
Polygonic Representation of Explicit Model Predictive Control

Juraj Oravec, Slavomı́r Blažek, Michal Kvasnica, and Stefano Di Cairano

Abstract— The paper proposes to reduce complexity of ex-
plicit MPC feedback laws by representing regions over which
the law is defined as (possibly non-convex) polygons. Each
polygon is then represented only by its boundaries, which
reduces the memory footprint of the feedback law. Even though
significant amount of memory can be saved this way, the
price to be paid is increased computational load associated
by performing point location tasks in non-convex objects.
Therefore we propose to devise inner and outer convex approx-
imations of non-convex polygons to reduce the computational
requirements. Such approximations allow to perform point
location more effectively, leading to a reduction of the required
on-line computational effort. Several ways to design suitable
approximations are presented and efficacy of the proposed
procedure is evaluated.

I. INTRODUCTION

Pioneered by [2], Explicit Model Predictive Control

(MPC) has gained significant attention among theoreticians

and control engineers because it allows to implement MPC

on cheap control hardware. Previously, this was not easily

achievable, because MPC requires a numerical optimization

algorithm to be executed at each sampling instant to obtain

optimal control actions. In explicit MPC, the need for repet-

itive optimization is eliminated by shifting the optimization

offline. Several authors (see e.g. [4], [11], [9]) have shown

how to pre-compute the solution to a given optimization

problem offline using multi-parametric programming, which

gives rise to an explicit representation of the MPC feedback

law. For a rich class of MPC problems it can be also shown

that the feedback law takes a form of a Piecewise Affine

(PWA) function which maps measurements onto the optimal

control inputs. Hence closed-loop implementation of explicit

MPC reduces to a mere function evaluation.

However, for large systems and/or long horizons, com-

plexity of the explicit PWA feedback law often exceeds

capabilities of the implementation hardware either in terms

of computational load, memory storage, or both. Therefore

it is important to keep the complexity of explicit MPC

solutions on an acceptable level. The problem of reducing

complexity of explicit MPC solutions has thus attracted

numerous researchers in the past 10 years. Two main ways

to reduce complexity are reported in the literature. The first

approach is based on replacing the original PWA feedback

law by a simpler function while sacrificing optimality. Hence

a simpler, yet sub-optimal feedback law can be obtained. In

some practical cases, however, the induced loss of optimality

J. Oravec, S. Blažek, and M. Kvasnica are with the Slovak Uni-
versity of Technology in Bratislava, Slovakia, {juraj.oravec,
slavomir.blazek,michal.kvasnica}@stuba.sk. S. Di
Cairano is with Mitsubishi Electric Research Laboratories, Cambridge, MA,
USA, dicairano@ieee.org.

is inacceptable. Therefore the second main line of research

is devoted to simplifying the PWA feedback law while

preserving optimality. Many approaches have been developed

to achieve this goal and the reader is referred to [6] for a

concise overview.

Recently, in [3] we have shown how to reduce the memory

footprint of an explicit MPC solution by representing regions

of the PWA feedback as (possibly non-convex) polygons.

Moreover, we have shown that implementation of such a

polygonic feedback law only requires storing a subset of

regions of the original feedback. Although significant amount

of memory can be saved by this approach, it suffers from

the increase of on-line computational complexity needed to

evaluate the polygonic PWA function. Moreover, application

of [3] is limited to 2-dimensional problems. In this paper

we address these deficiencies and show how to significantly

reduce the on-line computational effort. This is achieved by

devising outer and inner convex approximations of polygonic

regions. These approximations allow to significantly speed

up the task of deciding whether a particular point belongs

to a polygon or not. Specifically, the outer approximation

serves as a necessary condition for such a test, while the inner

approximation constitutes sufficiency. To render these condi-

tions as efficient as possible, the two approximations must be

designed such that their volume is either minimized (for outer

approximations) or maximized (for inner approximations).

Several procedures for designing such approximations are

presented in Section VI.

II. NOTATION AND DEFINITIONS

For a set S, int(S) denotes its interior, ∂S its boundary

and cl(S) its closure. For a matrix or a vector H , [H]i
denotes its i-th row. A polyhedron Q = {x ∈ R

n | Hx ≤ k}
is a convex set that is defined as the intersection of a finite

number of affine, closed half-spaces. A bounded polyhedron

is called polytope. A polygon P ⊂ R
n is a (possibly non-

convex) set that is bounded by a closed path, composed of a

finite number of n−1 dimensional polytopes. We call the set

of polytopes {Qi}, i = 1, . . . , R the geometric subdivision of

a polygon P if P = ∪iQi and int(Qi)∩int(Qj) = ∅, ∀i 6= j.

Every polytope Q ⊂ R
n can be equivalently represented by

Q = convh(v1, . . . , vM), where convh is the convex hull

operator and vi ∈ R
n, i = 1, . . . ,M are vertices of the

polytope.

III. EXPLICIT MODEL PREDICTIVE CONTROL

We consider linear time-invariant systems in the discrete-

time domain, described by state-space models of the form

x(t + 1) = Ax(t) + Bu(t), (1)

52nd IEEE Conference on Decision and Control
December 10-13, 2013. Florence, Italy

978-1-4673-5716-6/13/$31.00 ©2013 IEEE 6422

where x(t) ∈ R
n is the state vector at time t and u(t) ∈ R

m

is the vector of control commands. States and inputs are

constrained by

x ∈ X , u ∈ U , (2)

where X and U are polytopes of appropriate dimensions,

containing the origin in their respective interiors. Further-

more, we assume that the pair (A,B) is controllable and that

state measurements x(t) are available at each time instant t.
For system (1) subject to constraints (2), the MPC opti-

mization problem becomes

U
∗

N = arg min ‖QNxN‖p +

N−1
X

k=0

‖Qxxk‖p + ‖Quuk‖p (3a)

s.t. x0 = x(t), (3b)

xk+1 = Axk + Buk, k = 0, . . . , N − 1, (3c)

xk ∈ X , k = 0, . . . , N, (3d)

uk ∈ U , k = 0, . . . , N − 1, (3e)

where xk and uk denote, respectively, the state and input

predictions at time instant t + k, initialized by the mea-

surements of the current state x(t). Moreover, QN , Qx

and Qu are penalty matrices of suitable dimensions and p
indicates a norm in which corresponding quantities should

be minimized. If p = 2 then QN � 0, Qx � 0, Qu ≻
0 is required, and instead of ‖Qz‖2 we can equivalently

minimize ‖Qx‖22. Solving the optimal control problem (3)

for a particular initial condition x(t) leads to the sequence

of optimal control inputs U∗
N = {u∗

0, . . . , u
∗
N−1}, defined

over the prediction horizon N . In the receding horizon

implementation, only the first element of U∗
N , that is, u∗

0, is

actually implemented to the controlled plant and the whole

procedure is repeated at the next sampling instant for new

values of the state measurements.

By solving (3) using parametric programming [2], the

optimal receding horizon control action u∗
0 can be pre-

computed [4] for all feasible values of x(t) as a PWA

function of the form

u∗
0 = κ(x(t)) :=







F1x(t) + g1 if x(t) ∈ Q1

...

FMx(t) + gM if x(t) ∈ QM

(4)

where Fi ∈ R
m×n, gi ∈ R

m, and M denotes the total

number of polytopes

Qi = {x |Hix ≤ ki}. (5)

Each polytope is constituted by ci half-spaces [Hi]jx ≤ [ki]j ,

j = 1, . . . , ci.

For given state measurements x(t), the value of u∗
0 can

be obtained by evaluating the function κ(·) using e.g. the

sequential search procedure. Its best-case runtime complexity

of O(1) when x(t) ∈ Q1, and the worst case is O(M) if

x(t) ∈ QM or x(t) 6∈ ∪iQi.

However, to evaluate κ(·) for a given value of x(t), the

function first needs to be stored in the memory of the

control hardware platform. The memory footprint of κ(·)
(which consists of polytopes Qi and feedback gains Fi, gi,

i = 1, . . . ,M) is a linear function of M , the total number

of polytopes. Clearly, the more polytopes constitute κ(·),
the more memory needs to be available in the hardware

implementation platform, sooner or later hitting the hardware

limits.

IV. POLYGONIC REPRESENTATION OF EXPLICIT MPC

The objective is to reduce memory consumption of explicit

feedback laws κ(·) by exploiting the fact that, in practice,

several polytopes of (4) will be associated to identical

feedback laws. Denote by Mu the number of unique feedback

gains and let Ij ⊆ {1, . . . ,M} be the index set of polytopes

Qi which share the j-th feedback, i.e.

Ij = {i ∈ {1, . . . ,M} | Fi = Fj , gi = gj}, j = 1, . . . ,Mu.
(6)

Let

Pj =
⋃

i∈Ij

Qi (7)

be a polygon whose geometric subdivision is given by

polytopes Qi, ∀i ∈ Ij . Then we can rewrite κ(·) in (4)

as

κ̃(x(t)) :=







F1x(t) + g1 if x(t) ∈ P1

...

FMu
x(t) + gMu

if x(t) ∈ PMu

(8)

We remark that ∪jIj = {1, . . . ,M}. Naturally, Mu ≤ M
always holds, with Mu ≪M often being the case in practice.

Lemma 4.1: For all x from the domain of κ(·) we have

κ(x) = κ̃(x). �

Evaluation of κ̃(·) from (8) for a given value of x(t) can

be done by a straightforward modification of the sequential

search approach, reported for completeness as Algorithm 1.

Algorithm 1 Evaluation of κ̃ from (8)

INPUT: Polygons Pj , unique feedback gains Fj , gj , number

of unique gains Mu, state measurement x(t)
OUTPUT: Optimal RHMPC control input u∗

0

1: for j = 1, . . . ,Mu do

2: if x(t) ∈ Pj then

3: u∗
0 = Fjx(t) + gj

4: return

5: end if

6: end for

To obtain the value of κ̃(x(t)) for a particular point x(t),
Algorithm 1 needs to determine, in Step 2, whether x(t) ∈
Pj , a task commonly known as the point location problem.

Since the polygon Pj can be a non-convex set, in general,

the task of deciding whether x(t) belongs to Pj becomes

challenging. The point location problem is formally stated

as follows:

Problem 4.2: Given a polygon P ⊂ R
n and a point x ∈

R
n, determine whether x ∈ P . �

6423

V. MEMORY-EFFICIENT POINT LOCATION IN POLYGONS

The point location task of Problem 4.2 can be performed

by applying the sequential search approach to the geometric

subdivision {Qi} that constitutes the polygon Pj . Doing

so, however, would require storing all polytopes Qi in the

memory of the control hardware, which does not provide

any improvement upon the straightforward implementation

of MPC feedback law in (4) via sequential search. Therefore

in this section we show how Problem 4.2 can be solved by

only considering a subset of polytopes Qi. Specifically, we

illustrate that only the polytopes that touch the boundary of

Pj need to be stored. Let Mj be the number of polytopes Qi

that constitute Pj in (7), and let Mb be the number of poly-

topes touching the boundary ∂Pj . Then clearly Mb ≤ Mj

always holds in theory, while often, in practice, Mb ≪Mj .

Therefore the ratio Mj/Mb represents the achievable reduction

of memory consumption achievable by the proposed method.

To simplify presentation, we will henceforth consider

a single polygon P , composed of M polytopes Qi =
{x |Hix ≤ ki}, i = 1, . . . ,M . Since {Qi} is assumed to be

a geometric subdivision of P , the boundary ∂P is composed

of a finite number of n− 1 dimensional faces Fj with

Fj = {x | Hjx ≤ kj , aT
j x = bj}, (9)

with j = 1, . . . ,Mf , where Mf is the total number of

boundary faces. We remark that, in the worst case, Mf =
∑Mb

i=1 ci, where Mb is the number of boundary polytopes Qi,

and ci is the number of faces of the i-th polytope.

The polytopes Fj that constitute the boundary of P can

be obtained in a number of ways. In general, one can take

∂P = P∩cl(Rn\P). Since P = ∪iQi, the operation results

in computing the difference between two sets of polyhedra.

Such a computation can be carried out using version 3.0 of

the MPT Toolbox [7], which directly splits ∂P into polytopes

Fj . Alternatively, if polytopes Qi of (7) satisfy the facet-to-

facet property [9], then the boundary ∂P is composed of the

boundary faces of polytopes for which Qi ∩ ∂P 6= ∅. These

can be identified by solving a single linear program per each

face.

To solve the point location task of Problem 4.2 using

only the boundary of P , we exploit the well-known Jordan-

Brouwer theorem, which is a generalization of the Jordan

separation theorem to dimensions above 2:

Lemma 5.1 ([1]): Let P ⊂ R
n be a polygon as in (7),

x ∈ R
n be the query point, and γ ∈ R

n be an arbitrary

vector. Define by

R = {x + θγ | θ ∈ R, θ ≥ 0} (10)

a ray emitted from x in the direction of the vector γ. Then

x ∈ P if and only if the number of intersections between

∂P and R is odd. �

Since ∂P = ∪jFj , using Lemma 5.1 we can thus

answer 4.2 by counting the number of intersections between

the ray (10) and ∪jFj . Since each Fj is a polytope as

in (9), determining whether R ∩ Fj = ∅ can be performed

efficiently. In particular, note that

R∩ Fj = {θ |Hj(x + θγ) ≤ kj , aT
j (x + θγ) = bj , θ ≥ 0}.

(11)

Each admissible θ in (11) has to satisfy Hj(x + θγ) ≤ kj ,

i.e.,

θ ≤
[kj]ℓ − [Hj]ℓx

[Hj]ℓγ
, (12)

where [·]ℓ is the ℓ-th row of the corresponding vector/matrix.

Assume that γ is in general position, i.e., for each ℓ ∈
{1, . . . , cj} we have [Hj]ℓγ 6= 0 where cj is the number of

rows of Hj . Then, depending on the sign of the denominator

in (12), we can bound feasible values of θ by θ ≤ θ ≤ θ
with

θ = max
ℓ∈Jneg

{

[kj]ℓ − [Hj]ℓx

[Hj]ℓγ

}

, θ = min
ℓ∈Jpos

{

[kj]ℓ − [Hj]ℓx

[Hj]ℓγ

}

,

(13)

where Jpos is the index set of rows of Hj for which [Hj]ℓγ is

positive, and Jneg is the index set of negative denominators

in (12). Note that the maxima and minima in (13) are taken

over finite sets, hence no optimization is needed to compute

them. Then the number of intersections between the ray

in (10) and ∂P = ∪jFj can be counted, and hence x ∈ P
be verified, by running Algorithm 2.

Algorithm 2 Test for x ∈ P using the boundary of P .

INPUT: Point x, direction γ, polytopes Fj constituting ∂P .

OUTPUT: True if x ∈ P , false otherwise.

1: c← 0.

2: for each polytope Fj in (9) do

3: Compute θ and θ from (13).

4: if θ ≥ 0 and θ > θ and either aT
j (x + θγ) = bj or

aT
j (x + θγ) = bj then

5: c← c + 1
6: end if

7: end for

8: return true if c is odd, false otherwise

Lemma 5.2: Algorithm 2 returns true if x ∈ P and false

otherwise. �

Runtime complexity of Algorithm 2 is proportional to Mf ,

the number of faces (9) that form ∂P . Since Mf is bounded

from above by
∑Mb

i=1 ci with Mb denoting the number of

polytopes Qi that touch ∂P , the runtime complexity is

O(Mb). It is worth noting that this is both the best-case and

worst-case complexity, regardless of the location of the query

point. This is due to the fact that each execution of Alg. 2

has to proceed through all boundary faces before answering

the point location query.

VI. RUNTIME-EFFICIENT POINT LOCATION IN

POLYGONS VIA APPROXIMATIONS

In the previous section we have demonstrated how to

perform the point location task using only the boundary of a

polygon in (7). The advantage is in reduced memory storage,

but the downside is that Alg. 2 always performs O(Mb)

6424

operations before answering the x ∈ P query, regardless of

the position of the query point x. In this section we aim at

improving the runtime efficiency of the point location task.

In particular, would like to answer the query x ∈ P more

efficiently for as many points x as possible.

Assume that two sets, namely Pin and Pout, exist such that

Pin ⊆ P ⊆ Pout. (14)

Then instead of using Alg. 2 to answer x ∈ P in Step 2

of Alg. 1, we can answer the point location query more

efficiently as follows. For any x ∈ Pin we have x ∈ P
due to Pin ⊆ P , and hence the answer to the query in

Step 2 of Alg. 1 is positive even without further investigating

P . Similarly, if x 6∈ Pout, then x 6∈ P due to Pout ⊇ P
and therefore the answer to x ∈ P is negative. Only for

points with x ∈ Pout and x 6∈ Pin we need to perform

the point location per Alg. 2. This reasoning is described

in Algorithm 3.

Algorithm 3 More efficient test for x ∈ P

INPUT: Point x, polygon P , sets Pout and Pin.

OUTPUT: True if x ∈ P , false otherwise.

1: if x ∈ Pin then

2: return true

3: else if x 6∈ Pout then

4: return false

5: else

6: Determine whether x ∈ P using Algorithm 2.

7: end if

If the sets P , Pin, and Pout are all non-convex, Algorithm 3

does not provide any improvement upon Alg. 2. However, if

Pin and Pout are both convex (or if they consist of a finite

number of convex sets), then Alg. 3 renders Problem 4.2

easier to solve. Specifically, it is worth noting that the two

inclusion tests in Steps 1 and 3 can be performed efficiently

if Pout and Pin are convex sets. By employing the outer and

inner approximations of a (possibly non-convex) polygon

P , one can therefore reduce the number of expensive point

locations performed in Step 6.

Remark 6.1: It should be noted that the worst-case com-

plexity of Alg. 3 is higher compared to runtime complexity

of Alg. 2. This is due to the fact that for any x with x 6∈ Pin

and x ∈ Pout, Alg. 3 performs two additional tests1 in

Steps 1 and 3. However, Alg. 3 performs better on average

since the algorithm can often be stopped upon satisfaction

of cheap tests in Steps 1 and 3. Average performance is very

important in practical applications, as it directly correlates

with occupancy of central processing units and hence with

thermal load and energy consumption. �

To exploit Algorithm 3, one first needs to design the outer

and inner convex approximations Pout and Pin such that (14)

holds. Moreover, efficacy of Alg. 3 depends on the volume of

Pout and Pin. The inner approximation Pin should be as large

1In practice, the cost of checks in Steps 1 and 3 of Alg. 3 is negligible
compared to the cost of Step 6.

as possible, as to maximize the likelihood of terminating

Alg. 3 in Step 2 if x ∈ Pin. On the other hand, the smaller

the volume of Pout, the more efficient the test in Step 3 is.

This is due to the fact that Pout is an outer approximation

and represents the necessary condition for the inclusion test

x ∈ P . Therefore the smaller Pout is, the more points x with

x 6∈ Pout can be ruled out in Step 3.

Several ways to design inner and outer approximations

with these properties are outlined in the sequel. The standing

assumption of the remainder of this section is that the

polygon P is represented by its geometric subdivision of

the form of (7), i.e., P = ∪iQi, where Qi, i = 1, . . . , R are

polytopes.

A. Inner Approximation

The problem of finding a suitable inner convex approxi-

mation Pin can be formally stated as follows.

Problem 6.2: Given a non-convex polygon P = ∪iQi

where Qi = {x | Hix ≤ ki}, i = 1, . . . , R are polytopes,

find a convex set Pin that satisfies Pin ⊆ P and has a large

volume.

The main difficulty is to guarantee that Pin ⊆ P (which

means that ∀x ∈ Pin we have x ∈ P) when P is non-convex.

Let C = R
n \ P denote the complement of the polygon P .

Then Pin ⊆ P is equivalent to

∀x ∈ C ⇒ x 6∈ Pin. (15)

Remark 6.3: Since P is a geometric subdivision as in (7),

its complement C is an another geometric subdivision, i.e.,

C = {Ri}, where Ri = {x | Cix ≤ di}, i = 1, . . . ,MC are

polyhedra, see e.g. [4]. �

In what follows we search for an ellipsoidal form of Pin,

i.e.,

Pin = {x | (x− xc)
T P−1(x− xc) ≤ 1}, (16)

where xc ∈ R
n denotes the center of the ellipsoid and P ∈

R
n×n is a symmetric, positive definite matrix, that is, P =

PT ≻ 0. We seek for xc and P such that the volume of Pin

in (16) is maximized while satisfying Pin ⊆ P via (15).

To pose the search for the ellipsoid (16) as a convex

optimization problem, we exploit the S-procedure:

Lemma 6.4 ([5]): Let f0(x) and fi(x), i = 1, . . . ,M be

quadratic functions. Then

fi(x) ≤ 0⇒ f0(x) ≥ 0 (17)

holds for all x ∈ R
n and for all i = 1, . . . ,M if and only if

there exist non-negative scalars λi ≥ 0, i = 1, . . . ,M such

that

f0(x) +
∑M

i=1 λifi(x) ≥ 0. (18)

�

To see the relation between Lemma 6.4 and Problem 6.2,

first note that the complement C is divided into a finite

number of polyhedra Ri. Then the implication in (15) can

be expanded to ∀x ∈ Ri ⇒ x 6∈ Pin, which has to hold for

all i = 1, . . . ,MC . Since Ri = {x | Cix ≤ di}, we can

6425

set fi(x) := Cix − di. By reversing the inequality in (16),

x 6∈ Pin can be cast as

(x− xc)
T P−1(x− xc)− 1− ǫ

︸ ︷︷ ︸

f0(x)

≥ 0. (19)

Here, ǫ > 0 denotes a small positive tolerance used to rewrite

strict inequality g(x) > 0 to the non-strict form g(x) ≥ ǫ.

Finally, note that any quadratic function g(x) = xT Wx +
2wT x + z can be written in a compact form as

g(x) :=

[
x
1

]T [
W w
wT z

]

︸ ︷︷ ︸

W̃

[
x
1

]

. (20)

It is well known that with g(x) as in (20), g(x) ≥ 0 holds

for all x if and only if the matrix W̃ is positive semi-

definite. Based on this, and by applying the S-procedure of

Lemma 6.4 with f0(x) and fi(x) defined as above, we can

hence formulate the search for P and xc in (16) as

[
P̃ −xT

c P̃

P̃ xc xT
c P̃ xc − 1− ǫ

]

+

MC∑

i=1

λi

[
0 1/2CT

i
1/2Ci −di

]

� 0,

(21)

where P̃ = P−1. When xc is fixed, the maximum-volume

ellipsoid (16) can be found by searching for P̃ = P̃T � 0,

λi ≥ 0, i = 1, . . . ,MC , while minimizing the trace of P̃ :

min
P̃ , λi

trace (P̃) s.t. λi ≥ 0, (21) holds, i = 1, . . . ,MC .

(22)

Note that (22), with xc being fixed, is a convex LMI

optimization problem that can be solved efficiently using

off-the-shelf software (e.g. with [10]). Once P̃ is computed

via (22), P in (16) is recovered by P = P̃−1.

B. Outer Approximation

To search for a suitable outer approximation Pout, we need

to solve the following problem.

Problem 6.5: Given is a non-convex polygon P = ∪iQi.

Find a convex set Pout that satisfies Pout ⊇ P and has a small

volume. �

Since Pout needs to be convex, we restrict ourselves to two

classes of convex sets: polytopes and ellipsoids. Let Vi =
{vi,1, . . . , vi,nvi

} denote the vertices of polytope Qi. Then

Pout = convh{V1, . . . ,VR}, (23)

is the smallest polytope that contains P , i.e., Pout ⊇ P . Its

minimal volume is a direct consequence of the definition of

convex hull as the smallest convex set that contains sets of

points V1, . . . ,VR. Although Pout from (23) is the smallest

polytopic outer approximation, its construction is NP-hard

and therefore applicable only to problems in low dimensions

or for low number of points.

As an alternative way, we can also design Pout as an

ellipsoid, i.e.,

Pout = {x | (x− xc)
T W−1(x− xc) ≤ 1}. (24)

The ellipsoid is parameterized by its center point xc ∈ R
n

and the matrix W ∈ R
n×n satisfying W = WT ≻ 0.

To design these parameters such that Pout ⊇ P holds, one

proceeds as follows. Since P = ∪iQi, denote again by Vi the

vertices of Qi for i = 1, . . . , R. Then P ⊇ ∪iQi if and only

if P ⊇ Qi for all i = 1, . . . , R. This in turn is equivalent to

(v−xc)
T W−1(v−xc) ≤ 1, ∀v ∈ Vi, ∀i ∈ 1, . . . , R. (25)

Since each polytope Qi has only finitely many vertices, (25)

is a set of finitely many constraints. For each vertex v,

the constraint can be rewritten using the well-known Schur

complement as
[

1 (Svj − s)T

(Svj − s) I

]

� 0, (26)

where S = W−1/2, s = Sxc, and vj are vertices of

polytopes Qi, i = 1, . . . , R. Together with the constraint

S � 0, the problem of finding the smallest ellipsoidal outer

approximation as in (24) can then be solved as an LMI

problem. To minimize volume of Pout we need to maximize

log(det(S)), see [5]. Numerically, the LMI (26) can be

solved for instance using SeDuMi [10] and YALMIP [8].

VII. EXAMPLE

As a motivating example that is relevant to many practical

applications, we consider a double integrator. Using sampling

time ∆T = 1 seconds, the dynamics can be described by

the state-space model (1) with A = [1 1
0 1], B = [1

0.5]. We

assume state constraints X = {x ∈ R
2 | − 40 � x � 40}

and input bounds U = {u ∈ R | − 1 ≤ u ≤ 1}. By solving

problem (3) for N = 15, QN = I , Qx = I , Qu = 1, and a

quadratic form of (3a), we have obtained the function κ(·)
in (4) using the Multi-Parametric Toolbox [7]. The function

consisted of 493 polytopes in the 2-dimensional state space.

The polytopes are shown in Figure 1. The total memory

footprint of κ(·) in (4) was 5961 real numbers. To assess

the amount of computational resources required to implement

such an explicit MPC feedback on-line via sequential search,

we have investigated 6000 equidistantly placed points from

the domain of κ(·). For each point we have first executed

the sequential search procedure and measured the execution

time. Using a pure Matlab implementation of the algorithm

on a 2.2 GHz CPU, the point location took 2.3·10−4 seconds

per point, on average. We remark that the execution times can

be significantly reduced by implementing a native compiled

version of the sequential search procedure.

Next we investigate how much memory and computational

resources can be saved by using the polygonic representation

proposed in Sections IV and VI. In terms of memory, it is

worth noting that among the 493 feedback gains, only 37
are unique. Two principal polygons consisting of more than

one polytope can be identified in Fig. 1. One is composed

of 229 polytopes shown in yellow, the other one consists of

229 green-colored polytopes. By employing the polygonic

representation of the feedback function κ̃(·) per (8), and by

retaining only the boundary polytopes Qi to represent the

boundary of each polygon, the total memory footprint of

κ̃(·) was just 863 floating-point numbers, a reduction by a

factor of 7.

6426

−40 −30 −20 −10 0 10 20 30 40
−8

−6

−4

−2

0

2

4

6

8

x
1

x
2

Fig. 1. Polytopes of the same color share the same feedback law. The two
principal polygons are constituted by polytopes depicted in the green and
yellow color, respectively.

Fig. 2. Outer and inner approximations of the green non-convex polygon
from Fig. 1: the red-dotted outer ellipsoidal approximation from (24), the
blue-dash-dotted outer polytopic convex hull approximation from (23), and
the black ellipsoidal inner approximation of (16).

To reduce the on-line computational effort via Alg. 3, inner

and outer approximations of each polygon were subsequently

devised using the procedures of Section VI. Results obtained

for the green polygon from Fig. 1 are shown in Fig. 2. It

is worth noting that the polytopic outer approximation is

substantially tighter than its ellipsoidal counterpart, but also

consumes more memory (120 floating point numbers for the

polytope versus 6 numbers for the ellipsoid). Employing

the ellipsoidal inner and outer approximations in Alg. 3

allowed to reduce the average computational effort per point

from 2.3 · 10−4 to 1.4 · 10−4 seconds, an improvement by

40% upon sequential search. The total memory footprint

due to all sets required by Algorithm 3 is 905 floating

point numbers. Comparing this figure to the footprint of

the original explicit feedback κ(·) (which consumed 5961
floating point numbers), we see that the amount of required

memory storage was reduced by a factor of 6.6, which is

significant.

VIII. CONCLUSION

In this paper we have investigated how to reduce the

memory consumption and computational burden of explicit

MPC solutions. The required amount of memory was sig-

nificantly reduced by employing a polygonic representation

of regions of the explicit PWA feedback law. Since only

the outer boundaries of such polygons need to be stored,

significant amount of memory can be saved. This comes at

the price of increased computational resources required to

perform the point location task. To mitigate such an increase,

we have proposed to devise inner and outer approximations

of non-convex polygons, which allow to significantly reduce

the computational load. The main advantage of the proposed

simplification method over competing alternatives is that no

special properties of the original feedback law κ(·) are as-

sumed. Hence the polygonic representation of explicit MPC

can be obtained e.g. for discontinuous explicit solutions, or

for cases where the union of controller regions is not convex.

The other advantage is that the polygonic representation is

equivalent to the original explicit MPC feedback in the sense

that it provides the same values of optimal control actions

for each admissible value of state measurements.

ACKNOWLEDGMENTS

J. Oravec, S. Blažek and M. Kvasnica gratefully acknowl-

edge the contribution of the Scientific Grant Agency of

the Slovak Republic under grants 1/0095/11 and 1/0973/12.

J. Oravec was also supported by an internal STU grant

no. 1323. This research was supported by Mitsubishi Elec-

tric Research Laboratories, under a Collaborative Research

Agreement.

REFERENCES

[1] J.W. Alexander. A proof and extension of the Jordan-Brouwer
separation theorem. Transactions of the American Mathematical

Society, 23(4):333–349, 1922.
[2] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The

explicit linear quadratic regulator for constrained systems. Automatica,
38(1):3–20, January 2002.

[3] S. Blažek and M. Kvasnica. Polygonic representation of explicit model
predictive control in two dimensions. In Proceedings of the 10th

International Scientific - Technical Conference Process Control 2012,
Kouty nad Desnou, Czech Republic, June 2012.

[4] F. Borrelli. Constrained Optimal Control of Linear and Hybrid

Systems, volume 290 of Lecture Notes in Control and Information

Sciences. Springer-Verlag, 2003.
[5] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear

Matrix Inequalities in System and Control Theory. Studies in Applied
Mathematics. SIAM, 1994.

[6] M. Kvasnica and M. Fikar. Clipping-Based Complexity Reduction in
Explicit MPC. IEEE Trans. Automatic Control, 57(7):1878–1883, July
2012.

[7] M. Kvasnica, P. Grieder, and M. Baotić. Multi-Parametric Toolbox
(MPT), 2004. Available from http://control.ee.ethz.ch/∼mpt/.

[8] J. Löfberg. YALMIP : A Toolbox for Modeling and Optimization in
MATLAB. In Proc. of the CACSD Conference, Taipei, Taiwan, 2004.
Available from http://users.isy.liu.se/johanl/yalmip/.

[9] J. Spjøtvold, P. Tøndel, and T. A. Johansen. A Method for Obtaining
Continuous Solutions to Multiparametric Linear Programs. In IFAC

World Congress, Prague, Czech Republic, 2005.
[10] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization

over symmetric cones. Optimization Methods and Software, pages
625–653, October 1999.

[11] Petter Tøndel, Tor Arne Johansen, and Alberto Bemporad. An
algorithm for multi-parametric quadratic programming and explicit
MPC solutions. Automatica, 39(3):489–497, 2003.

6427

