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Abstrakt

Praca sa zaoberd modelovanim a riadenim laboratérnej rektifikacnej kolény. Identifikaciou
pomocou metddy rekurzivnych najmensich stvorcov boli uréené parametre prenosovej funkcie
medzi teplotou na hlave kolény a refluxnym pomerom a parametre prenosovej funkcie poruchovej
veli¢iny, ktorou je teplota suroviny na nastrekovej etazi. Spravnost identifikovanych prenosov
modelov bola overend na realnom zariadeni. Pomocou optimalneho pozorovaca, ktorym je
kalmanov filter, sa odhadli stavové veli¢iny kolény. Identifikované modely sltzia na navrh PI a
MPC regulatorov.



Abstract

The project deals with modelling and controlling of the laboratory distillation column. Using
recursive least squares method for identification was identified parameters of transfer function
between temperature on the top of the column and reflux rate and parameters of transfer function
of disturbance, which is temperature of the feed on the feed tray. Model verification was been
performed on laboratory device. Using Kalman filter as a optimal state observer have been
estimated all of the state variables of the device. Identified models have been used to design PI
and MPC controllers.
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Chapter 1

Introduction

Distillation is one of the most important industrial processes for separating the different compo-
nents of liquid mixture.

Distillation is defined as a process in which a liquid or vapour mixture of two or more substances
is separated into its component fractions of desired purity, by the application and removal of
heat.

Distillation is based on the fact that the vapour of a boiling mixture will be richer in the
components that have lower boiling points.

Distillation is possible for a methanol-water mixture because their vapour and liquid concen-
trations vary with temperature, as shown in a T-x-y diagram is shown in Fig. 1.2. Using this
property of the methanol-water mixture, it is possible produce high purity methanol. X-Y
diagram of the methanol-water mixture is shown in Fig. 1.1.

Therefore, when this vapour is cooled and condensed, the condensate will contain more volatile
components. At the same time, the original mixture will contain more of the less volatile material.

Distillation columns are designed to achieve this separation efficiently:

o distillation is the most common separation technique
e it consumes enormous amounts of energy, both in terms of cooling and heating requirements

e it can contribute to more than 50% of plant operating costs

The best way to reduce operating costs of existing units, is to improve their efficiency and
operation via process optimisation and control. To achieve this improvement, a thorough
understanding of distillation principles and how distillation systems are designed is essential.

(Tham, 1997)

Distillation columns becomes a favourite subject in the process systems engineering field, including
the areas of process synthesis, process dynamics and process control. The reason is that distillation
columns are themselves a system; a distillation columns may be viewed as a set of integrated,
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mostly cascaded, flash tanks. However, this integration gives rise to a complex and non-intuitive
behaviour, and it is difficult to understand the system (the column) based on the knowledge
about the behaviour of the individual pieces (the flash tanks). (Skogestad, 1997)

Predictive control is now one of the most widely used advanced control methods in industry,
especially in the control of processes that are constrained, multivariable and uncertain. The
cornerstone of MPC is the model. MPC uses models in 2 ways: using a reliable model to predict
effect of current control input on future outputs, and using the same model to compute the
optimal control action. (Ahmad and Wahid, 2007)
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Chapter 2

Description of the Laboratory
Device

The UOP3CC Continuous Distillation Column is a self-contained distillation facility consisting
of two interconnected units: (UOP3CC, 2010)

1. a floor standing process unit

2. benchmounted control console

Schema of distillation column is shown in Fig. 2.2 and the laboratory device of distillation
column is in Fig. 2.1.

Distillation Column

The 50mm diameter sieve plate column is made up of two glass sections each containing four
sieve plates. The columns are separated by a central feed section and arranged vertically for

counter-current vapour/liquid flow. The column is insulated to minimise heat loss.

The glass column incorporates a total of eight sieve plates in two sections each containing four
plates. Each plate is located by the central support rod and incorporates a weir and downcomer
to create a liquid seal between successive states. The liquid seal on the final plate in each section
is achieved by U-tube.

Reboiler

The reboiler is situated at the base of the column. In continuous operation, valve is open and
bottom product flows from the reboiler through the bottom product cooler to the bottom product
tank. It is possible to preheat the feed to the column by directing the feed through a spiral coin
in the bottom product cooler where the heat is transferred from product leaving the reboiler at
the boiling point.

Condenser

Vapour from the top of the column passes to a water-cooled, coil-in-shell condenser, which may
be fitted with an insulating jacket to allow heat balances to be carried out. The shell of the
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Figure 2.1: Laboratory Distillation Column
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condenser incorporates a pressure relief valve to protect system in the event of a blocked vent
and cooling water failure. Cooling water enters the condenser at a regulated rate through a
variable area flow meter and the flow rate is controlled by diaphragm valve.

Decanter

Condensate is located in a glass decanter (phase separator) which is bypassed for normal
distillation experiments by operating valve which is 3-way solenoid operated valve. Depending
on the setting of the reflux timers, condensate is directed by the reflux valve either back to the
top of the column or to the top product collecting vessel. When directed to the column, the
reflux passes through a U-seal where a valve can be used for measuring boil-up rate.

Thermocouples

Temperatures within the system are monitored by fourteen thermocouple sensors located at the
strategic positions in the system. T1 to T8 except T6 are located in the column and measure
the temperature of the liquid on each plate. T10 measures the temperature of the vapour on the
top of the column. T9 measures the temperature of the mixture in the reboiler. T6 measures
the temperature of the feed on exit of the reboiler cooler. T12 measures the temperature of the

water on exit of condenser.
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Chapter 3

Identification

3.1 State-space Model

Model predictive control considered in this project, is based on state space model. For this
purpose, state space model of distillation column can be derived. In order to obtain mathematical
model, first several assumptions must be made (Minh and Rani, 2009):

e Binary mixture is separated and it has ideal properties, so it means, that compounds of
binary mixture are ideally mixed.
e Mass transfer is only on trays and in reboiler.

« Efficiency of trays isn’t equal to 1. Efficiency can be defined:

Yi — Yi+1 (3'1)

77' =
' yf — Yi+1

where y; is actual concentration of vapour phase on i-th tray and ¥ is ideal concentration
of vapour phase on i-th tray, it can be enumerated from t-xy diagram 1.2.

e Actual composition in liquid phase is equal to ideal composition in liquid phase = = z*.

o In distillation column is always constant atmospheric pressure.

Variables of distillation column are as follows:

e x; is concentration of methanol in liquid phase on i-th tray

o x;(0) is initial condition of concentration of methanol in liquid phase on i-th tray at time
t=0
e y; is actual concentration of methanol in vapour phase on i-th tray
*

e y; is ideal concentration of methanol in vapour phase on i-th tray

e Z; is hold-up on i-th tray.
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e ny is molar flow of liquid along distillation column
e ng is molar flow of vapour along distillation column
e np is molar flow of feed with concentration x g

e np is molar flow of distillate and ny is molar flow of bottom product from reboiler

Formulation of nonlinear state-space model was taken from (Fikar and Mikles, 2007) Mass
balance of reboiler (index = 9):

d(Zyxy(t))

(i 6) + 3 ()as(8) = i En(t) + i (zg(r) + T2 (3.2)
Mass balance of stripping part (index = 8,7,6):
(00 0) + e ()ar(0) + e Da(t) = 020) + e ()as(t) + na(Ostr) + DB (55
(000) + e (D)as(t) + e (Ds(t) = 020) + e ()ar() + i (Oyr(r) + L) (5.4
(200) + e ()as(1) + e (Drlt) = 020) + e )as(t) +na(Oyolr) + D20 (5.5
Mass balance of feed tray (index = 5):
() (1) + i za(6) + ias(t) = (1) + i O)as() + e Ous(0) + T2 (3.
Mass balance of enriching part (index = 4,3,2,1):
i (0)2s -+ ()s(0) = i (ra(0) + nc(Bya(t) + D20 1)
() + i (a(t) = i (bzs(t) + ics(r) + 2ot (3.5)
(B +na(Ous(t) = (Ba(t) + i(pe) + “E20) 3.9)
(B0 + i ((t) = i (O (1) + (O (r) + L) (3.10)
Mass balance of condenser (index = 10)
(1) = i (Erao(t) + ap(i)eno(r) + LD (3.11)

dt

Vector x represents concentration in liquid phase on trays and vector y represents concentration
in vapour phase. Relation between these vectors is shown in x-y diagram 1.1. Initial conditions
of (3.2)-(3.11):

x;(0) = mjp i=1{1,2,...10} (3.12)
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(0) = gy k ={G,L,F,W,D} (3.13)

Our differential equations of process look as follows:

do(t) =~ an(t) + (hL(t)gghF(t))xg(t) - h%it)yg(t) (3.14)
i = OO, O RO, 60, 60
STV T M PR G WAL HE I
TR Ry PR G R M= GOV
i) = ~ PO I gy 4 LD ) 4 08 ) 2D ) - P ) a9
ba(t) = —ﬁLZit) za(t) + hLZit)$3(t) + h%it) s (t) - h%‘it) u(t) (3.19)
ia(t) = ="y (1) + L) + 250y 1) — Py (3.20)
ba(t) = =" 0p(0) 4 1 1)+ Dy 1) - P (3.21)
1) = =010+ 1o 0) + ) - P (3:22)
fro(t) = n(t) ZJZOnD(t)m(t) n ngl(ot) () (3.23)
Control action is described by these two equations:
an(t) = Ric(t) (3.24)

Base form of state-space model looks like as in (3.25) and in (3.26). To create matrices A, B, C,
D is needed Taylor’s linearisation of non-linear equations (3.14)-(3.23). Relation between y(t)
and y*(¢) is in (3.1). Relation between x(t) and y*(¢) is in 1.1 and relation between temperature
of boiling mixture and composition is in 1.2.

2(t) = Az(t) + Bu(t) (3.25)
p(t) = Cz(t) + Du(t) (3.26)

where z(t) are state variables of the model , p(t) are output variables from the model and w(t)
are input variables to the model.

This subsection of identification was about introducing state-space model matrices using mass
balances of more volatile component. This is only one way, how to get analytical model of
distillation column. The another way is identification of step responses to identify process transfer
function and then from transfer function we can get state-space matrices A, B, C, D of our
process. In this project was used identification using recursive least squares which is described in
separate subsection of identification.
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3.2 Recursive Least Squares

The Recursive least squares (RLS) adaptive filter is an algorithm which recursively finds the
filter coefficients that minimizes a weighted linear least square cost function relating to the input
signals. This is in contrast to other algorithms such as the least mean squares (LMS) that aim
to reduce the mean square error. In the derivation of the RLS, the input signals are considered
deterministic, while for the LMS and similar algorithm they are considered stochastic. Compared
to most of its competitors, the RLS exhibits extremely fast convergence. However, this benefit
comes at the cost of high computational complexity Hayes (1996)

Suppose, that our signal, can be defined as follows:

y=01x1+bxo+ ... +0zs+v=a"0+v=70+0 (3.27)

The identification aim is to determine the parameter vector 8 based on information of measured
process output y(n), the data vector x(n) and v(n) represents additive noise.

y1 = 0hx11 + Oox1o + ... + Ogx15 + v1

Yn = 01251 + boxpa + ... + O5Tp5 + vp (3.28)
Y1 SC1T U1
= lo+]: (3.29)
Yn 1‘77: Un
—— = SN——
Y X \%

We will look for such an estimate  that minimises sum of squares of errors between measured
and modelled outputs We have to minimize cost function with respect to

J0,X) =min VTV = min (¥ — X0)T(y — X0) (3.30)
oJ*

pu— . 1

55 =0 (3.31)

If matrix X is invertible and gradient of this function with respect to 6 is equal to zero:

oJ*

= 2XTX0* —2XTy = 0= 0" = (XxTx)"'XxTy (3.32)
0 = (xTx)txTy (3.33)
———

P
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where 6* is vector of estimated parameters. The matrix P is called the covariance matrix if the
stochastic part has unit variance.

Transfer function in s-domain can be transform into z-domain using following equation:

Gz =(1— 2—1)2(5—1Gis)) - ?é_?) (3.34)

The function G (27 1) is referred to as discrete-time transfer function of the system with continuous-
time transfer function G(s).

brz 7l boz 2 4 4 by, 2

Gzl = 3.35
(") 1+ az7t +agz™2 4+ ...+ ap,z7 e (3:35)

A general discrete-time linear model can be written in time domain as
(I+arz 4+ dan,z )Y () = (b7 4 bz 2 4. bz ™)X (271 (3.36)

y(k) +ay(k — 1)+ ... +anylk —ng) =bru(k — 1) + ... + by, u(k — np) + e(k) (3.37)

where y are outputs from system, u are inputs to the system and e is error variable.

2k = (—ytk=1), o —ylh—na), u(k—1), ..., ulk—m)) (3.38)
b= (al o an, b ... bnb)T (3.39)
Y (k) = Z7 (k)0 + e(k) (3.40)
0=z (k)Z(k)" 2T (k)Y (k) (3.41)

y(1 u’(1

y(0 u”(0)
Y (k) = : Z(k) = : (3.42)

y(k—1) ul'(k —1)
y(k) u” (k)
covariance matrix:

cov(0) = o*(ZT (k) Z (k)" (3.43)
P=(ztz;)™! (3.44)

matrix inversion lemma:

(A+BC'D)y =41 - A'B(DA'B+C)! (3.45)
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If we consider C = 1,B = z,,D = 2zlandA = Pk__l1 then the matrix inversion lemma yields
(3.47), where the term that has to be inverted is only a scalar.

_ L
Pl =2{2), = (le;l?Zk) ( kT1> = Zi 1 Zi1 +27, (3.46)
“k —
P71
k—1
Py= (P +z2) = Pt — Pocvzi (2 Peorze + 1) 5l Pra (3.47)
v(k)
O = Op—1 + Ve Pr121(yr. — 2L Ox—1) (3.48)
—_— —
Ly €k
Ly, = v Pr—12k (3.49)
O = Op—1 + Licy (3.50)
initial values:
0o, Po (3.51)
minimize:
P A k -2
min  J = (0 —0p)" Pyt (0 — o) = Z (y — 21'0) (3.52a)
0 i=1
st. Py=-cl (3.52b)

3.3 Identification of the models using RLS

Step changes on reflux ratio were performed in order to obtain model relating control input
(reflux ratio) and controlled variable (T10 temperature). Model of the disturbance was obtain
using same identification method.

We made 2 step changes Fig. 3.1(a) of reflux rate on whole working interval. The first step of
our identification was filtering the data. As we can see in Fig. 3.1(a) our signal was with a large
noise. This noise can be caused by the thermocouples, because the temperature is measured
on sharp ending of metal wire which is also part of the thermocouple. Around this ending is
bubbling liquid and vapour at the same time, but their temperatures are different. Using the
right parameters of a filter we filtered data as is shown in Fig. 3.1(b). We needed to normalize
measured data. Normalization was performed by subtracting steady state and then by dividing
this values by steady state. So our normalized data had values between -1 and 1. These filtered
and normalized data could be used for identification.

Values of steady states are as follows:
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T6° = 25°C (3.53)
T10° = 85°C (3.54)
ud =1 (3.55)

where value of reflux rate u® = 1 represents fully opened three-way valve and everything from the
top of the column flows to the product tank as a distillate and doesn’t flow back to the column.

With sampling time:
Ts = b5s (3.56)
This value of sampling time is suitable to catch dynamics of distillation column.

Transfer function of the model in s-domain can be written as follows:

Gls) = ig (3.57)
or in z~!-domain
L1
GleY) = i&& (3.58)

We choose degree of denumerator of our transfer function will be 2 and degree of numerator will
be 1. Identified transfer function will be look like

bls + b()

Gls) = s 5+ %
(5) 52+ a1s + ag

(3.59)

in s-domain, or in z~!-domain:

_ blz_l + b02_2
Gz ) =
(=) 1+a1z71 +agz2

(3.60)

Identification was running in continuous time and identified models were transform into z-domain
using function c¢2d in MATLAB. If we put values of identified parameters into transfer function
we get identified model of reflux rate, which look like in s-domain:

1.156.10%s + 0.0003393

_ 61
G8) = 21 0.006301s - L38L.10-5 (3.61)

or in z~'-domain:

o) 0.004203z~! +0.00414822
ya =
1—1.9692—1 +0.9692—2

(3.62)

with sampling time Ts = 5 seconds.

Using function tf2ss in MATLAB we get state-space matrices from transfer function of reflux
rate, which looks as follows:
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1.9686  —0.9690 0.1250
Apes = ref = 3.63
f [ 1 0 ] f [ 0 ] (3.63)
Crep = 00336 0.0332]  Dyoy = [0] (3.64)

We had to compare our model with real data. So we created schema which compare step response
of our model with real temperature on the top of the column as is shown in Fig. 3.1(c)

Using function compare in MATLAB we obtain fit of our model as 81.25%. As is shown in Fig.
3.1(c) our model behaves like real system and the dynamics of our model and real system are
very similar. This procedure was also applied for identification of disturbance T6. This variable
wasn’t filtered, because the noise of temperature was lower compare with noise on variable T10.

Identified transfer function of disturbance in s-domain:

7.749.107 65 4 5.948.106

G —
(5) = 20040575 1 0.0002287

(3.65)

or in z~!-domain:
~0.0001046z~1 — 2.995.10 722

Gz hH = 3.66
(=) 1—1.8112-1 + 0.816422 (3.66)

with sample time Ts = 5 seconds. Fit of our model of disturbance is 81.98% as we can see on
Fig. 3.2(c).

After transformation of transfer function into state-space matrices we obtain matrices of distur-
bance model:

1.8112 —0.8164 1
Adist - [ 1 0 ] Bdist - lO] (367)
Clyiat = [0.0083 0.0024] Dyist = [0} (3.68)

Matrices of model of reflux rate (3.63)-(3.64) and matrices of model of disturbance (3.67)-(3.68)
we put together to create state-space model of column. Matrices of model with disturbance now
looks like as follows:

1.9686 —0.9690 0 0
A 0 1.0000 0 0 0

A= |Ares _ (3.69)
0 Agist 0 0 1.8112 —0.8164

0 0 1.0000 0
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0.125
0
Bref = 0 (370)
0
0
0
Bt = |, (3.71)
0
C'=[Crey Cuaint] =[0.0336 00332 0.0083 0.0024 (3.72)

Identified second order of state space model for design control on laboratory distillation column.
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Chapter 4

Model Predictive Control

Model predictive control (MPC) is an advanced method of process control that has been in use in
the process industries in chemical plants and oil refineries since the 1980s. In recent years it has
also been used in power system balancing models. Model predictive controllers rely on dynamic
models of the process, most often linear empirical models obtained by system identification.
Main advantage of MPC is the fact, that based on state space model and initial condition xg
we predict future evolution of states, which is incorporated in optimization. This allows us to
calculate optimal control inputs, which leads to optimal performance of the plant. MPC has the
ability to anticipate future events and can take control actions accordingly. PID controllers do
not have this predictive ability. MPC is a digital control.

The principle of MPC lies in solving quadratic objective function with linear constraints.
Quadratic problem in standard form can be expressed as, (Boyd and Vandenberghe, 2009):

1
min ivTHv +glv+r (4.1a)
s.t. Cv=d (4.1b)
Av=1> (4.1c)

where H is positive definite matrix C' € R™*" A € RP*™ and variables g, d, b are one column
vectors, number of rows depends on problem which is solved.

Deriving cost function with the linear constraints is main part of the MPC implementation.
Output regulation with constraints is considered and the optimizing variable will be the difference
of control input. Formulation of MPC was taken from (Klauco, 2012).

General formulation of standard MPC problem with linear constraints can be expressed in
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following form:

N N-1
O = min Z 2T Qx + Z u” Ru (4.2a)
k=1 k=1
s.t Tpy1 = Ax + Buy (4.2b)
reX uel (4.2c)

where N is prediction horizon, @ € R™"=*"= R € R™*™ are weighting matrices.

By solving QP problem we calculate the optimal control inputs over prediction horizon. Once
these inputs are applied to the plant, states of the plant are moved to different values, such
application resembles open-loop implementation. In closed-loop application the optimization is
performed at each sample, with new initial condition (zg = xy).(Maciejowski, 2002)

Output regulation problem together with disturbance modelling can be formulated as follows:

| L N=1
©= > e —welgy+5 D NAulk (4.3)
25 25

where 7, is the reference value for the output and y; is the measurement of the output. This
objective function will suppress the changes in the control signal Awug,.

4.1 MPC

In order to solve optimization problem expressed in (4.3), this objective function has to be
rewritten into form presented in (4.5). For the purpose of rewriting the MPC cost function into
standard QP problem, we have to know relations between outputs y; and inputs ug. State space
model can be described in following form:

Tht1 = Az, + Buy + E.dj k=0..N (4.4&)
yr = Cxp + Duy, + Eydy, k=0..N (4.4b)

QP problem can be expressed as a weighted least square quadratic optimization problem with
optimal solution U*.

X 1 1
U =min 5|[Y - R+ iHAUH% (4.5)
This cost function can be then translated into standard QP problem by exploiting the evolution

of the outputs over the prediction horizon base on state space model. First is considered model

without disturbances d.

1
U* = 5UTHU +g"U +r (4.6)
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State space evolution for sample k = 1:
Tyl = Az + Buy (4.7&)
yr = Cxp + Duy 4.7b)
State space evolution for sample k = 2:
Lh+2 = A[Ek+1 + BUk+1 48)
= A(Azy, + Buy) + Bug41 9)
= A%x), + ABuy + Bugiy (4.10)
Yk+1 = C(L’k+1 + D'U,k+1 (411)
= C(Azy + Bug) + Dugyq (4.12)
= CAzy + CBug + Dugq (4.13)
State space evolution for sample k = 3:
Tkr3 = ATkio + Bugyo (4.14)
= A(A%z + ABuy + Bujy ) Bujgo (4.15)
= Az, + A2Buy, + ABuy11 + Buy (4.16)
Ykt2 = Cxpya + Dugyo (4.17)
= C(A%x), + ABuy, + Bujy1) + Dugio (4.18)
= CA%zy, + CABuy, + CBuyi 1 + Dujys (4.19)
Based on these equations matrix form of prediction equation is expressed:
Y = Wy +TU (4.20)
in which:
Uk+1 Yk+1 CA
Uk42 Yk+42 CA?
v Uk+3 Yk+3 CA3 (4.21)
[Uk+N—1] LYk+N—1] [CANT |
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D 0 0 0 0
CB D 0 0 0
CAB CB D 0 0
=1 caB 4B CB D 0 (4.22)
: : : : 0
|CAN—2B CcAN-3B CAN-4B ... CAB D

where U € RNnu X7

Control moves are defined as Aup = ug — up_1. Using this definition, vector form of control

moves over the control horizon is written:

Auy, Up — Ug—1
JANT7 Uk+1 — Uk
Augra | = | Ukg2 — Ukt (4.23)
|Aupyn—1] | UkgN—1 — UptN—2]
[ Aw, | [, 0 0 0 0 [ w | [L]
AUk+1 —Iu Iu 0 0 0 Uk+1 0
Auk+2 = 0 —I, I, 0O 0 Uk+2 -0 Uk—1 (424)
: : : S .0 : :
| Aupyn_1 | | O 0 0 - Iy I, | |upgn—1] |O]
where I, € ["w*"v,
AU = AU — I yup1 (4.25)

By determining all matrices and vector, standard QP problem simplifying notation is formulated,
(Muske and Rawlings, 1993)

U* = min (3[R - Y3 + YIAU|%) = min (Dy + ®p) (4.26)

Y- R= U+ ®x;) —R=TU — (R— ®ay) =TU — ¢ (4.27)
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1
Oy = §||Y - Rl
1 2
= §||FU - C||Q
1
=5 (T - )TQ(U —¢)

1 1
= 5UTFTQFU — (ITQe)TU + ECTQC

1
Oy = §”AUH%2
1
= SIIAU — D [
1
= §(AU - I17uuk_1)TR(AU - Il,uuk—l)

1
= 5UTATRAU — (ATRIy yup, 1)U

H=T7Qr + ATRA

g=-T"Qc— ATRI yuj,4
=-TTQ(R — @) — A"RI yup—1
=TTQR + ATRI1 yup, 1

(4.28)
(4.29)
(4.30)

(4.31)

(4.32)
(4.33)
(4.34)

(4.35)

(4.36)

(4.37)
(4.38)
(4.39)

H is curvature matrix and g is first order coefficient vector. In order to achieve offset of control,

disturbances must be taken into account. In order to this, relation between outputs y and

disturbances d is found. This equation shows the matrix form of prediction equation, in which

are included states, control inputs and disturbances.

E, 0 0 0 0

CE, E, 0 0 0

CAE, CE, E, 0 - 0

'p=1 ca2p,  cag, CE, E, - 0
: : : : » 0
|CAN72E, CAN-3E, CAN—*E, ... CAE, E

Y = Uz, + TU +TpD

(4.40)

(4.41)

This equation is then inserted into equation (4.27), yielding equation (4.42). By continuing

derivation like it was presented in equation (4.32) through (4.37). The curvature matrix H will

remain unchanged, but vector g will be changed as follows:
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Y —R=(®x,+TU +TpD)— R=TU — (R — ®x), — T'pD) =TU — ¢ (4.42)

g=TTQR +T1TQ®x), — ATRI yur_1 +TTQIpD (4.43)

For the purpose of simplifying notation, equation (4.43) is rewritten into:

g=MprR+ M,x; + Myug_1+ MpD (4.44)

Final formulation presented in (4.45) can be solved by numerous algorithms e.g. active-set
algorithms, (Nocedal and Wright, 1999). The tools solving QP problems used in this project
were namely quadprog() in MATLAB.

1
U* = min §UTHU +g'U (4.45)

4.2 Hard Constraints

The main advantage of MPC is to handle constraints. These constraints have form of linear
inequality equations (4.46). Since we are dealing with stable system, constraints on system states
may not be considered, so we are considering only hard constraints on control inputs u, control
moves Au and outputs y.

Umin < U < Umag k=0,...,.N—1 (446)
Atpin < Aug, < Aoz k=0,...,N—1 (4.47)
Ymin < Yk < Ymazx k= 0, RN N (448)

Constraints presented in (4.46) have to be rewritten into matrix form. The bounds on control
signal are just stacked like in (4.49). Using definition of A matrix from (4.25), matrix form of
inequality constraints for control moves are expressed in (4.50) yielding (4.51).

Umin Umazx
Umin Umazx
Umin = . Umaa} = . (449)
Umin Umazx
Alpin + up—1 AUz + U—1
Atpmin Atz

< AU < , (4.50)

JANTH Almag
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AUpin + Il,uuk—l < AU < AUpmar + Il,uuk—l (451)

Relation between matrix form of output and control input is used (4.41). Bounds on outputs
Yinin and Y., are created similarly as bound on inputs (4.49)

Yiin SVzp, +TU+T'pD < Yiar (452)

Yinin — (Vo + TpD) <TU < Yyee — (Yo + TpD) (4.53)

Constraints defined in(4.51) and (4.53) can be put together resulting in (4.54).

AUv7m'n+ll,uuk—1 ‘| < [A‘| U < [ AUma:(:"‘Il,uuk—l (4 54)

Yin — (\I'mk + FDD) T Yiar — (\I’l‘k + FDD)

Most of solvers require formulation like presented in (4.1a), so (4.54) must be reformulated as
shown in (4.55).

A AU'mcm: + Il,uuk:—l
r Ymax - (\I/xk + FDD)

U< 4.55
—A o _(AUmaa: + Il,uukfl) ( )
T _(Ymax — (\I/xk + FDD))

4.3 State Observer

The Kalman filter, also known as linear quadratic estimation (LQE), is an algorithm that uses
a series of measurements observed over time, containing noise (random variations) and other
inaccuracies, and produces estimates of unknown variables that tend to be more precise than
those based on a single measurement alone. More formally, the Kalman filter operates recursively
on streams of noisy input data to produce a statistically optimal estimate of the underlying
system state. The filter is named for Rudolf E. Kalman, one of the primary developers of its
theory.

The algorithm works in a two-step process. In the prediction step, the Kalman filter produces
estimates of the current state variables, along with their uncertainties. Once the outcome of the
next measurement (necessarily corrupted with some amount of error, including random noise) is
observed, these estimates are updated using a weighted average, with more weight being given
to estimates with higher certainty. Because of the algorithm’s recursive nature, it can run in
real time using only the present input measurements and the previously calculated state and its
uncertainty matrix; no additional past information is required.

+ L (Ymk — Jr—1) (4.56)
k—1

d

| —
U, &
| E—
>
Il
||
> &
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& A E||% B
o T o)
U = [C Ey} m + Duy, (4.58)
k

# is estimate of state variables and d is estimate of unmeasured disturbance variables. Matrices
A, B, C, D represents discrete time state space model of laboratory distillation column. Matrices
E, F can be tuned in order to reject all disturbances that might occur during operation.

Adding of integrator to (4.57) causes that our new matrices will have one row more. This
integrator can reject noise in signal from column. Matrices £ and F' was chosen as follows:

E, = [0] E, = 1] (4.59)

Matrices Q and R, which are used for calculation of Kalman gain L, we choose as follows:

10 00O
01 000
QKalman =10 0 1 0 0 (4.60)
00010
00001
Riatman = |:110_5:| (461)
Using MATLAB function dlge we enumerated values of vector L shown in (4.62).
1.0098
0.0424
L = |—-0.0548 (4.62)
—0.0942
0.9653

Simulations Fig. (4.1(a), 4.1(b), 4.1(c)) tests our kalman filter and estimated variables are
correct. State variables shown in Fig. 4.1(c) are very close together with its values, it is caused
by dynamics of the system and state-space matrices have its values very similar.
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Chapter 5

Control of Distillation Column

5.1 Performance of PI Controller

A proportional-integral-derivative controller (PID controller) is a control loop feedback mechanism
(controller) widely used in industrial control systems. A PID controller calculates an "error" value
as the difference between a measured process variable and a desired setpoint. The controller
attempts to minimize the error in outputs by adjusting the process control inputs.

PID control is by far the dominating control structure in industrial practice. The textbook PID
controller has following basic structure (Astrom and Higglund, 1995):

U(s)
E(s)

K

Using Euler’s method for numerical integration s = fp;i can be created discrete transfer function

of the PID controller (Herjolfsson and Hauksdottir, 2004):

U(z) KiTsz Kp(z—1)
B(z) Kp+ z—1 + Tsz (5:2)

We are using to control distillation column only PI controller in discrete time, so the (5.2) has

simpler form:
U(z) KiTsz
=K
E(2) P z—1

(5.3)

Using PID parameter tuning toolbox "pidtool" in Matlab we enumerated parameters of PI
controller Kp = 0.6 and K7 = 2—('%. So parallel form of used discrete PI controller with sampling
time Ts = 5s is as follows:
U(z) 3z
=06+——
E(z) + 400(z — 1)

(5.4)

Filtered data of control are shown in Fig. 5.1. In the Fig. 5.2(b) and 5.3(b) is shown control
effort of PI controller. Controller is very aggressive and this control looks like bang-bang control.
Such performance of controller causes oscillations around the setpoint of controlled temperature
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on the top of the column T10. Delta area represents satisfactory control and its value is § = +1
degree of Celsius.

Whole control sequence is shown in Fig. 5.4(a) and in 5.4(b). Concentration of methanol in
distillate was obtained from t-xy diagram, which is shown in 1.2.

PI controller was suitable for control of distillation column, but sometimes values of controlled

variable leaved delta-area and this scenario couldn’t be accepted on all of devices of this type in
industry.
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5.2 Performance of MPC

To design functional predictive controller the weighting matrices have to be properly chosen. Our
weighting matrices from (4.5) are @) which represents penalty on reference tracking and R which
represents penalty on control effort. Since we are controlling SISO system, weighting factors are
scalar values.

Q=05 R = 10000 (5.5)

Value of R is quite a large number compare to ). This is caused by numerical structure of
objective function and matrices of the model. Because state variables represented by model of
reflux rate are acquiring greater values and if they are squared, the difference between value
of regulation and value of control input are different by 4 orders of magnitude. Laboratory
distillation column is very sensitive on large changes of reflux rate and high value of R penalizes
high controller activity so the whole device is more stable with this value of R.

Matrices of model (3.69)-(3.72) and matrices of disturbance (4.59) was substitute into (4.4a)

Our system has some constraints, that have to be satisfied. Constraint Our system has constraints,
that have to be satisfied. Constraint on reflux rate should be only between zero and one and
mathematical equation looks as follows:

0<u(t)<1 (5.6)

From t-xy diagram 1.2 we can see, that exist some limitation of concentration of methanol in
vapour phase and on the top of the distillation column is only vapour phase which condensates
in condenser. This fact creates another constraints on outputs from our system. This constraint
can be mathematically written as follows:

64.500 S Yyrio § 10000 (57)
with respect to temperature or with respect to composition:

0% < ye < 100% (5.8)

In Fig. 5.5(b) is shown whole control sequence of control with MPC.

As we can see from Fig. 5.5(c) control effort of MPC controller is less aggressive as control effort
of PI controller, which makes system stable and amplitudes of oscillations around reference value
in Fig. 5.5(b) are smaller.

If we separate control sequence 5.5(b) into three different parts of control. First part shown in
Fig. 5.6 represents negative step change of reference on temperature on the top of the column
and we can see, that performance could be faster, but if we increase value of weighting matrix @
the system might goe unstable. Controlled variable T10 doesn’t leaving delta-area, so this part
of performance has satisfactory results.

Second part of performance is positive set-point change of temperature T10 and is shown in Fig.
5.7. Result of this performance is satisfactory with respect to delta-area.
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Third part deals with eliminating measured disturbance. As we can see in Fig. 5.8(a) the value of
temperature of feed increased two times and MPC controller slightly increased reflux rate (5.8(c)),
this change start eliminating the disturbance influence on T10 measurement, and measurement
of temperature goes back to delta-area.
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Conclusions

In this diploma project we made step changes on reflux rate on laboratory distillation column in
order to identify transfer function of model of reflux rate using recursive least squares. Then we
made change on disturbance variable, which represents temperature of feed, to identify transfer
function between temperature on the top of the column and temperature of feed. We had to
normalized data to unit step change and because measured data had noise, so we had to filtered
measured data using Buttersworth filter.

To identification we used recursive least squares method. The first step was derivation of vector
of parameters 6 and then we created simulink schemes which including s-function block RLS
to enumerating values of parameters of our identified model. This model was compared with
measured data. Using identification toolbox we found that fit of our model is 81.25% and fit of
our model of disturbance is 81.98%.

To design MPC controller, state observer was needed. Optimal state observer also known as
kalman filter was created and than tested on simulations. Estimated variables were the same as
process variables, that was the proof, that our kalman filter is correct.

To control of distillation column was used PI controller. This controller had satisfactory results,
but its oscillations sometimes goes out of delta area and the system was on the bound of the
stability. Designed MPC had to be first tested via simulations and then was implicated on our
laboratory distillation column. Oscillations around the setpoint were smaller than using PI
controller. Controller effort was slower, but it was caused by values of penalty matrices Q and R
in (5.5). Decreasing value of matrix S could caused instability, but the controller will be faster.
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Chapter 7

Resumé

Diplomova praca s nazvom Modelling and Controlling Laboratory Distillation Column sa zaobera
identifikaciou modelov laboratérnej rektifikacnej koldény, naslednou verifikdciou identifikovanych
modelov na redlnom zariadeni. Po ziskani prenosovych funkcii medzi teplotou na hlave kolony
a refluxnym pomerom a medzi teplotou na hlave kolény a teplotou suroviny na néstrekovej
etazi, ktord reprezentuje meratelni poruchu, sme vytvorili stavové matice modelu systému aj
s poruchou. Po verifikicii ziskaného modelu sme pristipili k ndvrhu optimalneho pozorovaca,
ktorym bol kalmanov filter. Simula¢ne sme overili spravnost kalmanovho filtra a odhadnuté
stavové veli¢iny mohli byt pouzité na névrh prediktivneho riadenia rektifikacnej kolény. Aby
sme mohli porovnat vysledky prediktivneho regulatora, bol na kolénu navrhnuty PI regulator.
Jednotlivé priebehy riadenia tychto regulatov boli nasledne porovnané za ticelom vyzdvihnutia
urc¢itych vyhod prediktivneho riadenia, ktoré aj priemysel v poslednom c¢ase rozoznéava.

Na identifikaciu bola pouzitd rukurzivna metéda najmensich Stvorcov, ktora identifikuje vektor
parametrov prenosovej funkcie modelu. Zvolené identifikované prenosy boli druhého radu, ktoré
maju za ulohu zachytit dynamiku systému. Ukézalo sa, Ze zvoleny rad je postacujici a po
diskretizacii mohli byt tieto modely pouzité na vytvorenie stavovych matic, ktoré st nevyhnutné
pre navrh prediktivneho riadenia.

Kalmanov filter bol navrhnuty pomocou prikazu dlqe v softwareovom prostredi MATLAB.
Simula¢né overenie pozorovaca ukazalo, ze vSetky odhadnuté veli¢iny su totozné s velicinami
identifikovaného modelu prenosu. Stavovy pozorovac¢ bol dalSsou nevyhnutnostou na navrh
prediktivneho riadenia, nakolko MPC potrebuje poznat vsetky hodnoty stavovych veli¢in v
kazdej periéde vzorkovania.

Na zéklade identifikovaného modelu refluxného pomeru, sme navrhli PI reguldtor, ktory bol
nasledne pouzity na riadenia laboratérnej rektifikac¢nej kolény. Riadenie pomocou PI regulatora
poskytlo uspokojivé vysledky, no riadend veli¢ina oscilovala okolo ziadanej hodnoty s vacsou
hodnotou amplitidy ako pri pouziti prediktivneho riadenia. Niektoré oscilacie dokonca opustili
pripustné delta okolie. Tato vlastnost moze byt v priemysle neziadica a preto sa neda jednoznac¢ne
prehlésit, ze PI regulator vyhovoval poziadavkam na riadenie.

Vyhodou nasadenia prediktivneho riadenia je zavedenie optimalnych akénych zasahov a dodrzi-
avanie bezpecnostnych ohraniceni a poziadaviek, ktoré PI reguldtor nie je schopny zabezpecit.
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Prediktivne reguldtory maja dve nevyhody. Potrebujeme poznat presné matematické modely
procesov a druhou nevyhodou moze byt, za uréitych okolnosti, vypoctova narocnost. Navrhnuty
prediktivny regulator bol nasledne pouzity na riadenie laboratérnej rektifikacnej kolony a priebeh
riadenia ukézal, Ze riadend veli¢ina oscilovala menej okolo ziadanej hodnoty a tieto oscilacie uz
neopustali pripustné delta okolie, ¢o je vlastnost, ktora PI regulator nevedel zabezpecit.

Riadenim zariadenia pomocou prediktivneho regulatora sme dokazali, Zze tato forma zabezpeci
dodrzanie ohraniceni a je vhodnd na riadenie takychto typov zariadeni.
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