
Simplification of Explicit MPC Solutions via Inner
and Outer Approximations

Juraj Oravec, Slavomı́r Blažek, and Michal Kvasnica
Institute of Information Engineering, Automation, and Mathematics

Faculty of Chemical and Food Technology
Slovak University of Technology in Bratislava

Radlinského 9, 812 37 Bratislava, Slovakia
(Tel: +421 259 325 352; e-mail: juraj.oravec@stuba.sk)

Abstract—The paper proposes to reduce complexity of explicit
MPC feedback laws by representing regions over which the law is
defined as (possibly non-convex) polygons. Each polygon is then
represented only by its boundaries, which reduces the memory
footprint of the feedback law. Even though significant amount of
memory can be saved this way, the price to be paid is increased
computational load associated by performing point location tasks
on non-convex objects. To reduce the computational require-
ments, we therefore propose to devise inner and outer convex
approximations of non-convex polygons. Such approximations
then allow to perform point location more effectively, leading
to reduction of the required on-line computational effort. Several
ways to design suitable approximations are presented and efficacy
of the proposed procedure is evaluated.

I. INTRODUCTION

Pioneered by [1], Explicit Model Predictive Control (MPC)
has garnered significant attention among theoreticians and con-
trol engineers because it allows to implement MPC on cheap
control hardware. Previously, this was not easily attainable.
The reason being that MPC requires a numerical optimization
algorithm to be executed at each sampling instant to obtain
optimal control actions. In explicit MPC, the need for repetitive
optimization is abolished by shifting the optimization offline.
Several authors (see e.g. [2], [3], [4], [5]) have shown how
to pre-compute the solution to a given optimization problem
offline using multi-parametric programming, which gives rise
to an explicit representation of the MPC feedback law. For
a rich class of MPC problems it can be furthermore shown
that the feedback law takes a form of a Piecewise Affine
(PWA) function which maps measurements onto the optimal
control inputs. Hence closed-loop implementation of explicit
MPC reduces to a mere function evaluation.

However, complexity of the explicit PWA feedback law
often exceeds capabilities of the implementation hardware
either in terms of computational load, memory storage, or both.
Therefore it is important to keep complexity of explicit MPC
solutions on an acceptable level. The problem of reducing
complexity of explicit MPC solutions has thus attracted nu-
merous researchers in the past 10 years. Two principal ways
to reduce complexity are reported in the literature. The first
approach is based on replacing the original PWA feedback law
by a simpler function while sacrificing optimality. Examples of
methods in this class include, but are not limited to, relaxation
of optimality conditions [6], application of model reduc-
tion [7], reduction of number of degrees of freedom by move-

blocking [8], approximation via PWA functions defined over
simplicies [9], refinement based on Lyapunov functions [10],
or by polynomial approximation [11], [12]. In all cases a
simpler, yet sub-optimal feedback law can be obtained. In
some practical cases, however, the induced loss of optimality
is inacceptable.

Therefore the second principal line of research is devoted
to simplifying the PWA feedback law such while preserving
optimality. This can be achieved by merging regions over
which the PWA feedback is defined [13], by encoding the PWA
function as a set of min/max rules [14], by devising a binary
search tree [15], or by exploiting saturation properties [16].

Recently, in [17] we have shown how to reduce the
memory footprint of an explicit MPC solution by represent-
ing regions of the PWA feedback as (possibly non-convex)
polygons. Although significant amount of memory can be
saved by this approach, it suffers from the increase of on-line
computational complexity needed to evaluate the polygonic
PWA function. In this paper we address this deficiency and
show how to significantly reduce the on-line computational
effort. This is achieved by devising outer and inner convex
approximations of polygonic regions. These approximations
allow to significantly speed up the task of deciding whether a
particular point belongs to a polygon or not. Specifically, the
outer approximation serves as a necessary condition for such
a test, while the inner approximation constitutes sufficiency.
To render these conditions as efficient as possible, the two
approximations must be designed such that their volume is
either minimized (for outer approximations) or maximized (for
inner approximations). Several procedures for designing such
approximations are presented in Section V. Efficacy of the
proposed procedure is then illustrated by means of a motivating
example.

II. NOTATION AND DEFINITIONS

Definition 2.1 (Polyhedron): A polyhedron Q = {x ∈
Rn | Hx ≤ k} is a convex set that is defined as the intersection
of a finite number of affine, closed half-spaces hT

i x ≤ ki where
hT
i is the i-th row of H .

Definition 2.2 (Polytope): Bounded polyhedron is called
polytope.

Definition 2.3 (Polygon): A polygon P ⊂ Rn is a (pos-
sibly non-convex) set that is bounded by a closed path,
composed of a finite number of n− 1 dimensional polytopes.

2013 International Conference on Process Control (PC)
June 18–21, 2013, Štrbské Pleso, Slovakia

978-1-4799-0927-8/13/$31.00 c©2013 IEEE 389

Definition 2.4 (Geometric subdivision): We call the set of
polytopes {Qi}, i = 1, . . . , R the geometric subdivision of a
polygon P if P = ∪iQi and int(Qi) ∩ int(Qj) = ∅, ∀i 6= j.

Definition 2.5 (Vertex representation of a polytope):
Every polytope Q ⊂ Rn can be equivalently represented by

Q = convh(v1, . . . , vM), (1)

where convh is the convex hull operator and vi ∈ Rn, i =
1, . . . ,M are vertices of the polytope.

III. EXPLICIT MODEL PREDICTIVE CONTROL

We consider linear time-invariant systems in the discrete-
time domain, described by state-space models of the form

x(t+∆T) = Ax(t) +Bu(t), (2)

where x(t) ∈ Rn is the state vector at time t, u(t) ∈ Rm is
the vector of control commands, and ∆T is the sampling time.
States and inputs are constrained by

x(t) ∈ X , u(t) ∈ U , ∀t ≥ 0, (3)

where X and U are polytopes of appropriate dimensions,
containing the origin in their respective interiors. Furthermore,
we assume that the pair (A,B) is controllable and that state
measurements x(t) are available at each time instant t.

For system (2) subject to constraints (3), the MPC opti-
mization problem becomes

U∗
N = arg min ‖QNxN‖p +

N−1∑

k=0

‖Qxxk‖p + ‖Quuk‖p
(4a)

s.t. x0 = x(t), (4b)
xk+1 = Axk +Buk, k = 0, . . . , N − 1,

(4c)
xk ∈ X , k = 0, . . . , N, (4d)
uk ∈ U , k = 0, . . . , N − 1, (4e)

where xk and uk denote, respectively, the state and input pre-
dictions at time instant t+k, initialized by the measurements of
the current state x(t). Moreover, QN , Qx and Qu are penalty
matrices of suitable dimensions with QN � 0, Qx � 0,
Qu ≻ 0, and p denotes a norm in which corresponding
quantities should be minimized (if p = 2, then we can
equivalently minimize zTQz instead of ‖Qz‖2 =

√
zTQz).

Solving the optimal control problem (4) for a particular initial
condition x(t) leads to the sequence of optimal control inputs
U∗
N = {u∗

0, . . . , u
∗
N−1}, defined over the prediction horizon N .

In the receding horizon implementation, only the first element
of U∗

N , that is, u∗
0 is actually implemented to the controlled

plant and the whole procedure is repeated at the next sampling
instant for new values of the state measurements.

By solving (4) using parametric programming [18], the
optimal receding horizon control action u∗

0 can be pre-
computed [3], [19] for all feasible values of x(t) as a PWA
function of the form

u∗
0 = κ(x(t)) :=





F1x(t) + g1 if x(t) ∈ Q1

...
FMx(t) + gM if x(t) ∈ QM

(5)

where Fi ∈ Rm×n, gi ∈ Rm, and Qi = {x |Hix ≤ ki} are
polytopes in Rn, for all i = 1, . . . ,M , with M denoting the
total number of polytopes.

For given state measurements x(t), the value of u∗
0 can

be obtained by evaluating the function κ(·) using e.g. the
sequential search procedure, as captured by Algorithm 1,
whose runtime complexity is O(M). However, to evaluate κ(·)

Algorithm 1 Evaluation of κ(·) from (5)
INPUT: Polytopes Qi, feedback laws Fi, gi, number of

polytopes M , state measurement x(t)
OUTPUT: Optimal RHMPC control input u∗

0
1: for i = 1, . . . ,M do
2: if x(t) ∈ Qi then
3: u∗

0 = Fix(t) + gi
4: return
5: end if
6: end for

for a given value of x(t), the function first needs to be stored
in the memory of the control hardware platform. The memory
footprint of κ(·) (which consists of polytopes Qi and feedback
gains Fi, gi, i = 1, . . . ,M) is a linear function of M , the total
number of polytopes. More specifically, the memory consumed
by the function κ(·) is equal to

S(κ) =
M∑

i=1

(ci +m)(n+ 1), (6)

where ci is the number of defining half-spaces of the i-th
polytope Qi, m is the number of control inputs, and n denotes
dimension of the state vector.

IV. POLYGONIC REPRESENTATION OF EXPLICIT MPC

The objective is to reduce memory consumption of the
explicit feedback law κ(·) by exploiting the fact that, in
practice, several polytopes of (5) will be associated to identical
feedback gains. Denote by Mu the number of unique feedback
gains and let Ij ⊆ {1, . . . ,M} be the index set of polytopes
Qi which share the j-th feedback, i.e.

Ij = {i | Fi = Fj , gi = gj, i ∈ {1, . . . ,M}}, j = 1, . . . ,Mu.
(7)

Let
Pj =

⋃

i∈Ij

Qi (8)

be the polygon whose geometric subdivision is given by
polytopes Qi, ∀i ∈ Ij . Then we can rewrite κ as

κ̃(x(t)) :=





F1x(t) + g1 if x(t) ∈ P1

...
FMux(t) + gMu if x(t) ∈ PMu

(9)

We remark that ∪jIj = {1, . . . ,M}. Naturally, Mu ≤ M
always holds, with Mu ≪ M often being the case in practice.

Lemma 4.1 ([17]): For all x(t) in the domain of κ we have
κ(x(t)) = κ̃(x(t)). �

390

The total memory consumed by the function κ̃(·) in (9) is
O(Mu). More specifically, we have

S(κ̃) =
Mu∑

i

(bi +m)(n+ 1), (10)

where bi is the number of facets defining the boundary of the
i-th polygon Pi. Comparing (10) to (6) we see that κ̃ will
consume less memory than κ if

∑Mu

i bi ≤ ∑M
i ci. Since

each polygon Pi is composed of the geometric subdivision
{Qi}i∈Ii , only the polytopes on the boundary of Pi need to be
stored, therefore the relation always holds. Moreover, S(κ̃) ≪
S(κ) is often the case in practice.

Evaluation of κ̃ from (9) for a given value of x(t) can
be done by a straightforward modification of Alg. 1, reported
for completeness as Algorithm 2. Its runtime complexity is
O(Mu).

Algorithm 2 Evaluation of κ̃ from (9)
INPUT: Polygons Pi, feedback laws Fi, gi, number of unique

feedbacks Mu, state measurement x(t)
OUTPUT: Optimal RHMPC control input u∗

0
1: for i = 1, . . . ,Mu do
2: if x(t) ∈ Pi then
3: u∗

0 = Fix(t) + gi
4: return
5: end if
6: end for

To obtain the value of κ̃(x(t)) for a particular point x(t),
Algorithm 2 needs to determine, in Step 2, whether x(t) ∈ Pi,
a task commonly known as the point location problem. Since
the polygon Pi can be a non-convex set, in general, the task
of deciding whether x(t) belongs to Pi becomes challenging.

Formally, the problem to be solved in Step 2 of Alg. 2 can
be stated as follows:

Problem 4.2: Given is a polygon P ⊂ Rn and a point
x ∈ Rn. Determine whether x ∈ P . �

In [17], Problem 4.2 was solved using a ray shooting
procedure. However, the approach has one crucial downside.
Specifically, the ray shooting scheme introduces significant
computational overhead, and hence slows down implementa-
tion of explicit MPC. An another alternative to solve Prob-
lem 4.2 is to exploit the geometric subdivision (8). Specifically,
to test whether x ∈ P , one can instead verify whether x ∈ Qi

for some i ∈ {1, . . . ,MP }. However, such a procedure is
equivalent, from a computational load of view, to evaluation
of the original feedback (5). Therefore in the next section we
propose an alternative way to solving Problem 4.2. The idea is
based on devising inner and outer approximations of polygons
Pi in (9) such that the point location problem can be performed
more effectively.

V. POINT LOCATION IN POLYGONS VIA APPROXIMATIONS

Throughout this section we consider a single non-convex
polygon P ⊂ Rn, which is represented by a geometric
subdivision P = {Qi}, where Qi, i = 1, . . . , R are polytopes.

The task is to devise a procedure that solves Problem 4.2, i.e.,
answers whether x ∈ P for an arbitrary x ∈ Rn.

The central idea of this paper is as follows. Assume that
two sets, namely Pout and Pin exist such that

Pout ⊇ P (11a)
Pin ⊆ P (11b)

holds. Then Problem 4.2 can be solved efficiently as follows.

Lemma 5.1: Given is a point x, polygon P , and the sets
Pout and Pin. If x 6∈ Pout, then x 6∈ P . Furthermore, if x ∈ Pin,
then x ∈ P .

Proof: Follows immediately from (11).

The first statement of Lemma (5.1), i.e., x 6∈ Pout ⇒ x 6∈ P
represents a necessary condition for validity of the inclusion
test x ∈ P . The second term, i.e., x ∈ Pin ⇒ x ∈ P , on the
other hand, represents a sufficient condition. With Lemma (5.1)
in hand, a procedure to solve Problem 4.2 can be formally
stated as Algorithm 3, reported below.

Algorithm 3 Suggested test for x ∈ P
INPUT: Point x, polygon P , sets Pout and Pin.
OUTPUT: True if x ∈ P , false otherwise.

1: if x ∈ Pin then
2: return true
3: else if x 6∈ Pout then
4: return false
5: else
6: Determine whether x ∈ P using the method of [17].
7: end if

If the sets P , Pin, and Pout are all non-convex, Algorithm 3
does not provide any improvement upon [17]. However, if Pin
and Pout are both convex (or if they consist of a finite number
of convex sets), then Alg. 3 renders Problem 4.2 much easier
to solve. Specifically, it is worth noting that the two inclusion
tests in Steps 3 and 1 can be performed efficiently if Pout
and Pin are convex sets. By employing the outer and inner
approximations of a (possibly non-convex) polygon P , one
can therefore reduce the number of expensive point locations
performed in Step 6.

However, in order to exploit Algorithm 3, one first needs
to design the outer and inner convex approximations Pout and
Pin such that (11) holds. Moreover, efficacy of Alg. 3 depends
on the volume of Pout and Pin. The inner approximation Pin
should be as large as possible, as to maximize the likelihood of
terminating Alg. 3 in Step 2 if x ∈ Pin. On the other hand, the
smaller the volume of Pout, the more efficient the test in Step 3
is. This is due to the fact that Pout is an outer approximation
and represents the necessary condition for the inclusion test
x ∈ P . Therefore the smaller Pout is, the more points x with
x 6∈ Pout can be ruled out in Step 3.

Several ways to design inner and outer approximations
with these properties are outlined in the sequel. The standing
assumption of the remainder of this section is that a polygon
P is given as a geometric subdivision of the form of (8), i.e.,
P = ∪iQi.

391

A. Inner Approximation

The problem of finding a suitable inner convex approxima-
tion Pin can be formally stated as follows.

Problem 5.2: Given is a polygon P = ∪iQi where Qi =
{x | Hix ≤ ki}, i = 1, . . . , R are polytopes. Find a convex
set Pin that satisfies Pin ⊆ P and has a large volume.

The main difficulty is to guarantee that Pin ⊆ P (which
means that ∀x ∈ Pin we have x ∈ P) when P is non-convex.
Let C = Rn \ P denote the complement of the polygon P .
Then Pin ⊆ P is equivalent to

∀x ∈ C ⇒ x 6∈ Pin. (12)

In the sequel we search for an ellipsoidal form of Pin, i.e.,

Pin = {x | (x− xc)
TP−1(x− xc) ≤ 1}, (13)

where xc ∈ Rn denotes the center of the ellipsoid and P ∈
Rn×n is a symmetric, positive definite matrix, that is, P =
PT ≻ 0. We seek for xc and P such that the volume of Pin
in (13) is maximized while satisfying (12).

To pose the search for xc and P in (13) as a convex
optimization problem, we exploit the S-procedure:

Lemma 5.3 ([20], [21]): Let f0(x) and fi(x), i =
1, . . . ,M be quadratic functions. Then

fi(x) ≤ 0 ⇒ f0(x) ≥ 0 (14)

holds for all x ∈ Rn and for all i = 1, . . . ,M if and only
if there exist non-negative scalars λi ≥ 0, i = 1, . . . ,M such
that

f0(x) +
∑M

i=1 λifi(x) ≥ 0. (15)

�

To see the relation between Lemma 5.3 and Problem 5.2,
first note that the complement C is divided into a finite
number of polyhedra Ri. Then the implication in (12) can
be expanded to ∀x ∈ Ri ⇒ x 6∈ Pin, which has to hold for
all i = 1, . . . ,MC . Since Ri = {x | Cix ≤ di}, we can set
fi(x) := Cix+ di. Furthermore, x 6∈ Pin can be cast as

(x− xc)
TP−1(x− xc)− 1− ǫ︸ ︷︷ ︸

f0(x)

≥ 0. (16)

Here, ǫ > 0 denotes a small positive tolerance used to rewrite
strict inequality g(x) > 0 to the non-strict form g(x) ≥ ǫ.
Finally, note that any quadratic function g(x) = xTWx +
2wTx+ z can be written in a compact form as

g(x) :=

[
x
1

]T [
W w
wT z

]

︸ ︷︷ ︸
W̃

[
x
1

]
. (17)

It is well known (see e.g. [21]) that with g(x) as in (17),
g(x) ≥ 0 holds for all x if and only if the matrix W̃ is positive
semi-definite. Using this fact, and by applying the S-procedure
of Lemma 5.3 with f0(x) and fi(x) defined as above, we can
hence formulate the search for P and xc in (13) as
[

P̃ −xT
c P̃

P̃ xc xT
c P̃ xc − 1− ǫ

]
+

MC∑

i=1

λi

[
0 1/2Ci

1/2CT
i −di

]
� 0, (18)

where P̃ = P−1. When xc is fixed, the search for an ellip-
soid (13) that has maximal volume can be done by searching
for P̃ = P̃T � 0, λi ≥ 0, i = 1, . . . ,MC , while minimizing
the trace of P̃ , i.e.,

min
P̃ , λi

trace (P̃) s.t. λi ≥ 0, (18) holds, i = 1, . . . ,MC . (19)

Note that (19), with xc being fixed, is an LMI optimization
problem that can be solved efficiently using off-the-shelf
software (e.g. with [22]). Once P̃ is computed via (19), P
in (13) is recovered by P = P̃−1.

B. Outer Approximation

To search for a suitable outer approximation Pout, we need
to solve the following problem.

Problem 5.4: Given is a polygon P = ∪iQi. Find a convex
set Pout that satisfies Pout ⊇ P and has a small volume. �

Let Vi = {vi,1, . . . , vi,nvi
} denote the vertices of polytope

Qi. Then
Pout = convh{V1, . . . ,VR}, (20)

is the smallest polytope that contains P , i.e., Pout ⊇ P . The
polytopic nature of Pout in (20) follows from the definition of
a polytope as a convex hull of finitely many points (see [23]).
Its minimal volume is a direct consequence of the definition
of convex hull as the smallest convex set that contains sets of
points V1, . . . ,VR. For formal proofs an interested reader is
again referred to [23]. Although Pout from (20) is the smallest
polytopic outer approximation, its construction is not always
easy. In particular, computing the convex hull of a set of
points is an NP-hard problem and therefore applicable only
to problems in low dimensions or for low number of points.

As an alternative way, we can also design Pout as an
ellipsoid, i.e.,

Pout = {x | (x − xc)
TW−1(x− xc) ≤ 1}. (21)

The ellipsoid is parameterized by its center point xc ∈ Rn and
the matrix W ∈ Rn×n satisfying W = WT ≻ 0. To design
these parameters such that Pout ⊇ P holds, one proceeds as
follows. Since P = ∪iQi, denote again by Vi the vertices of
Qi for i = 1, . . . , R. Then P ⊇ ∪iQi if and only if P ⊇ Qi

for all i = 1, . . . , R. This in turn is equivalent to

(v − xc)
TW−1(v − xc) ≤ 1, ∀v ∈ Vi, ∀i ∈ 1, . . . , R. (22)

Since each polytope Qi has only finitely many vertices, (22) is
a set of finitely many constraints. For each particular choice of
the vertex v, the constraint can be rewritten, using the Schur
complement [24], to

[
1 (Svj − s)T

(Svj − s) I

]
� 0, (23)

where S = W−1/2, s = Sxc, and vj are vertices of polytopes
Qi, i = 1, . . . , R. Together with the constraint S � 0, the
problem of finding the smallest ellipsoidal outer approxima-
tion as in (21) can then be solved as an LMI problem. To
minimize volume of Pout we need to maximize log(det(S)),
see [20]. Numerically, the LMI (23) can be solved e.g. using
SeDuMi [22] and YALMIP [25].

392

-40 -30 -20 -10 0 10 20 30 40
-8

-6

-4

-2

0

2

4

6

8

x
1

x
2

Fig. 1. Polytopes of the same color share the same feedback law. The two
principal polygons are constituted by polytopes depicted in the green and
yellow color, respectively.

VI. EXAMPLE

As a motivating example that frequently occurs in practice,
consider a double integrator, which models movement of
an object in a one-dimensional plane. States of the system
represent, respectively, the object’s position and velocity, while
the control input is equivalent to the force applied to the object.
Using sampling time ∆T = 1 second, the double integrator
dynamics can be described by the state-space model

x(t+∆T) =

[
1 1
0 1

]
x(t) +

[
1
0.5

]
u(t). (24)

We assume state constraints X = {x ∈ R2 | − 40 ≤ x ≤ 40}
and input bounds U = {u ∈ R | − 1 ≤ u ≤ 1}. By
solving problem (4) for N = 15, QN = I , Qx = I ,
Qu = 1, we have obtained the function κ(·) in (5) using
the Multi-Parametric Toolbox [26]. The function consisted of
493 polytopes in the 2-dimensional state space. The polytopes
are shown in Figure 1. The total memory footprint of κ
per (6) was S(κ) = 5961 real numbers. To assess the amount
of computational resources required to implement such an
explicit MPC feedback on-line via the standard procedure
represented by Alg. 1, we have investigated 6000 equidistantly
placed points from the domain of κ(·). For each point we
have first executed Alg. 1 and measured the execution time.
Using a pure Matlab implementation of the algorithm on a
2.2 GHz CPU, the point location took 2.3 · 10−4 seconds per
point, on average. We remark that the execution times can be
significantly reduced by devising a native compiled version of
Alg. 1.

Next we investigate how much memory and computational
resources can be saved by using the polygonic representation
proposed in Sections IV and V. In terms of memory, it is
worth noting that among the 493 feedback gains, only 37 were
unique. Two principal polygons consisting of more than one
polytope can be identified in Fig. 1. One is composed of 229
polytopes shown in yellow, the other one consists of 229 green-
colored polytopes. By employing the polygonic representation
of the RHMPC feedback function κ̃ per (9), the total memory
footprint is just S(κ̃) = 863 numbers, a reduction by a factor
of 7.

To compare performance of Alg. 3 against Alg. 1, we
have designed various outer and inner approximations of non-

Fig. 2. Outer convex approximation of the green non-convex polygon from
Fig. 1. Ellipsoidal approximation (21) is shown by the red dotted line, the
convex hull (20) is marked by solid blue color.

convex polygons. Two types of outer approximations Pout
were calculated using MPT and YALMIP: the polytopic outer
approximation via convex hulls as in (20), and an ellipsoidal
outer approximation from (21). For the green-colored polygon
shown in Fig. 1, the respective approximations are reported
in Fig. 2. As outlined in Section V, the smaller the volume
of an outer approximation, the higher the efficacy of Step 3
in Alg. 3. To illustrate this dependence, we again took 6000
equidistantly placed points and investigated how many points
are contained outside of each respective outer approximation
(the higher the number, the more often we can quickly abort
Alg. 3 already at Step 4). The results as reported in Table I,
along with computational effort needed to construct respective
outer approximations. As can be seen, the convex hull outer
approximation (20) outperforms the other two alternatives.

Inner ellipsoidal approximations of Section V-A were then
computed for each of the principal polygons with an example
being shown in Fig. 3. The corresponding LMIs (19) were for-
mulated by YALMIP and solved by SeDuMi. Employing these
convex inner approximations in Step 1 significantly improved
performance of Alg. 3 upon our benchmark, represented by
Alg. 1. Specifically, for each point for which x ∈ Pin holds,
we can abort Alg. 3 quickly with a positive answer to the query
x ∈ P already in Step 2.

Employing the described inner and outer approximations in
Alg. 3 allowed to reduce the average computational effort per
point from 2.3 · 10−4 to 1.4 · 10−4 seconds, an improvement
by 40% upon the standard procedure represented by Alg. 1.
Needless to say, storing the inner and outer approximation
slightly increases the required memory storage. Specifically,
the sets have to be represented in the memory by 120 floating
point numbers for the two polytopic outer approximations,
and by 36 floating point numbers for the six ellipsoidal inner
approximations. Combined with the footprint of κ̃(·) reported
above, the total amount of memory required to store all data for
Algorithm 3 is 1019 floating point numbers. Comparing this
to the footprint of the original explicit feedback κ(·) (which
consumed 5961), we see that the amount of require memory
was reduced by a factor of 6, which is significant.

393

TABLE I. COMPARISON OF OUTER APPROXIMATIONS.

Type of Pout
Percentage of points with Construction
x 6∈ Pout (higher is better) time

Convex hull (20) 48 % 0.4 sec
Ellipsoid (21) 39 % 15.3 sec

Fig. 3. Inner ellipsoidal approximation of the green non-convex polygon
from Fig. 1.

VII. CONCLUSION

In this paper we have investigated possibilities to reduce
the memory consumption and computational burden of explicit
MPC solutions. Required amount of memory was significantly
reduced by employing a polygonic representation of regions of
the explicit PWA feedback law. Since only the outer boundaries
of such polygons need to be stored, significant amount of
memory can be saved. This comes at the price of increased
computational resources required to perform the point location
task. To mitigate this increase, we have proposed to devise
inner and outer approximations of non-convex polygons, which
allows to significantly reduce the computational load. Several
methods to design suitable inner and outer approximations
were presented and efficacy of the procedure was demonstrated
on an example.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contribution of
the Scientific Grant Agency of the Slovak Republic under
the grants 1/0973/12 and 1/0095/11. The Authors gratefully
acknowledge the contribution of the Slovak Research and
Development Agency under the project APVV 0551-11.

REFERENCES

[1] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, Jan. 2002.

[2] P. Tøndel, T. A. Johansen, and A. Bemporad, “An Algorithm for
Multi-Parametric Quadratic Programming and Explicit MPC Solutions,”
Automatica, Nov. 2001, preprint submitted.

[3] F. Borrelli, Constrained Optimal Control of Linear and Hybrid Systems,
ser. Lecture Notes in Control and Information Sciences. Springer-
Verlag, 2003, vol. 290.

[4] M. Baotić, “Optimal Control of Piecewise Affine Systems – a Multi-
parametric Approach,” Dr. sc. thesis, ETH Zurich, Zurich, Switzerland,
Mar. 2005.

[5] J. Spjøtvold, P. Tøndel, and T. A. Johansen, “A Method for Obtaining
Continuous Solutions to Multiparametric Linear Programs,” in IFAC
World Congress, Prague, Czech Republic, 2005.

[6] A. Bemporad and C. Filippi, “Suboptimal explicit RHC via approxi-
mate multiparametric quadratic programming,” Journal of Optimization
Theory and Applications, vol. 117, no. 1, pp. 9–38, Apr. 2003.

[7] S. Hovland, K. E. Willcox, and J. T. Gravdahl, “Explicit MPC for large-
scale systems via model reduction,” AIAA Journal of Guidance, Control
and Dynamics, vol. 31, no. 4, Jul. 2008.

[8] P. Tøndel and T. Johansen, “Complexity reduction in explicit linear
model predictive control,” in Proc. of 15-th IFAC World Congress, 2002.

[9] A. Bemporad, A. Oliveri, T. Poggi, and M. Storace, “Ultra-fast stabiliz-
ing model predictive control via canonical piecewise affine approxima-
tions,” IEEE Trans. Automatic Control, vol. 56, no. 12, pp. 2883–2897,
2011.

[10] L. Lu, W. Heemels, and A. Bemporad, “Synthesis of low-complexity
stabilizing piecewise affine controllers: A control-Lyapunov function
approach,” in Proceedings of the 50th IEEE Conference on Decision
and Control and European Control Conference (CDC-ECC). IEEE,
2011, pp. 1227–1232.

[11] G. Valencia-Palomo and J. Rossiter, “Using Laguerre functions to im-
prove efciency of multi-parametric predictive control,” in Proceedings
of the American Control Conference, Baltimore, USA, 2010, pp. 4731–
4736.

[12] M. Kvasnica, J. Löfberg, and M. Fikar, “Stabilizing polynomial approx-
imation of explicit MPC,” Automatica, vol. 47, no. 10, pp. 2292–2297,
2011.

[13] T. Geyer, F. Torrisi, and M. Morari, “Optimal complexity reduction of
polyhedral piecewise affine systems,” Automatica, vol. 44, no. 7, pp.
1728–1740, Jul. 2008.

[14] C. Wen, X. Ma, and B. E. Ydstie, “Analytical expression of explicit
MPC solution via lattice piecewise-affine function,” Automatica, vol. 45,
no. 4, pp. 910 – 917, 2009.

[15] P. Tøndel, T. A. Johansen, and A. Bemporad, “Evaluation of Piecewise
Affine Control via Binary Search Tree,” Automatica, vol. 39, no. 5, pp.
945–950, May 2003.

[16] M. Kvasnica and M. Fikar, “Clipping-based complexity reduction in
explicit mpc,” IEEE Trans. Automatic Control, vol. 57, no. 7, pp. 1878–
1883, July 2012.

[17] S. Blažek and M. Kvasnica, “Polygonic representation of explicit model
predictive control in two dimensions,” in Proceedings of the 10th
International Scientific - Technical Conference Process Control 2012,
Kouty nad Desnou, Czech Republic, June 2012.

[18] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, Jan. 2002.

[19] M. Kvasnica, Real-Time Model Predictive Control via Multi-Parametric
Programming: Theory and Tools. Saarbruecken: VDM Verlag, Jan.
2009.

[20] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix
Inequalities in System and Control Theory, ser. Studies in Applied
Mathematics. SIAM, 1994.

[21] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[22] J. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optimization Methods and Software, pp. 625–
653, Oct. 1999.

[23] G. M. Ziegler, Lectures on Polytopes. Springer, 1994.
[24] J. Löfberg, “Minimax approaches to robust model predictive control,”

Ph.D. dissertation, Linköping University, Sweden, Apr. 2003.
[25] ——, “YALMIP : A Toolbox for Modeling and Optimization in

MATLAB,” in Proc. of the CACSD Conference, Taipei, Taiwan, 2004,
available from http://users.isy.liu.se/johanl/yalmip/.

[26] M. Kvasnica, P. Grieder, and M. Baotić, “Multi-Parametric Toolbox
(MPT),” 2004, available from http://control.ee.ethz.ch/∼mpt/.

394

