
Splitting methods in control

Giorgos Stathopoulos1, Alexander Szücs1, Ye Pu1 and Colin N. Jones1

Abstract— The need for optimal control of processes under a
restricted amount of resources renders first order optimization
methods a viable option. Although computationally cheap, these
methods typically suffer from slow convergence rates. In this
work we discuss the family of first order methods known as
decomposition schemes. We present three popular methods from
this family, draw the connections between them and report
all existing results that enable acceleration in terms of the
convergence rate. The approach for splitting a problem into
simpler ones so that the accelerated variants can be applied is
also discussed and demonstrated via an example.

I. INTRODUCTION
The significant progress that has been made in recent

years both in hardware implementations and in numerical
computing has rendered real-time optimization-based control
a viable option when it comes to advanced industrial appli-
cations. More recently, the need for control of a process in
the presence of a limited amout of hardware resources has
triggered research in the direction of embedded optimization-
based control. Many efficient high-speed solvers have been
developed for both linear and nonlinear control, based on
either first order methods (FiOrdOs [1]), interior point
(IP) methods (FORCES [2], CVXGEN [3]) or active sets
(QPOASES [4]).

In this work we focus on systems with linear dynamics,
giving rise to convex control problems. The purpose of the
survey is to explore a family of first order methods known
as decomposition schemes or operator splitting methods. In
the simplest case, the abstract form of the problem at hand
is the minimization of the sum of two convex functions and
can be written as

minimize f (x)+g(Ax) , (1)

with variables x∈Rn, where f : Rn→ (−∞,∞] and g : Rm→
(−∞,∞] are proper, lower semi-continuous (lsc) convex
functions and A : Rn → Rm is a linear map. A splitting
method can be applied to the above problem after rewriting
it as

minimize f (x)+g(z)
subject to Ax = z ,

(2)

by alternatively (or simultaneously) minimizing over f and g.
A dual variable update for the equality constraint ensures that
the solutions of problems (2) and (1) are identical. Inequality
constraints are already present in the formulation in the form
of indicator functions, i.e., a membership function for a set
C

δC(x) =
{

0 x ∈C
∞ otherwise. (3)

1The authors are with Laboratoire d’Automatique, EPFL, CH-1015
Lausanne, Switzerland

{georgios.stathopoulos,alexander.szucs,y.pu,colin.jones}@epfl.ch

Formulations similar to the above have been studied exten-
sively and we can look for their roots in the method of multi-
pliers [5], the Arrow-Hurwicz method [6], Douglas-Rachford
splitting [7], and ADMM [8], [9]. More recent references
that illustrate the applicability of such methods in modern
engineering problems (signal and image processing, big data
analysis, machine learning) are [10] and [11]. The thesis
[12] provides a nice and comprehensive description of the
connection of several splitting algorithms under a common
framework. Finally, the book [13] provides a mathematically
rigorous introduction to operator splitting methods in general
Hilbert spaces.

Although it is established that splitting methods are quite
beneficial when applied to large-scale problems, their poten-
tial in solving small to medium scale embedded optimization
problems has not been studied so extensively. Our purpose
is to study the behavior of such algorithms as solvers of
control-related problems of that scale. Our effort focuses on
identifying special characteristics of these problems and how
they can be exploited by some popular splitting methods.
Some of the questions that we attempt to answer are:

1) It is very common in practice that optimal control
problems come with a quadratic objective, since in this
way stability can be proven for regulation or tracking
purposes. What is the best way to exploit this smooth
term?

2) Given that a control problem has to be solved repeat-
edly (e.g., MPC), how can warm-starting affect the
speed?

3) Given the structure of the problem at hand, which
algorithms will converge more quickly?

In what follows we present three popular splitting al-
gorithms, the Alternating direction method of multipliers
(ADMM), the Alternating minimization algorithm (AMA) and
the primal-dual scheme from Chambolle and Pock (CP).
Our choice is motivated from the fact that the methods are,
analyzed and extended from several communities, and their
properties are well-understood.

The paper is organized as follows: In Section II we
formulate the problem we want to solve and look at it from
three different perspectives, resulting in the three algorithms
we use. Subsequently we introduce the algorithms under a
unified scheme and report their properties, as well as how
they can be applied to our problem formulation. In Section III
we explain how one can exploit the structure of the problem
to accelerate the theoretical convergence rates. An example in
Section IV demonstrates the behavior of the three algorithms.

2014 European Control Conference (ECC)
June 24-27, 2014. Strasbourg, France

978-3-9524269-2-0 © EUCA 2478



II. THE ALGORITHMS
A. The different representations

We narrow the general formulation to our problems of
interest which can, without loss of generality, be written as

minimize (1/2)zT Qz+ cT z+
M
∑

i=1
li(Tiz+ ti)

subject to Az = b ,
(P)

with variable z ∈ Rn, where Q ∈ Sn
+, and Ti ∈ Rpi×n. The

following assumption holds:
Assumption 1: The functions li : Rpi → (−∞,∞] are

closed, lsc convex functions.
Formulation (P) is quite general and can describe any

convex optimization problem. The choice of the quadratic
part (1/2)zT Qz + cT z and the equality constraints Az = b
being represented in an explicit way is motivated by the
standard form that control problems take.

For lighter notation, we define f (z) :={
(1/2)zT Qz+ cT z | Az = b

}
. We also denote the

concatenated vectors and matrices associated with the affine
term in the li’s as T = (T1, . . . ,TM) and t = (t1, . . . , tM). Using
slack variables yi = Tiz+ ti, i = 1, . . . ,M, the Lagrangian for
(P) is written as

L = f (z)+
M

∑
i=1

li(yi)+
M

∑
i=1
〈λi,−ti−Tiz+ yi〉 , (L)

where λi ∈Rpi are dual variables associated with the equality
constraints introduced above. We can recover the optimum
by solving

(λ ?,z?,y?) = argmax
λ

argmin
z,y

L(λ ,z,y) , (4)

where λ = (λ1, . . . ,λM) ∈ Rp, y = (y1, . . . ,yM) ∈ Rp, p =
∑

M
i=1 pi. For solving problem (P) we consider three ap-

proaches, namely solving a saddle point problem either on
the Lagrangian, the augmented Lagrangian function or a
generic saddle-point formulation that involves taking the
Legendre-Fenchel dual of the functions li(·).

The augmented Lagrangian for problem (P) is defined by

Lρ = f (z)+
M

∑
i=1

li(yi)+
M

∑
i=1
〈λi,−ti−Tiz+ yi〉+

ρ

2

M

∑
i=1
‖− ti−Tiz+ yi‖2 , (AL)

for ρ > 0 and the problem to solve becomes

(λ ?,z?,y?) = argmax
λ

argmin
z,y

Lρ(λ ,z,y) . (5)

Another option is to apply some partial dualization to the
Lagrangian formulation, resulting in a primal-dual equivalent
that is easier to solve. Making use of the Legendre-Fenchel
conjugate,

l?i (λi) = sup
z
〈Tiz+ ti,λi〉− li(Tiz+ ti) ,

the functions li(Tiz+ ti) can now be expressed as

li(Tiz+ ti) = sup
λi

〈Tiz+ ti,λi〉− l?i (λi) .

In this way the affine argument of li(·) appears in a bilinear
term and l?i (·) becomes a function of a simple argument.
Consequently we can solve the saddle-point formulation

(z?,λ ?,ν?) = argmin
z∈Z

argmax
λ ,ν

S(z,λ ,ν) , (6)

where

S = 〈T z+ t,λ 〉+ 〈Az−b,ν〉+(1/2)zT Qz+cT z−
M

∑
i=1

l?i (λi) .

(S)
Note that the equality constraints Az = b are now treated
explicitely by means of the multiplier ν . It is interesting
that for indicator functions of convex cones, the Legendre-
Fenchel dual is the indicator function of the polar cone,
rendering the evaluation of l?i easy, especially for the standard
self-dual cones.

B. A unified framework

The three approaches for solving (P), i.e., (4),(5) and (6)
originate from Rockafellar’s Proximal method of multipliers
[14]. When applying decomposition to this method, we
obtain a unified framework for the three algorithms, known
as the Proximal alternating direction method of multipliers
(PADMM) which is written as:

Algorithm 1 Proximal Alternating Direction Method of
Multipliers (PADMM)

Require: Initialize z0 ∈ Rn, y0
i ∈ Rpi , λ 0 ∈ Rpi , and ρ > 0

loop

1: zk+1 =argmin
z

f (z)+
M

∑
i=1

〈
λ

k
i ,−Tiz

〉
+

(ρ/2)
M

∑
i=1
‖− ti−Tiz+ yk

i ‖2 +(1/2)‖z− zk‖2
P1

2: yk+1
i =argmin

yi

li(yi)+
〈

λ
k
i ,yi

〉
+(ρ/2)‖− ti−

Tizk+1 + yi‖2 +(1/2)‖yi− yk
i ‖2

P2i
, i = 1, . . . ,M

3: λ
k+1
i = λ k

i +ρ(−ti−Tizk+1 + yk+1
i ), i = 1, . . . ,M

end loop

Algorithm 1 comes with many names, e.g., Linearized
proximal method of multipliers (L-PMM) [15], Split Inex-
act Uzawa (SIU) [16], Generalized Alternating Direction
Method of Multipliers (GADMM) [17]. The matrices P1,P2i
are positive semidefinite and offer some flexibility in precon-
ditioning the proximal term. The second step of the algorithm
is a proximal minimization step and can be written via the
prox operator of a function, defined as

prox ρ f (x) := inf
y∈Y

{
f (y)+

1
2ρ
‖y− x‖2

}
.

From this scheme we can recover:
• Alternating direction method of multiplier (ADMM) [8],

[9]: We set P1 = 0 and P2i = 0. ADMM converges in
function values f (zk)+∑

M
i=1 li(yk

i )→ p?, in the residual
yk − T zk − t → 0, as well as to the dual optimum λ ?

2479



for an arbitrarily large stepsize ρ and with no extra
assumptions.

Algorithm 2 Alternating direction method of multiplier
(ADMM)
Require: Initialize z0 ∈ Rp, λ 0 ∈ Rp, and ρ > 0

loop

1: zk+1 =argmin
z

f (z)+
M

∑
i=1

〈
λ

k
i ,−Tiz

〉
+

(ρ/2)
M

∑
i=1
‖− ti−Tiz+ yk

i ‖2

2: yk+1
i = prox 1

ρ
li

(
Tizk+1 + ti−λ k

i /ρ
)
, i = 1, . . . ,M

3: λ
k+1
i = λ k

i +ρ(−ti−Tizk+1 + yk+1
i ), i = 1, . . . ,M

end loop

• Alternating minimization algorithm (AMA) [18]: The
algorithm is a hybrid scheme, consisting of minimizing
the original Lagrangian (L) in Step 2, and the aug-
mented one (AL) in Step 3 (drop all colored terms
in Algorithm 1). In this way, the quadratic coupling
that comes from the augmented Lagrangian term in the
first step vanishes, allowing for further decomposition
if the structure of f permits to do so. In order to
ensure convergence, the stepsize ρ has to be taken as
ε ≤ ρ ≤ 4σ f

‖T‖2 − ε , where ε ∈ (0, 2σ f
‖T‖2 ) and f has to

be strongly convex, with convexity modulus σ f . Under
these assumptions, convergence of the primal sequence
zk → z?, the dual sequence λ k → λ ? and the residual
sequence yk−T zk− t→ 0 can be proven [18].

Algorithm 3 Alternating minimization algorithm (AMA)

Require: Initialize λ 0 ∈ Rp, and ρ within permitted range
loop

1: zk+1 = argmin
z

f (z)+∑
M
i=1
〈
λ k

i ,−Tiz
〉

2: yk+1
i = prox 1

ρ
li

(
Tizk+1 + ti−λ k

i /ρ
)
, i = 1, . . . ,M

3: λ
k+1
i = λ k

i +ρ(−ti−Tizk+1 + yk+1
i ), i = 1, . . . ,M

end loop

• Chambolle-Pock primal-dual scheme, basic version
(CPI) [19]: Chambolle and Pock’s scheme solves prob-
lem (6) by means of the alternation procedure (presented
in Algorithm 4) which is seemingly different from
Algorithm 1.

Algorithm 4 Chambolle-Pock I (CPI)
Require: Initialize λ 0 ∈Rp, ν0 ∈Rm z0 ∈Rn. Choose τ,ρ >

0 and τρ‖(T, A)‖2 < 1, θ ∈ [0,1].
loop

1: λ
k+1
i = proxρl?i

(
λ k

i +ρ(Tiz̄k+1 + ti)
)
, i = 1, . . . ,M

2: νk+1 = νk +ρ(Az̄k−b)

3: zk+1 =argmin
z∈Z

(1/2)zT Qz+ cT z+
M

∑
i=1

T T
i

〈
z,λ k+1

i

〉
+〈

z,AT
ν

k+1
〉
+(1/2τ)‖z− zk‖2

4: z̄k+1 = zk+1 +θ(zk+1− zk)
end loop

As is proven in [15], Algorithm 4 is equivalent to
Algorithm 1, for the special choices P2i = 0 and P1 =
(1/τ)I−ρ ∑

M
i=1 T T

i Ti, with θ = 1. In this way, Algorithm
4 linearizes the quadratic term that appears in Step 1
of Algorithm 1 and hence decouples the minimization
problem. Note that AMA achieves the same decoupling,
but in a different way. The cost of simplifying the opti-
mization problem comes, as in AMA, with restrictions
to the stepsizes, since the condition τρ‖(T, A)‖2 < 1
has to hold.

III. ACCELERATED CONVERGENCE

There are various extensions of the three methods we
presented that can significantly improve their performance
in practical applications. In general there are two ways to
improve timings:

1) Improving the theoretical convergence rates, which is
done by exploiting properties of the functions in (P).

2) Speeding up the computations, which can be done
is several ways, e.g., fast numerical linear algebra,
preconditioning of the data.

In many cases the two approaches are competing. For exam-
ple, one can precondition the problem so that an accelerated
variant of a method can be used, but at the same time some
favorable sparsity pattern of the original problem is lost.
In our experience, there is no ‘golden rule’ when it comes
to choosing a particular method and applying the various
extensions for speeding it up. The choice of the method
should be motivated from the problem’s structure and vice-
versa. In the subsections that follow we aim at providing
the reader with a wide overview of several variants of the
methods that improve the convergence rates. Computational
speedup is not explored in the current version of the article
due to space limitations.

A. How to split

The first question that comes to mind when using a split-
ting method is how to perform the splitting. This choice can
heavily affect the speed of the algorithm. Choosing a splitting
pattern is equivalent to formulating the two subproblems that
have to be solved in the algorithmic schemes 2, 3 or 4.
Consequently, the choice will also restrict the options for
acceleration. A general guideline would be the following:

1) Both subproblems should have a closed form solution
if possible; if not, they should be cheap to solve. The
whole purpose of using splitting on (P) is to end up
with simpler subproblems.

2) More precisely, the proximal step should be simple to
solve. The step constitutes often of projections onto
simple constraint sets, or proximal minimizations with
respect to norms.

3) Expensive operations, like matrix inversions, should
be avoided. If there are quantities that do not change
during the execution, they should be prefactored.

4) If an accelerated version of an algorithm can be used
without heavily altering a well-structured problem,
then it should be used.

2480



ADMM: In this case, most of the flexibility comes
in Step 2, since Step 3 is either a simple projection or a
proximal minimization operation, provided li is simple.
The augmented Lagrangian term will contribute with
a quadratic term of the form (ρ/2)zT

(
∑

M
i=1 T T

i Ti
)

z to
the objective, hence even if Q is a diagonal matrix, the
resulting quadratic term is most probably dense. In this
sense, one can either minimize the resulting quadratic
function restricted to the subspace Az = b, i.e., solve a KKT
system (see [20]), or by eliminating the equality constraint.
Note that this is equivalent to taking a Newton step on a
quadratic perturbation of f (z), which explains why this
approach needs relatively few iterations for convergence.
The bottleneck is the matrix inversion that has to be
performed at each iteration. If ρ is constant, one can use
either a sparse LDL factorization on the KKT system, or a
Cholesky factorization in the second case and consequently
solve by means of forward-backward substitution [21,
Appendix C].

AMA: The method is applicable under the assumption
that f is strongly convex. On the other hand, if the
assumption holds and f has some structure (e.g., diagonal,
block diagonal), the method should be preferred since
the matrix inversion can be very cheap. In several MPC
applications this is not the case though, since, in order to
ensure strong convexity, f becomes a dense quadratic form
for the condensed problem. Note that the spectral radius of
T and the minimum eigenvalue of the quadratic term will
affect the choice of the stepsize, many times leading to a
very small one.

CPI: This method combines properties of the other two,
in the sense that the first step is still decoupled but there is no
strong convexity assumption. In order to avoid densification
of the quadratic term, we choose to treat the equality con-
straints in a Lagrangian fashion (Step 2), a choice that, along
with the stepsizes’ limitations, can render the algorithm slow
to converge in iterations’ number. Keeping Step 3 simple
allows for moving some (simple) constraints directly in the
objective (z ∈ Z), if the resulting optimization problem has a
closed form solution. The algorithm is built such that it favors
simple computations in the expense of more iterations.

B. Improvements in the convergence rate

All three schemes have benefited from Nesterov’s optimal
relaxation sequence as introduced in [22]. Nesterov’s method
is a variant of gradient descent, where, instead of a gradient
descent update {xk} sequence one uses the over-relaxed
sequence {x̂k}:

α
k+1 =

(
1+
√

4(αk)2 +1
)
/2

x̂k+1 = xk +
αk−1
αk+1 (xk− xk−1) , (7)

with α0 = 1. Application of the scheme results in an O(1/k2)
global rate of convergence in function values; a rate that is
optimal for first order methods. Convergence in terms of the

sequences is trickier to prove. Roughly speaking, when the
optimal O(1/k2) rate in terms of the primal (dual) function
values is achieved, the primal (dual) sequences converge with
rate O(1/k) [23], [15], [19].
Linear convergence rates have also been proven for ADMM
and CP methods under specific assumptions on the structure
of problem (P). Due to space limitations we only present
the extensions of the methods that are based on Nesterov’s
acceleration or similar techniques, and we collect all other
special cases in a table in the end of the section.

ADMM: For ADMM, convergence of the sequences
{zk},{yk},{λ k} with rate O(1/

√
k) is proven in the recent

work [15]. These rates are global and come with no further
assumptions on the structure of the problem.
A fast version of the method (FADMM), based on Nesterov’s
acceleration, was first presented in [23]. Nesterov’s optimal
relaxation is applied on the sequences {yk} and {λ k}. The
authors use an adaptive restarting scheme [24] based on
the residuals’ error (see Appendix A). Since the accelerated
sequences often exhibit an oscillatory behavior and might
over(under)shoot the optimal value, a check is performed,
and if the residuals increase in two subsequent iterations,
the acceleration scheme is reset.
FADMM can be shown to have a global O(1/k2) conver-
gence rate in the dual function’s values under the assumption
that f and li are strongly convex and furthermore li are
quadratic. In the absence of these limiting assumptions, we
can have an empirically fast convergence with unproved rate.
All details are given in [23]. Note that FADMM can be
applied to the same family of problems as ADMM with no
extra assumptions and small additional computational cost.

FAMA: The accelerated version of AMA makes use
of Nesterov’s acceleration scheme on the dual sequence
{λ k} [23]. Under the same stepsize restriction as in the
basic version, convergence of the dual objective value at
rate O(1/k2) has been proven, inspired from the convergence
proof of the FISTA algorithm [25]. Same as with FADMM,
FAMA can practically be applied to every problem that AMA
can solve.

CPII: For the basic version of CP (CPI), a partial
primal-dual gap is shown to shrink with rate O(1/k) in
an ergodic sense for the sequences {zk}, {λ k} and {νk}
in [19]. CP algorithm comes with an accelerated variant,
under the assumption that f is uniformly convex, denoted
here as the second method of Chambolle and Pock (CPII).
The acceleration is achieved by means of adaptive changes
of the primal and dual stepsizes τ and ρ , as well as of the
relaxation parameter θ , which are updated according to the
scheme:

θ
k = 1/

√
1+2γτk, τ

k+1 = θ
k
τ

k, ρ
k+1 = ρ

k/θ
k ,

where γ ≤σ f , assuming knowledge of the convexity modulus
of f . The variant results in a global O(1/k) convergence
rate for the primal sequence {zk}, [19, Theorem 2]. In case
that Q is diagonal, the extra computational cost that comes
from the acceleration is insignificant.

2481



Stepsize restric-
tions

Strong convexity
assumptions

Decouples
variables of
linear constraints

Convergence in function values Convergence in sequences

ADMM no no no ergodic O(1/k) [26], [15] O(1/
√

k) [15], linear [17], [27], [28]
AMA yes yes on f (z) yes - O(1/

√
k) on the primal [29]

CPI yes no yes ergodic O(1/k) in partial primal-
dual gap [19]

linear [19]

FADMM no no no O(1/k2) locally on the dual -
FAMA yes yes on f (z) yes O(1/k2) on the dual [23], [29] O(1/k) on the primal [29]
CPII yes yes on f (z) yes - O(1/k) on the primal [19]

TABLE I

In Table I we provide an up-to-date report of the existing
convergence rates of the methods and their accelerated
variants. Wherever a dash ‘-’ appears, it means that there
does not exist (or we are not aware of) such a result. In some
cases, there might be recent advancements that outperform
the results presented here.

IV. EXAMPLES

We demonstrate some of the methods presented in the
previous sections with an optimal control problem that
involves MPC for tracking of a reference signal. We focus on
explaining how to rewrite our problems so that we maximally
exploit the ideas presented in Section III.

In this example the linearized model of a Boeing 747-
200 (B747) is considered [30]. The model has n = 12
states and m = 17 inputs and the aim is tracking of a
reference signal r(k) for three of the states. We discretize
with sampling period Ts = 0.2s and consider in total a signal
of 115 setpoints. Firstly, a steady state target calculator
computes a pair of setpoints (δxs(k),δus(k)) for the aircraft,
according to a desired reference signal. Subsequently, an
MPC controller is tracking the delivered setpoint. The steady-
states are generated by solving a strongly convex dense QP
with n+m= 29 variables and bound constraints on the inputs
[30, Section II,B]. The affine term in the objective is a
function of r(k), hence the optimization has to be performed
as many times as is the length of the reference signal. The
MPC problem is a simple quadratic one, with Q� 0 and the
same bound constraints on the inputs. The affine term is also
time-varying since it is a function of the generated setpoints.

a) Steady state calculator: The problem to solve is

minimize 1
2 θ T

s Hsθs−hs(k)T θs
subject to θmin ≤ θs ≤ θmax ,

(8)

with variables θs ∈ Rn+m and Hs � 0. Since the objective
is strongly convex, we can use accelerated versions of the
methods. To this end, FAMA and CPII are valid options,
however, the dense structure of Hs would require a forward
backward substitution at each iteration, something that can be
avoided. We thus take the Cholesky factorization of Hs, i.e.,
Hs = LLT , L is lower triangular and invertible and perform
a change of basis, θ̃s = LT θs. Now the problem can be
reformulated as

minimize 1
2 θ̃ T

s θ̃s− h̃s(k)T θ̃s
subject to Cθ̃s ≤ d ,

(9)

with variables θ̃s ∈ Rn+m, h̃s(k) = L−1hs(k). The matrix-
vector pair (C,d) describes the polytopic constraints that are
now imposed in the place of the simple bound constraints
that we had in (8). This is the price paid for eliminating
the dense Hessian in the objective. By introducing a
slack variable y = Cθ̃s − d, y ≤ 0, we can apply FAMA
to the modified problem with f (θ̃s) =

1
2 θ̃ T

s θ̃s − h̃s(k)T θ̃s,
l(y) = δ−(y), T = C, t = −d. For the stepsize we choose
ρ = 1/λmax(CTC).

As a second option, we use ADMM with the parameters
tuned as in [28] in the same setting. This version achieves
linear convergence rate by means of the optimal stepsize
selection ρ = 1/

√
λmin(CCT )λmax(CCT ). In our case C is

singular and so we consider the smallest nonzero eigenvalue.

Accordingly we can use CPII. Problem 9 can be written
in a saddle point form as

min
θ̃s

max
λ

{〈
Cθ̃s−d,λ

〉
+

1
2

θ̃
T
s θ̃s− h̃s(k)T

θ̃s−δ+(λ )

}
,

so we can use CPII with Z = Rn+m, l?i (λ ) = δ+(λ ), T, t as
defined above. Note that there are no equality constraints,
hence there is no ν-update. We initialize the primal stepsize
τ0 = 100 according to [19, Theorem 2].

We solve the problem 115 times with the affine term
varying slightly from one iteration to the other. We terminate
based on the residual decrease, with the accuracy threshold
set to 10−3 for FAMA and CPII and 10−4 for ADMM (see
Remark 1). FAMA needs 495 iterations on average, with
average time 0.85ms per solve, ADMM 194 iterations at
0.56ms per solve and CPII 1100 iterations at 4.9ms per
solve. The solutions achieved are quite accurate, with a
normed relative error (‖θs−θ ?

s ‖/‖θ ?
s ‖) of ≈ 10−5 for all the

methods, sumed over all 115 instances. The optimal stepsize
selection renders ADMM clearly superior in this case.

b) MPC for tracking: The MPC problem described in
[30, Section II] can be written in the condensed form

minimize δ T
usδ

T
us +h(k)T δus

subject to Cδus ≤ d ,
(10)

with variables δus ∈ RNm, after having changed the basis
in the same way as before. We solve the problem for the
following scenarios: N = 5, cold start, warm started at the
primal and dual optima of the previous solve. The outputs
are reported in Table II. ADMM behaves significantly better

2482



ADMM FAMA CPII
N = 5 Av. No. Iters. Cold\Warm 1362 \548 2279 \778 1544\825

Min.\Max. No. Iters. Warm 72\1504 83\5947 1\2111
Av. Time Cold \Warm (ms) 46.90\19.82 42.74 \14.82 75.16 \40.53
Relative error ‖(x,u)− (x?,u?)‖/‖((x?,u?))‖ 1.61×10−4 1.62×10−4 1.61×10−4

TABLE II

than the other two methods in terms of iterations, but FAMA
is faster overall in timings. With the number of variables
increasing, the cost per iteration starts being more evident
when using ADMM. We observe that warm starting makes
a big difference in terms of iteration counts.

Remark 1: Termination criteria for all methods have been
derived in the spirit of [23, Section 1]. We define primal and
dual residuals for ADMM (FADMM) as

rk =−t−T z+ y, sk =−ρT T (yk− yk−1) ,

for AMA (FAMA)

rk =−t−T z+ y, sk =−ρT T (λ k−λ
k−1) ,

while for CPI and CPII we have accordingly

sk =−
[

T
A

]
(zk− zk+1)+

1
ρ

[
λ k−λ k+1

νk−νk+1

]
rk =

1
τ
(zk− zk+1)−

[
T
A

]T [
λ k−λ k+1

νk−νk+1

]
.

Termination holds whenever ‖rk‖2 ≤ ε and ‖sk‖2 ≤ ε .

V. CONCLUSIONS

We demonstrated how three popular splitting methods
can be derived from a general scheme and we discussed
accelerated variants, mostly based on Nesterov’s optimal
relaxation sequence. The methods were applied to an MPC
problem for the control of a Boeing 747 aircraft. A more
complete survey including some other methods, techniques
for computational speedup as well as more examples will
follow soon.

REFERENCES

[1] E. Ullmann, “A Matlab toolbox for C-code generation for first order
methods.” Master’s thesis, ETH Zurich, 2011.

[2] A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N.
Jones, “Efficient interior point methods for multistage problems arising
in receding horizon control.,” in CDC, 2012.

[3] J. Mattingley and S. Boyd, “CVXGEN: a code generator for embedded
convex optimization,” Optimization and Engineering, 2012.

[4] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy
to overcome the limitations of explicit MPC,” International Journal
of Robust and Nonlinear Control, 2008.

[5] R. Hestenes, “Multiplier and gradient methods,” Journal of Optimiza-
tion Theory and Applications, 1969.

[6] L. H. K. J. Arrow and H. Uzawa, “Studies in linear and non-linear
programming,” Stanford University Press, 1958.

[7] J. Douglas and H. H. Rachford, “On the numerical solution of heat
conduction problems in two and three space variables,” Comp. Math.
Appl., 1956.

[8] R. Glowinski and A. Marrocco, “A Modification of the Arrow-
Hurwicz Method for Search of Saddle Points,” 1975.

[9] D. Gabay and B. Mercier, “A dual algorithm for the solution of
nonlinear variational problems via finite-element approximations,”
Comp. Math. Appl., 1976.

[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Found. Trends Mach. Learn., 2011.

[11] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in
signal processing,” in Fixed-point algorithms for inverse problems in
science and engineering, pp. 185–212, Springer New York, 2011.

[12] J. Esser, Primal Dual Algorithms for Convex Models and Applications
to Image Restoration, Registration and Nonlocal Inpainting. 2010.

[13] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone
operator theory in Hilbert spaces. Springer Science+ Business Media,
2011.

[14] R. Rockafellar, “Augmented lagrangians and applications of the
proximal point algorithm in convex programming,” Mathematics of
operations research, 1956.

[15] R. Shefi and M. Teboulle, “Rate of Convergence Analysis of Decom-
position Methods Based on the Proximal Method of Multipliers for
Convex Minimization,” SIAM Journal on Optimization, 2014.

[16] M. B. X. Zhang and S. Osher, “A Unified Primal-Dual Algorithm
Framework Based on Bregman Iteration,” Journal of Scientific Com-
puting, 2011.

[17] W. Deng and W. Yin, “On the global and linear convergence of the
generalized alternating direction method of multipliers,” Rice CAAM
technical report TR12-14, 2012.

[18] P. Tseng, “Applications of splitting algorithm to decomposition in
convex programming and variational inequalities,” SIAM J. Control
Optim., 1991.

[19] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” Journal of Mathemat-
ical Imaging and Vision, 2011.

[20] B. O’Donoghue, G. Stathopoulos, and S. Boyd, “A splitting method for
optimal control,” IEEE Transactions on Control Systems Technology,
2012.

[21] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[22] Y. Nesterov, “A method for solving the convex programming problem
with convergence rate O(1/k2),” Dokl. Akad. Nouk SSSR, 1983.

[23] T. Goldstein, B. O’Donoghue, and S. Setzer, “Fast Alternating Direc-
tion Optimization Methods,” arXiv.org, 2012.

[24] B. O’Donoghue and E. Candes, “Adaptive Restart for Accelerated
Gradient Schemes,” arXiv.org, 2012.

[25] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imaging Sci., 2009.

[26] B. He and X. Yuan, “On the O(1/n) Convergence Rate of the Douglas-
Rachford Alternating Direction Method,” SIAM J. Numerical Analysis,
2012.

[27] Z.-Q. L. Mingyi Hong, “On the linear convergence of the alternating
direction method of multipliers,” 2012.

[28] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal
parameter selection for the alternating direction method of multipliers
(ADMM): quadratic problems,” arXiv preprint arXiv:1306.2454, 2013.

[29] A. Beck and M. Teboulle, “A fast dual proximal gradient algorithm for
convex minimization and applications,” Operations Research Letters,
2014.

[30] E. Hartley, J. Jerez, A. Suardi, J. M. Maciejowski, E. Kerrigan, and
G. Constantinides, “Predictive Control using an FPGA with Appli-
cation to Aircraft Control,” IEEE Transactions on Control Systems
Technology, 2013.

2483


