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Abstract— We consider the path planning problem for hetero-
geneous multi-vehicle systems. In such a setup an agile vehicle,
which can move quickly but has limited operating range, is
carried by a carrier vehicle that moves slowly but has large
range. The objective is to devise an optimal path for the multi-
vehicle system such that all desired points are visited as quickly
as possible, while respecting all physical constraints. We show
how to translate the mixed-integer nonlinear formulation of
such a problem into a mixed-integer second-order cone problem
that can be solved much more efficiently. The translation
process employs basic concepts of propositional logic and
is not conservative. Efficacy of the proposed formulation is
demonstrated on a large case study.

I. INTRODUCTION

Path planning problems are of imminent importance in

many applications, such as in parcel delivery, mail collection,

waste management, or delivery of goods, to name just a

few. The main objective is to devise an optimal path which

minimizes the cost of operation through minimizing the

distance traveled. If only a single vehicle is considered, the

problem is fairly well studied and usually boils down to

solving a traveling salesman problem (TSP), see e.g. [9].

More recently, significant attention started to be devoted

for optimal path planning for multiple vehicles, often in the

heterogenous arrangement. Such a heterogenous vehicle in

fact consists of multiple parts that can move individually,

but are somehow coupled. Examples include, but are not

limited to, ships that carry a helicopter for delivery of goods

to off-shore oil rigs, transportation systems that involve a

train and a truck or a car (the train carries the truck/car

to a major city where the vehicle detaches and performs

goods deliver/pickup before reconnecting with the train at

some other place), or mail delivery systems where a human

uses a car to travel long distances, but has to walk when

servicing a pedestrian precinct. Achieving path planning

for such heterogenous vehicles is challenging, and is often

approached by heuristic approaches that do not guarantee

optimality.

One such application is presented in [11] where the authors

tackle the network planning and vehicle routing problems

for the Austrian parcel service. Key issues addressed in the

reference include favorable placement of hubs and depots,

allocation of customers to particular service areas and, most

importantly, determination of suitable transportation routes.

The task was formulated as a mixed-integer optimization

problem, however in order to arrive at a tractable schemes,
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the authors had to resort to several restrictive assumptions,

approximations, and heuristic rules that undermine optimal-

ity of the solution.

The vehicle routing problem for a heterogenous vehicle

system was also studied in [10] where the waste collection

and waste unloading for the city of Hanoi was considered.

The reference employs a heuristic method to find suitable

routes between a predefined set of pick-up and drop-off

locations.

An heuristic approach was also employed by [6] to devise

routing for distribution of soft drinks in the Coca-Cola com-

pany. The authors employed a constructive procedure where

vehicles with larger capacities are first used to distribute

goods at larger distances before dispatching the cargo to

several smaller vehicles that have smaller fuel consumption

until all customers are served, and the total cost of transporta-

tion is lowered. The same reference also discusses similar

applications in the maritime industry. A similar application is

also discussed in [3], which also elaborates on the downsides

of heuristic approaches.

An approach to obtaining a truly optimal routing of a

heterogenous vehicle was recently proposed by [4]. There

the authors consider a system composed of two vehicles:

a carrier ship with a low maximal speed but large (in

fact, unlimited) range, that carries an agile vehicle (e.g.

a helicopter) which moves quickly but has limited range.

Moreover, the carrier provides refuelling and therefore the

helicopter can take off multiple times. The objective is to

devise an optimal plan of takeoff and landing points such

that a set of points qi, i = 1, . . . , n can be visited in

minimum time. Assuming that the ordering of points to

be visited is fixed, the authors have proposed a mixed-

integer nonlinear (MI-NLP) formulation of the path planning

problem. The crucial practical limitation of such an approach

is the induced computational complexity. Specifically, the

exponential complexity of MI-NLP problems allows to tackle

only scenarios with low number of points. In particular,

the reference mentions a case with n = 7 points as the

largest practical scenario. To address more complex cases,

the authors proposed a set of heuristic rules with the inherent

downside of potentially arriving at a suboptimal solution.

In this paper we improve upon the method of [4] by

showing that the particular MI-NLP problem can in fact be

formulated, in a non-conservative fashion, as a mixed-integer

problem with second-order cone constraints (MI-SOCP).

Although still a combinatorial problem, the MI-SOCP for-

mulation scales much better with increasing problem size

and allows to provide optimal path planning for scenarios
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with hundreds of points. This is due to the fact that once the

integer components are fixed during a branch-and-bound or a

branch-and-cut procedure, the local subproblems are always

convex. To achieve such a conversion we employ basic con-

cepts of propositional logic [12] that are well established in

the field of optimization-based control of hybrid systems [1].

The rest of this paper is organized as follows. First we

present the formulation of the path-planning problem for a

heterogenous vehicle in Section II. In the subsequent section

we review the MI-NLP formulation of [4] and provide in-

terpretation of individual decision variables. The translation

of the MI-NLP problem into a MI-SOCP problem is then

presented in Section IV, before demonstrating the efficacy

on several examples in Section V. Conclusions and outline

of future work is provided in Section VI.

II. PROBLEM STATEMENT

We consider a vehicle system that consists of a carrier

vehicle with low maximal speed and large range, and an agile

vehicle (e.g. a helicopter) that moves quickly, but has limited

range. In particular, the carrier is assumed to move with a

constant velocity vc (the suffix c denotes the carrier) and has

unlimited range. The agile vehicle either rests on the carrier,

or is airborne. When airborne, the helicopter is assumed to

travel at a constant velocity vh and its range on one fuel

load is limited by th,max, expressed as the amount of time

the helicopter can be airborne without refuelling. Whenever

the helicopter rests on the carrier, refuelling to maximum

capacity takes place. We assume that such a refuelling is

instantaneous.

The heterogeneous vehicle starts at the point qs and is

required to visit each point q1, . . . , qn exactly once in the

order from q1 to qn, after which the fleet proceeds to the final

point qf. The objective is to minimize the mission completion

time while taking into account constraints on maximal range

of the agile vehicle. We furthermore assume that each point

qi is visited by the agile part of the heterogeneous vehicle

(i.e., by the helicopter). Such a requirement frequently occurs

in practice e.g. when the helicopter is used to inspect

conditions of wind towers or of off-shore drilling towers,

or to rescue drowning people.

Formally, we are interested in solving the following prob-

lem:

Problem 2.1: Given are: starting point qs ∈ R
2, final point

qf ∈ R
2, intermediate points qi ∈ R

2, i = 1, . . . , n to visit,

carrier’s speed vc, helicopter’s speed vh, and helicopter’s

range th,max. Determine:

• index sets I1, . . . , Im with Ii ⊆ {1, . . . , n} denoting

which points qi the helicopter visits during one flyover;

• set of takeoff and landing points {τi, ℓj} such that the

helicopter lifts off from the carrier at position τi, visits

points qi, . . . , qj (indexed by Ii), before landing at the

carrier at position ℓj ,

such that:

• the mission completion time is minimized,
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Fig. 1. Illustration of an optimal path for the heterogenous vehicle. τi and
ℓj denote the takeoff and landing points for the helicopter, respectively. Solid
line shows trajectory of the carrier, dashed lines visualize the path of the
helicopter that needs to visit points q1, . . . , q5 in a consecutive order. Due
to a restricted range, however, the helicopter needs to perform intemediate
stops for refuelling.

• for each takeoff-landing phase, the associated index set

Ii contains only indices of points qi which are in the

helicopter’s range,

• each point qi is visited exactly once, i.e., the index sets

Ii are mutually exclusive Ij ∩ Ik = ∅ for all j 6= k,

while their union satisfies
⋃

i Ii = {1, . . . , n}.

�

Note that while the helicopter is airborne and visiting

points qi, . . . , qj , the carrier follows the straight path from τi
to ℓj . The minimal number of takeoff-landing sequences is

m = 1 (when the helicopter’s range allows to visits all points

q1, . . . , qn in one shot), while the maximum is m = n.

To give the reader a flavour of what the individual vari-

ables represent, consider the case depicted in Fig. 1. Here,

the task is to visit 5 points q1, . . . , q5, starting at qs and

finishing at qf. In the particular scenario depicted in Fig. 1

the carrier follows the route qs → τ1 → ℓ1 → τ2 → ℓ4 →
τ5 → ℓ5 → qf. When at position τ1, the helicopter lifts off

and visits q1 alone (hence I1 = {1}) before returning to the

carrier at point ℓ1 for refuelling. From here the two vehicles

continue together until the point τ2 is reached. Here, the

helicopter lifts off again and, this time, visits points q2, q3, q4,

which corresponds to I2 = {2, 3, 4}. Meanwhile, the carrier

continues directly to ℓ4, where it meets with the helicopter.

The platoon then continues to point τ5 where the helicopter

separates again to visit q5 (with I5 = {5}), before returning

to the carrier, which in the meantime travelled to ℓ5. From

there the heterogenous vehicle returns to the port located at

qf.

III. MIXED-INTEGER NLP FORMULATION OF

PROBLEM 2.1

In this section we review the mixed-integer nonlinear

formulation of Problem 2.1 as suggested by [4]. Let us

consider a binary matrix α with m rows corresponding to the
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airborne phases and to the sets I1, . . . , Im . Then αi,j = 1 is

interpreted as follows: during the k-the airborne phase, the

helicopter sequentially flies over points qi, . . . , qj without

any intermediate landings. In the example shown in Fig. 1

the matrix would take the following form:

α =













1 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1













. (1)

To guarantee that each point qi is visited exactly once, the

following constraints must be added:

k
∑

i=1

n
∑

j=k

αi,j = 1, k = 1, . . . , n. (2)

It is easy to verify that α of (1) satisfies (2), and corresponds

to three airborne phases: first one visits only q1 (and gives

I1 = {1}), the second takeoff covers q2, . . . , q4 (which

corresponds to I2 = {2, 3, 4}), and in the last run the

helicopter visits q5 alone with I5 = {5}. The advantage

of the introduced semantics for α, enforced by (2), is that

at most n elements of α can be equal to one. This allows

to somehow mitigate the exponential complexity of the

resulting mixed-integer formulation.

To each takeoff-landing sequence we furthermore asso-

ciate the flyover time fi,j ≥ 0 as the time required for the

helicopter to travel from the corresponding takeoff point τi
via qi, . . . , qj to the touchdown point ℓj . The time spent

airborne is restricted by helicopter’s range by

αi,jfi,j ≤ th,max. (3)

The multiplication by αi,j with αi,j ∈ {0, 1} provides that

the constraint will only become active if αi,j = 1, which

corresponds to selection of qi, . . . , qj as flyover points. If

αi,j = 0, the constraint is inactive. Moreover, the flyover

time must be selected such that the carrier can travel from

τi to ℓj for rendezvous. Assuming the carrier moves on a

straight line at a fixed speed vc, the following constraint must

be satisfied:

αi,j‖τi − ℓj‖ ≤ vcfi,j . (4)

Otherwise the helicopter would arrive to the rendezvous point

ℓj before the carrier and could thus run out of fuel while

waiting. Finally, the flyover time is bounded from below by

the time it takes the helicopter to travel the total distance

from τi via qi, . . . , qj to ℓj at a fixed speed vh, i.e.,

αi,j (‖τi − qi‖+ di,j + ‖qj − ℓj‖) ≤ vhfi,j , (5)

where di,j denotes the total distance of the piecewise-linear

path of minimal length connecting points q1, . . . , qj , i.e.,

di,j =

j−1
∑

k=i

‖qk − qk+1‖. (6)

Note that the matrix d ∈ R
n×n with entries di,j as in (6)

can be pre-computed off-line, and is treated as a matrix of

constants since positions of points qi are fixed a-priori.

The total mission time tm to be minimized is composed

of four parts:

1) the time the fleet travels from the starting point qs to

the first takeoff point τ1, represented by 1/vc‖qs − τ1‖,

2) time consumed by the carrier alone to travel from

one takeoff point to the next landing point, given by
∑n

i=1

∑n

j=i fi,j ,

3) time the carrier and the helicopter travel together from

the previous landing point to the next takeoff point,

i.e.,
∑n

i=1

∑n−1

j=i si,j where si,j ≥ 0 relates to α via

αi,j‖ℓj − τj+1‖ ≤ vcsi,j , (7)

4) time of fleet travel from the last landing point to the

final destination at qf, i.e., 1/vc‖ℓn − qf‖.

Hence the mission time is given by

tm =1/vc (‖qs − τ1‖+ ‖ℓn − qf‖)+

+

n
∑

i=1

n
∑

j=i

fi,j +

n
∑

i=1

n−1
∑

j=i

si,j . (8)

Then a solution to Problem 2.1 can be obtained by solving

an optimization problem of the form

min tm s.t. (2) − (7), (9)

with decision variables α ∈ {0, 1}n×n, f ∈ R
n×n, fi,j ≥ 0,

s ∈ R
n×n, si,j ≥ 0, τ ∈ R

2×n, and ℓ ∈ R
2×n. Note that

each column of τ and of ℓ denotes coordinates of takeoff

and landing points in the 2-dimensional Euclidian space. It

is important to notice that, since fi,j and si,j are minimized

by (8), if αi,j = 0 is an optimal solution to (9), then fi,j =
0 and si,j = 0 are feasible optimal choices. This follows

from (4), (5), and (7) that result in fi,j ≥ 0 (and si,j ≥ 0)

for αi,j = 0.

Problem (9) is a mixed-integer nonlinear programming

problem. The integer component is due to presence of

binary decision variables α, and the nonlinearity is due to

products between αi,j and continuous decision variables in

(3), (4), (5), and (7).

Remark 3.1: Once the optimal solution to (9) is obtained,

the equivalence between α and index sets I from Prob-

lem 2.1 can be recovered as follows: let i be the index of

a row of α that contains at least one non-zero entry. Then

Ii = {i, . . . , j}, where j is such that αi,j = 1. �

IV. MIXED-INTEGER SOCP FORMULATION OF

PROBLEM 2.1

The main limitation of the mixed-integer nonlinear pro-

gramming (MI-NLP) formulation of the optimization prob-

lem (9) stems from its computational complexity. Specifi-

cally, the authors in [4] demonstrated that the problem is

solvable, in reasonable time, just for a small number of

points qi. The largest scenario considered in the reference

contained mere seven points. In this section we show how to

equivalently reformulate the MI-NLP (9) as a mixed-integer

problem with second-order cone constraints (MI-SOCP), that

can be solved efficiently for hundreds of points.
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We start by reminding that the non-trivial part of (9)

are nonlinear constraints where various decision variables

multiply each other. However, a closer look at (3)−(5)

and (7) reveals that such nonlinear terms only involve

multiplication between a binary variable αi,j and a convex

function. Take (3) as an example. The constraint can be

equivalently written as a logic relation of the form

(αi,j = 1) ⇒ fi,j ≤ th,max. (10)

Note that regardless of value of αi,j , the flyover time fi,j
is assumed to be lower-bounded by fi,j ≥ 0 for any

combination of i and j. Similarly, (4) can be written as

(αi,j = 1) ⇒ ‖τi − ℓj‖ ≤ vcfi,j , (11)

which introduces a strictly positive lower bound on fi,j if

αi,j = 1. Note that for αi,j = 0 constraint (4) yields 0 ≤
vcfi,j , which is again equivalent to the lower bound fi,j ≥ 0.

Continuing along the same lines, (5) is equivalent to

(αi,j = 1) ⇒ (‖τi − qi‖+ di,j + ‖qj − ℓj‖) ≤ vhfi,j (12)

and (7) can be written as

(αi,j = 1) ⇒ ‖ℓj − τj+1‖ ≤ vcsi,j (13)

with the sailing time being lower-bounded by si,j ≥ 0.

The advantage of rewriting (3)−(5) and (7) as a set of

implication rules in (10)−(13) is that they can be further

simplified into a set of constraints that are convex in decision

variables αi,j , fi,j , si,j , τi and ℓj using basic rules of

propositional logic [12].

Lemma 4.1: Consider a binary variable δ ∈ {0, 1}, con-

tinuous variables x ∈ R
m, and an arbitrary function g :

R
m → R. Then

(δ = 1) ⇒ g(x) ≤ 0 (14)

iff

g(x) ≤ M(1− δ), (15)

is satisfied for some constant M .

Proof: We start by noting that, given two logic state-

ments Y1 and Y2,

(Y1 ⇒ Y2) ⇔ (Y 1 ∨ Y2), (16)

where Y 1 is the negation of Y1 and ∨ is the logic “or”

operator. Moreover, it is easy to verify that

([δ = 1] ∨ [g(x) ≤ 0]) ⇔ (g(x) ≤ Mδ) . (17)

Then (15) follows directly from (16) and (17) by considering

the negation of δ as δ = 1 − δ (recall that δ is a binary

variable).

Applying Lemma 4.1 to (10) allows to rewrite the logic

implication as

fi,j − th,max ≤ M(1− αi,j), (18)

with the lower bound fi,j ≥ 0. Note that (18) is linear in the

continuous decision variables fi,j and in the binary variables

αi,j . Similarly, (11)−(13) can be converted into

‖τi − ℓj‖ − vcfi,j ≤ M(1− αi,j), (19a)

(‖τi − qi‖+ di,j + ‖qj − ℓj‖)− vhfi,j ≤ M(1− αi,j)
(19b)

‖ℓj − τj+1‖ − vcsi,j ≤ M(1− αi,j). (19c)

Note that all constraints in (19) are convex in corresponding

decision variables. In particular, due to employing Euclidian

norms, (19) can be written as a set of second-order cone

constraints, see [2].

Search for optimal takeoff-landing sequences from (9) can

thus be equivalently formulated as

min
α,f,s,τ,ℓ

tm (20a)

s.t. (18) − (19), (20b)

fi,j ≥ 0, si,j ≥ 0, αi,j ∈ {0, 1}, (20c)

with tm as in (8) and the constraints imposed for each

i, j ∈ {0, . . . , n}. Problem (20) is a mixed-integer second-

order cone program that can be solved e.g. by the GUROBI

solver [5], which employs the branch-and-cut method to effi-

ciently eliminate infeasible combinations of binary variables,

thus avoiding exploration of an exponential number of cases.

It is important to note that (20) is a non-conservative

version of (9). If αi,j = 1, then the constraints of (20) are

the same as in (9), which can be seen from (18)−(19). If

αi,j = 0, then the corresponding optimal values of fi,j and

si,j will be zero because they are minimized in (8) and since

they are lower-bounded by zero in (20c).

To solve (20) as efficiently as possible, the value of M
has to be chosen as low as possible. As noted e.g. in [7],

non-tight values of the M constants can easily increase the

computational time of (20) by several order of magnitudes.

Therefore it is important to derive the tightest possible values

of M employed in (18)−(19). As noted by [12], the tightest

value of M that can be employed in (15) is given by

M = max
x∈Ω

g(x), (21)

where Ω is the (bounded) domain of the function g(·).
In (18), such an M is trivially given as M = th,max. In (19a)

the lowest value of M is

M = max
τi,ℓj ,fi,j

(‖τi − ℓj‖ − vcfi,j). (22)

Since the function ‖τi − ℓj‖− vcfi,j is convex in τi, ℓj , and

in fi,j , the maximum is attained at one of the vertices of

the corresponding domain Ω = Ωτ × Ωℓ × Ωf . Here, Ωτ

and Ωℓ are subsets of R
2 that delimit the search space for

takeoff and landing points, respectively. In practice these sets

can be obtained as the smallest box that contains the points

qi, i = 1, . . . , n to be visited. Such a box can be easily

computed as Ωτ = Ωℓ = {x | mini qi ≤ x ≤ maxi qi},

where the minima and maxima are taken element-wise over

coordinates of points qi. Finally, Ωf = {f | 0 ≤ f ≤ th,max},
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TABLE I

LOCATIONS OF POINTS q1, . . . , q10 FOR THE EXAMPLE IN SECTION V-A.

ALL ENTRIES ARE IN KILOMETERS.

i 1 2 3 4 5 6 7 8 9 10

xi 0 0 1 46 48 46 50 50 20 30
yi 40 50 49 50 48 46 48 35 5 0

which follows from (3). Therefore the tightest M in (19a)

can be computed from (22) by evaluating ‖τi − ℓj‖ − vcfi,j
at each vertex of Ωτ × Ωℓ × Ωf , followed by retaining the

maximal value. Tight values of M in (19b) and in (19c) can

be obtained accordingly.

V. EXAMPLES

A. Illustrative Example with 10 Points

First we consider a case with 10 points qi, i = 1, . . . , 10,

whose coordinates in the 2-dimensional Euclidian plane are

provided in Table I. The heterogenous vehicle consists of a

carrier that travels at a constant speed vc = 18 km/h and has

an unlimited range. The carrier carries a helicopter whose

speed is vh = 90 km/h, but has limited time of operation

th,max = 21 min. The fleet starts at point qs = [0, 0]T and is

required to finish at qf = [50, 0]T .

We have formulated the search for optimal takeoff and

landing points τi, ℓj (which completely characterize the path

of the carrier), along with the matrix α (that determines

which points the helicopter will visit in one flyover) as a

mixed-integer SOCP problem (20). The problem was for-

mulated using YALMIP [8], which automatically determines

optimal values of M in (18)−(19). The resulting MI-SOCP

was then solved by GUROBI on a 2.8 GHz machine with

16 GB of memory.

Optimal solution to (20) which, according to the discus-

sion in Section IV is equivalent to the solution of (9), was

calculated in mere 2.2 seconds. The optimal path of the

carrier and of the helicopter, along with location of optimal

takeoff and landing points, is shown in Fig. 2.

In particular, with the data in Table I, the optimal path

consists of 7 takeoff-landing sequences. In the first one,

the helicopter takes off from the carrier at position τ1,

visits q1 alone and returns for refuelling at position ℓ1. The

second airborne phase covers points q2 and q3. The fleet

then continues to τ4, where the helicopter separates to visit

points q4, q5, and q6, before landing at the carrier at position

ℓ6. In the next part, point q7 is visited. Notice that it’s not

possible for the helicopter to travel from q4 all the way to q7
and still land safely due to limits on its maximal operational

range. In the final three airborne phases, the helicopter visits,

individually, points q8, q9, q10, making a refuelling stop after

each visited point. Finally, the heterogenous vehicle proceeds

to the final destination qf. The minimum mission completion

time as calculated by solving (20) was t⋆m = 6.248 hours,

which corresponds to the total traveled distance of 112.464
kilometers. Optimal values of corresponding takeoff and

landing points are reported in Table II. The associated binary

matrix α ∈ {0, 1}10×10 contained 7 non-zero entries (which
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Fig. 2. Optimal path profile for the example in Section V-A. Solid line
shows the path of the carrier, dashed line represents the trajectory of the
helicopter. qi are the points to be visited, τi are takeoff points and ℓj
represent landings for refuelling. Both axis are in kilometers.

TABLE II

POSITIONS OF OPTIMAL TAKEOFF AND LANDING POINTS FOR THE

EXAMPLE IN SECTION V-A. ALL ENTRIES ARE IN KILOMETERS.

Point x-coordinate y-coordinate

τ1 6.0269 29.5898
ℓ1 6.9511 34.1272
τ2 7.3433 36.0529
ℓ3 12.1979 40.0683
τ4 33.2130 40.3264
ℓ6 39.3277 38.8097
τ7 39.3277 38.8097
ℓ7 41.3947 32.8585
τ8 41.4646 31.3118
ℓ8 41.6700 26.7668
τ9 42.1510 16.1206
ℓ9 42.4233 10.0939
τ10 42.4431 9.6556
ℓ10 45.2319 4.0065

corresponds to the 7 airborne phases). Specifically, the non-

zero entries were at α1,1, α2,3, α4,6, α7,7, α8,8, α9,9, and

at α10,10. These values correspond to index sets of points

visited during one flyover given by I1 = {1}, I2 = {2, 3},

I3 = {4, 5, 6}, I4 = {7}, I5 = {8}, I6 = {9}, I7 = {10}.

These sets, together with the associated takeoff and landing

points τi, ℓj , represent the complete optimal navigation plan

for the heterogeneous vehicle.

B. Complexity Analysis

Next we have analysed how the mixed-integer SOCP for-

mulation (20) scales with increasing number of flyover points

qi. To perform the analysis, we have randomly distributed n
points for n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} in the

box-shaped domain with sides [0,min{50, 5n}] km. For each

n we have generated three sets of points randomly distributed

in the box. Subsequently for each scenario we have devised

the optimal navigation plan by solving (20) and measured

the total computation time.

Obtained results are shown graphically in Fig. 3. The solid

line shows the average computation time for each n (the
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Fig. 3. Time required to obtain an optimal solution to (20) as a function of
n, the number of points qi to visit. The error bars represent the minimal and
maximal computational times for each of the 3 random scenarios considered
for each n. The y axis is in logarithmic scale.

number of points qi to visit). The error bars represent the

spread of computation time for individual random scenarios.

As can be observed, the mixed-integer SOCP formulation

in (20) scales rather well with increasing number of points,

despite of the theoretical worst-case exponential complex-

ity of the problem. This demonstrates good performance

of state-off-the-art solvers (represented by GUROBI) when

provided with an efficient problem formulation. Specifically,

even for 100 points we were able to obtain the optimal

solution to Problem 2.1 in about 3 hours of computation.

This is in a stark contrast to the method of [4], which is based

on the MI-NLP formulation (9), and where the reported

computation time exceeds one hour already for 7 points.

VI. CONCLUSION

We have proposed an alternative formulation of the path

planning problem for heterogenous vehicles. By exploiting

the fact that nonlinearities in constraints are only due to

products between a binary variable and a convex function we

have shown how to employ propositional logic to simplify

such constraints into a set of mixed-integer second-order

cone constraints. The resulting mixed-integer SOCP prob-

lem (20) can then be solved much more efficiently compared

to its mixed-integer nonlinear counterpart (9). By means of

a large case study we have demonstrated that complexity of

the MI-SOCP formulation scales favourably with increasing

problem size. In particular, while the MI-NLP problem could

be solved for only up to 7 points (as reported by [4]), our

approach allows to calculate optimal navigation plan for

hundreds of points.

The outstanding limitation of our approach (shared with

the method of [4]) is that we assume that the points qi
are visited in a consecutive order from q1 to qn. While

this is often a realistic requirement, there are also relevant

applications where the ordering of points is not fixed, but

instead should also be optimized. Incorporating such a re-

quirement into (20) would require letting even the indices

i and j to be optimization variables. Moreover, one would

require such variables to be integers. One option to cope

with such an extension would be to encode each integer in

the range from 1 to n in the binary encoding (which would

require ⌈log2 n⌉ binaries for each index), or using unary

encoding (assigning n binaries to each integer). Needless

to say, doing so would tremendously increase complexity of

the optimization. An alternative way would be to combine

the path-planning problem (20) with the traveling salesman

(TSP) formulations. Since TSP problems can be formulated

as mixed-integer linear programs [9], in our future research

we plan to look at how to combine the two formulations as

to achieve path planning where the ordering of points to be

visited is optimized.
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