
SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

FCHPT-5415-70165

Timetable and Interactive Faculty Plan – Database Design
and Data Processing

BACHELOR THESIS

2014 Pavol Ďurina

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

Timetable and Interactive Faculty Plan – Database Design
and Data Processing

BACHELOR THESIS

FCHPT-5415-70165

Study programme: Automation, Information Engineering and Management
in Chemistry and Food Industry

Study field number: 2621
Study branches combination: 5.2.14 Automation, 5.2.52 Industrial Engineering
Department: Department of Information Engineering

and Process Control
Supervisor: Prof. Ing. Miroslav Fikar, DrSc.

Bratislava 2014 Pavol Ďurina

Slovak University of Technology in Bratislava
Ústav informatizácie, automatizácie a matematiky

Faculty of Chemical and Food Technology
Academic year: 2013/2014
Reg. No.: FCHPT-5415-70165

BACHELOR THESIS TOPIC

Student: Pavol Ďurina
Student’s ID: 70165
Study programme: Automation, Information Engineering and Management in Chemistry

and Food Industry
Study branches combination: 5.2.14 automation, 5.2.52 industrial engineering
Thesis supervisor: prof. Ing. Miroslav Fikar, DrSc.

Topic: Timetable and Interactive Faculty Plan – Database Design and
Data Processing

Specification of Assignment:

The aim of the work is to create a complex web application for interactive faculty plan. Moreover, it will
provide navigation in student timetables. Also, it will simplify contact with teachers using their location data.
The thesis is a part of a team project.

This project part is primarily focused on database layer from its creation to data filling. It also contains
transformation of available data to desired form

Tasks:

1 – Implementation of database technologies for web application
2 – Parsing of various data sources
3 – Application of PHP framework with MVC architecture

Length of thesis: 40

Selected bibliography:

1. DuBois, P. MySQL profesionálně : Komplexní průvodce použitím, programováním a správou MySQL. Brno:
Mobil Media, 2003. 1071 s. ISBN 80-86593-41-X.

Assignment procedure from: 17. 02. 2014

Date of thesis submission: 24. 05. 2014

L. S.

Pavol Ďurina
Student

prof. Ing. Miroslav Fikar, DrSc.
Head of department

prof. Ing. Miroslav Fikar, DrSc.
Study programme supervisor

Acknowledgement

I am very grateful for the support, supervision, encouragement, and patience of
prof. Miroslav Fikar. I thank my colleague Rudolf Halás for fruitful cooperation on
this project.

Abstract

Thesis is part of a team project resulting in web application that is be used as
interactive faculty plan. In addition to providing layout it contains information
about faculty staff offices thus simplifying student-teacher contact. Among other
information it provides timetable information. This part of the project is focused
on back-end of the web application that provides data required for visual front-
end. Thesis describes database design, REST API that was created to interact with
front-end and database and Python consumers used to fill the API with provided
data.

Key words:

RESTfull, API, floor plan, database

Súhrn

Táto práca je časťou tímového projektu, ktorého úlohou je vypracovať interaktívny
plán budovy fakulty. Webová aplikácia okrem rozloženia budovy poskytuje aj in-
formácie o kanceláriách zamestnancov, čo v konečnom dôsledku uľahčuje kontakt
medzi pedagógom a žiakom. Okrem základných informácií aplikácia poskytuje aj
rozvrh.

Zameraním tejto časti projektu je dátová časť webovej apkikácie, ktorá posky-
tuje informácie vizualizačnej časti. Práca opisuje navrhnutú databázu, REST API,
pomocou ktorého aplikácia spravuje dáta a API konzumentov napísaných v jazyku
Python, pomocou ktorých sa aplikácia plní dostupnými dátami.

Kľúčové slová:

RESTfull, API, orientačný plán, databáza

Contents

1 Introduction 1

2 Goals 3

3 Used Web Technologies 5
3.1 Representational State Transfer . 5

3.1.1 RESTful Web Services . 6
3.1.2 RESTfull APIs on the Rise 6
3.1.3 Accessing REST API . 7

3.2 MySQL . 8
3.3 Extensible Markup Language . 10

3.3.1 Validation . 11
3.4 JavaScript Object Notation . 12

3.4.1 Validation . 12
3.5 PHP . 13

3.5.1 Model–View–Controller . 13
3.5.2 Laravel . 14
3.5.3 Libs and Packages . 14

4 Realisation 17
4.1 Database Design . 17
4.2 Input Output Data Format and Structure 17
4.3 REST API . 18

4.3.1 API Requests and Responses 18
4.3.2 Resource Events . 20
4.3.3 Resource Rooms . 21
4.3.4 Resource People . 22
4.3.5 Resource Courses . 23

4.4 API Administration . 24

xi

xii Contents

4.5 Python API Consumers . 25
4.5.1 PeopleCreator class . 26
4.5.2 CoursesCreator Class . 26
4.5.3 TimetableCreator Class . 26

5 Conclusions 29

Bibliography 31

Resumé (in Slovak) 37

A Appendices 39
A.1 Routes . 39
A.2 Database Entity Relationship Diagram 43

List of Abbreviations

AIS – Academic Information System
API – Application Programming Interface

ASCII – American Standard Code for Information Interchange
CI – CodeIgniter

CRUD – Create, Read, Update, Delete
CSV – Comma-Separated Values

cURL – Client URL Request Library
DTD – Document Type Definition
FCFT – Faculty of Chemical and Food Technology
GPS – Global Positioning System
GUI – Graphical User Interface

HATEOAS – Hypermedia as the Engine of Application State
HTML – HyperText Markup Language
HTTP – Hypertext Transfer Protocol

ISO – International Organization for Standardization
JSON – JavaScript Object Notation
MVC – Model–View–Controller
PHP – Hypertext Preprocessor

RDBMS – Relational Database Management System
RELAX NG – Regular Language for XML Next Generation

REST – Representational State Transfer
RPC – Remote Procedure Call

SGML – Standard Generalized Markup Language
SOAP – Simple Object Access Protocol
SQL – Structured Query Language
STU – Slovak University of Technology in Bratislava
STU – Slovak University of Technology in Bratislava
UCS – Universal Character Set

xiii

xiv Contents

UTF-8 – UCS Transformation Format—8-bit
URI – Uniform Resource Identifier
URL – Uniform Resource Locators
W3C – World Wide Web Consortium
XML – Extensible Markup Language
XSD – XML Schema Definition

Chapter 1

Introduction

Cartography and maps are important part of human society for thousands of years.
[24] As the technology progressed so did the maps. Our need for them is still
apparent. This can be seen in integration of GPS in everyday use devices e.g.
cellphones. There were 150 million global shipments of GPS capable units in 2009
with forecast of 750 million shipments in year 2014. [32]

Every year there are roughly 1300 new students who are enrolled to FCFT. [53]
You can see them roaming through seemingly endless corridors of our faculty looking
for classrooms, student laboratories or offices. If we include visitors, the need for
some kind of solution becomes clear.

Maps help us with today’s need for efficiency and interactive maps can provide
us with additional information that would have to be searched for elsewhere. My
colleague Rudolf Halás and I have decided to create an interactive faculty plan
which will help to locate staff offices, lecture rooms and laboratories. Classroom
occupancy will be amongst additional information which will help to locate vacant
room to study in during free periods.

Publicly available computers with Internet connection in faculty lobby, decent
wireless coverage across faculty, and Internet capable cellphones ensure comfortable
use and accessibility.

Faculty plan web application should be based on widely used web technolo-
gies with modern approach in mind. Application will be divided into two parts:
visual front-end and data back-end for which my colleague and I will be responsible,
respectively.

1

Chapter 2

Goals

Our ultimate goal is to create Web application that will serve as floor plan and will
offer additional information about the faculty. This application will need data and
interface to access this data. My goals are:

• Design database structure that will contain necessary information for the floor
plan of our buildings, faculty staff, and timetable events in the classrooms.

• Create API that will be used by application front-end to request, insert, and
modify the data in database.

• Prepare example API consumers and populate API with available data.

• Use MVC architecture within PHP framework to maintain structure of the
application.

3

Chapter 3

Used Web Technologies

3.1 Representational State Transfer

The Representational State Transfer (REST) was introduced in 2000 by Roy Fielding
at the University of California, Irvine in his dissertation thesis [17]. Even though
REST did not attract that much attention in the beginning, now, years after its
introduction, major frameworks for REST have started to appear. For example
Representational state transfer is part of Java since version 6. [22]. There are various
Python/Django, C/C++/C# and even Ruby implementations [44].

Even though REST is not a standard, being just an architectural style, it uses
HTTP and URL standards. Another standards with sufficient vocabulary can be
used or created to be used within REST application [18]. In comparison with Simple
Object Access Protocol, Remote Procedure Call over HTTP, proper utilization of
well-defined HTTP protocol verbs (e.g. PUT, GET, POST) or status codes, gives
REST big advantage [45].

Fielding in his dissertation defined six constraints that are applied to the ar-
chitecture, while leaving the implementation of the individual components free to
design: [17]

• Client-server separation: allowing their independence.

• Stateless: no client context being stored on the server between requests.

• Cacheable: clients can cache responses.

• Layered system: intermediate servers may improve system scalability or en-
force security policies.

• Code on demand (optional): custom code (compiled components such as Java

5

6 3 Used Web Technologies

applets or client-side scripts such as JavaScript) may be passed to extend
functionality.

• Uniform interface: between clients and servers thus simplifying and decoupling
the architecture.

3.1.1 RESTful Web Services

RESTful web service is a web service implemented using HTTP and adhering to the
principles of REST architecture. Richardson [44] gives us Table 3.2 which shows
how the HTTP methods are typically used to implement a web service. This leaves
GET method safe and CRUD (Create, Read, Update, Delete) mapping between
database and HTTP is listed in Table 3.1.

It is important that PUT and DELETE methods remain idempotent and GET
method as nullipotent as defined in the standard [16].

3.1.2 RESTfull APIs on the Rise

The concept of API is not a completely new invention. However with the rise of of
front-end JavaScript frameworks like Angular, Backbone.js and many others, smart
phones, apps, digital businesses the need for constant improvements becomes obvi-
ous. Where would Facebook, Twitter, Snapchat be without so many applications?
Simple, understandable and still powerfull API is the key that enables developers
to create these apps.

As Brian Mulloy notes in his popular Teach a Dog to REST [34], RESTfull
APIs are a way forward, but industry standard is still far from perfect implemen-
tation of REST. Even he suggests some changes in implementation of Table 3.2, as
seen in Table 3.3.

Table 3.1: CRUD representation in SQL and HTTP
Operation SQL HTTP
Create INSERT POST
Read SELECT GET
Update UPDATE PUT
Delete DELETE DELETE

3.1 Representational State Transfer 7

Table 3.2: HTTP methods typically used when implementing a web service
Resource /
Method

Collection URI:
http://example.com/

Element URI:
http://example.com/id

GET List the URIs and perhaps
other details of the collec-
tion’s members.

Retrieve a representation of
the addressed member of the
collection.

PUT Replace the entire collection
with another collection.

Replace the addressed mem-
ber of the collection, or if it
doesn’t exist, create it.

POST Create a new entry in the col-
lection.

Treat the addressed member
as a collection in its own right
and create a new entry in it.

DELETE Delete the entire collection. Delete the addressed member
of the collection.

Table 3.3: HTTP methods suggested when implementing a web service
Resource /
Method

Collection URI:
http://example.com/

Element URI:
http://example.com/id

GET List the URIs and perhaps
other details of the collec-
tion’s members.

Retrieve a representation of
the addressed member of the
collection.

PUT Bulk update collection If addressed element exists
update, if not return error.

POST Create a new entry in the col-
lection.

Return error.

DELETE Delete the entire collection. Delete the addressed member
of the collection.

3.1.3 Accessing REST API

PHP CURL

PHP function file_get_contents() can be used to perform a basic GET requests.
Curl URL Request Library (cURL) [49] is more flexible way to interact with a REST
API as it was designed for use in cases like this. It allows to set HTTP headers,
parameters and other properties of the request. Example 3.1 shows PHP function
used to update a user with example API and cURL to make a POST request.

8 3 Used Web Technologies

1 func t i on nat ive_cur l ($new_name , $new_email) {
2 // Set up and execu te the c u r l proces s
3 $curl_handle = curl_init () ;
4 curl_setopt ($curl_handle , CURLOPT_URL, ’ http :// l o c a l h o s t /

r e s t s e r v e r / index . php/example_api/ user / id /1/ format / j son ’) ;
5 curl_setopt ($curl_handle , CURLOPT_RETURNTRANSFER, 1) ;
6 curl_setopt ($curl_handle , CURLOPT_POST, 1) ;
7 curl_setopt ($curl_handle , CURLOPT_POSTFIELDS,
8 array (’name ’ => $new_name ,
9 ’ emai l ’ => $new_email)) ;

10 $ b u f f e r = curl_exec ($curl_handle) ;
11 curl_close ($curl_handle) ;
12 $ r e s u l t = json_decode ($ b u f f e r) ;
13 i f (i s set ($ r e su l t −>sta tu s) && $re su l t −>sta tu s == ’ s u c c e s s ’) {
14 echo ’ User has been updated . ’ ;
15 }
16 else {
17 echo ’ Something has gone wrong ’ ;
18 }
19 }

Example 3.1: Simple cURL Request

Python 2

In Python 2 it is possible to utilize (Example 3.2) standard urllib2 module [19]. How-
ever, a more simple to use (Example 3.3) is library requests[41] dubbed Requests:
HTTP for Humans.

Browser Plugins

Browsers Chrome, Firefox, Safari and others support instalation of plugins like Ad-
vanced REST client [42], Postman - REST Client [4] and Simple REST Client [46].

3.2 MySQL

Relation model for databases as proposed by Codd [12] has since developped into
multiple commercial and open-source applications. MySQL is world’s most popular
open source relational database management system (RDBMS) [13]. Structured
Query Language (SQL) is programming language and ISO standard for managing
RDBMS [5].

3.2 MySQL 9

20 #!/ usr / b in /env python
21 # −∗− coding : u t f −8 −∗−
22 import u r l l i b 2
23 gh_url = ’ https : // api . g ithub . com ’
24 req = u r l l i b 2 . Request (gh_url)
25 password_manager = u r l l i b 2 . HTTPPasswordMgrWithDefaultRealm ()
26 password_manager . add_password (None , gh_url , ’ user ’ , ’ pass ’)
27 auth_manager = u r l l i b 2 . HTTPBasicAuthHandler (password_manager)
28 opener = u r l l i b 2 . bui ld_opener (auth_manager)
29 u r l l i b 2 . i n s t a l l_opene r (opener)
30 handler = u r l l i b 2 . ur lopen (req)
31 print handler . getcode ()
32 print handler . headers . getheader (’ content−type ’)
33 # −−−−−−
34 # 200
35 # ’ a p p l i c a t i o n / json ’

Example 3.2: urllib2 request

36 #!/ usr / b in /env python
37 # −∗− coding : u t f −8 −∗−
38 import r eque s t s
39 r = reque s t s . get (’ https : // api . g ithub . com ’ , auth=(’ user ’ , ’ pass ’))
40 print r . status_code
41 print r . headers [’ content−type ’]
42 # −−−−−−
43 # 200
44 # ’ a p p l i c a t i o n / json ’

Example 3.3: urllib2 request

During the lifetime of database it has to serve many requests. In order to avoid
data inconsistency and anomalies, such as update, insertion or deletion anomaly,
process of table normalization was developed to minimize these [10][11].

Normal Forms (NF) of relational database theory provide us with criteria for
determining a table’s affinity to logical inconsistencies and anomalies. While each
table has highest normal form it has to meet requirements for lower normal forms.
Third normal form is predominantly satisfactory for normal use even though with
little effort higher forms can be achieved [14]. Short desctiptions of first three normal
forms are:

• First NF: Table faithfully represents a relation and has no repeating groups [10].

10 3 Used Web Technologies

• Second NF: No non-prime attribute in the table is functionally dependent on
a proper subset of any candidate key [11].

• Third NF: Every non-prime attribute is non-transitively dependent on every
candidate key in the table [11] .

Denormalization is process where table is intentionally restructured to lower
highest normal form in order to increase speed [14]. This can bee seen in databases
that predominantly perform read operations.

3.3 Extensible Markup Language

The Extensible Markup Language (XML)[7] is a subset of Standard Generalized
Markup Language (SGML) [26]. XML and several other related specifications
(XSLT, XPath) were developped by World Wide Web Consortium (W3C) Working
Group in late 1990s. Working group was chaired by Jon Bosa.

Some of the design properties are: [7]

• straightforward usage over the Internet,

• human and machine readable,

• easy to design and create.

XML processor is a software module that is used to read XML documents and
provide access to their content and structure on behalf of application. In order for
the document to be parsed it has to meet well-formedness constraints defined in
specification [7].

XML document can be divided into of Markup and Content. Markup strings
can by identified by the rules stated in specification [7]. Tags begin with “<” and
end with “>” while escape entities begin and end with “&” and “;”, respectively.

Tag is a markup construct of elements which are building blocks of XML
document. There are three types of tags: [15]

• start-tag: for example <h1>

• end-tag: for example </h1>

• empty element tag: for example

3.3 Extensible Markup Language 11

1 <?xml version=" 1 .0 " encoding="UTF−8" ?>
2 <examples>
3 <example>
4 <h1>
5 Hel lo World !
6 </h1>
7 </example>
8 <example>
9

10 </example>
11 </ examples>

Example 3.4: Simple XML Document

Element is a logical XML document component. It is composed by start-
tag, content and end-tag (example 3.4 lines 4-6). Well formed content may contain
another so called child elements. Element example beginning at line 3 (Example 3.4)
has one child element h1.

Element img has name/value pair markup construct that exists within a start-
tag or empty-element tag called attribute.

XML declaration is the first line in example 3.4. Even though it is not made
mandatory in specification [7] it is recommended [37] and good practice.

3.3.1 Validation

Document markup of XML describes its storage and logical structure, associates
attribute name-value pairs with its logical structures.

Document Type Declaration (DTD) is mechanism defining constraints on the
logical structure of XML document and thus supporting the use of predefined storage
units.

An XML document is valid if it has an associated document type declaration
and if the document complies with the constraints expressed in it. [7] This means
that DTD provides grammar for XML.

Several other solutions like XSD and RELAX NG have been developed provid-
ing namespace awareness, much greater specificity, and better data-type handling.

Regular Language for XML Next Generation

RELAX NG is schema language for XML. Main reason for use are that it is easier to
write, it is easier to generate, and it is easier for applications to use. Another XML

12 3 Used Web Technologies

schemas like XML 1.0 DTD or XSD can be automatically generated from RELAX
NG schema. [52]

RELAX NG has highly restricted built-in datatype library. This should not
be seen as a limitation, it is a fundamental design decision. Structure and content
validation is seen as different problem.

Most of the disadvantages posed by XML can be overcome by using JSON.

3.4 JavaScript Object Notation

JavaScript Object Notation (JSON) is an open standard format that uses human-
readable text to transmit data objects. It is used as an alternative to XML mostly
to transmit data between a server and web application. Official media type is
"application/json".

Although originally derived from the JavaScript scripting language, JSON is
a language-independent data format, and code for parsing and generating JSON
data is readily available in a large variety of programming languages. [28] However
the licence [30] contains clause “The Software shall be used for Good, not Evil.”,
which can couse trouble [31]. The JSON format was originally specified by Douglas
Crockford and is currently described by two competing standards RFC 7159 [6] and
ECMA-404 [1].

The size advantage over XML due to absence of closing tags can be easily
diminished by good compression. However the data-type advantage of JSON over
XML can be evident [29].

JSON is built on two structures: [28]

object A collection of name/value pairs. In various languages, this is realized as an
object, record, struct, dictionary, hash table, keyed list, or associative array.

array An ordered list of values. Usually, this is realized as an array, vector, list, or
sequence.

3.4.1 Validation

JSON Schema defines the media type "application/schema+json", a JSON based
format for defining the structure of JSON data. JSON Schema provides a contract
for what JSON data is required for a given application and how to interact with it.
JSON Schema is intended to define validation, documentation, hyperlink navigation,
and interaction control of JSON data. [21]

3.5 PHP 13

Figure 3.1: JSON forms

JSON Schema is based on the concepts from XML Schema and RelaxNG [9],
but is JSON-based. Currently it is an Internet Draft version 4 and there are several
validators available for different programming languages.

3.5 PHP

PHP is open-source server side scripting language capable of procegural or object
oriented programming especially suited for web development. [3] In 1995 Rasmus
Lerdorf released the first version to public. Since then it has become very popular.
PHP can be used on all major operating systems and has support of most web
servers today [3]. Currently released version is 5.5. New major release PHP 6 has
been abandoned due to problems with intended UTF-16 implementation but mostly
PHP works well and there are no burning issues pushing for new major release [25].

3.5.1 Model–View–Controller

Model–View–Controller as a design pattern was first described in 1979 [50]. It
was designed for Smalltalk, an object-oriented, dynamically typed, reflective pro-

14 3 Used Web Technologies

gramming language. Next step of MVC evolution was influenced mainly by NeXT,
company founded in late 1980s by Steve Jobs. Early Apple GUIs were very similar
with Smalltalk-80 v2 [35].

As the name suggests, MVC is a design pattern that allows developers to
cleanly separate code into three parts: [51]

• Models maintain data.

• Views display data.

• Controllers handle user events affecting models and views.

In various frameworks slightly different approach to MVC can be seen but
basic concept is upheld.

3.5.2 Laravel

Laravel is a web application framework with expressive, elegant syntax. Laravel at-
tempts to take the pain out of development by easing common tasks used in the ma-
jority of web projects, such as authentication, routing, sessions, and caching.Laravel
aims to make the development process a pleasing one for the developer without sac-
rificing application functionality. Happy developers make the best code. To this end,
Laravel combines the very best of what can be seen in other web frameworks, includ-
ing frameworks implemented in other languages.Laravel is accessible, yet powerful,
providing powerful tools needed for large, robust applications such as expressive
migration system, and tightly integrated unit testing support. [38]

3.5.3 Libs and Packages

league/fractal

Fractal provides a presentation and transformation layer for complex data output,
the like found in RESTful APIs, and works really well with JSON. [36]

soapbox/laravel-formatter

This package will help you to easily convert between various formats such as XML,
JSON, CSV, and others.[47]

3.5 PHP 15

DataTables and Twitter Bootstrap

DataTables is a table enhancing plug-in for the jQuery Javascript library, adding
sorting, paging and filtering abilities to plain HTML tables with minimal effort. The
stated goal of DataTables is to enhance the accessibility of data in HTML tables. [27]

Bootstrap is the most popular front-end framework for developing responsive,
mobile first projects on the web. [2]

Chapter 4

Realisation

4.1 Database Design

Creating the database and later changes are easily done by utilizing Laravel migra-
tions. It is a type of version control for database. They allow a team to modify the
database schema and stay up to date on the current schema state. [39]

As an example several table columns were renamed during initial stages. As
an example rooms.floor was changed from integer to string.

Combining fzaninotto/faker package with Laravels Seeder class [39] initial data
for development purposes were easily created. The only remaining seed is the initial
user for the API administration part.

Both the first consumer and API were to be in Slovak and English so the
database has to reflect that. From the multitude solutions for multilingual database
I chose to implement separate translations table for each resource that would be
translated.

Users and password reminders tables was created for the Authorization of
POST, PUT and DELETE requests and access to administration part of API.

Migrations table is where Laravel keeps information on migrations and revi-
sions table is polymorphic relations table where package venturecraft/revisionable
keeps log of changes in database.

4.2 Input Output Data Format and Structure

API input and output is mostly HTTP requests and responses. When the HTTP re-
quest comes to the API, it’s header is analyzed. If Accept: application/xml is found,
response will be appropriately formated. Otherwise default Content-type: applica-
tion/json will be used. Similarly POST and PUT request headers are checked for

17

18 4 Realisation

Content-type header field where application/json or application/xml are accepted.
Amongst emerging standards {json:api} [48] was the one I took the most from.

The most significant exception that is usually made is the structure of data value.
Standard [48] proposes two possibilities i.e.both array and object depending on num-
ber of returned resources, more or just one respectively. It is easier for consumers
when it is always easily iterable array as seen in returned response example 4.1.
When the collection is empty, so is the 200 response data array.

Separation between API Output and database for each resource is handled
by extended classes of league/fractal package [36] transformer class. Conversions
between PHP array structure and JSON and XML is done by soapbox/laravel-
formatter package [47]. During conversion to and from XML natural language is
used to represent array structure e.g. data element will contain datum child elements.
It might be beneficial to human readability, however programatically it is not ideal
as long as the same pluralization library is not used on the other end as well.

1 { " meta " : { . . . } ,
2 " data " : [. . .] ,
3 " embeds " : [. . .] }

Returned response 4.1: Structure of JSON 200 response

4.3 REST API

At the moment v1 API is deployed at http://bc.durina.cc/api/v1. Language
can be selected by next URL segment /en for English and default /sk does not have
to be present.

Available resources can be seen in response 4.2. All routes served are listed in
appendix A.1.

Requests using verbs POST, PUT and DELETE have to contain HTTP Basic
Authentification as defined by RFC 2617 [20]. Protocol over which route is served
can be set in application configuration file routeProtocol.php.

4.3.1 API Requests and Responses

Object meta (returned response 4.3) in response with code 200 (4.1) contains Link
Relations [33] providing pagination information. When addressing collection, query
parameters limit and offset can be used and next and previous values are not empty

http://bc.durina.cc/api/v1

4.3 REST API 19

1 { " l i n k s " : [
2 { " r e l " : " s e l f " ,
3 " u r i " : " {en | sk }?/ " } ,
4 { " r e l " : " people " ,
5 " u r i " : " / people " } ,
6 { " r e l " : " rooms " ,
7 " u r i " : " /rooms " } ,
8 { " r e l " : " events " ,
9 " u r i " : " / events " } ,

10 { " r e l " : " c our s e s " ,
11 " u r i " : " / cour s e s " }] }

Returned response 4.2: API v1 root URL

1 { " s e l f " : " http :// bc . durina . cc / api /v1/ people /1107? " ,
2 " next " : " " ,
3 " prev ious " : " " ,
4 " tota lCount " : 1 }

Returned response 4.3: meta object

strings when applicable. When these parameters are not present, sensible default is
used which may differ depending on collection addressed.

Array embeds contains values for query parameter embed. Response data object
then contains object with the same name and it’s data value is array of objects
that are related to the parent. There can be more than one comma separated
requested resource. Embedable resources can be nested using dot notation, e.g.
/rooms?embed=todayEvent,person.email. Embed parameter is analyzed to eager
load necessary related models so that respective Transformer class does not have
to make additional database calls. Resulting data object can be seen in returned
response 4.5

Related resources do not have to be embedded, They can be accessed via GET
request. For example GET http://bc.durina.cc/api/v1/en/rooms{roomid}/

people will return collection of people related to the room. These relationships are
formed using POST requests. POST http://bc.durina.cc/api/v1/en/rooms{roomid}/

people/{personId} will create relationship between person and room and will re-
ceive 201 response.

To remove relationship use DELETE request and receive 204 response. POST
requests to this relationship URLs result in 405 error message (returned response 4.7).

New resource 201 response header Location can be subsequently used to create

http://bc.durina.cc/api/v1/en/rooms{roomid}/people
http://bc.durina.cc/api/v1/en/rooms{roomid}/people
http://bc.durina.cc/api/v1/en/rooms{roomid}/people/{personId}
http://bc.durina.cc/api/v1/en/rooms{roomid}/people/{personId}

20 4 Realisation

1 [" person " ,
2 " todayEvent "]

Returned response 4.4: embeds array

1 { . . . ,
2 " data " : [{ . . . ,
3 " l i n k s " : [] ,
4 " person " : { " data " : [{ . . .
5 " emai l " : { " data " : [. . .] } }] } ,
6 " todayEvent " : { " data " : [] } }] }

Returned response 4.5: embeded content

1 { " data " : [{ . . . ,
2 " r e l a t i o n s h i p s " : [
3 { " r e l a t i o n s h i p " : " rooms " , " r e l a t i o n s h i p I d " : 123} ,
4 { " r e l a t i o n s h i p " : " cou r s e s " , " r e l a t i o n s h i p I d " :456}] }] }

Request body 4.6: relationships

1 { " e r r o r " : { " message " : " Method not a l lowed " ,
2 " status_code " : 405 } }

Returned response 4.7: Error response

1 { " data " : [{ . . . ,
2 " t r a n s l a t i o n s " : [
3 { " lang " : " sk " , " t r a n s l a t i o n " : " sk t ext " } ,
4 { " lang " : " en " , " t r a n s l a t i o n " : " en text " }] }] }

Request body 4.8: translations

new relationships or relationships array can be included in POST payload 4.6. New
resource will be created and related both to room 123 and course 456.

In addition to creating resource in one language and making PUT request to
update translatable fields in other language, translations array can be included in
data object. This takes precedes over translatable data in object (as in 4.8).

4.3.2 Resource Events

Resource URI is /events/[id]. This resource has no translatable fields. Only
scheduledFor is not required. Possible relationships are with rooms, people and

/events/[id]

4.3 REST API 21

courses.
Additional query parameters are startsAt, startsBefore, startsAfter, endsAt,

endsBefore, endsAfter, date and eventType.
Event type 1 is for lectures, 2 for seminars, 3 is laboratory work.

1 { " id " : 1 ,
2 " s t a r t s " : " 11 : 00 : 00 " ,
3 " ends " : " 12 : 00 : 00 " ,
4 " date " : " 2014−02−17 " ,
5 " eventType " : 2 ,
6 " scheduledFor " : [{ " year " : 1 ,
7 " group " : 32 }] ,
8 " l i n k s " : [] }

JSON object 4.9: events resource data

Resource event.notes

Every event can have zero or more notes. Resource URI is /events/id/notes/[id].
This resource has one translatable field note.

Additional query parameter is note, which performs case insensitive LIKE
search in database.

1 { " id " : 1 ,
2 " note " : " note example " ,
3 " l i n k s " : [] }

JSON object 4.10: notes resource data

4.3.3 Resource Rooms

Resource URI is /rooms/[id]. This resource has one translatable filed tagCloud.
Possible relationships are with people and events. Building 2 is old building. Base-
ment floor is s1, then it is numbered from 0. Room types are 1-unknown generic,
5-known generic, 2-office, 3-classroom, 4-restroom. Field tagCloud is pipe separated
list of alternative names and tags (e.g. "SCHK|library")

Additional query parameters are idLike, aisId, aisName, aisNameLike, num-
ber, building, floor, roomType and tagCloud. All string searches in database are case
insensitive.

/events/id/notes/[id]
/rooms/[id]

22 4 Realisation

1 { " id " : " r1−s1−s152 " ,
2 " a i s I d " : 0 ,
3 " aisName " : "NB s152 " ,
4 " number " : " s152 " ,
5 " bu i l d i ng " : 1 ,
6 " f l o o r " : " s1 " ,
7 " tagCloud " : nu l l ,
8 " roomType " : 1 ,
9 " l i n k s " : [] }

JSON object 4.11: rooms resource data

4.3.4 Resource People

Resource URI is /people/[id]. This resource has no translatable fields. Only name
and surname are required. Possible relationships are with rooms and events.

Additional query parameters are firstName, lastName, name and aisId, where
name performs LIKE search in fields surname and name.

1 { " id " : 1107 ,
2 " a i s I d " : 3374 ,
3 " p r e f i x T i t l e " : " p ro f . Ing . " ,
4 "name" : " Miros lav " ,
5 " surname " : " Fikar " ,
6 " s u f f i x T i t l e " : " DrSc . " ,
7 " l i n k s " : [] }

JSON object 4.12: people resource data

Resource person.emails

Every person can have zero or more emails. Resource URI is /people/id/emails/

[id]. This resource has no translatable fields.
Additional query parameter is email, which performs case insensitive LIKE

search in database.

1 { " id " : 1 ,
2 " emai l " : " email@example . com" ,
3 " l i n k s " : [] }

JSON object 4.13: person emails resource data

/people/[id]
/people/id/emails/[id]
/people/id/emails/[id]

4.3 REST API 23

Resource person.phones

Every person can have zero or more phones. Resource URI is /people/id/phones/

[id]. This resource has no translatable fields.
Additional query parameter is phone, which performs case insensitive LIKE

search in database.

1 { " id " : 1 ,
2 " phoneNumber " : "+421 123 456 789 " ,
3 " l i n k s " : [] }

JSON object 4.14: person phones resource data

Resource person.details

Every person can have zero or more details. Resource URI is /people/id/details/

[id]. This resource has two translatable fields name and text. Translations object
is looks like JSON object 4.16.

Additional query parameter is detail, which performs case insensitive LIKE
search in name and text.

1 { " id " : 1 ,
2 "name" : "Out o f o f f i c e " ,
3 " t ex t " : " u n t i l l 1 . 2 . 3456 " ,
4 " l i n k s " : [] }

JSON object 4.15: person details resource data

1 { " nameTranslation " : "Out o f o f f i c e " ,
2 " t ex tTrans l a t i on " : " u n t i l l 1 . 2 . 3456 " , " lang " : " en " }

JSON object 4.16: person details translation

4.3.5 Resource Courses

Resource URI is /courses/[id]. This resource has one translatable field name.
Possible relationship is with events.

Additional query parameters are name, code and aisId.

/people/id/phones/[id]
/people/id/phones/[id]
/people/id/details/[id]
/people/id/details/[id]
/courses/[id]

24 4 Realisation

1 { " id " : 1 ,
2 " code " : " 41600_4P" ,
3 " a i s I d " : 257747 ,
4 "name" : " Bachelor Pro j e c t " ,
5 " l i n k s " : [] }

JSON object 4.17: events resource data

4.4 API Administration

Api administration is available at http://bc.durina.cc/login. It utilizes theme
Flatly [40] from Bootswatch. Responsive behavior on small screen devices can be
seen in Figure 4.1.

Figure 4.1: Responsive administrator login page

For editing users remote content bootstrap modal is loaded. When new user is
created, standard password reminder link is sent to their email address, where they
can set new password. Administrator credentials can be used to access API, however
security implications of using the same credentials for HTTP Basic authentication
have to be considered. Creating separate non administrator account is advised.

Database is initially seeded with credentials deleteme@admin:admin. These
should be used to create new administrator and subsequently deleted as soon as
possible.

Use of DataTables [27] can be seen in Figure 4.3. Package venturecraft/revi-
sionable [8] was used to track changes in database. It tracks only updates and soft

http://bc.durina.cc/login

4.5 Python API Consumers 25

Figure 4.2: Users page

Figure 4.3: Revisions page

deletes which are not currently enabled.
Towards the end of this version of API rooms.id was changed from integer

to string, which this package does not understand, thus id of changed row is 0 for
rooms in database history overview (Figure 4.3).

4.5 Python API Consumers

To populate the API with available data, four python 2.7 classes were created. They
utilize python packages requests [41], requests_cache [23] and Beautiful Soup [43].
Class ApiConsumer contains mostly helper methods that are used to create .log and
.err files, retrieve user credentials, manipulate files and send POST or PUT requests
to API. These classes assume same protocol for GET, POST, PUT requests to API.

26 4 Realisation

4.5.1 PeopleCreator class

When instantiating, this class takes two parameters:

apiUrl Location of the API.

peopleUrl Location of FCFT employees list. Default is http://is.stuba.sk/

pracoviste/zamestnanci.pl?id=40

GET requests with 200 response are forever permanently stored in SQLite
based cache (file people_cache.sqlite). Method clearCache() can be used to clear it
when necessary. When method createPeople() is called peopleUrl is downloaded and
parsed for information.

Method aisWait is used to throttle non-cached requests for vCard info. Low-
ering the wait time is not advised as it can result in IP ban.

When room is found its type is checked and changed to office when applicable.
When no room is found, person is placed into special room with id r1-u-u2.

4.5.2 CoursesCreator Class

When instantiating, this class takes these parameters:

apiUrl Location of the API.

predmetySkFile File location of downloaded Slovak page of public courses catalog
in AIS. File encoding must be ASCII or UTF-8.

predmetyEnFile File location of downloaded English page of public courses cat-
alog in AIS. File encoding must be ASCII or UTF-8.

When method createCourses() is called the two files are parsed and courses
are bulk created in API.

4.5.3 TimetableCreator Class

When instantiating, this class takes these parameters:

apiUrl Location of the API.

startDate datetime.date object representation of the beginning of the term.

endDate datetime.date object representation of the end of the term.

http://is.stuba.sk/pracoviste/zamestnanci.pl?id=40
http://is.stuba.sk/pracoviste/zamestnanci.pl?id=40

4.5 Python API Consumers 27

Table 4.1: roomsFile structure
room id room name

10 NB CH17

Table 4.2: coursesFile structure
course code course name

42401_4B P_Filozofia

ttFile Timetable data file location. File encoding must be ASCII or UTF-8. De-
fault is "../rozvrhy/rozvrhDrBoor.txt".

coursesFile Courses file location timetable data. File encoding must be ASCII or
UTF-8. Default is "../rozvrhy/predmetyDrBoor.txt".

roomsFile Rooms file location. File encoding must be ASCII or UTF-8. Default
is "../rozvrhy/miestnostiDrBoor.txt".

genericOccupiedCourseApiCode Course code for unrecognized courses. De-
fault is "xxxxx_00"

When method createEvents() is called roomsFile is parsed to create dictionary
to translate ids between these files and API, When room is found, type is checked
and changed to classroom when needed. Generic room id "r1-u-u1" is used when no
corresponding room is found. When coursesFile is parsed, there is no explicit id, so
record number beginning with 1 is used. When course with corresponding code is
not found in API, genericOccupiedCourseApiCode is used. Finally ttFile is parsed,
ids translated and appropriate events for each day between startDate and endDate
are bulk created.

This class uses forever permanent SQLite based cache (file timetable_cache.sqlite)
for GET requests with 200 response. Method clearCache() can be used to clear it
when necessary.

Table 4.3: ttFile structure
row id room id day start time duration year type course id group

58 89m 4d 11h 1p 2r 3t 891k 34

Chapter 5

Conclusions

Designed database proved to be sufficient for our needs. Table rooms was denor-
malized because some knowledge of buildings and floors is expected, and are highly
improbable to change. If really needed in version 2 artificial resources buildings and
buildings.floors could be made based on SQL DISTINCT queries. Translations col-
umn could be renamed to the column name it is translating to simplify translations
object (request body 4.8 and JSON object 4.16).

API v1 is successfully deployed at http://bc.durina.cc/api/v1 and con-
sumed by front end visual application. Initial problem of longer responses was solved
by production deployment (disabling debugging features of Laravel and generating
optimized class loader).

Uniform data structure for GET, POST, PUT requests can be in JSON or
XML. Some schema might be created in the future, however they will be either too
restrictive or too general. They might provide more information in case of badly
formated data resulting in 400 response.

API was successfully populated with provided data. However there is still high
percentage of FCFT employees that do not have their office in AIS profile. It would
be possible to create visual application where they can easily change the generic
office they are automatically assigned to their actual office. Another application
that could be built on top of this API, is for reporting mislabeled rooms.

MVC architecture can be best seen in the API administration part. Depending
on the usefulness of the database history part revisionable package could be forked
and modified to accept both integer and string keys, log the creation of new row
and hard deletion.

Source code for both the API and python consumers can be found in Bitucket
repository https://bitbucket.org/hrpd/fchpt_api.

29

http://bc.durina.cc/api/v1
https://bitbucket.org/hrpd/fchpt_api

Bibliography

[1] The JSON Data Interchange Format. ECMA International, 2013.

[2] Bootstrap. Retrieved May 5, 2014 from http://getbootstrap.com/, 2014.

[3] Mehdi Achour, Friedhelm Betz, Antony Dovgal, Nuno Lopes, Hannes Mag-
nusson, Georg Richter, Damien Seguy, and Jakub Vrana. What can
PHP do? Retrieved May 5, 2014 from http://www.php.net/manual/en/

intro-whatcando.php, 2012.

[4] Abhinav Asthana. Postman - REST Client. Retrieved May 5, 2014 from
https://chrome.google.com/webstore/detail/postman-rest-client/

fdmmgilgnpjigdojojpjoooidkmcomcmn.

[5] Alan Beaulieu. Learning SQL. O’Reilly, Beijing Sebastopol, 2009.

[6] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 7159 (Proposed Standard), March 2014.

[7] Tim Bray. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C
recommendation, W3C, November 2008. http://www.w3.org/TR/2008/REC-
xml-20081126/.

[8] Chris Duell. revisionable. Retrieved May 5, 2014 from https://github.com/

venturecraft/revisionable, 2014.

[9] James Clark. RELAX NG specification. Retrieved May 5, 2014 from http:

//www.oasis-open.org/committees/relax-ng/spec-20011203.html, 2001.

[10] E.F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, June 1970.

[11] E.F. Codd. Further Normalization of the Data Base Relational Model. IBM
Research Report, San Jose, California, RJ909, 1971.

31

http://getbootstrap.com/
http://www.php.net/manual/en/intro-whatcando.php
http://www.php.net/manual/en/intro-whatcando.php
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcmn
https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcmn
https://github.com/venturecraft/revisionable
https://github.com/venturecraft/revisionable
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html

32 BIBLIOGRAPHY

[12] E.F. Codd. Derivability, redundancy and consistency of relations stored in large
data banks. SIGMOD Rec., 38(1):17–36, June 2009.

[13] Oracle Corporation. Market Share. Retrieved May 5, 2014 from http://www.

mysql.com/why-mysql/marketshare/, 2012.

[14] C.J. Date. Database in depth : relational theory for practitioners. O’Reilly,
Sebastopol, CA, 2005.

[15] Elliotte Rusty Harold and W. Scott Means. XML in a Nutshell, Third Edition.
O’Reilly Media, Inc., 2004.

[16] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFCs 2817, 5785, 6266, 6585.

[17] R.T. Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, 2000.

[18] R.T. Fielding and N. Richard. Principled design of the modern Web architec-
ture. ACM Trans. Internet Technol., 2(2):115–150, May 2002.

[19] The Python Software Foundation. 20.6. urllib2 — extensible library for opening
URLs. Retrieved May 5, 2014 from https://docs.python.org/2/library/

urllib2.html.

[20] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen,
and L. Stewart. HTTP Authentication: Basic and Digest Access Authentica-
tion. RFC 2617 (Draft Standard), June 1999.

[21] Francis Galiegue. JSON Schema: core definitions and terminology. Retrieved
May 11, 2014 from http://json-schema.org/latest/json-schema-core.

html.

[22] Marc Hadley and Paul Sandoz. SR-000311 JAX-RS: The Java API for REST-
ful Web Services . Retrieved May 5, 2014 from http://jcp.org/aboutJava/

communityprocess/final/jsr311/index.html, 2011.

[23] Roman Haritonov. Requests-cache documentation. Retrieved May 5, 2014 from
https://requests-cache.readthedocs.org/.

[24] J.B. Harley and D. Woodward. The history of cartography. University of
Chicago Press, Chicago, 1987.

http://www.mysql.com/why-mysql/marketshare/
http://www.mysql.com/why-mysql/marketshare/
https://docs.python.org/2/library/urllib2.html
https://docs.python.org/2/library/urllib2.html
http://json-schema.org/latest/json-schema-core.html
http://json-schema.org/latest/json-schema-core.html
http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr311/index.html
https://requests-cache.readthedocs.org/

BIBLIOGRAPHY 33

[25] Tasman Hayes. PHP 6: Features, Release Date, Hosting and Down-
load. Retrieved May 5, 2014 from http://smartwebdeveloper.com/php/

php-6-features-release-date-hosting-download, 2011.

[26] ISO. ISO 8879:1986: Information processing — Text and office systems —
Standard Generalized Markup Language (SGML). August 1986.

[27] Allan Jardine. DataTables. Retrieved May 5, 2014 from https://github.com/

DataTables/DataTables, 2014.

[28] json.org. Introducing JSON. Retrieved May 5, 2014 from http://json.org.

[29] json.org. JSON Example. Retrieved May 5, 2014 from http://json.org/

example.html.

[30] json.org. JSON Licence. Retrieved May 5, 2014 from http://www.json.org/

license.html.

[31] Lior Kaplan. Bug #63520 JSON extension includes a problematic license
statement. Retrieved May 15, 2014 from https://bugs.php.net/bug.php?

id=63520.

[32] A. Malm. GPS and Mobile Handsets - 4th edition. Retrieved May
5, 2014 from http://www.researchandmarkets.com/research/8dc21b/gps_

and_mobile_han, 2010.

[33] Jan Algermissen Mark Nottingham, Julian Reschke. Link Relations. Re-
trieved May 11, 2014 from http://http://www.iana.org/assignments/

link-relations/link-relations.xhtml.

[34] Brian Mulloy. RESTful API Design: Teach a Dog to REST. Retrieved May
5, 2014 from https://blog.apigee.com/detail/slides_for_restful_api_

design_second_edition_webinar, 2010.

[35] Thomas Myer. Professional CodeIgniter. Wrox Press Ltd., Birmingham, UK,
UK, 2008.

[36] The League of Extraordinary Packages. Fractal. Retrieved May 5, 2014 from
http://fractal.thephpleague.com, 2014.

[37] Uche Ogbuji. Always use an XML declaration. Retrieved May 5,
2012 from http://www.ibm.com/developerworks/xml/library/x-tipdecl/

index.html, 2004.

http://smartwebdeveloper.com/php/php-6-features-release-date-hosting-download
http://smartwebdeveloper.com/php/php-6-features-release-date-hosting-download
https://github.com/DataTables/DataTables
https://github.com/DataTables/DataTables
http://json.org
http://json.org/example.html
http://json.org/example.html
http://www.json.org/license.html
http://www.json.org/license.html
https://bugs.php.net/bug.php?id=63520
https://bugs.php.net/bug.php?id=63520
http://www.researchandmarkets.com/research/8dc21b/gps_and_mobile_han
http://www.researchandmarkets.com/research/8dc21b/gps_and_mobile_han
http://http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://http://www.iana.org/assignments/link-relations/link-relations.xhtml
https://blog.apigee.com/detail/slides_for_restful_api_design_second_edition_webinar
https://blog.apigee.com/detail/slides_for_restful_api_design_second_edition_webinar
http://fractal.thephpleague.com
http://www.ibm.com/developerworks/xml/library/x-tipdecl/index.html
http://www.ibm.com/developerworks/xml/library/x-tipdecl/index.html

34 BIBLIOGRAPHY

[38] Taylor Otwell. Laravel Philosophy. Retrieved May 5, 2014 from http:

//laravel.com/docs#laravel-philosophy, 2014.

[39] Taylor Otwell. Laravel Philosophy. Retrieved May 5, 2014 from http:

//laravel.com/docs/migrations, 2014.

[40] Thomas Park. Flatly. Retrieved May 11, 2014 from http://bootswatch.com/

flatly/.

[41] Kenneth Reitz. Requests: HTTP for Humans. Retrieved May 5, 2014 from
http://docs.python-requests.org/.

[42] restforchrome.blogspot.com. Advanced REST client. Retrieved
May 5, 2014 from https://chrome.google.com/webstore/detail/

advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo/details.

[43] Leonard Richardson. Beautiful Soup. Retrieved May 5, 2014 from http://

www.crummy.com/software/BeautifulSoup/.

[44] Leonard Richardson. RESTful web services. O’Reilly, Farnham, 2007.

[45] Kenn Scribner. Effective Rest Services Via .Net: for .Net Framework 3.5.
Addison-Wesley Professional, Reading, 2009.

[46] Jeremy Selier. Simple REST Client. Retrieved May 5, 2014 from http://

github.com/jeremys/Simple-Rest-Client-Chrome-Extension.

[47] SoapBox. laravel-formatter. Retrieved May 5, 2014 from https://github.

com/SoapBox/laravel-formatter, 2014.

[48] Yehuda Katz Steve Klabnik. {json:api}A standard for building APIs in JSON.
Retrieved May 11, 2014 from http://jsonapi.org.

[49] The PHP Group. Client URL Library. Retrieved May 5, 2012 from http:

//php.net/manual/en/book.curl.php, 2012.

[50] Trygve M. H. Reenskaug. MVC XEROX PARC 1978-79. Retrieved May 5, 2012
from http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html.

[51] David Upton. CodeIgniter for rapid PHP application development. Packt Pub,
Birmingham, U.K, 2007.

[52] Eric Vlist. RELAX NG. O’Reilly, Sebastopol, CA, 2004.

http://laravel.com/docs#laravel-philosophy
http://laravel.com/docs#laravel-philosophy
http://laravel.com/docs/migrations
http://laravel.com/docs/migrations
http://bootswatch.com/flatly/
http://bootswatch.com/flatly/
http://docs.python-requests.org/
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo/details
https://chrome.google.com/webstore/detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo/details
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://github.com/jeremys/Simple-Rest-Client-Chrome-Extension
http://github.com/jeremys/Simple-Rest-Client-Chrome-Extension
https://github.com/SoapBox/laravel-formatter
https://github.com/SoapBox/laravel-formatter
http://jsonapi.org
http://php.net/manual/en/book.curl.php
http://php.net/manual/en/book.curl.php
http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

BIBLIOGRAPHY 35

[53] Š. Antalíková and J. Kmec. Príjmacie konanie na vysoké školy na akademickyý
rok 2010/2011 v číslach a grafoch. Retrieved May 5, 2014 from http://www.

uips.sk/sub/uips.sk/images/PKvs/Statista/r2010pk1.pdf, 2011.

http://www.uips.sk/sub/uips.sk/images/PKvs/Statista/r2010pk1.pdf
http://www.uips.sk/sub/uips.sk/images/PKvs/Statista/r2010pk1.pdf

Resumé

Naša fakulta sa novým študentom, ale aj návštevníkom, môže zdať ako bludisko.
Častokrát nemajú inú možnosť, ako sa spoľahnúť na znalosti okoloidúcich študentov
vyšších ročníkov. Preto sme sa spolu s kolegom Rudolfom Halásom rozhodli vytvoriť
interaktívny plán budov fakulty. Tento plán okrem základného rozloženia učební a
kancelárií obsahuje aj informácie o zamestnancoch fakulty, čo uľahčí kontakt medzi
pedagógom a žiakom. Ďalšími zobrazovanými informáciami sú rozvrh a obsadenie
tried. Tieto požiadavky som pretransformoval do návrhu databázy, ktorá tieto in-
formácie obsahuje a API, ktoré komunikuje s vizuálnou časťou a prípadnými ďalšími
aplikáciami.

Vytvorenie a úpravy databázy ako napríklad premenovanie alebo zmena dáto-
vého typu stĺpca rooms.id z celého čísla na textový reťazec prebieha veľmi jedno-
ducho pomocou migrácií [39]. Je to jedna z výhod moderného a elegantného frame-
worku Laravel [38]. Tabuľka rooms je denormalizovaná, nakoľko sa predpokladá istá
znalosť budov a poschodí a zmeny v týchto citlivých častiach tabuľky sú nepredpo-
kladané. Databáza bola navrhnutá tak, aby umožňovala viacjazyčnosť API a tým aj
vizuálnej nadstavby. Výsledná databáza je v prílohe A.1.

Typ internetového média pre výmenu dát API sleduje použitím HTTP hlavi-
čiek Accept aContent-type. Implementované sú dve možnosti XML [7] a JSON [6].
Základnú štruktúru odpovede 4.1 možno rozdeliť na tri časti, kde meta poskytuje
HATEOS informácie o stránkovaní, data je rad vrátených objektov a embeds posky-
tuje zoznam objektov, ktoré sa dajú vložiť ako príbuzné.

API poskytuje štyri základné vstupné miesta:

ľudia URI /people/[id] podkapitola 4.3.4

miestnosti URI /rooms/[id] podkapitola 4.3.3

udalosti URI /events/[id] podkapitola 4.3.2

predmety URI /courses/[id] podkapitola 4.3.5

37

/people/[id]
/rooms/[id]
/events/[id]
/courses/[id]

38 Resumé

Verzia 1 v slovenskom preklade je prístupná na adrese http://bc.durina.cc/api/

v1.
Metódy POST, PUT, DELETE vyžadujú HTTP Basic autentifikáciu [20]. Za

účelom spravovania používateľov bola vytvorená administračná časť (podkapitola
4.4). Je to implementácia responzívnej Bootstrap [2] témy Bootswatch Flatly [40]
(obrázok 4.1). Po vytvorení nového užívateľa je mu odoslaný email s odkazom, kde
si môže zmeniť heslo. Administrátor môže využívať svoje heslo aj na prístup do
API, avšak je potrebné zvážiť bezpečnosť takéhoto kroku vzhľadom na HTTP Basic
autorizáciu. V časti História databázy (obrázok 4.3) je možné prehliadať zmenené
záznamy.

Na spracovanie dostupných dát a ich následné vloženie do API som vytvoril
niekoľko knižníc v jazyku Python 2.7. Trieda PeopleCreator spracováva dáta z dvoch
zdrojov, a to zoznamu zamestnancov FCHPT a následne ich vCard. Opis potreb-
ných parametrov a najdôležitejších metód je v podkapitole 4.5.1. Trieda CoursesC-
reator spracováva súbory z verejného katalógu predmetov pre daný rok a semester
(podkapitola 4.5.2). Trieda TimetableCreator spracováva zdrojové súbory z tvorby
rozvrhov, kde najprv preloží ID zdrojových súborov na id z API a následne vytvorí
potrebné udalosti.

Vysoké percento zamestnancov nemá v AIS vloženú kanceláriu, preto si do
budúcnosti viem predstaviť aplikáciu, ktorá im jednoducho umožní vložiť si túto
úpravu do API. Aplikácia, ktorá bude mať v najbližšej dobe význam, je nahlasova-
nie chybne označených miestností. Ak sa časom ukáže potreba historických zázna-
mov z databázy, bude zaujímavé venovať sa zvýšeniu funkcionality balíčka, ktorý sa
k tomuto využíva.

Zdrojový kód pre API a nástroje v jazyku Python je možné nájst v Bitucket
repozitári na adrese https://bitbucket.org/hrpd/fchpt_api.

http://bc.durina.cc/api/v1
http://bc.durina.cc/api/v1
https://bitbucket.org/hrpd/fchpt_api

Appendix A

Appendices

A.1 Routes

Table A.1: A simple longtable example

URI
GET|HEAD users
GET|HEAD users/create
POST users
GET|HEAD users/users
GET|HEAD users/users/edit
PUT users/users
PATCH users/users
DELETE users/users
GET|HEAD /
GET|HEAD login
POST login
GET|HEAD logout
GET|HEAD password/reset
POST password/reset
GET|HEAD password/reset/token
POST password/reset/token
GET|HEAD revisionable
GET|HEAD api/v1/people
GET|HEAD api/v1/people/id
Continued on next page

39

40 A Appendices

Table A.1 – Continued from previous page
URI
GET|HEAD api/v1/relationship/relationshipId/people
GET|HEAD api/v1/relationship/relationshipId/people/id
GET|HEAD api/v1/relationship/relationshipId/emails
GET|HEAD api/v1/relationship/relationshipId/emails/id
GET|HEAD api/v1/relationship/relationshipId/details
GET|HEAD api/v1/relationship/relationshipId/details/id
GET|HEAD api/v1/relationship/relationshipId/phones
GET|HEAD api/v1/relationship/relationshipId/phones/id
GET|HEAD api/v1/rooms
GET|HEAD api/v1/rooms/id
GET|HEAD api/v1/relationship/relationshipId/rooms
GET|HEAD api/v1/relationship/relationshipId/rooms/id
GET|HEAD api/v1/events
GET|HEAD api/v1/events/id
GET|HEAD api/v1/relationship/relationshipId/events
GET|HEAD api/v1/relationship/relationshipId/events/id
GET|HEAD api/v1/relationship/relationshipId/notes
GET|HEAD api/v1/relationship/relationshipId/notes/id
GET|HEAD api/v1/courses
GET|HEAD api/v1/courses/id
GET|HEAD api/v1/relationship/relationshipId/courses
GET|HEAD api/v1/relationship/relationshipId/courses/id
POST api/v1/people
POST api/v1/people/id
POST api/v1/relationship/relationshipId/people
POST api/v1/relationship/relationshipId/people/id
POST api/v1/relationship/relationshipId/emails
POST api/v1/relationship/relationshipId/emails/id
POST api/v1/relationship/relationshipId/details
POST api/v1/relationship/relationshipId/details/id
POST api/v1/relationship/relationshipId/phones
POST api/v1/relationship/relationshipId/phones/id
POST api/v1/rooms
POST api/v1/rooms/id
Continued on next page

A.1 Routes 41

Table A.1 – Continued from previous page
URI
POST api/v1/relationship/relationshipId/rooms
POST api/v1/relationship/relationshipId/rooms/id
POST api/v1/events
POST api/v1/events/id
POST api/v1/relationship/relationshipId/events
POST api/v1/relationship/relationshipId/events/id
POST api/v1/relationship/relationshipId/notes
POST api/v1/relationship/relationshipId/notes/id
POST api/v1/courses
POST api/v1/courses/id
POST api/v1/relationship/relationshipId/courses
POST api/v1/relationship/relationshipId/courses/id
PUT api/v1/people
PUT api/v1/people/id
PUT api/v1/relationship/relationshipId/people
PUT api/v1/relationship/relationshipId/people/id
PUT api/v1/relationship/relationshipId/emails
PUT api/v1/relationship/relationshipId/emails/id
PUT api/v1/relationship/relationshipId/details
PUT api/v1/relationship/relationshipId/details/id
PUT api/v1/relationship/relationshipId/phones
PUT api/v1/relationship/relationshipId/phones/id
PUT api/v1/rooms
PUT api/v1/rooms/id
PUT api/v1/relationship/relationshipId/rooms
PUT api/v1/relationship/relationshipId/rooms/id
PUT api/v1/events
PUT api/v1/events/id
PUT api/v1/relationship/relationshipId/events
PUT api/v1/relationship/relationshipId/events/id
PUT api/v1/relationship/relationshipId/notes
PUT api/v1/relationship/relationshipId/notes/id
PUT api/v1/courses
PUT api/v1/courses/id
Continued on next page

42 A Appendices

Table A.1 – Continued from previous page
URI
PUT api/v1/relationship/relationshipId/courses
PUT api/v1/relationship/relationshipId/courses/id
DELETE api/v1/people
DELETE api/v1/people/id
DELETE api/v1/relationship/relationshipId/people
DELETE api/v1/relationship/relationshipId/people/id
DELETE api/v1/relationship/relationshipId/emails
DELETE api/v1/relationship/relationshipId/emails/id
DELETE api/v1/relationship/relationshipId/details
DELETE api/v1/relationship/relationshipId/details/id
DELETE api/v1/relationship/relationshipId/phones
DELETE api/v1/relationship/relationshipId/phones/id
DELETE api/v1/rooms
DELETE api/v1/rooms/id
DELETE api/v1/relationship/relationshipId/rooms
DELETE api/v1/relationship/relationshipId/rooms/id
DELETE api/v1/events
DELETE api/v1/events/id
DELETE api/v1/relationship/relationshipId/events
DELETE api/v1/relationship/relationshipId/events/id
DELETE api/v1/relationship/relationshipId/notes
DELETE api/v1/relationship/relationshipId/notes/id
DELETE api/v1/courses
DELETE api/v1/courses/id
DELETE api/v1/relationship/relationshipId/courses
DELETE api/v1/relationship/relationshipId/courses/id
GET|HEAD api/v1/testing
POST api/v1/testing
GET|HEAD|POST|PUT|PATCH|DELETE api/v1
GET|HEAD|POST|PUT|PATCH|DELETE api/v1/all

A.2 Database Entity Relationship Diagram 43

A.2 Database Entity Relationship Diagram

	1 Introduction
	2 Goals
	3 Used Web Technologies
	3.1 Representational State Transfer
	3.1.1 RESTful Web Services
	3.1.2 RESTfull APIs on the Rise
	3.1.3 Accessing REST API

	3.2 MySQL
	3.3 Extensible Markup Language
	3.3.1 Validation

	3.4 JavaScript Object Notation
	3.4.1 Validation

	3.5 PHP
	3.5.1 Model–View–Controller
	3.5.2 Laravel
	3.5.3 Libs and Packages

	4 Realisation
	4.1 Database Design
	4.2 Input Output Data Format and Structure
	4.3 REST API
	4.3.1 API Requests and Responses
	4.3.2 Resource Events
	4.3.3 Resource Rooms
	4.3.4 Resource People
	4.3.5 Resource Courses

	4.4 API Administration
	4.5 Python API Consumers
	4.5.1 PeopleCreator class
	4.5.2 CoursesCreator Class
	4.5.3 TimetableCreator Class

	5 Conclusions
	Bibliography
	Resumé (in Slovak)
	A Appendices
	A.1 Routes
	A.2 Database Entity Relationship Diagram

