

dH0

dt
+

dHα

dt
α +Hα

dα

dt
= 0. (5.4)

Since term Hα = 0 it is clear that Ḣ0 and Ḣα may not vary independently so zeroing one

of these terms zeroes the other as well. This applies analogically for i > 1.
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5.1 Minimum Time Problem

The Hamiltonian function for the studied problem is of the form

H = 1 + λ1
c1q

V
(R1 − α) + λ2

c2q

V
(R2 − α) + λ3(α− 1)q (5.5a)

= α
q

V
(−λ1c1 − λ2c2 + λ3V ) +

q

V
(λ1c1R1 + λ2c2R2 − λ3V ) + 1, (5.5b)

and the adjoint variables are defined by the following differential equations

λ̇1 =− λ1
1

V
[(q + c1q1)(R1 − α) + c1qR11] (5.6a)

− λ2
1

V
[c2q1(R2 − α) + c2qR21]− λ3(α− 1)q1,

λ̇2 =− λ1
1

V
[c1q2(R1 − α) + c1qR12] (5.6b)

− λ2
1

V
[(q + c2q2)(R2 − α) + c2qR22]− λ3(α− 1)q2,

λ̇3 =
q

V 2
[λ1c1(R1 − α) + λ2c2(R2 − α)], (5.6c)

where

q1 =
∂q

∂c1
, R11 =

∂R1

∂c1
, R21 =

∂R2

∂c1
, (5.7a)

q2 =
∂q

∂c2
, R12 =

∂R1

∂c2
, R22 =

∂R2

∂c2
. (5.7b)

The optimality conditions (5.3) are as follows

Hα : − λ1c1 − λ2c2 + λ3V = 0, (5.8a)

H0 : λ1c1R1q + λ2c2R2q − λ3V q + V = 0, (5.8b)

dHα

dt
: λ1c1p1(c1, c2) + λ2c2p2(c1, c2) + λ3V p3(c1, c2) = 0, (5.8c)

where

pi(c1, c2) = Ri(q + c1q1 + c2q2) + q(c1Ri1 + c2Ri2) i = 1, 2 (5.9a)

p3(c1, c2) = −(q + c1q1 + c2q2). (5.9b)

For the next step, we use equations (5.8a) and (5.8c) which let us, after some manipulations,

arrive at condition

S = λ1c1S1 + λ2c2S2 = 0, (5.10)
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where S1 and S2 are given as

S1(c1, c2) = (R1 − 1)(q + c1q1 + c2q2) + q(c1R11 + c2R12), (5.11a)

S2(c1, c2) = (R2 − 1)(q + c1q1 + c2q2) + q(c1R21 + c2R22). (5.11b)

Since (5.10) depends on unknown trajectories of adjoint variables it might be in general

very difficult (maybe even impossible) to find concentration trajectory along which this

equation is satisfied. However, there are some cases when it will be easily satisfied:

• R1 = 1 (R11 = R12 = 0). This represents a common situation for a macro-solute that

does not get through the membrane and micro-solute can have arbitrary properties.

The optimal curve is given as

S(c1, c2) = (R2 − 1)(q + c1q1 + c2q2) + q(c1R21 + c2R22) = 0, (5.12)

• both R1 ≤ 1, R2 are constant (Rij = 0). If both retention coefficients R1 and R2 are

constant and do not depend on concentrations (for example a perfect membrane with

R1 = 1, R2 = 0) the optimal curve is given as

S(c1, c2) = q + c1q1 + c2q2 = 0. (5.13)

We will further differentiate w.r.t. time the equation (5.10) (note that this is equivalent

to taking the second order time derivative of (5.3b)). This differentiation yields

λ1c1(a1α + b1) + λ2c2(a2α + b2) + λ3V b3 = 0, (5.14)

where expressions ai and bi for i = 1, 2 are given as follows

ai = −c1q
∂Si

∂c1
− c2q

∂Si

∂c2
, (5.15a)

bi = c1

(

qR1
∂Si

∂c1
− (qRi1 +Riq1)S1

)

+ c2

(

qR2
∂Si

∂c2
− (qRi2 +Riq2)S2

)

, (5.15b)

and

b3 = c1q1S1 + c2q2S2. (5.15c)

By writing equations (5.8a), (5.8c) and (5.14) together we recognize homogeneous sys-

tem of linear equations in variables λ1c1, λ2c2 and λ3V . Such a system possesses a non-

trivial solution only if determinant of its coefficient matrix is equal to zero. Using this and
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after some rearrangement we arrive at expression for singular optimal control
∣

∣

∣

∣

∣

∣

∣

∣

1 1 −1

S1 S2 0

a1α + b1 a2α + b2 b3

∣

∣

∣

∣

∣

∣

∣

∣

= 0 ⇒ αsing =
(S1 − S2)b3 + S1b2 − S2b1

S2a1 − S1a2
. (5.16)

5.2 Minimum Diluant Problem

The Hamiltonian function for the diluant problem is of the form

H = αq + λ1
c1q

V
(R1 − α) + λ2

c2q

V
(R2 − α) + λ3(α− 1)q (5.17a)

= α
q

V
(−λ1c1 − λ2c2 + λ3V + V ) +

q

V
(λ1c1R1 + λ2c2R2 − λ3V ), (5.17b)

where the adjoint variables are defined by the following differential equations

λ̇1 =− αq1 − λ1
1

V
[(q + c1q1)(R1 − α) + c1qR11] (5.18a)

− λ2c2
1

V
[q1(R2 − α) + qR21]− λ3(α− 1)q1,

λ̇2 =− αq2 − λ1c1
1

V
[q2(R1 − α) + qR12] (5.18b)

− λ2
1

V
[(q + c2q2)(R2 − α) + c2qR22]− λ3(α− 1)q2,

λ̇3 =
q

V 2
[λ1c1(R1 − α) + λ2c2(R2 − α)], (5.18c)

and variables qi, Rij are defined in (5.7). The optimality conditions (5.3) are as follows

Hα : − λ1c1 − λ2c2 + λ3V + V = 0, (5.19a)

H0 : λ1c1R1 + λ2c2R2 − λ3V = 0, (5.19b)

dH0

dt
: λ1c1m1(c1, c2) + λ2c2m2(c1, c2)− λ3V = 0, (5.19c)

where

m1(c1, c2) = 1− c1R11 − c2R12, (5.20a)

m2(c1, c2) = 1− c1R21 − c2R22. (5.20b)

Using equations (5.19b) and (5.19c) we can arrive at condition

S = λ1c1S1 + λ2c2S2 = 0, (5.21)

where S1 = R1−m1 and S2 = R2−m2. Again, validity of this equation depends on adjoint

variables except for special cases:
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• R1 = 1 (R11 = R12 = 0). The optimal curve is given as

S(c1, c2) = R2 − 1 + c1R21 + c2R22 = 0, (5.22)

• either R1 or R2 is constant. The optimal surface does not exist and the optimal

control is of bang-bang type.

Further we choose system of three linearly independent homogeneous equations (5.19b),

(5.19c) and time derivative of (5.21) to form a coefficient matrix. Its determinant gives the

condition for optimal control along singular arc

αsing =
b2S1 − b1S2

a1S2 − a2S1
, (5.23)

where

ai = −c1
∂Si

∂c1
− c2

∂Si

∂c2
, (5.24a)

bi = c1R1
∂Si

∂c1
+ c2R2

∂Si

∂c2
− c1Ri1S1 − c2Ri2S2. (5.24b)

5.3 Optimal Control in Special Cases

As it was shown, the optimal state surface is in special cases a function of concentrations

only S(c1, c2) = 0. Thus, it is a curve in the concentration space. Once it is found, the

corresponding singular control can be obtained by considering its derivative with respect

to time
dS(c1, c2)

dt
=
∂S

∂c1
ċ1 +

∂S

∂c2
ċ2 = 0. (5.25)

Using process differential equations (4.4) then yields

∂S

∂c1

c1q

V
(R1 − αsing) +

∂S

∂c2

c2q

V
(R2 − αsing) = 0. (5.26)

This equation can be satisfied if α is calculated as

αsing(t) =
∂S
∂c1
c1R1 +

∂S
∂c2
c2R2

∂S
∂c1
c1 +

∂S
∂c2
c2

. (5.27)

The overall optimal operation can be stated as follows:

1. The first step is either pure concentration (α = αmin = 0) or operation with α = αmax

until the condition S(c1, c2) = 0 is met.
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2. The second step is filtration with time-dependent αsing(c1, c2) given by (5.27) main-

taining optimal concentration values.

3. Finally, the third step is again either pure concentration (α = 0) or operation with

α = αmax until final concentrations of both components are obtained.

Any of these three steps can be missing at a particular problem, depending on process

initial and final conditions as well as actual functions R2(c1, c2), q(c1, c2). For example, if

condition S(c1, c2) does not exist or it is not possible to satisfy it for particular process

initial and final conditions, then the optimal control will be of bang-bang type (i.e. control

will be saturated).

5.4 Optimal Control in General Case

In general it is not possible to end up with closed form representation of singular surface

without using adjoint variables λ which trajectories are in our case not known and have

to be found numerically case-by-case. On the other hand, as we have shown, it is possible

to find an expression for singular control (see Eq. (5.16) and Eq. (5.23)) as a function of

concentrations only.

The overall optimal control strategy will not change from the previously mentioned

one. In this case, however, switches between constrained and singular control trajectories

have to be found by other means. In this work we propose to find them numerically by

formulating a simple NLP problem.

We form this NLP problem with five unknowns ∆t1,∆t2, and ∆t3 being the lengths of

time intervals of the respective phases and α1 and α3 being the constant values of α in the

first and the third phase. Optimal value of α1 and α3 will either be on minimum or on

maximum. In the second phase, optimal α will be given by (5.16) for the minimum time

problem and by (5.23) for the minimum diluant problem. Numerical methods that can

solve this NLP problem. Once it is solved numerically, we know all needed information

about optimal operation to apply it to the process.





Chapter 6
Examples and Case Studies

In this section we determine the optimal control strategies where the permeate flux is given

by some well-known models, including the limiting flux and osmotic pressure models. We

then examine five case studies from the literature where the flux is predicted by empirical

models specific to the system in question. Results presented in this section have been

published in Paulen et al. (2011a,b, 2012).

6.1 Optimization at Limiting Flux

Let us consider a membrane plant that operates under limiting flux conditions (4.1) (i.e. the

operation is performed in the pressure-independent flux regime under fixed hydrodynamic

conditions). We assume that rejections are ideal (R1 = 1, R2 = 0) and that αmax = ∞. Dif-

ferent nomenclature and symbols have been in use in the literature for presenting Eq. (4.1)

that is historically referred to as “gel polarization model”. From the point of view of math-

ematical treatment, it is essentially the same diafiltration problem (provided by Eq. (4.1)-

type formula) that has been the subject of experimental and theoretical investigations by

many authors (e.g. in Field (2011); Ng et al. (1976); Paulen et al. (2011b); Yazdanshenas

et al. (2005); Zydney (1997)).

The time-optimal control strategy defines the optimal concentration curve by (5.13)

and it is a function of the macro-solute only

S(c1) = q + c1
dq

dc1
= 0. (6.1)

This shows that optimal operation is obtained at a constant concentration which is from

79
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the last equation derived as

c1 =
clim
e
. (6.2)

Macro-solute concentration stays on its optimal value if the control is calculated from (5.27)

αsing(t) =
∂S
∂c1
c1

∂S
∂c1
c1

= 1. (6.3)

Hence the singular control is given by CVD operation. Using this information one can form

following three-step procedure for optimal operation:

• First step:

α∗ =







0 if c1,0 < clim/e,

∞ if c1,0 > clim/e.
(6.4)

We note here that in practice it is usually the case that first condition holds and thus

optimal operation is nearly always started with concentration step.

• Second step:

α∗ = 1 for c1 = clim/e. (6.5)

• Third step:

α∗ =







0 if c1,f > clim/e, c2 = c2.f,

∞ if c1,f < clim/e, c2 =
c2,f
c1,f
clim/e,

(6.6)

Additional conditions for concentration c2 are considered to determine the switching

time to commence this operation. In the first case, we switch to concentration mode

(α = 0) when the required concentration of micro-solute is reached (i.e. we disposed

of specified amount of impurities). Switching to dilution mode (α = ∞) in the second

case is done such that the ratio of concentrations of both components is the same as

final one. Dilution operation then keeps this ratio constant. Both final operations

are then ended once the requirements for final product are satisfied.

Hence that optimal operation is defined in a form of feedback law and it depends, in

majority of the cases, only on the final condition for c1. In practice, we may distinguish

three cases:

• c1,f > clim/e
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α = 1

α = 0

α = 0

c2(t)

c2,0

c2,f

c1(t)c1,0 c1,fclim
e

x0

xf

Figure 6.1: Optimal operation of diafiltration with limiting flux model in concentration

diagram. Case of c1,f > clim/e.

In this case the optimal operation is represented by the sequence α∗ = {0, 1, 0},

i.e. concentration step is performed first, then it is followed by CVD step, and finishes

with another concentration step. This is shown in Fig. 6.1. Note that this case

corresponds to the classic scenario considered by Ng et al. (1976) and the resulting

optimal operation is the same as traditional C-CVD-C.

• c1,f < clim/e

Optimal operation is three step strategy α∗ = {0, 1,∞}. We use concentration step

followed by CVD (α = 1) which continues until the concentration ratio of macro-

solute to micro-solute reaches the final desired ratio. In the third step, the volume is

increased by adding the correct amount of diluant instantaneously. The correspond-

ing representation of this strategy is depicted in Fig. 6.2 using state (concentration)

diagram. In this case none of the traditional control approaches is going to be opti-

mal.

• c1,f = clim/e

This situation represents a special case which results in two-step optimal operation

with α∗ = {0, 1} performing a complete concentration step first and then reaching

desired final state xf in CVD step.
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α = 1

α = ∞

α = 0

c2(t)

c2,0

c2,f

c1(t)c1,0 c1,f clim
e

x0

xf

Figure 6.2: Optimal operation of diafiltration with limiting flux model in concentration

diagram. Case of c1,f < clim/e.

If the minimum diluant problem is considered, the optimal curve does not exist and

optimal operation will consist of concentration step followed by pure dilution, α∗ = {0,∞}.

Here it is implicitly assumed that the actual concentration stays below clim during

the concentration step. If the limit case with c1 = clim is hit, the diluant consumption

will be minimized but at infinitely large final time. Therefore, practical considerations

indicate that a constraint c1 ≤ clim − ε should be added to the problem formulation where

a small positive ε would balance practical duration of the membrane filtration and diluant

consumption.

Optimal diafiltration is then achieved by α∗ = {0, 1,∞}. Thus the optimal control

structure is same as one illustrated in Fig. 6.2 except of middle stage that is done by CVD

operation at c1 = clim − ε.

6.2 Optimization at Limiting Flux with Viscosity De-

pendent Mass Transfer Coefficient

We consider again flux given by (4.1) with R1 = 1 and R2 = 0. A thorough discussion on

the model parameters and their concentration-dependency can be found in Zydney (1997).

Let us now consider an application where the filtration performance can be described by a
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special case of Eq. (4.1) such that

q(c1, clim) = k(c1, clim) ln
clim
c1
, (6.7)

where the limiting (wall) concentration clim is assumed to be constant and the mass transfer

coefficient k is a function of c1 and clim. Note that Eq. (6.7) can be also seen as a slightly

generalized form of Eq. (4.1). We consider both laminar and turbulent flow where

k =







k0e
γz(c1−clim) laminar flow

k0e
γ[z(c1−clim)−c1/2] turbulent flow

(6.8)

The constant γ quantifies the concentration dependence of the solution viscosity and z is

the exponent in the wall correction factor. More details on these parameters can be found

in Aimar and Field (1992).

The optimal switching curve S(c1) for minimum time control is defined from

q + c1
dq

dc1
= 0, (6.9)

ln
clim
c1

(

1 +
c1
k

dk

dc1

)

= 1. (6.10)

Note that it again depends on c1 only and is a constant.

The appropriate optimal concentration for both types of flow is given from nonlinear

equation

Slam(c1) : (c1γz + 1) ln
clim
c1

= 1, (6.11a)

Stur(c1) : [c1γ(z − 0.5) + 1] ln
clim
c1

= 1. (6.11b)

These equations predict that the optimum concentration will be shifted to higher concen-

trations (i.e. higher than clim/e) under laminar flow conditions and lower concentrations

under turbulent conditions. Both expressions reduce to the classic result when γ = 0,

i.e. when viscosity effects are negligible.

The minimum diluant operation will be again achieved by concentration step followed

by pure dilution. i.e. bang-bang control.
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6.3 Optimization at Fixed Pressure with the Osmotic

Pressure Model

This model represents a further step in generalization of the use of theoretical models

presented in 4.2. To show an applicability of the proposed approach we assume the same

problem as above where the limiting concentration clim is for given c1 defined by an implicit

relation

E(c, clim) = k ln
clim
c1

−
∆P − π(clim)

µRm
= 0. (6.12)

In this model, the flux as predicted by concentration polarization theory is equated to

the flux as predicted by osmotic pressure theory (4.2) and (Howell et al., 1996). Function

π(clim) is defined experimentally, usually as a third degree polynomial with coefficients

π1, π2, π3

π(clim) = π1clim + π2c
2
lim + π3c

3
lim. (6.13)

For simplicity, only laminar case will be considered, tubular regime can be derived in

the same manner. Therefore, the mass transfer coefficient can be written as

k = k0e
γz(c1−clim), (6.14)

where k0 is mass transfer coefficient without the wall correction factor.

If minimum time operation is considered, the optimal switching curve S(c1) will be

again a constant defined by

q + c1
dq

dc1
= 0. (6.15)

To derive the expression for derivative of q with respect to c1, let us note that (6.12)

defines an implicit relation between c1 and clim and the following holds

∂clim
∂c1

= −
∂E
∂c1
∂E
∂clim

, (6.16a)

∂E

∂c1
=

∂k

∂c1
ln
clim
c1

− k
1

c1
, (6.16b)

∂E

∂clim
=

∂k

∂clim
ln
clim
c1

+ k
1

clim
+

1

µRm

∂π(clim)

∂clim
. (6.16c)

Then, the following holds

dq

dc1
=

∂q

∂c1
+

∂q

∂clim

∂clim
∂c1

, (6.17a)

dq

dc1
=

∂k

∂c1
ln
clim
c1

−
k

c1
+

(

∂k

∂clim
ln
clim
c1

+
k

clim

)

∂clim
∂c1

. (6.17b)
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The optimal switching curve S(c1) can be derived as

0 =

(

1

clim
− γz ln

clim
c1

)

ln
clim
c1

+
1

k

1

µRm

∂π(clim)

∂clim

(

ln
clim
c1

(1 + γzc1)− 1

)

. (6.18)

The optimal concentration c1 and the corresponding wall concentration clim can then be

calculated from the system of nonlinear equations (6.12) and (6.18).

Both rejection coefficients are constant again and therefore minimum diluant operation

is defined with α∗ being on constraints (concentration and consequent dilution).

6.4 Case Study 1: Separation of Lactose from Pro-

teins

We consider a process described in Rajagopalan and Cheryan (1991) where lactose is sep-

arated from milk proteins by UF combine with diafiltration. Both retention coefficients

are constant R1 = 1, R2 = 0. We will assume α ≥ 0. Permeate flow was determined

experimentally as

q(c1, c2) = b0 + b1 ln c1 + b2 ln c2 = 63.42− 12.439 ln c1 − 7.836 ln c2, (6.19)

where c1 is concentration of proteins and c2 denotes concentration of lactose.

The optimum concentration curve for the minimum time problem depends on both

concentrations and is given by (5.12) as

S(c1, c2) = q + c1
∂q

∂c1
+ c2

∂q

∂c2
,

0 = b0 + b1 + b2 + b1 ln c1 + b2 ln c2. (6.20)

Once these optimal concentrations are obtained the control is calculated from (5.27)

αsing(t) =
∂S
∂c1
c1

∂S
∂c1
c1 +

∂S
∂c2
c2

=
b1

b1 + b2
. (6.21)

As we can see, even if the optimal concentration curve depends on both concentrations,

the corresponding optimal control is constant and less than one due to special expression

for q.

We consider to drive concentrations from initial point [c1,0, c2,0] = [3.3, 5.5] to final

point [c1,f, c2,f] = [9.04, 0.64]. To perform this task in minimum time we use a three step

strategy (see state diagram in Fig. 6.3):
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Figure 6.3: Separation of lactose from proteins: comparison of minimum time and C-CVD

control strategy in concentration diagram (left plot) and corresponding control

(right plot).

1. Start at green circle, horizontal line: pure ultrafiltration until we arrive at optimal

surface S(c1, c2) = 0.

2. Stay on this surface using constant control α = b1/(b1 + b2) = 0.61 until the concen-

tration ratio is the same as the final one: c1(t)/c2(t) = c1,f/c2,f.

3. Follow the line towards origin: use pure dilution step to arrive at the final point (red

cross).

The resulting final time in this case is 4.49 hours. This can be compared to the operation de-

scribed in Rajagopalan and Cheryan (1991) where two step process C-CVD (UF-CVD) was

used. This traditional operation takes for the same initial and final conditions 4.74 hours,

an increase of 5.6%. As we can see from the right diagram in Fig. 6.3, traditional CVD

step (α = 1) starts earlier but it takes more time to reach the final point as the VVD

step (α = 0.61) in minimum time control. There, it is assumed that the last step (upward

arrow) takes no time. Although this is not true in reality, we can simply move the dilution

step out the batch to further processing.

The overall minimum time strategy is sketched in Fig. 6.4 where horizontal solid lines

represent evolution of concentrations during the concentration (UF) step and dashed lines

during pure dilution (α = ∞). Arrows in these lines denote directions, in which the
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Figure 6.4: Separation of lactose from proteins: analytical minimum time control in con-

centration diagram.

respective operations influence concentrations. Previously used initial and final points are

depicted again to illustrate how the minimum time optimal strategy is chosen. We note that

it seems theoretically possible to use two step strategy starting with dilution step followed

by ultrafiltration. However, the resulting final time will be much longer. As a practical

rule of thumb it is necessary to consider only such strategies that approach the optimal

concentration curve. Also note that it is not possible to use dilution and ultrafiltration

steps more times. Optimal control theory does not allow this arbitrary switching and the

resulting trajectory can consists at most of three steps.

Consider now a case where we want to arrive at final point [5, 3.97] (red square in

Fig. 6.4) starting from the same initial point. As shown in Fig. 6.4, it is not admissible to use

three step operation since once we would reach the surface S(c1, c2) (by using UF) it would

not be possible anymore to reach the final point neither by using UF nor pure dilution.

Thus, the middle step is skipped in this case and minimum time operation is attained only

by using ultrafitration and pure dilution operation. Order of these operations is again not

arbitrary and it is such that the resulting curve in state diagram is as close as possible to

optimal surface S(c1, c2). The switching moment between the steps is determined by the

concentration ratio equal to c1,f/c2,f.

The optimal concentration surface does not exist for the minimum diluant problem and
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Table 6.1: Permeate volumetric flowrate relation constants (Data taken from Jaffrin and

Charrier (1994)).

Constant Value

b1 2.877

b2 1.698E-01

b3 1.874E-02

b4 5.708E-04

b5 -2.394E-04

b6 9.334E-05

the resulting optimal operation is of bang-bang type. To illustrate this we could construct

a diagram similar to Fig. 6.4 by prolonging the horizontal lines corresponding to pure

ultrafiltration.

6.5 Case Study 2: Albumin – Ethanol Separation

This ultrafiltration/diafiltration process was originally studied in Jaffrin and Charrier

(1994). The flow q was determined experimentally as

q(c1, c2) =
1

b1 + b2c1 + b3c2 + b4c1c2 + b5c21 + b6c22
, (6.22)

where bi are constants, as reported by Jaffrin and Charrier (1994), can be found in Table 6.1.

Both retention coefficients are constant R1 = 1, R2 = 0 and α ∈ [0, 1]. Normalized

process time is being used, that enables straightforward scale-up calculations. Normalized

process time is defined as the time necessary to process an initial feed solution of 0.0666m3

which corresponds to 1 kg of albumin (initial albumin concentration is 15 kgm−3) being

separated with 1m2 membrane. We investigate different cases of initial concentration

of ethanol (c2,0) and of restriction for final concentration of albumin (c1,f). These are

summarized in Table 6.2.

Finding optimal control numerically. In order to find optimal operation this diafil-

tration process numerically we may use numerical techniques presented in Section 3.3.
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Table 6.2: Initial and final conditions on macro-/micro-solute concentrations.

Case
c1,0 c1,f c2,0 c2,f

[kgm−3] [kgm−3] [kgm−3] [kgm−3]

1 15 80 98.35 0.1

2 15 80 146.3 0.1

3 15 80 194.3 0.1

4 15 120 98.35 0.1

5 15 120 146.3 0.1

6 15 120 194.3 0.1

7 15 240 98.35 0.1

8 15 240 146.3 0.1

9 15 240 194.3 0.1

Here we use CVP method with gradients to optimized variables (unknown parameters of

discretized trajectory α(t)) computed by sensitivity equations method.

Function α(t) can be approximated as piece-wise constant (PWC) or piece-wise linear.

Approximation with a low value of PWC segments (say 2–3) can produce results that are

compatible with known diafiltration strategies as C-CVD and VVD. As number of PWC

segments becomes larger, we can decide whether traditional strategies are sufficient or if

there is some room for improvement using more advanced α(t) trajectories.

For the case of approximation of α(t) by one constant and one linear segment, the same

optimum has been observed for both optimization problems. The improvement using linear

compared to constant α(t) is in average 9.7% for the minimum time operation and 42.3%

for the minimum diluant problem.

We have chosen 2, 3, and 40 PWC segments in order to investigate the impact of

choosing PWC control strategy to minimize the total time of process operation. Table 6.3

summarizes results obtained by several PWC functions α(t) for minimum time problem.

Starred cost function J ∗
1 represents the minimum time attained, whereas the unstarred

cost function J2 means evaluation of the corresponding total diluant consumption.

Compared to constant or linear case, advantages of using PWC profiles are evident.
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Table 6.3: Minimum operation times and diluant consumptions for different N× PWC

α(t).

Case
2×PWC α(t) 3×PWC α(t) 40×PWC α(t)

J ∗
1 [h] J2[m

3] J ∗
1 [h] J2[m

3] J ∗
1 [h] J2[m

3]

1 2.04 0.086 2.04 0.086 2.04 0.088

2 2.30 0.104 2.30 0.104 2.29 0.103

3 2.54 0.118 2.54 0.123 2.54 0.124

4 1.98 0.058 1.98 0.058 1.98 0.059

5 2.24 0.075 2.24 0.075 2.24 0.076

6 2.49 0.088 2.48 0.095 2.48 0.096

7 1.84 0.030 1.84 0.030 1.84 0.030

8 2.11 0.044 2.11 0.044 2.11 0.047

9 2.36 0.055 2.35 0.067 2.35 0.063

The average gain is 64.8% for diluant problem and 14.3% for minimum time problem in

comparison with constant α.

If treating α(t) as a PWC function, obtained results show that there is a similarity in

trajectories of optimal α(t) for Cases 1,4,7; Cases 2,5,8; and for Cases 3,6,9. When Cases

1,4,7 are considered, two and three PWC segments produce the same optimal operation

characterized as C-CVD process with α(t) = {0, 1} with appropriate time lengths.

For other cases, two and three PWC segments produce similar solutions that are a

combination of VVD and C-CVD processes with α(t) = {α1, 1} where α1 > 0.

Although a finer PWC approximation (forty PWC segments) exhibits a different op-

timal α(t) trajectory, minimum operation time stays almost unchanged and differences in

final time between 3 and 40 segments are negligible. Hence, minimum is in this case flat,

i.e. final time value is not strongly influenced by shifting α(t) trajectory from the optimal

to traditional diafiltration operation (C-CVD).

We have again chosen 2, 3, and 40 PWC segments in order to investigate the impact of

choosing PWC control strategy to minimize the diluant consumption. Table 6.4 summarizes

the results.
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Starred cost function J ∗
2 represents the minimum diluant consumption attained, whereas

the unstarred cost function J1 means the corresponding total time.

Table 6.4: Operation times and minimum diluant consumptions for different N× PWC

α(t).

Case
2×PWC α(t) 3×PWC α(t) 40×PWC α(t)

J1[h] J ∗
2 [m

3] J1[h] J ∗
2 [m

3] J1[h] J ∗
2 [m

3]

1 2.04 0.086 2.04 0.086 2.04 0.086

2 2.31 0.091 2.31 0.091 2.31 0.091

3 2.59 0.095 2.59 0.095 2.55 0.095

4 1.98 0.057 1.98 0.057 1.98 0.057

5 2.26 0.061 2.26 0.061 2.24 0.061

6 2.55 0.063 2.55 0.063 2.52 0.063

7 1.84 0.029 1.84 0.029 1.85 0.029

8 2.13 0.030 2.13 0.030 2.13 0.030

9 2.42 0.032 2.42 0.032 2.42 0.032

The average gain in the minimum diluant consumption is 69% comparing to constant

α(t) case. C-CVD (bang-bang control) process operation was proved to be optimal in all

cases and only 2 PWC segments are needed. For different number of PWC segments, ob-

tained minimum final times differ only slightly from those computed in previous case. The

minimum diluant consumption and minimum time operation is the same for Cases 1,4,7. If

concentration c2,0 is increased, it is possible to obtain optimal operation with substantially

less diluant as in the minimum time problem but at the expense of longer processing times.

Finding optimal control analytically. Here we will compare our findings obtained

by numerical procedure with analytically constructed optimal control. We consider only

Cases 1, 2, and 3. Our intention is to show that fine PWC approximation of optimal

control trajectory provides satisfactory results and thus is suitable to use also for cases

when analytical solution is not available.

The optimum concentration curve for the minimum time problem depends on both
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concentrations and is given by (5.12) as

S(c1, c2) = q + c1
∂q

∂c1
+ c2

∂q

∂c2
,

0 = b1 − b5c
2
1 − c1c2b4 − b6c

2
2. (6.23)

Once these optimal concentrations are obtained the control is calculated from (5.27)

αsing(t) =
∂S
∂c1
c1

∂S
∂c1
c1 +

∂S
∂c2
c2

=
0.5b4c1c2 + b5c

2
1

b5c21 + b4c1c2 + b6c22
. (6.24)

Figures 6.5, 6.6 and 6.7 show and compare the time-optimal control of diafiltration pro-

cess for chosen cases found numerically and analytically. Even if analytical and numerical

curves seem to be different at singular arcs, the resulting final times are practically the

same.

Both initial and final concentrations in Case 1 are below the optimal concentration

curve. Therefore, the corresponding optimal operation is to perform UF first until the op-

timal curve is attained. In the second step, α is given by (6.24) until the final concentration

of albumin c1,f = 80 kgm−3 is reached. The final step is CVD until the final concentration

of ethanol is reached.

Cases 2 and 3 differ from the Case 1 as they start above the optimal concentration

curve. Therefore, the first step is CVD (upper constraint on α is 1). Its duration depends

on the distance of the initial point from the optimal curve. The second and the third steps

are then the same as before.

We can observe that C-CVD strategy is nearly time-optimal even if the minimum time

control is quite different from that used in C-CVD. This results from the restriction on

upper value of control α. If this value is raised such that pure dilution step is allowed the

resulting operation times will dramatically drop down.

In the case of minimum diluant problem bang-bang type of control (C-CVD operation)

was observed numerically. Results derived here confirm this behavior as both retention

coefficients are constant. Comparison with VVD strategy shows 61% optimality loss in all

considered cases.

6.6 Case Study 3: Dye – Salt Separation

We consider the nanofiltration (NF) model reported in Lau and Ismail (2010). In their

study, response surface methodology (RSM) was employed to evaluate the separation per-
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Figure 6.5: Analytical and numerical minimum time control for Case 1. Left plot – optimal

concentrations diagram, right plot – optimal α(t).
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concentrations diagram, right plot – optimal α(t).
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Figure 6.7: Analytical and numerical minimum time control for Case 3. Left plot – optimal

concentrations diagram, right plot – optimal α(t).

Table 6.5: Design factors and their levels (adopted from Lau and Ismail (2010)).

Factor Code Unit Factor levels

Low(−) High(+)

Pressure A bar 4 8

Temperature B ◦C 28 50

pH C - 4 11

Dye concentration D ppm 100 400

Salt concentration E ppm 1000 6000

formance of an NF membrane in the removal of salt and reactive dye by varying different

variables such as pressure, temperature, pH, dye concentration and salt concentration.

According to half fractional design of experiments (DoE), twenty-nine experiments were

carried to investigate the effect of five inputs (i.e. pressure, temperature, pH, dye concen-

tration, and salt concentration) on three responses (i.e. permeate flux, dye rejection, and

salt rejection). The design factors and their levels are shown in Table 6.5. The permeation

of salt was found to be greatly influenced by pressure, pH and salt concentration whereas

the rejection of dye remained constant regardless of the changes in the variables. The mean

value of the salt rejection for the entire experimental data set is 98.0%. The resulting sur-

face responses for the salt rejection and the permeate flux in terms of coded factors are
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Table 6.6: Model parameters.

constant value

b1 0.9800

b2 0.7647

b3 1.8080×10−5

b4 5.8607×10−7

b5 2.5066×10−10

b6 4.0600×10−11

given as

Y1 = 83.26 + 2.79A+ 8.37C − 4.52E − 1.96AC, (6.25a)

Y3 = 6.31 · 10−7 + 1.89 · 10−7A− 1.67 · 10−8D − 1.30 · 10−7E−

− 6.07 · 10−8C2 − 2.85 · 10−8AE − 2.096.31 · 10−8BD, (6.25b)

where Y1 is the salt rejection expressed in percentage and Y3 is the permeate flux given in

m s−1.

In this case study, we consider a textile waste stream with the initial dye and salt

concentrations, c1,0 = 100 ppm and c2,0 = 4000 ppm, that is to be processed to meet the

quality constraints of the final product, c1.f = 400 ppm and c2,f = 1000 ppm. Lau and

Ismail (2010) have found that the salt rejection increases with pressure and decreases with

feed pH. Thus, we fix the pressure at 4 bar, the pH at 4, and additionally, the temperature

at 50◦C. Using original scale instead of the coded factors and taking into account the above

mentioned process conditions, the membrane response can be formulated as follows

R1 = b1, (6.26a)

R2(c2) = b2 − b3c2, (6.26b)

q(c1, c2) = b4 − b5c1 − b6c2, (6.26c)

where bi are constants that are listed in Table 6.6.

The dye rejection R1 is independent of the feed composition and we can assume that it

is sufficiently close to unity. In this case, because R11 = R12 = 0 and R1 ≈ 1, the minimum

time state curve is reduced to

Stime(c1, c2) = (R2 − 1)(q + c1q1 + c2q2) + q(c1R21 + c2R22) = 0. (6.27)
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Figure 6.8: Dye – salt separation: optimal operation. Left plot – optimal concentrations

diagram with different values of αmax, right plot – optimal α(t).

Using the membrane response formulas given in (6.26b) and (6.26c) we then obtain

Stime(c1, c2) = (b3c2 − b2 + 1) (2b5c1 − b4 + 2b6c2) + b3c2 (b5c1 − b4 + b6c2) = 0. (6.28)

The singular control α(t) is calculated as

α(t) =
∂S
∂c1
c1

∂S
∂c1
c1 +

∂S
∂c2
c2
, (6.29)

resulting in

α(t) =
c2 (2b2b6 − 2b22b6 − 2b2b3b4) + c22 (2b

2
3b4 − 2b3b6 + 8b2b3b6)− 6b23b6c

3
2

2(b5c1 + b6c2 − b2b5c1 − b3b4c2 − b2b6c2 + 3b3b6c22 + 3b3b5c1c2)

+
c1 (2b1b5 − 2b1b2b5) + c1c2 (3b1b3b5 + 3b2b3b5)− 3b23b5c1c

2
2

2(b5c1 + b6c2 − b2b5c1 − b3b4c2 − b2b6c2 + 3b3b6c
2
2 + 3b3b5c1c2)

. (6.30)

The optimal control is shown in Fig. 6.8. Both initial and final concentrations are

located under the optimal concentration curve and the optimal process is a three-step

process. The first step is concentration mode (α = 0) until optimum concentration curve

presented by (6.27) is reached. The second step is a dynamic-volume diafiltration with

non-constant α(t) where the diluant usage is given by (6.30). This step finishes when the

concentration ratio is the same as the final one: c1(t)/c2(t) = 0.4. Finally, the third step

is a pure dilution mode with α = ∞.

Figure 6.8 shows for comparison the concentration profiles for different choice of max-

imum value of α. As noted above, the limiting cast α = ∞ can simply be realized by
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Table 6.7: Comparison of time optimality loss (∆) between optimal control, optimal control

with different αmax and traditionally used strategies.

control C-DVD C-DVD C-DVD
C-CVD VVD

strategy (αmax=5) (αmax=2) (αmax=1)

∆ 0.1% 0.6% 8.3% 14.0% 55.3%

postponing the pure dilution step after the end of batch processing once the final solution

is prepared for the next operation. Another possibility would be to constrain αmax ≈ 5

where the difference to optimal operation is not large.

Table 6.7 shows comparison of time optimality loss between optimal control (αmax =

∞), optimal control with αmax restricted to different values and traditional control ap-

proaches. Here we can see that the difference between optimal control and optimal control

with αmax = 5 is practically negligible. This difference increases, but not dramatically, if α

is constrained from above by 2. However, it becomes significant (8.3% of optimality loss)

in the case of αmax = 1. Comparison with traditional control strategies shows 14% slower

process with C-CVD approach. Finally, the VVD approach controls the process slower by

more than 50%.

Also note that traditional operation is constrained with c1 < 400 ppm whereas the

proposed optimal operation needs this constraint approximately twice as large. It may

happen that S(c1, c2) is located outside of the experimentally investigated region of c1 and

c2 where the membrane response model is not validated. It seems that the common practice

is that investigators focus on obtaining experimental data from the design space bounded

by (c1,0, c2,0) and (c1,f, c2,f) coordinates whereas optimal operation might be performed

outside of this area. In other words, optimal operation might involve over-concentration

or dilution of the solution and thus, a bigger design space should be considered during the

experimentation phase.

Recalling that R1 = 1 is assumed, the optimal state curve for the minimum diluant

problem is defined as

Sdiluant(c1, c2) = R2 − 1 + c1
∂R2

∂c1
+ c2

∂R2

∂c2
= 0. (6.31)

Using the membrane response formulas given in (6.26b) and (6.26c), the optimal state

curve can be written as

Sdiluant(c2) = b2 − 2b3c2 − 1 = 0. (6.32)
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This results in a single equation involving only variable c2. Solving this equation yields a

negative value (c2 = −6508) that is technically not feasible. The optimal control is then of

bang-bang type: a two-step process where the first step is a concentration step with α = 0

and the second is a dilution mode operation applying the maximum value of α.

6.7 Case Study 4: Sucrose – Sodium Chloride Sepa-

ration

This case study is taken from Fikar et al. (2010) where numerical methods of dynamic

optimization (orthogonal collocation) were used to derive the optimal control of nanofil-

tration/diafiltration process using an economic cost function.

This case study represents diafiltration system with one variable retention coefficient

(R1 is almost constant and equal to one) and the empirical relations for q and R2 as

functions of feed composition are as follows:

q = U1(c2)e
U2(c2)c1, (6.33a)

R2 = V1(c2)e
V2(c2)c1 , (6.33b)

where S1, S2,W1,W2 are second degree polynomials in c2

U1(c2) = u1c
2
2 + u2c2 + u3, (6.34a)

U2(c2) = u4c
2
2 + u5c2 + u6, (6.34b)

V1(c2) = v1c
2
2 + v2c2 + v3, (6.34c)

V2(c2) = v4c
2
2 + v5c2 + v6, (6.34d)

and u1−6 and v1−6 are coefficients that were determined from laboratory experiments with

the process solution (Kovács et al., 2009). It is assumed that α ∈ [0, 1].

It is desired to concentrate sucrose and dilute sodium chloride in solution from their

initial concentrations given by point [c1,0, c2,0] = [10, 250] to final concentrations represented

by the point [c1,f, c2,f] = [50, 50].

The optimum concentration curve for the minimum time problem depends on both

concentrations and is given by (5.12) as

Stime(c1, c2) = (R2 − 1)

(

q + c1
∂q

∂c1
+ c2

∂q

∂c2

)

+ q

(

c1
∂R2

∂c1
+ c2

∂R2

∂c2

)

= 0. (6.35)
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The optimum concentration curve corresponding to the minimum diluant problem is given

analogically as

Sdiluant(c1, c2) = R2 − 1 + c1
∂R2

∂c1
+ c2

∂R2

∂c2
= 0. (6.36)

Both curves have been found using numerical nonlinear equation solvers. Figure 6.9

shows the optimal control of diafiltration process for considered case. Results show that

even if the optimal concentration curve expressions look entirely different, solutions to both

optimal control problems are nearly the same: minimum-time approach takes 10.24 hours

and 0.143m3 of diluant and minimum-diluant approach takes 10.25 hours and consumes

0.143m3 of diluant. In contrast to that, a traditional treatment with NF followed by CVD

and ended by another NF (C-CVD-C) step lasts 14.46 hours and uses 0.256m3 of diluant.

Here 5 and 0.72 are pre-concentration and post-concentration factors, respectively.

Although the two-step approach (α = {0, 1}) would result in faster process, it would

yield high concentrations of salt during the process run that lay out of the range studied

in Kovács et al. (2009). The model is not validated through experiments for this regime,

thus, we have to exclude this strategy from further discussion. In general, a great care

is needed when using empirical models, especially polynomials, for predicting flux and

rejections out of the validated range. In such cases, application of mechanism-driven models

could be considered instead. Note that even complex physical models can be easily treated

by the here proposed optimization methodology. Physical models can be used first to

compute membrane response for a defined set of c1 and c2 that covers the entire area of

question, and then simplified by fitting some simpler empirical relations.

VVD approach is clearly sub-optimal since it takes 22.753 hours and 0.505m3 of dilu-

ant. Another interesting result here is that C-VVD (process duration 14.07 hours, diluant

consumption 0.253m3, pre-concentration factor 3.69) approach is faster than C-CVD-C.

However, this is caused by the previously mentioned inadmissibility of two-step C-CVD op-

eration. Table 6.8 summarizes how much we gain by using of optimal control in comparison

with traditional strategies.

Let us consider another particular case taken from Fikar et al. (2010). The amount of

sodium chloride was minimized at the end of 6 hours of NF/DF process run with optimal

α being of bang-bang type. Using optimal α the concentrations were shifted from initial

state of [c1,0, c2,0] = [150, 300] to arrive at final state [c1,f, c2,f] = [440, 23.38].

Let us suppose an inverse problem. We aim to find optimal time operation to start and
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Figure 6.9: Analytical optimal control of sucrose–sodium chloride separation. Upper plot

– optimal concentrations diagram, lower plot – optimal α(t).

Table 6.8: Comparison of optimality loss (∆) between optimal control and traditionally

used strategies.

∆time ∆diluant

C-CVD-C 41% 79%

C-VVD 37% 77%

VVD 122% 253%
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Figure 6.10: Analytical time-optimal control of sucrose–sodium chloride separation.

Case A taken from Fikar et al. (2010).

finish UF/DF process with above mentioned initial/final conditions. Since the problem is

inverse the optimal solution is the same (bang-bang) as observed for non-inverse one. It is

visualized by concentration diagram in Fig. 6.10. First, α equal to zero is taken to arrive at

prescribed final concentration of macro-solute. The second step is CVD (α at maximum).

The reason of having bang-bang optimal solution can be seen in the fact that the curve

Stime(c1, c2) = 0 cannot be reached by any means (any α) on way from initial to prescribed

final point.

6.8 Case Study 5: Radiopaque – Ethylene Glycol Sep-

aration

We treat the case study taken from Lutz (1997) where authors studied filtration using

reverse osmosis membrane to treat a solution containing 12 g/dL of radiopaque component

(c1) and 0.5 g/dL of ethylene glycol (c2) to end up with the product with concentrations:

40 g/dL of radiopaque and 0.01 d/dL of ethylene glycol. Experimentally obtained mem-
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brane characteristics are as follows

q = −29.19 ln c1 + 118.1, (6.37a)

R1 = 1− (0.01c1 + 0.25c2 + 0.1), (6.37b)

R2 = 1− (0.0073c1 + 0.813). (6.37c)

For the purpose of this study constants which characterize rejection of radiopaque were

slightly changed to reflect the situation where rejection R1 is not close to one.

This example represents a situation when we are not able to obtain expression for

optimal concentration surface analytically. We proceed as suggested previously and derive

an expression for singular optimal control from (5.16). Then we use numerical optimization

to find corresponding lengths of intervals for boundary values of control as well as for

singular one. Results indicate that the optimal control trajectory consists of three parts:

RO, singular arc, and RO. Numerical procedure determines lengths of all these parts.

Once the structure and lengths of respective intervals are fixed, we can operate the process

optimally with singular control (5.16) in the middle part.

Fig. 6.11 shows optimal evolution of concentrations under minimum time control α.

When compared with traditional control strategies, minimum time strategy saves 9% of

process time in comparison with C-CVD (CVD step done at concentration clim/e) and 18%

of process time when compared to VVD control strategy.

In minimum diluant case, although that it is possible that optimal surface exists, it did

not appear for given initial and final conditions. The optimal control is of bang-bang type.

6.9 Discussion

This part of the work deals with batch concentration/diafiltration problems that often

occur in the RO, NF, UF, and MF engineering practice. We have employed optimal

control theory and derived an analytical solution to the problem that involves complete

rejection of macro-solute (R1 = 1), concentration-dependent rejection of micro-solute (R2 =

R2(c1, c2)), and a general flux model (q = q(c1, c2)). The extension of this problem to

concentration-dependent rejection of macro-solute (R1 = R1(c1, c2)) remains analytically

unsolved. However, for this general case we have developed an efficient numerical procedure

that exploits the findings of our theoretical analysis and considerably reduces the required

computational efforts.
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Figure 6.11: Minimum time control of radiopaque - ethylene glycol separation.

We provide a step-by-step procedure to compute the optimal diluant utilization. By

applying this procedure, one can determine the optimal time-varying profile of wash-water

addition for the entire operation. In some cases, the computed optimal profile is found to

be a sequence of conventionally-used steps (i.e. concentration mode, constant-volume di-

afiltration, variable-volume diafiltration). The provided procedure readily finds the optimal

sequence (number and order) of such steps as well as the corresponding switching times.

In most of the cases, however, the optimal trajectory does not follow the shape of known

diafiltration techniques. Such non-linear α-control strategies can either be implemented

through advanced control configuration or be simplified by a sequence of conventional pro-

cess steps having a similar shape. The procedure allows one to quantify time and diluant

savings of the optimal trajectory, thus, it is a useful engineering tool in the decision maker’s

hand.

We have demonstrated through selected case studies how one can apply the provided

optimization theory. We have considered various, both theoretical and empirical, mem-

brane response models as inputs for the given optimization procedure. A great deal of care

is needed when generalizing the findings as far as general patterns in the shape of optimal

trajectory are considered among different applications. This is due to the great variety

and complexity of possible membrane response models regarding concentration-dependent

rejections and flux functions. Note that the provided procedure is general in a sense that it

can be readily applied to different membrane response models, but the computed optimal
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profile may vary with the complexity of the membrane response model, the initial and final

values, and the constraints involved in the model. We have shown that in many cases,

time and diluant savings become more significant with increasing complexity of the model

of membrane response, e.g. strongly non-linear membrane response with regard to both

considered components.

Analysis and numerical optimization have shown that the optimal solution of the time

minimization problem consists of usually three stages. The first and the last ones take

extremal values of α which is pure concentration and either pure dilution (when α is

unbounded from above) or operation with maximal α. The middle stage can have various

time varying trajectories of control. Its complexity depends in the majority of studied

cases on the functional dependence of the outflow q on concentrations. Often, if it is a

function of macro-solute concentration only, the corresponding middle control strategy is

constant macro-solute concentration maintaining operation (this is CVD if R1 = 1) with

various optimal concentrations of the macro-solute. This is shown in the examples with

limiting flux and osmotic pressure models. There are also cases where the middle stage is

VVD with α < 1 as can be seen in the first treated case study. The most general form,

however, is a complex non-linear curve (remaining case studies).

The problem of the minimization of the diluant consumption is analogous to the pre-

ceding case, but it depends only on the functional dependence of rejection coefficients on

concentrations. The most usual case of constant rejection coefficients results in the so-called

bang-bang control where only UF and pure dilution are allowed.

Results indicate that improvement of the proposed procedure as compared to traditional

operation depends on the problem complexity. Processes with simpler membrane and/or

permeate flow characteristics already operate near optimal regime. The improvement for

more complex scenarios can be significant enough to invest in better models and advanced

control configuration.



Chapter 7
Conclusions and Future Research

In this work we investigated optimal operation generalized batch diafiltration process.

We have shown how to setup and treat the problem as a problem of optimal control

(dynamic optimization). This results in specially structured input-affine optimal control

problem. Because of this structure we were able to use analytical technique (Pontryagin’s

minimum principle) to follow necessary condition for optimality and derive structure of

optimal control.

For the special, but rather common, class of processes with complete macro-solute

rejection we characterized the optimal operation in the sense of optimal feedback law,

i.e. optimal operation is characterized completely and uniquely. For general process we

proposed numerical solution procedure which complexity is dramatically reduced in com-

parison with former optimal control problem.

We have critically discussed our findings and provided examples and case studies with

varying order of complexity to illustrate how optimal operation of batch diafiltration pro-

cesses can be found and to show advantages of optimal operation compared to traditional

control techniques.

Motivation for future work can be summarized in three points:

1. Implementation of optimal operation on a real plant

This will include using of robust and real-time optimization techniques in order to

establish feedback control which rejects possible disturbances acting during the real

process run.

2. Multi-objective dynamic optimization of batch diafiltration processes

105
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Obviously, both studied optimal control problems (minimum time and minimum

diluant problem) can be merged by considering optimal problem which objective

function is written as a weighted sum of their objectives. These weights can directly

represent costs to be paid for volume unit of diluant and cost for time unit of process

run. Challenging task is to come up with solution which takes into account various

weights (prices) and thus serve as a generalized form of solutions found in this study.

3. Extension of findings of this work to other filtration and membrane-supplied processes

There are various process setups of filtration and diafiltration processes for which our

findings are not applicable directly but similar approaches can be exploited in order

to optimize performance of these processes. The same applies for other membrane-

based processes such as membrane distillation, pervaporation, or processes where

membrane reactors are involved.
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Resumé

Predkladaná dizertačná práca pojednáva o hl’adańı optimálneho riadenia vsádzkových dia-

filtračných procesov. Diafiltrácia je membránový filtračný proces založený oddel’ovańı roz-

pustených zložiek z roztoku na základe rozdielnej vel’kosti čast́ıc týchto zložiek. Uvažu-

jeme kvapalné roztoky, ktoré obsahujú rozpúšt’adlo, ktorým je spravidla voda, a rozpustené

zložky. Ciel’om procesu diafiltrácie je koncentrovat’ v roztoku hodnotné zložky, charakte-

rizované väčšou vel’kost’ou čast́ıc a vyššou molekulovou hmotnost’ou a zároveň odstránit’

balastné zložky, nečistoty s menšou molekulovou hmotnost’ou a vel’kost’ou čast́ıc. Pro-

cesy tohto typu sa využ́ıvajú najčasteǰsie vo farmaceutickom a potravinárskom priemysle

a v biotechnologických aplikáciách.

V tejto práci skúmame vsádzkový diafiltračný proces (schematicky znázornený na ob-

rázku 4.2), čo znamená, že spracovávaný roztok je vo svojom počiatočnom objeme na

začiatku celej operácie pŕıtomný v nádrži. Z tejto je postupne privádzaný k membránovému

modulu. V tomto module sa nachádza polopriepustná membrána, ktorá je navrhnutá

a vyrobená tak, aby zadržala čo najväčšie množstvo hodnotných zložiek (makrozložiek)

roztoku a aby prepustila (odfiltrovala) čo najväčšie množstvo balastných látok. Relat́ıvne

množstvo zložky zadržané v roztoku je vyjadrené cez koeficient odporu membrány k tejto

zložke. Z predchádzajúceho je zrejmé, že najčasteǰsie sa stretávame s pŕıpadom úplného

zadržania makrozložiek, ich koeficient odporu je 100% a naopak koeficient odporu ba-

lastných látok je nula. Často však môže nastat’ situácia, ked’ tieto koeficienty závisia

od ostatných faktorov, najbežneǰsie od koncentrácii jednotlivých zložiek vo filtrovanom

roztoku.

Čast’ filtrovaného roztoku, ktorá nie je prepustená cez membránu, je kontinuálne od-

vádzaná spät’ do nádrže, kde sa mieša so zvyškom práve nefiltrovaného roztoku. Slučka
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nádrž-membrána-nádrž je udržovaná pri konštantnom tlaku. Takéto riadenie je šetrné voči

použ́ıvanej membráne a zároveň stabilizuje systém od vonkaǰśıch vplyvov. Filtrát, čast’

filtrovaného roztoku prepustená cez membránu, je odvádzaný zo systému. Jeho objemový

prietok cez membránu môže byt’ určený ako funkcia koncentrácii jednotlivých zložiek roz-

toku. Podobne, ako v pŕıpade koeficientu odporu membrány k určitej zložke, aj prietok

filtrátu cez membránu môže byt’ oṕısaný matematickým modelom, ktorý môže vychádzat’

z rýdzo teoretických, experimentálnych alebo teoreticko-empirických poznatkov.

Ako už bolo spomenuté, ciel’om diafiltrácie je koncentrovat’ v roztoku požadované látky

a vymyt’ nečistoty. Z praktického pohl’adu možno hovorit’ o dosiahnut́ı požadovanej kon-

centrácie makrozložky a nečistôt na konci operácie. Ked’že koeficienty odporu ako aj

prietok filtrátu sú funkciou koncentrácii zložiek pŕıtomných v roztoku, proces diafiltrácie

môže byt’ riadený pridávańım rozpúšt’adla na ovplyvňovanie týchto koncentrácii. Vhod-

nou vol’bou riadiacej veličiny je túto zvolit’ ako pomer prietokov pridávaného rozpúšt’adla

a filtrátu. Takáto veličina je bezrozmerová a tradične sa označuje symbolom α. Existujú

viaceré tradične použ́ıvané postupy nastavovania hodnôt tejto veličiny počas priebehu pro-

cesu. Tieto sú načrtnuté na obrázku 4.3. Ciel’om tejto práce je nájst’ optimálne riadenie

procesu a určit’ mieru suboptimality tradičných pŕıstupov.

Nájst’ optimálne riadenie procesu diafiltrácie znamená nájst’ dynamický (časovo závislý)

priebeh trajektórie α(t), ktorý minimalizuje:

1. d́lžku operácie (čas),

2. spotrebu pridávaného rozpúšt’adla,

potrebnú na dosiahnutie stanoveného separačného zámeru. Táto práca sa teda venuje

dvom problémom, ktoré môžu byt’ formulované ako úlohy optimálneho riadenia v otvorenej

riadiacej slučke, dynamickej optimalizácie.

Riešenie problému optimálneho riadenia znamená nachádzanie optimálnych trajektórii

riadiacich a riadených velič́ın (stavov procesu). Toto predstavuje vo všeobecnosti vel’mi

zložitý matematický problém. Existujú však metódy, pomocou ktorých sa táto úloha dá

vyriešit’ analyticky. Tieto metódy zahŕňajú variačný počet, dynamické programovanie a

prinćıp minima. Sú postavené na prinćıpe určovania kandidátov pre optimálne riadenie

na základe riešenia podmienok optimality problému optimálneho riadenia. V predkladanej

práci využ́ıvame metódu ruského matematika L.S. Pontrjagina, prinćıp minima, ktorá ekvi-

valentne definuje problém optimálneho riadenia ako problém minimalizácie Hamiltoniánu.
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Tento predstavuje špeciálnu funkciu, ktorá v sebe zahŕňa optimalizačné kritérium i mate-

matický opis dynamiky procesu, model procesu.

Často sa však môžeme stretnút’ so situáciou, ked’ nie je možné na základe podmienok

optimality určit’ optimálne riadenie, napŕıklad z dôvodu zvýšenej zložitosti problému,

S rozvojom digitálnych poč́ıtačov sa preto postupne v praktických aplikáciách začali využ́ı-

vat’ metódy numerické. Tieto pracujú na prinćıpe diskretizácie (aproximácie) bud’ pôvod-

ného problému optimálneho riadenia alebo podmienok optimality. Medzi tieto metódy pat-

ria iterácia vektora riadenia, iterácia hraničnej podmienky, úplná parametrizácia, parame-

trizácia vektora riadenia a metóda viacnásobného nástrelu. Najviac je v práci využitá

metóda parametrizácie vektora riadenia, ktorá transformuje problém optimálneho riadenia

na problém nelineárneho programovania pomocou polynomických aproximácii trajektórii

riadiacich velič́ın. Predkladaná práca taktiež uvádza prehl’ad metód źıskavania gradientov

k dynamickým premenným, kde sa využ́ıvajú metódy konečných diferencíı, citlivostných

rovńıc a adjungovaných premenných. Týmto sú predstavené hlavné praktické aspekty

použitia numerických metód dynamickej optimalizácie.

Matematický model skúmaného procesu diafiltrácie je tvorený sústavou obyčajných

diferenciálnych rovńıc. Jeho štruktúra je taká že riadiaca veličina α(t) vystupuje v týchto

rovniciach lineárne. Túto špeciálnu štruktúru model procesu využ́ıvame pri nájdeńı op-

timálneho riadenia. Ked’že rovnako plat́ı, že minimalizovaná účelová funkcia je lineárna

v premennej α(t), Pontrjaginov prinćıp minima hovoŕı, že optimálne riadenie bude bud’

saturované na obmedzeniach, alebo bude dané takzvaným singulárnym riadeńım, alebo ich

vzájomnou kombináciou. Bežne saturované riadenie predstavuje takzvaný koncentračný

režim, v ktorom nepridávame do systému žiadne rozpúšt’adlo, respekt́ıve takzvaný zried’o-

vaćı režim, kde v jednom momente pridáme určité množstvo rozpúšt’adla. Singulárne

riadenie vyplýva z podmienok optimality a môže byt’ źıskané ako funkcia koncentrácii

rozpustených zložiek.

Vo všeobecnom pŕıpade diafiltračného procesu (ak predpokladáme l’ubovol’nú závis-

lost’ koeficientov odporu membrány a prietoku filtrátu na koncentráciách jednotlivých fil-

trovaných zložiek) nemáme žiadnu informáciu o tom, kedy aplikovat’ saturované či sin-

gulárne riadenie. Optimálne riadenie však môžeme nájst’ pomocou numerickej optimalizá-

cie, ktorá urč́ı poradie a časové trvanie jednotlivých úsekov riadenia, pŕıpadne množstvo

pridaného rozpúšt’adla pre zried’ovaćı režim.

Ako už bolo spomenuté, často sa vyskytujúcou konštrukčnou vlastnost’ou membrán
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je ich konštantný úplný odpor k prepúšt’aniu makrozložiek. V tomto pŕıpade je možné

nájst’ analytické vyjadrenie krivky v priestore koncentrácii, pozd́lž ktorej je nutné použit’

singulárne riadenie. Naviac je možné z umiestnenia tejto krivky a polohy bodu vyjadru-

júceho aktuálne koncentrácie v systéme určit’, či je potrebné použit’ riadenie saturované

na minime či maxime. Optimálne riadenie diafiltračného procesu je teda exaktne určené

sledovańım vývoja koncentrácii v systéme a je dané ako trojkroková operácia pri ktorej sa:

1. použije koncentračný alebo zried’ovaćı režim na prevedenie koncentrácii z počia-

točného stavu na singulárny povrch (krivku)

2. vykoná dynamické pridávanie rozpúšt’adla tak, aby sa bod predstavujúci aktuálne

koncentrácie pohyboval po singulárnej krivke

3. záverečným krokom je opät’ použitie saturovaného riadenia na dosiahnutie požado-

vaného koncového bodu v priestore koncentrácii

V predkladanej práci d’alej uvádzame niekol’ko pŕıkladov prevzatých z literatúry týka-

júcej sa diafiltračných procesov. Postupne ukazujeme ako nájst’ optimálne riadenie diafil-

tračného procesu poṕısaného modelmi, ktoré majú základ v teórii prestupu látky, modelmi

s empirickými korekciami teoreticky odvodených modelov až po modely, ktorých štruktúra

je źıskaná experimentálne. Tieto pŕıklady a pŕıpadové štúdie navyše ukazujú suboptimalitu

tradičných postupov riadenia membránových diafiltračných procesov, pričom miera sub-

optimality narastá so zvyšujúcou sa komplexnost’ou modelu použitej membrány. Ďaľsou

dôležitou črtou optimálneho riadenia sa ukazuje byt’ zvýšená zložitost’ riadiaceho obvodu

procesu operujúceho v optimálnom režime. Je teda namieste porovnat’ mieru suboptimality

tradične riadenej diafiltrácie a určit’, či sa invest́ıcia do zložiteǰsej štruktúry riadenia vy-

plat́ı. Neprehliadnutel’ným pozorovańım je taktiež časté dosahovanie koncentrácii, ktoré sú

bĺızko hraniciam vyšetrovanej oblasti koncentrácii pri experimentálnom źıskavańı modelov.

Zistenia uvedené v tejto práci teda dávajú informáciu o možnom postupe experimentátorom

pracujúcim na experimentálnom hl’adańı modelov skúmaných procesov.

Rozš́ırenie a d’aľsie pokračovanie tejto práce spoč́ıva v:

1. implementácii optimálneho riadenia na reálnom zariadeńı

2. multikriteriálnej optimalizácii vsádzkových diafiltračných procesov
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3. aplikácii teoretických zisteńı pri skúmańı rôznych pokročilých filtračných procesov a

procesov využ́ıvajúcich membránovú separáciu
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