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Abstract

This thesis deals with the problems of design and realization of remote laboratories, while
it is particularly focused on multipurposivness and reduction of development costs for such
systems. Remote laboratory is an instrumentation apparatus with space-distribution of its
functional parts and it allows to control experimental devices remotely, over the computer
network. Such systems apply mostly in the area of technical education and they bring
the innovative approach to practical exercising.

The work is aimed on such concept of remote laboratory architectures, which allows
to separate the phase of actual technological development from the process of implemen-
tation. This leads to significant savings in development time and reduces the complexity
of laboratory creation process. To fulfill these requirements, the architecture has to be
considered as universal since the early development phase. The universality must apply
for both, the hardware resources as well as the software. Physical parts of architecture
must be able to connect and serve a wide class of different experimental devices and
program parts must be designed in order to mediate the remote control of such devices.

For these purposes, two different architectures have been developed in this work. First
one is the multipurpose hardware and software architecture, based on industrial-aimed
control and communication devices, such as programmable logic controllers and industrial
network routers. The main benefit of this architecture is that it provides a ready-made
hardware and also partially software solution and it is capable to serve various types
of technological processes. The second architecture uses low-cost parts, such as single-
board computers and programmable micro-controllers. The purpose of this approach is
to demonstrate the potential of cheap components for the use in remote laboratories and
process control. The practical contribution of this work is the implementation of several
different process control laboratories on both types of architecture. Another topic dis-
cussed in this work are the methods of laboratory management as well as their publication
for educational purposes.

Keywords: Remote laboratories, Multipurpose architecture, Low-cost architecture, In-
dustrial control systems, Micro-controllers, Process control education.





Abstrakt

Táto práca sa zaoberá problematikou návrhu a realizácie systémov vzdialených laborató-
rií so zameraním sa na viacúčelovosť a znižovanie nákladov ich vývoja. Vzdialené labo-
ratórium je inštrumentálny aparát s priestorovo rozloženými funkčnými časťami, pričom
ovládanie experimentálneho zariadenia je umožnené na diaľku, prostredníctvom počítačo-
vých sietí. Takéto systémy sa uplatňujú najmä v oblasti technického vzdelávania, pričom
prinášajú inovačný spôsob prístupu k praktickému vyučovaniu.

Práca sa venuje takému konceptu architektúr vzdialených laboratórií, ktorý umožní
oddeliť fázu samotného technologického vývoja od procesu implementácie, čím sa získa
významná časová úspora a zníži sa zložitosť budovania nových inštancií vzdialených la-
boratórií. Aby boli takéto požiadavky splnené, architektúra musí byť od začiatku vývoja
uvažovaná ako univerzálna, ako z pohľadu hardvérových prostriedkov, tak aj softvéru.
Pevné časti architektúry musia byť schopné pripojiť a obsluhovať širokú skupinu rôznych
experimentálnych zariadení a programové časti musia byť navrhnuté tak, aby dokázali
bez rozdielu sprostredkovať ovládanie takýchto zariadení na diaľku.

Pre tieto účely boli navrhnuté dve rôzne architektúry. Prvou je viacúčelová hardvé-
rová a softvérová architektúra založená na priemyselne zameraných riadiacich a komu-
nikačných prvkoch, akými sú programovateľné logické automaty a priemyselné sieťové
smerovače. Výhodou tejto architektúry je, že poskytuje hotové hardvérové a čiastočne aj
softvérové riešenie a dokáže obsluhovať veľmi širokú triedu procesných zariadení. Druhá
architektúra využíva nízkonákladové súčasti akými sú jednodoskové počítače a programo-
vateľné mikroovládače. Úlohou tohto prístupu je demonštrovať potenciál lacných zariadení
pre využitie v riadení procesov na diaľku. Praktickým prínosom práce je implementácia
viacerých procesných vzdialených laboratórií, založených na oboch typoch architektúr.
Ďalšou diskutovanou témou v práci je spôsob spravovania vzdialených laboratórií a ich
publikovanie pre využitie vo vzdelávaní.

Kľúčové slová: Vzdialené laboratóriá, Viacúčelová architektúra, Nízkonákladová archi-
tektúra, Priemyselné riadiace systémy, Riadenie mikroovládačmi, Vzdelávanie v riadení
procesov.





Contents

1 Introduction 21
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2 Goals of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

I Theoretical Background 27

2 Classification of Experimental Laboratories 29

3 Characteristics of Remote Laboratories 33
3.1 User’s Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Awareness of Remote Laboratory . . . . . . . . . . . . . . . . . . . 33
3.1.2 Access Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Human-Machine Interface vs Graphical User Interface . . . . . . . 34
3.1.4 Educational Context . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Administrator’s Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.1 Supervision and Management . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 Security on Level of Usage . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Developer’s Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Effective Approaches of Development . . . . . . . . . . . . . . . . . 37
3.3.2 Operational Robustness . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Modifiability and Reproducibility . . . . . . . . . . . . . . . . . . . 38
3.3.4 Security on Level of Technology . . . . . . . . . . . . . . . . . . . . 39

II Architectures 41

4 Multipurpose Architectures 43
4.1 Problem Description and Motivation . . . . . . . . . . . . . . . . . . . . . 43

11



4.2 Common Types of Architectures . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Multipurpose Hardware and Software Architecture . . . . . . . . . . . . . 48

4.3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Communication Services of INR . . . . . . . . . . . . . . . . . . . 51
4.3.3 Client Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Application Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 MHSA Advantages and Limitations . . . . . . . . . . . . . . . . . . . . . . 63

5 Low-Cost Architectures 65
5.1 ArPi Branched Low-Cost Architecture . . . . . . . . . . . . . . . . . . . . 67

5.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.2 Signal Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.3 Services of Laboratory Server . . . . . . . . . . . . . . . . . . . . . 71
5.1.4 Services of Experiment Server . . . . . . . . . . . . . . . . . . . . . 74
5.1.5 Communication Principles . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.6 Client Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3 Application Scope, Advantages, and Limitations . . . . . . . . . . . . . . 87

6 Upper Level Management 89
6.1 Learning Management Systems . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Remote Laboratory Management Systems . . . . . . . . . . . . . . . . . . 89
6.3 RLMS WebLab-Deusto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1 Laboratory Management and User Management . . . . . . . . . . 91
6.3.2 Remote Laboratory Development . . . . . . . . . . . . . . . . . . . 92
6.3.3 Inter-Institutional Usage . . . . . . . . . . . . . . . . . . . . . . . . 93

III Applications 95

7 Implementation of Control Algorithms 97
7.1 PID Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1.1 Standard Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.1.2 Parallel Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.1.3 Serial Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1.4 Setpoint Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1.5 Implementation of PID Controller . . . . . . . . . . . . . . . . . . 100
7.1.6 Algorithmization of PID Controller . . . . . . . . . . . . . . . . . . 101

7.2 Transfer Function and State-Space Representation . . . . . . . . . . . . . 102



7.2.1 Implementation of State-Space . . . . . . . . . . . . . . . . . . . . 103
7.2.2 Algorithmization of Transfer Function in State-Space Form . . . . 104

7.3 Discrete Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3.1 Algorithmization of Discrete Transfer Function . . . . . . . . . . . 106

7.4 Real-Time Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4.1 Implementation of RCS . . . . . . . . . . . . . . . . . . . . . . . . 107
7.4.2 Example: Real-Time Control of Magnetic Levitation . . . . . . . . 108

8 Implemented Laboratories 113
8.1 Thermo-Optical System Laboratory . . . . . . . . . . . . . . . . . . . . . 113
8.2 Hydraulic System Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.3 DC Motor Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.4 Heat Exchanger Laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.5 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 Conclusions and Future Work 121

Bibliography 125

Author’s Publications 133

Curriculum Vitae 137

Resumé (in Slovak) 139





List of Figures

2.1 Types of experimental laboratories . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Components of HMI feedback loop . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Summarizing different types of architectures. . . . . . . . . . . . . . . . . 47
4.2 Operational setup of MHSA . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Embranchment capability of MHSA . . . . . . . . . . . . . . . . . . . . . 50
4.4 Principle of GUI construction depending on Web browser type and specific

laboratory configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Graphical layout of ControlApp for thermo-optical laboratory . . . . . . . 54
4.6 Warning window appears when user tries to set invalid input . . . . . . . 59
4.7 Control window of client application with selected controller . . . . . . . . 59
4.8 Drop-down list with control algorithms . . . . . . . . . . . . . . . . . . . . 60
4.9 Drop-down lists with selection of signals to be connected to control algorithm 61
4.10 Data window with selected series in XML format . . . . . . . . . . . . . . 62
4.11 Window with usage information of client application . . . . . . . . . . . . 62

5.1 Low-cost architectures based on micro-controllers . . . . . . . . . . . . . . 67
5.2 Structure of ArPi Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Measured PWM signals of Arduino UNO pin 3 with period T = 0.0204s

(frequency f = 490Hz) for different duty cycles . . . . . . . . . . . . . . . 70
5.4 Experiment server program flow . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Communication scenario of ArPi Lab’s architecture . . . . . . . . . . . . . 78
5.6 JSON structure of laboratory configuration, returned by laboratory server 82
5.7 Layout of tables with signals and variables . . . . . . . . . . . . . . . . . . 84
5.8 Layout of windows with graphs . . . . . . . . . . . . . . . . . . . . . . . . 84
5.9 Wireless IP camera used in ArPi Lab (left) and its image displayed in GUI

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.10 Control window with selected PID controller . . . . . . . . . . . . . . . . 86

15



5.11 ArPi Lab power management . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Login page of WebLab Deusto (left) and list of available laboratories (right) 91
6.2 Queuing of users with different priority index . . . . . . . . . . . . . . . . 92
6.3 Distribution of users among more copies of the same laboratory . . . . . . 92
6.4 Federation of remote laboratories between three universities . . . . . . . . 94

7.1 Standard form of PID controller . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 Parallel form of PID controller . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3 Serial form of PID controller . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.4 Magnetic levitation CE152 . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.5 Execution of control in real time using ISR . . . . . . . . . . . . . . . . . 109
7.6 Execution time of discrete controllers of different complexity . . . . . . . . 110
7.7 Execution of control in real time using ISR . . . . . . . . . . . . . . . . . 111
7.8 Real time control of magnetic levitation CE152 . . . . . . . . . . . . . . . 111

8.1 Thermo-optical device uDAQ28/LT (left) and corresponding remote labo-
ratory session (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2 System of coupled tanks (left) and corresponding remote laboratory session
(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.3 Hydraulic system uDAQ28/3H . . . . . . . . . . . . . . . . . . . . . . . . 115
8.4 DC motor (left) and corresponding remote laboratory session (right) . . . 116
8.5 Low-cost DC motor connected to Arduino UNO (experiment server) . . . 116
8.6 Air flow heat exchanger (left) and corresponding remote laboratory session

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.7 Time-line of laboratory usage from March 2013 to May 2014 . . . . . . . 118
8.8 Local laboratory infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 119



List of Tables

2.1 Two different views on laboratory classification . . . . . . . . . . . . . . . 30

4.1 Comparison of MHSA, ABLA, and other types of architectures . . . . . . 48

5.1 List of available frequencies on PWM pins of Arduino UNO (real values
measured by oscilloscope are shown in brackets) . . . . . . . . . . . . . . . 71

5.2 ArPi Lab communication layers . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3 List of error codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.1 List of laboratories and their usage information . . . . . . . . . . . . . . . 118

17





List of Acronyms

ABLA ArPi Branched Low-Cost Architecture

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CMR Compare Match Register

CSS Cascading Style Sheets

DAQ Data Acquisition

DOM Document Object Model

EJS Easy Java Simulations

FPGA Field Programmable Gate Array

GUI Graphical User Interface

GPIO General Purpose Input/Output

GWT Google Web Toolkit

HMI Human-Machine Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

I2C Inter-Integrated Circuit

IDE Integrated Development Environment

INR Industrial Network Router

ISR Interrupt Service Routine

19



JSON JavaScript Object Notation

LAN Local Area Network

LMS Learning Management System

LTI Linear Time Invariant

MHSA Multipurpose Hardware and Software Architecture

ODE Ordinary Differential Equation

OS Operating System

PC Personal Computer

PHP PHP Hypertext Preprocessor

PLC Programmable Logic Controller

PMS Power Management Server

PWM Pulse-Width Modulation

RCS Real-Time Control System

RIA Rich Internet Application

RL Remote Laboratory

RLA Remote Laboratory Architecture

RLMS Remote Laboratory Management System

SCADA Supervisory Control and Data Acquisition

SOA Service-Oriented Architecture

SoC System on Chip

SPI Serial Peripheral Interface

SSH Secure Shell

UART Universal Asynchronous Receiver/Transmitter

ULM Upper Level Management

USB Universal Serial Bus

VL Virtual Laboratory

XML Extensible Markup Language



Chapter 1

Introduction

Remote Laboratory (RL) is an instrumentation apparatus designed to provide its physical
resources and their operation remotely over computer network. Although the concept of
remote sensing and control is almost as old as computer science, remote laboratories, as
they are known today, arisen in 1990s when the Internet was made available for masses.
In early years of this period, even before outspread of the global network, the most of
RL-related works were based on local communication (Herman and Aburdene, 1991), or
as proposals to future usage of the Internet (Aburdene et al., 1991). First occurrences of
internet-based RLs in literature are also dated to this time. Starting with the technical
reports (Bohus et al., 1995), through conference proceedings (Goldberg et al., 1995),
and heading to leading journals (Aktan et al., 1996), new research and application fields
focused on RL development were set.

“In the Spring of 1994, hundreds of WWW servers were coming online every
week. We conjectured that it might be possible to use this medium to allow low cost
public access to a teleoperated robot, in effect providing: desktop teleoperation.”

Goldberg et al. (1995)

Nowadays, applications of RL are spread among many technical and natural scientific
fields, such as physics (Sievers et al., 2010), chemistry (Leal and Leal, 2013), medicine
(Barros et al., 2013), engineering in general, and others. In engineering disciplines, RLs
have been successfully implemented and used for: energetics and power systems (Collins,
2009), industrial systems (Aydogmus and Aydogmus, 2009), communications (Gampe
et al., 2014), electronics (Tawfik et al., 2013a), robotics (Fernandez et al., 2012a), and most
of all (and within a highest interest for this work) for automatic control systems (Ionescu
et al., 2013; Santana et al., 2013; Vargas et al., 2011).

Web-based laboratories are commonly used as educational tools for practical exercis-
ing. Those well-designed provide at least similar features and possibilities to perform

21



22 CHAPTER 1. INTRODUCTION

experiments as traditional hand-on laboratories, and simultaneously extend the method-
ology of work in term of availability and accessibility. In fact, the RLs are considered as
one of the most influencing technological enhancements in engineering education in the
last 100 years (Froyd et al., 2012).

1.1 Motivation

RLs can be of various types, using different concepts of operation, and based on different
hardware and software technologies. The review of the current state-of-the-art has shown
that majority of RLs are the results of development methods designed directly for the
specific purpose. Even these laboratories work well and provide rich features, they rely
on architectures built for that one kind of usage. Many development methods are ineffi-
cient, mostly those based on approach like “show me an experiment you want to provide
remotely, and I will build a remote laboratory for it”. This approach is good only if the
desired result is single RL with no consideration of future development, reproducibility,
or spread of solution over more applications.

Development of RL, especially for automation and process control, is a very time-
consuming task and requires a lot of effort. It requires the analysis of appropriate pro-
cedures, design of hardware architecture and communication infrastructure, selection of
software parts, and of course the realization (setting up hardware, interconnection, pro-
gramming, debugging, testing, etc.). Commonly each developer must undergo these tasks
for every new remote laboratory he creates. If usage requires changes, the architecture
must also undergo changes on software or hardware level. Typical case is when institution
owns an RL with specific experiment, and procures another one of different kind. If the
developers want to connect new experiment to RL, they must create a whole new archi-
tecture and software for it, since existing RL is designed for the original one and it will
not work for any other. Even if this example is the worst case scenario, it is unfortunately
a very common issue.

The main motivation for this work is based on a question “Is it possible to design
such kind of architecture, which will allow people, even with average technical skills, to
implement remote laboratories just by interconnection and configuration of their parts?”.
If such a goal can be achieved, it would result in reduction of complex RL development
just to the acquisition of architectural parts and to implementation of experiments.
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1.2 Goals of the Thesis

This work contributes to the development in area of automatic control remote laboratories
in the term of the architectural design. Two main theoretical contributions are presented:

• Multipurpose Hardware and Software Architecture (MHSA) – concept of archi-
tecture based on industrial aimed devices (Industrial Network Routers and Pro-
grammable Logic Controllers),

• ArPi Branched Low-Cost Architecture (ABLA) – concept of architecture based on
low-cost hardware (single-board computers and electronic development boards).

The work picks up also the following minor and practical contributions:

• Implementation of automatic control remote laboratories on MHSA and ABLA,
with following experiments:

– thermo-optical system (3 laboratories),

– hydraulic system with two series of tanks,

– hydraulic system with three tanks,

– DC motor (2 laboratories),

– air-flow heat exchanger.

• Implementation of various real-time automatic control scenarios for remote labora-
tories

• Incorporation of implemented laboratories into educational environment:

– deployment of Remote Laboratory Management System (RLMS) WebLab-
Deusto at the Institute of Information Engineering, Automation and Math-
ematics,

– deployment of implemented remote laboratories through RLMSWebLab-Deusto,

– arrangement of inter-institutional usage of laboratories with University of Deusto
(Bilbao, Spain).

The concept of MHSA, including the early research and not yet published results, are
shown in:

• M. Kalúz, Ľ. Čirka, and M. Fikar.: Simplifying the implementation of remote lab-
oratories in educational environments using industrial hardware. Kvasnica M. and
Fikar, M., editors, In Proceedings of the 19th International Conference on Process
Control, pages 522–527, Štrbské Pleso, Slovakia, June 18-21, 2013.
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• M. Kalúz, J. García-Zubía, M. Fikar and Ľ. Čirka.: A Flexible and Configurable
Architecture for Automatic Control Remote Laboratories. Submitted to IEEE
Transactions on Learning Technologies, 2014, submitted after revision.

The low-cost remote laboratories based on ABLA, are described in:

• M. Kalúz, Ľ. Čirka, R. Valo, and M. Fikar.: ArPi Lab: A Low-cost Remote
Laboratory for Control Education. In 19th IFAC World Congress, Cape Town,
South Africa, August 24-29, 2014, accepted.

The results of inter-institutional cooperation on the federation of remote laborato-
ries between Slovak University of Technology in Bratislava and University of Deusto,
Bilbao, Spain, and the deployment of Remote Laboratory Management System (RLMS)
WebLab-Desuto at Institute of Information Engineering, Automation and Mathematics
were published in:

• M. Kalúz, J. García-Zubía, P. Orduña, M. Fikar, and Ľ. Čirka. Sharing control
laboratories by remote laboratory management system WebLab-Deusto. Sebastián
Dormido, editor, In Proceedings of 10th IFAC Symposium on Advances in Control
Education, volume 10 of Advances in Control Education, pages 345–350, Sheffield,
UK, 2013. University of Sheffield, International Federation of Automatic Control.
doi: 10.3182/20130828-3-UK-2039.00048.

The early work focused on development of on-line experimental laboratories, including
both the virtual and remote laboratories, is described in:

• M. Kalúz, Ľ. Čirka, and M. Fikar.: Virtual and remote laboratories in process of
control education. International Journal of Online Engineering, 8(1): 8–13, 2012.
doi: 10.3991/ijoe.v8i1.1830.

• M. Kalúz, Ľ. Čirka, and M. Fikar.: Virtual and remote laboratories in education
process at FCFT STU. Mikuláš Huba and Michael E. Auer, editors, In Proceed-
ings of the 14th International Conference on Interactive Collaborative Learning,
pages 134–139, Piešťany, Slovakia, International Association of Online Engineer-
ing, Kirchengasse 10/200, A-1070, Wien, Austria, September 21 - 23 2011. doi:
10.1109/ICL.2011.6059562.

1.3 Overview of the Thesis

This thesis is aimed on development and implementation of RLs for automatic control,
specifically focused on the issues of operational architectures. The thesis is split into
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three main parts. Part I discusses a theoretical background of experimental laboratories,
defines the RLs and provides a general requirements for their development, deployment
and usage. Part II is the most inclusive part of this work. It is split into three chapters.
Chapters 4 and 5 provide the conceptual principles and overview of two new proposed
types of architectures, which are considered to be the main contribution of this work.
Additionally in Section 4.2, a discussion about common types of RL architectures and
their comparison to MHSA and ABLA is provided. Chapter 6 discusses Upper Level
Management (ULM) of remote laboratories and the deployment of Remote Laboratory
Management System (RLMS) WebLab-Deusto in practice. Part III shows the principles of
implementation of automatic control algorithms for RLs as well as the list of laboratories
implemented on new architectures.





Part I

Theoretical Background





Chapter 2

Classification of Experimental Laboratories

Experimental laboratories play an important role both in research and education, and
in last decade they have become an inseparable part of applied science. They allow
researchers and students to perform experiments from different fields of science and engi-
neering, to create an appropriate conditions for their professional growth, and to acquire
a new knowledge and practical experience.

Traditional look on laboratory as the room with scientific equipment has changed
with the development of modern information technologies. This resulted into branching
of laboratory experimentation paradigm, and formation of two new approaches. Both
are the combination of two concepts: the substitution of physical interaction between
experimenter and laboratory equipment by computer-based interaction; and substitution
of physical experiments by simulations. Considering these changes, laboratory instrumen-
tation can be split into three forms as shown in Fig. 2.1.

First established paradigm uses both concepts and it is called Virtual Laboratory (VL).
In these kind of laboratories, experimenters do not work with the real physical systems,
but with their mathematical description projected into computer program or algorithm.
A good practice in transcription of real behavior to mathematical model for VLs is that
the main internal relations and causalities of system remain intact, and simultaneously
the simplifications made on presented experiment should not significantly affect its nature
or physical meaning.

Second paradigm uses similar computer-based interaction as in the case of VL, but it
provides the resources of real laboratory systems and it is called Remote Laboratory (RL).
This concept uses a distribution of services over the different locations and their intercon-
nection through computer networks. For RLs, we distinguishes: parts that are located
at the side of experimenter (client-side), often represented by software called client appli-
cation; parts located at the side of remote services (server-side), serving communication
between client and laboratory; and experimental equipment which may be located at
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Figure 2.1: Types of experimental laboratories

different place than main server-side technology. Deployment of hardware/software and
principles of communications differ from one type of architecture to other, and detailed
analyses of their types will be provided in Section 4.2.

Different authors use different terms of definition and views on classification of experi-
mental laboratories. We pick up two definitions which are used most commonly and have
been presented in respected works. Dormido (2004) (Tab. 2.1a) distinguishes laboratories
by nature of resource and type of access to the resource, while Gomes and Bogosyan
(2009) (Tab. 2.1b) use different terms for description of, in fact, the same principles.

Table 2.1: Two different views on laboratory classification
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This work is exclusively aimed on those laboratories which are operated remotely and
contain real instrumental devices. This form of experiment realization has several advan-
tages and drawbacks when compared to the traditional hands-on laboratory. One of the
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main benefits is the opportunity of experimenter to perform the experiments from any
location with the presence of computer network, on which the RL is published. If the
Internet is used as network for RL access, it can be accessed almost from any location
in the world scope. Another important benefit of RL is the removal of time restrictions
for experimenters. They can use experimental apparatus also in time when traditional
laboratories are closed. Moreover, RLs do not require direct assistance of supervising
person, as it is common in traditional laboratories. Students and other users can per-
form their experiment without the concerns of experiment’s security, because it is (or it
should be) ensured by remote laboratory itself. Security is however one of major draw-
backs for remote laboratories, since a comprehensive class of problems must be taken
into account. They include the security of user’s hardware (Personal Computer (PC),
tablet, smartphone, etc.), software (operating system), communication over network, op-
erational hardware and software in laboratory, and mostly the security of instruments
which are controlled remotely. A good practice in the realm of on-line experiments is
that instruments under remote control are of nonthreatening nature. In other words,
such non-supervised devices whose operation will increase a risk of situations like mate-
rial ignition, electrical discharges, chemical accidents, and other types of area damage are
highly inappropriate to be used in remote laboratories.





Chapter 3

Characteristics of Remote Laboratories

We have shown in previous chapter that there is no strict definition of remote laboratory
in the literature, or it varies from one author to another. In general, there are several
properties that remotely controlled experiment must satisfy to be labeled as remote lab-
oratory. To address those properties correctly, three different perspectives are provided
in this section: the one of user, administrator, and developer.

3.1 User’s Perspective

It is a well known fact that RLs are exclusively designed and dedicated for their users.
Therefore the most important requirements for their design are aimed on the satisfaction
of those who use them. We can distinguish between two class of requirements, which
involve features and properties. Firstly, there are those that are necessary in order to
achieve the basic functionality and usability of RLs, and secondly those properties/fea-
tures that make a difference between the common and good ones.

3.1.1 Awareness of Remote Laboratory

Even this is not a feature itself, the awareness of RL existence is very important. Without
the information, users do not even know that they have an opportunity to perform their
experiment and study tasks remotely, without the time and place restriction. There are
several ways how the information about particular on-line laboratories can be released.
First is information given from person to person, mostly applied in the education pro-
cess, where teachers encourage students to use such tools as the supplement to standard
learning methods. Another approach is the use of information sources like Internet, by
publishing the information on Web pages related to the topic of interest. Generally, the
awareness of RLs attracts users and results into valuable feedback and evaluation of usage,
which help to keep their continuous improvements.
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In many cases, the awareness of RLs also leads to the extension of user and experiment
base of the educational institutions. In literature there are several collaborative systems
which allow sharing of experiments, as well as provision of resources to users from different
institutions. These are for example MIT iLabs (Hardison et al., 2008), LabShare Sahara
(Lowe et al., 2009), WebLab-Deusto (Orduña, 2013), and AutomatL@bs (Vargas et al.,
2011). For more information see Chapter 6.

3.1.2 Access Model

There are two main requirements that must be satisfied for access model of RL. The
first is public availability and the second is user access control. While availability can be
achieved easily, by publishing the laboratory services on the network, the access control
must be supported by an advanced software system. To emphasize why is access control
so important feature for RLs, the following situation is described.

The user A enters the RL and starts the experiment. During the session, user A
controls experiment and gathers data from it. In some point of measurement a seconds
user B accesses the same laboratory without awareness of the first user. Both users try
to control the experiment but their actions may be contradictory, creating corrupted
measurement, unwanted data output and overall confusion or frustration of usage.

To avoid such kind of situations, most of RLs deployed in practice allow only one user
to access laboratory at a time. The concurrent attempts to enter laboratory are solved
by an appropriate access model. Commonly, there are two main forms of user control in
practice. First is based on booking systems, where users reserve the session in advance
for the specific date, time, and duration. The booking system allows to enter only those
users, which have valid booking reference in actual time. Calendar booking model is often
used in practice and can be found e.g. in Uran et al. (2007) and Smrcka et al. (2012).
The second model is based on putting the users into the queue, in a particular order. The
order can be determined by a several factors. If some group of users has a higher priority
than other users, they can be moved forward in the queue. This principle is called the
priority queue and it have been deployed also in practice (Orduña, 2013).

3.1.3 Human-Machine Interface vs Graphical User Interface

Generally, Human-Machine Interface (HMI) is a composition of hardware and software
that enables user to control machine and get feedback from it. In literature, this term is
often confused with the Graphical User Interface (GUI). In the context of RLs the HMI
is actually a whole infrastructure and architecture between the user and device (machine)
under control (Fig. 3.1). As a conclusion, it can be said that RL is a special case of HMI
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where information, actions, and other data are transferred through a computer network.
HMI, in the case of RL, consists of several parts, and one of them is client-side software
or client application. GUI is such graphical environment of client-side software that is
directly designed to provide a visual environment for control of remote experiment. It is
important to mention that GUI is the only part of RL with which the user comes to the
contact, so the overall impression depends on GUI and its features. Therefore a useful
GUI should address all user’s needs and it should be as intelligible to human as possible.
Users prefer those laboratories that provide easy-to-use controls and clean interfaces. The
additional features, such as advanced visualizations, customizable layout, video support,
augment reality and other, can attract users’ attention and overall impression on RL.
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Figure 3.1: Components of HMI feedback loop

Very important aspect of RL usability is also the way how the client application
is provided to the user. This strongly depends on appropriate choice of technology on
which the application software is built and running. As mentioned in Gomes et al. (2007),
there are two main topologies in concept of client software: dedicated desktop application
and Web-based application. Desktop applications are well known for their performance
and capability of running high level user interfaces. They often are marked as intrusive
software, because they are based on technologies which can access the system resources in
client’s computer. From the usability point of view, this can be considered as unwanted
security drawback of such kind of software. The biggest benefits of Web-based applications
are their non-intrusiveness and universality. In other words, they can be easily used
without need of any specialized software on almost all modern devices and platforms that
support Web standards. On the other hand, they do not provide the performance and



36 CHAPTER 3. CHARACTERISTICS OF REMOTE LABORATORIES

interface features to such an extent as desktop applications do. Despite these facts, the
use of Web-based interfaces for RLs has grown significantly in recent years due to the
rapid development of Web technologies.

Another required feature of client applications is the possibility for user to acquire data
of measurement in such form that is appropriate for their further processing. Actually,
this requirement applies only for a specific class of RLs. We distinguish between those
laboratories which are designed purely for demonstrative purposes and provide just a
simple feedback for user’s senses (e.g. remote control of robot movement), and those which
are designed for full-featured experiments. The second mentioned must provide data in
the scientific form. For example, in laboratories used for process control education, it is
necessary for users to understand the nature of controlled system and to have the data
for proper analysis.

3.1.4 Educational Context

Although the RLs can be designed and used also for industrial applications (e.g. remote
supervisory systems), this work deals with the concept of RLs as the educational tools.
This implies that remote experimentation must be linked with standard education pro-
cess. In practice, RLs are often provided as a support for courses and lessons taught on
universities (García-Zubía and Alves, 2011; Gomes and García-Zubía, 2007), but also on
lower levels of education, such as secondary schools (Dziabenko and García-Zubía, 2013).
The main idea is to provide students with higher degree of learning freedom and to give
them opportunity to perform their tasks independently on their presence in institution.
To achieve these goals, RLs are often closely aligned with the e-learning. Using of Learn-
ing Management Systems (LMSs) is one of most common way how to incorporate RLs
into e-learning process (Fernandez et al., 2012b; Ruano-Ruano et al., 2013).

3.2 Administrator’s Perspective

Administrator of RL is such a person who has right to supervise the experiments, usage
of laboratories, user activities, security, and to apply users’ feedback to improve the
education process. This role often belongs to teachers.

3.2.1 Supervision and Management

The main role of administrator is to supervise over the usage of the system. This task
often involves the evaluation of users’ activities, usage of laboratories, and the general
feedback from those who use labs. Based on these information, administrator apply
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changes in access model, publishing methods, settings of laboratories and experiments.
For example if one laboratory is under heavy load for a longer period, administrator can
reduce time allowed for one session to allow more users to access laboratory in short time.

3.2.2 Security on Level of Usage

Security of RL is one of the main concerns of administrators. It is associated to an
unexpected behavior of laboratory operation and possible malicious activities of users.
In the first case, administrator is responsible for uninterrupted operation of laboratories.
Since they are in most cases a composition of complex hardware and software parts, they
can break down or act unexpectedly from time to time. These situations can be caused by
hardware failures (wear of electronics), software crashes (mostly the software dependent
on computer’s OS), loss of power supply, connection outage, and others. In the case of
such malfunction, administrator’s task is to detect the fault, find its source and restore
the normal operation of laboratory as soon as possible. If the fault elimination is beyond
the technical skills of supervising person, a developer must handle this task.

In literature there are a few approaches of fault detection on the different levels of
architecture. In Yazidi et al. (2011) the detection of failures is implemented directly
on the level of experiment, and it is applied on AC electrical machines. An entirely
different approach is implemented in the RLMS WebLab-Deusto (Orduña, 2013). In this
system, the fault detection is carried out on the level of architecture, e.g reporting broken
connections between different parts.

As mentioned before, the second concern is user’s behavior. Even in the best designed
RLs there is still a risk that developers have left bugs in the software or other security
holes, which could be misused by malicious users. Therefore the RLs must provide at
least a basic tools for tracking of users’ activity and be able to interconnect unwanted
event with a specific user.

3.3 Developer’s Perspective

Even the RLs are primary designed for those who use them (users, teachers, ..), the
developers’ point of view is the main aspect which determines the difference between
useful and useless laboratory.

3.3.1 Effective Approaches of Development

The development of RLs is often considered as one complex task of design, construc-
tion, and application, starting with the experimental device (laboratory instrument) and
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ending with RL in ready-to-use form. This approach is often called a “creating from
scratch” and resulting in ad hoc solutions. There is one significant drawback of such kind
of approaches. Developers must repeat the whole procedure of development for each new
intended laboratory. Since this task can take long time (at least weeks, but often months
and more), the approach leading to ad hoc laboratories is highly inefficient. Therefore
we, as the developers, distinguish between two main phases of RL creation. First is
development without specific application (laboratory). This phase contains design and
construction of multipurpose architecture and preparation of infrastructure for second
phase which is implementation for particular applications. Once the first phase is com-
pleted, it does not require to be repeated for every new implementation. This principle
produces some significant impacts also for other roles in RL’s usage, such as that more
experiments can be implemented in short time. This speeds up the overall evolution of
on-line experimentation in institution applying this practice.

3.3.2 Operational Robustness

Each RL, as a set of hardware and software, must be built on appropriate technologies
in order to ensure its robustness. Systems for on-line experimentation must be designed
to handle uninterrupted operation for long time without frequent maintenance (e.g. for
several months). This must apply for the whole architecture from client-dedicated ser-
vices to experiment itself. Since the majority of RLs is implemented on Service-Oriented
Architectures (SOAs), developers must choose robust hardware and software to run such
services.

3.3.3 Modifiability and Reproducibility

A good RL should be designed in such way to be easily modifiable on the level of hardware
and software source code. It is often necessary to make additional changes in laboratory
architecture in order to solve common situation that appears during the phase of testing
but also the full operation. Therefore, it is appropriate to create an open technological
solution and keep it as comprehensible for other developers as possible. This also affects
another important property of RLs, their reproducibility. Many educational institutions
cannot afford their own development, so they rely on available ready-made solutions. If a
specific concept of RL is well described, using open non-commercial technologies, low-cost
hardware, and its developers provide the whole know how, it is likely that such concept
will be popular and reproduced also by other institutions.
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3.3.4 Security on Level of Technology

Each RL is only as secure as developer’s methods and used technologies are. In general
the security on the level of technology can be discussed for two areas, the security of
hardware/software resources and the security of information. In the first case, developer
must guarantee that software is safe with the respect to the self-operation, to other
software parts in the same or other device, and with the respect to the hardware. In
other words, software cannot allow e.g. user to cause its malfunction, allow to cause
errors in operating system, or to take control over the hardware in the way that have not
been intended by developer.

Second security concern is related to the privacy of information. RLs often transfer
confidential information over the computer network, therefore they must use such kind
of technologies that guarantee the protection of data against third persons. Data can be
of various nature, such as user authentication, authorization keys for laboratories, and
operational/process data. Security of them can be achieved in several ways, such as use of
secured network protocols, two side decryption/encryption, or virtual private networks.





Part II

Architectures





Chapter 4

Multipurpose Architectures

Multipurpose architectures are those types of architecture that provide operation for
at least a class of remote laboratories without need of changes in structure, hardware
components or software. The idea of such architecture is to follow the concept well
known as Plug and Play.

4.1 Problem Description and Motivation

Because the hardware architectures of remote laboratories can be very flexible, many
different forms and their applications are available (Dziabenko and García-Zubía, 2013;
García-Zubía and Alves, 2011; Gomes and García-Zubía, 2007). As it is, among the
other interesting conclusions, mentioned in Gomes and Bogosyan (2009), the majority
of available existing solutions are in the form of ad hoc or single-purpose labs, where
creators adapt the architecture design and software development to a specific purpose
of lab usage. A typical case of this kind of approach is that operational software and
hardware is designed to work with a one-and-only type of experimental device, and it
cannot be directly applied to a different type of purpose without interfering with hardware
components and/or program source code. Therefore, one of the current trends in RL
development deals with the issues of extensibility, versatility, and multi-functionality.

“A common wrong approach is to design first a prototype which works—it
works!—and then worry about adding new features. Unfortunately, this is not a
valid approach since oftentimes, there is a need to redo the whole application.”

Garcia-Zubia et al. (2009)

These highly requested features are not only the matter of hardware, but also have to
be supported by appropriate operational software. Because, in most cases, the operators
of remote experiments are common users connected to laboratory through the Internet,
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the client software must satisfy the requirements of functionality for different possible
cases. The main issue of client side software development deals with the selection of the
technology and operation method that developers have to choose to create client appli-
cations. These should provide users with the opportunity to use laboratories from their
personal computers without the need of any specialized software. Since Web browsers are
generally available for all currently used operating systems, the majority of existing solu-
tions are operated in this way. As described in Garcia-Zubia et al. (2009), the appropriate
choice of client technologies for Web browser is the essential task for creating effectively
working RLs. Due to the development of new technologies and standards for Web based
applications such as HTML5, and Asynchronous JavaScript and XML (AJAX) frame-
works, some more traditional approaches for Rich Internet Applications (RIAs), most of
all, those based on embedded technologies, like Java Applets and Flash, are slightly pushed
outside of interest. Especially, JavaScript-powered Web applications have become very
popular for client side implementation in recent years. The main issue with JavaScript
is a lack of standardization across different Web browsers (Mesbah and Prasad, 2011).
This problem is caused by a non-standardized model of native functions used by Web
browsers. While JavaScript client side logic can work properly in e.g. WebKit (Apple
Safari, Google Chrome), it may result in an unexpected behavior in engines like Gecko
(Mozilla Firefox), Trident (Internet Explorer), Presto (Opera), and others.

Another important aspect of RL development is time and effort required to their
creation and practical implementation. Even though this field is under vital develop-
ment for almost 20 years, the approaches based on openness are still quite rare. Most
of them are software oriented architectures that provide Application Programming Inter-
faces (APIs) for interconnection of different client side and experiment-serving technolo-
gies. In practice, theses architectures are often a parts of upper level frameworks that
incorporate additional features of laboratory management, user management and serving
of inter-institutional usage. Therefor they are called Remote Laboratory Management
Systems (RLMSs). In the literature there are several RLMSs with strong impact and
high reputation. These include MIT iLab (Hardison et al., 2008), LabShare (Lowe et al.,
2009), or WebLab-Deusto (Orduña et al., 2011).

The above mentioned issues represent the main motivation for development of mul-
tipurpose architecture. However, these objectives cannot be solved by one side design
strategy (only hardware or only software), but require a combination of both approaches.

In this part, two multipurpose architectures are proposed. The first Multipurpose
Hardware and Software Architecture (MHSA) is based on industrial hardware, and open-
source software and the second ArPi Branched Low-Cost Architecture (ABLA) is based
on low-cost hardware and also open-source software. Both architectures provide several



4.2. COMMON TYPES OF ARCHITECTURES 45

features that are contributional to remote laboratory development. The most significant
are: the possibility to connect various types of automatic control experiments without
the need of changes in architecture or source code; embranchment capacity of architec-
tures (more than one experimental node can be connected); significant time savings in
implementation process; and for MHSA two control layers that allow the use of advanced
process control methods.

4.2 Common Types of Architectures

Before we get to the description of MHSA and ABLA it is important to discuss the most
often occurring architectures in literature and practice. Even the Remote Laboratory
Architectures (RLAs) occur in various forms, using different hardware, software tech-
nologies, physical arrangement, and principles of operation, the majority of them can be
classified in the following categories.

1. Client – server with control software – experimental device. This commonly oc-
curring type of architecture uses a direct connection between the PC (server) and
controlled device e.g. by serial or Universal Serial Bus (USB) port (Fig. 4.1 – case
1©). Therefore, the PC must be equipped with proper software for communication
with the client and also for control of the experimental device. In most cases, server-
side PCs contains self-made software solutions based on commonly available tech-
nologies. The main advantage of this architecture type is in its low implementation
difficulty and price. In Bisták (2011), the RL for control of thermo-optical plant and
magnetic levitation is designed on this type of hardware architecture. The author
uses the client Java application and server technology based on Java/MATLAB.
Two technologically different remote control approaches for inverted pendulum are
presented in Kolenčík and Žáková (2009). The authors use .NET for server-side
implementation and Adobe Flash for client-side in first case, and in second case the
combination of MATLAB as control software and Java-based client application. An-
other different approach of RL implementation on this type of architecture is given
in Mohtar et al. (2008). The authors use the LabVIEW software that is designed
to handle almost all required features such as communication with experimental
devices, server capabilities, data acquisition and GUI design tools. The advantage
of commercial programs like MATLAB and LabVIEW is that they provide easier
implementation and time savings. A possible drawback is that they also increase
the final cost of the RL.

2. Client – server with control software – Data Acquisition (DAQ) device – experi-
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mental device. Remote experimental setup with very similar functionality as above
mentioned. The only difference is that the data acquisition device (e.g. DAQ card)
is a separate part of the architecture (Fig. 4.1 – case 2©). Architecture with a DAQ
device is usually used in a situation when it is not possible to directly interconnect
the server-side PC and experimental device. This type of hardware setup often
reduces the requirements on signal processing software included in the control PC,
but also increases the price. Control lab architectures using this type of approach
are proposed in Choudhary et al. (2012), and Chandra and Venugopal (2012).

3. Client – proxy server – lab nodes (PC + control unit) – experimental devices. This
type, also known as branched architecture, provides a higher capacity of possible
experimental connections than any other architecture (Fig. 4.1 – case 3©). The
proxy server is used for managing the connections of different clients to different
experimental nodes. Each node usually consists of a local computer (lab server)
equipped with appropriate software and hardware for data acquisition, and an ex-
perimental device. The main advantage of this architecture comes from its wide
inter-connectivity, where experimental nodes can be located even in different coun-
tries while the user accesses are managed by proxy server (Hu et al., 2013; Lowe
et al., 2009; Santana et al., 2013; Tawfik et al., 2013b). Interesting branched archi-
tecture that uses wireless experiment nodes is given in Cui et al. (2012).

4. Client – server with Supervisory Control and Data Acquisition (SCADA) system
– control unit – experimental device. Combination of SCADA system and control
unit (Programmable Logic Controller (PLC) or other hardware controller) is one
of most frequently used industrial approaches (Fig. 4.1 – case 4©). Among the
common features like data acquisition, variable control capabilities and connectivity,
most SCADA systems also provide HMIs that can be used as an alternative to
client side software for RL. Gao (2010) introduces the RL for tank level control
using RSView32 SCADA system with Web-based HMI. An interesting solution
combining Java-based client-server communication, Easy Java Simulations (EJS) for
GUI development and SCADA-PLC control mechanism is shown in Besada-Portas
et al. (2012). Other applications of RLs based on PLCs and SCADA are shown in
Marques et al. (2008), and Lazar and Carari (2008). Approaches in this category are
characterized by their expensiveness stemming from the use of commercial software
and hardware, but also by significant reduction of required implementation effort
and time. Most commercial control systems contain built-in features that can be
instantly used for experimental control, so the developers do not need to write
processing software or user interfaces.
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5. Client – server/microcomputer – programmable electronic board – experimental de-
vice. The very popular approaches in recent years, also often labeled in literature
as low-cost, are based on programmable boards like Field Programmable Gate Ar-
ray (FPGA), Arduino micro-controllers, and cheap alternatives to standard com-
puters (e.g. single-board computers based on ARM architecture like Raspberry PI,
Pandaboard and others) (Fig. 4.1 – case 5©). Due to the wide spectrum of var-
ious hardware components, this category cannot be generalized as a specific type
of architecture. These approaches can be described as the opposite alternatives to
category 4, especially from the pricing and implementation point of view. While
the purchase price of hardware is incomparably lower than the price of industrial
control systems, the implementation difficulty and required effort for software devel-
opment rises rapidly, because developers must work with raw hardware components.
An interesting example of low-cost remote laboratory based on microcomputer and
FPGA board is shown in Costa et al. (2012). Works by Hashemian and Pearson
(2009), El Medany (2008), Neto et al. (2012) show similar approaches, but instead
of a microcomputer, they use a standard PC (server) to provide communication
between users and experimental devices.

Figure 4.1: Summarizing different types of architectures.
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The comparison of MHSA, ABLA and other types listed in this sections are provided
in Table 4.1. To show the main benefits and drawbacks we provide evaluation of costs,
requirements on: hardware implementation/software development, performance, flexibil-
ity, and extensibility/connectivity. The additional evaluation of architectures’ benefits,
drawbacks and application scope will be provided in Sections 4.4 and 4.5 for MHSA and
in Section 5.3 for ABLA.

Table 4.1: Comparison of MHSA, ABLA, and other types of architectures

hardware 
implementation

software 
development

hundreds low average high low low

hundreds - several 
thousands

low average high average average

thousands and more average - high(1) low - high(2) high
dependents on 

node type(3)
dependents on 

node type(4)

thousands and more average low high high high

dozens average high low low average

several thousands low low high multi-purpose(5) high

dozens average high low multi-purpose(5) average

*
A.
B.
C.
D.
1.

2.

3, 4.

5.

Architectures listed in this section
Costs contain approximate expenses of hardware components and software.
Computational power of hardware used in architecture.
Flexibility shows if the architecture is opened or closed (e.g. if implementation of new experiment requires significant changes in sw/hw).
How many nodes can be managed by server-side computer and how many experiments can be connected to one node.
Depends on number and type of components used in branched architecture. Higher number of hardware nodes results into higher 
implementation  difficultness.
The requirement on software development for physical systems in branched architectures can be significantly reduced by using open-source 
technologies. Some of development and management systems provide direct APIs and device aimed software (iLab, LabShare,  WebLab-Deusto).
The flexibility and extensibility of branched architecture is determined by type of devices used as nodes and their operational software, which 
can combine approaches of other architecture types.  
Multi-purpose architecture is opened at both, the back-end (various types of exp. devices can be connected) and front-end (client is fully 
configurable for all situations at back-end, e.g. use of different types of exp. devices).

Costs (€)(A)
Requirements (effort) on

Performance(B) Flexibility(C) Extensibility / 
Connectivity(D)

Type of 
architecture

1*

2*

3*

4*

5*

MHSA

ABLA

4.3 Multipurpose Hardware and Software Architec-
ture

The idea of MHSA is to provide a new type of hardware and software architecture that sim-
plifies remote laboratory development in terms of time savings and reduction of technical
skill requirements and simultaneously solves the common problem of single-purposiveness
by introducing a remote laboratory structure which is opened at the back-end and con-
figurable at front-end.
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4.3.1 Hardware

MHSA is combination of hardware and operational software based on two types of in-
dustrial devices: a Industrial Network Router (INR) and a Programmable Logic Con-
troller (PLC). Contrary to traditional types of RLAs listed in previous section, MHSA
have replaced the server computer by an INR device, that is primarily designed to super-
vise the industrial controllers connected in its local network. PLC is used as the device for
direct physical interaction with laboratory equipment, using a set of standard electrical
signals to read process sensors and manipulate its actuators. Depending on the type and
modularity of a particular PLC used in architecture, a wide connectivity can be achieved
(analog/digital signals with high spectrum of ranges and resolutions).

Figure 4.2: Operational setup of MHSA

As can be seen in Fig. 4.2, the INR device represents the supervision layer of oper-
ational setup. The lower operational layer consist of nodes of PLCs and experimental
devices. This setup can be described as opened-at-the-end, because it allows any type
of experimental device that communicates through analog and digital signals to be con-
nected. Depending on the connectivity of specific PLC used in architecture, provided by
PLC’s I/O modules, and the number of signals required for controlling the experimental
device, one PLC can handle several experiments in one laboratory node. To prove this
statement we will show it in a practical cases of implementation (see Chapter 8). The
extensional capacity of this kind of architecture is shown in Fig. 4.3.

The industrial router used in our architecture is eWON4005CD (eWON Inc., 2011),
that can be described as a coupler for industrial controllers. The main features of INR
are:

• Industrial protocol translation
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Figure 4.3: Embranchment capability of MHSA

• Direct access to PLC program variables (read/update)

• PLC program update

• Process/operational data acquisition from PLC

• Server-side script runtime environment

• Data and event logging

• Alarms

• Operational architecture management

• FTP server

• Web server

In one node of physical setup, the experimental device is connected to the PLC’s
I/O module. The INR device in supervision layer communicates with all experimental
nodes in the local area network by their specific industrial protocols. To simplify the
communication mechanism, the INR provides the feature of associated internal variables
called TAGs. Each TAG is addressed to the specific memory area of the PLC and allows
the user or administrator of INR to directly read and update its memory variables. TAGs
are distributed through all program parts of INR like Web management screens, scripting
environment and Web server services. Depending on the type of signal processing, PLC
can represent three different functions in operational architecture.

1. Non-interfering communication channel. In this kind of situation the PLC is used
as the simple communication channel, without any internal logic implemented in it.
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The TAGs in INR are addressed directly to I/O memory of PLC and work with the
raw signals. This setup fits only for situations when no unit conversion or signal
processing is required, e.g. digital state control (signals can reach only values 0 or
1).

2. Signal processor and unit converter. In this case, the internal logic of the PLC con-
tains algorithms for signal conversion and processing like filtering, standardization,
and unit conversion. These procedures are applied mostly for raw analog signals
collected from and sent to the experiment.

3. Control processing environment. In industrial applications, PLCs are primary aimed
at base level control of technological processes. The versatility of their functional
usage is wide, containing various types of control algorithms and predefined features.
All of these are also available for use in operational architecture of remote lab. In
this case, PLC can provide additional computational power for advanced control
algorithms like those based on optimization tasks (e.g. model predictive control).

4.3.2 Communication Services of INR

By the communication principles, the MHSA can be classified as XML-based Service-
Oriented Architecture (SOA). The INR device can be, from the usage point of view,
characterized as a common network router with a set of administrative Web pages and a
set of internal services which process the users’ actions. Although the INR is not directly
designed to work as remote laboratory serving unit, a detailed inspection of provided
services has shown that INR can be operated by a Web application in the same way as
by the user logged in the administrative interface. The list of Web services provided by
INR that are important for RL’s operation are following.

Original services pre-implemented in INR by default:

• rcgi.bin/UpdateTagForm - is the service that performs changes in TAG variables.
It accepts the Hypertext Transfer Protocol (HTTP) POST data in the form of
TagName1=[name]&TagValue1=[value]&TagName2=[name]&TagValue2=[value].

• rcgi.bin/ScriptEditForm - service that allow upload script for internal computing
environment of INR. These scripts consist of initial part (executed once) and cyclic
part (executed in loops). Internal scripts are defined in BASIC language and they
can read/update TAGs. These can be used for implementation of control algorithms
on the supervision layer of architecture.

• rcgi.bin/RunStopProgForm - is a simple service that enable user to run or stop
the execution of internal scripts.
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• rcgi.bin/ScriptCtrlForm - service that allows batch execution of short scripts
inside BASIC environment.

• rcgi.bin/EditUserForm - allows to create and change the account of INR adminis-
tration. This service is used by the ULM system (see Chap. 6), to grant permissions
to the specific user of client application.

Services implemented for MHSA operation:

• tagXML.shtm - is the active server page that returns Extensible Markup Language
(XML) document containing current values of all predefined TAGs. This is the
configuration file which is written by an implementer of laboratory as the process
of laboratory configuration.

• pollingInfo.shtm - is optional active server page that returns the information
about actual presence of user in laboratory. This file can be used by and ULM
system to determine whether the user session finished or not.

• clientConfig.xml - is a static XML file that provides the full configuration of
client application, as well as the paths to other services.

Each service, depending on the purpose, is accepting a different set of parameters sent
in HTTP request’s body (POST method).

4.3.3 Client Application

One of the most important parts of MHSA is client application ControlApp, which pro-
vides GUI and a set of services for communication with INR. It is built as a JavaScript
powered HTML5 Web page with semi-dynamic Document Object Model (DOM) and
event-driven internal logic. In the comparison with other Web-based laboratories, the
ControlApp provide a whole new concept of GUI construction. This concept is called on-
fly content generation of RL interface and it has been designed for specific needs of MHSA.
The ControlApp.html file itself do not have almost any static content in its initial form,
and contains only required structure of Web document and reference to main JavaScript
file. Whole GUI is automatically generated during the load of application, reflecting the
specific configuration for particular RL. The initial layout of application, communication,
and event handling is processed by an optimized JavaScript logic. This concept have been
chosen for two main reasons. Firstly, to have one unified application for all laboratories
developed at MHSA, and as the result, to save development effort for each new instance
of experiment, connected to architecture. Secondly, this concept reduces the amount of
data that needs to be stored in INR’s Web server. In traditional approaches of Web-based
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RLs, a whole content of GUI (ready-to-use Web page) is transferred to user. The MHSA’s
ControlApp transfers only a very small static Web page and minimized JavaScript file.
Moreover, it does not carry any specific information about layout. It can be described
as the constructor for GUI. The generation of specific components is performed in Web
browser and it depends on information provided by a set of configuration files loaded by
client application. The principle of GUI generation is shown in Fig. 4.4.

ControlApp

GUI constructor 
for Firefox

GUI constructor 
for IE

GUI constructor 
for Chrome

INR's Web 
server

Configuration for 
laboratory A

Configuration for 
laboratory B

Configuration for 
laboratory C

Lab. A layout

Web 
browser

Lab. B layout

Lab. C layout

Firefox

IE

Chrome

Figure 4.4: Principle of GUI construction depending on Web browser type and specific
laboratory configuration

The ControlApp has been developed in Google Web Toolkit (GWT) development
framework 1. GWT provides a set of tools for building client-to-server AJAX Web appli-
cations. The main benefit of this framework is that client side implementation is written
in Java language and it is compiled into optimized JavaScript. This allows developers to
use a full spectrum of programming paradigms, which makes Java so popular. Moreover,
GWT compiler uses a cross-compile feature and can produce JavaScript variations for
all major types of Web browsers. As the result, developers do not need to pay atten-
tion to compatibility issues with some of JavaScript native interfaces, because GWT will
handle it automatically. Produced Web application in default contains several different
JavaScript files, each dedicated for different Web browser core, and it is fully supported
by the MS Internet Explorer, Mozilla Firefox, Google Chrome, Chromium, Apple Safari,
and Opera.

ControlApp’s GUI (Fig. 4.5) is designed as user-friendly workspace with draggable
windows (similar to working desktop of common operating systems) and can contain
several types of predefined components, which are: main control panel located at top of
Web page; tables of inputs, outputs and variables 1©, located at fixed position in left side
of interface; a set of charts 2© with visualization of signals and variables; window with
selection of control algorithms 3©; a set of video streams from remote video devices 4©;

1http://www.gwtproject.org/

http://www.gwtproject.org/
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window for download of data 5©; and logging window 6©.

Figure 4.5: Graphical layout of ControlApp for thermo-optical laboratory

In the main control panel, user can select which components are displayed in working
desktop. This feature is useful especially for situations when ControlApp is used for
laboratories with many signals or multiple video streams. The window-based style of
application also provides the user with possibility to organize graphical layout for his/her
own needs in order to ensure comfort and good orientation in usage of RL. Application
provides three types of tables. The first table shows the list of input signals of remote
system and it is intended to provide manual control of actuators. Each row contains name
of signal with the information about engineering unit and range in which signal can be
changed, current value, input field where user can type a new value, and submit button.
The second table is used to display current values of system’s outputs (measurements
from senors). The third table contains a list of additional variables used in RL, such as
control setpoint, parameters of controller, or other operational variables, which are linked
from INR’s TAG bank to client application.

Each signal that is displayed in GUI’s tables can be also displayed in graphical form
as an interactive chart. This feature allows users to observe trends of variables during
the remote session. Interactive charts are embedded in draggable windows and they can
be show or hidden on demand, using the controls on main panel. Each chart plots the
values of one signal. User can display value of plotted data points by moving the mouse
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cursor over the specific point.
The client application performs the layout of tables and charts based upon the infor-

mation supplied by the configuration file. A fragment of clientConfig.xml responsible
for signals is show in Example 4.1.

Example 4.1: XML fragment of configuration file for definition of signals

<SignalsAndVars >

<eWonInputs >

<input tag=" bulb_tag " name="bulb voltage (0-5V)" minAllowVal ="0"

maxAllowVal ="5" defaultVal ="0" showGraph =" onDemand "

graphLineColor ="green"/>

<input tag=" fan_tag " name="fan voltage (0-5V)" minAllowVal ="0"

maxAllowVal ="5" defaultVal ="0" showGraph =" onDemand "

graphLineColor ="gold"/>

</ eWonInputs >

<eWonOutputs >

<output tag=" temp_real " name=" temperature [\ degreeC ]"

showGraph =" always " graphLineColor ="red"/>

</ eWonOutputs >

<eWonVars >

<var tag="w_sp" name=" control setpoint " minAllowVal ="0"

maxAllowVal ="100" defaultVal ="30" showGraph =" onDemand "

graphLineColor =" #000000 "/>

<var tag="Kp" name="PID proportional " />

<var tag="Ti" name="PID integral " />

<var tag="Td" name="PID derivative " />

</ eWonVars >

<eWonHidden >

<hidden tag="time" name=" server time" />

</ eWonHidden >

<eWonTime useSpecialTimeSignal ="true">

<signal tag="tn" format =" millis " />

</ eWonTime >

<eWonSpecialized >

<scriptStateVar tag=" script_state " />

</ eWonSpecialized >

</ SignalsAndVars >

The definitions of signals for system’s inputs are enclosed in <eWonInputs> tag. Each
<input> tag contains mandatory attributes for: name of TAG variable associated to
signal; name that is shown in GUI; minimum and maximum allowed values, which are used
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to restrict user to manipulate signal and actuators only inside their physical boundaries;
default value which is applied when client application is loaded and, optionally, after user
leaves the session; information whether the application generates the chart for signal;
and line color for chart. The <output> tags enclosed in <eWonOutputs> use the similar
attributes, except those for value restrictions. The <var> enclosed in <eWonVars> requires
only attributes for TAG name and GUI name and other mentioned attributes can be
defined as optional. The clientConfig.xml file also contains an <eWonHidden> tag
that is used for definition of variables which are hidden from user, but necessary for an
appropriate work of client application. The implementer of laboratory can set up the time
signal which will be used for plotting of data series in charts. In this case, two options are
available: to use server side time of INR; or the reference time from Web browser. The
last optional tag <scriptStateVar> enclosed in <eWonSpecialized> is used to determine
whether the BASIC language environment inside INR is active (executing the algorithms
in loops) or not. This option is used for those laboratories, which provide possibility to
upload and run control algorithms directly from GUI.

ControlApp allows implementers to attach multiple video streams to GUI of remote
laboratory. Currently it supports every type of IP camera that provide Motion JPEG
stream and/or series of static images over the Web services. If both options are available
client application automatically displays streamed video for Web browsers that support
Motion JPEG (e.g. Mozilla Firefox, Google Chrome, Apple Safari, etc.) and simulated
pseudo-stream (put together from single images) for other browsers (e.g. MS Internet
Explorer). Data for video configuration is shown in Example 4.2. Each video stream
is defined by tag <frame> inside the <videoFrames> tag. Each <frame> tag contains
attributes with information about name that is show in GUI, resolution in pixels, and
appearance option. Additional two tags <source> are nested inside <frame> tag of each
video. These two tags define the types and sources of available services. The tag for
pseudo-stream contain additional attribute, which defines the image refresh rate in mil-
liseconds.

Example 4.2: XML fragment of configuration file for definition of video frames

<videoFrames >

<frame name=" uDAQ28LT video" width="320" height ="240"

showFrame =" always ">

<source type="mjpeg" url="http ://147.175.79.43/ video.mjpg"/>

<source type="jpg" url="http ://147.175.79.43/ jpg/image.jpg"

refreshMillisec ="1000"/>

</frame >

</ videoFrames >
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The settings for charts are defined in <graphConfig> tag (Example 4.3). Implementer
of laboratory can chose the size of charts (width and height), maximum number of point
rendered in one chart, and number of points displayed in floating mode (e.g. for 100
points and data sampling time of 0.5s, the chart will display range of 50s).

Example 4.3: XML fragment of configuration file for definition of charts’ properties

<graphConfig dataPointLimit ="100" pointLayoutLimit ="1000"

width="500" height ="250" allowFullDataPointView ="true" />

ControlApp uses an simple model of user control based on asynchronous timer invo-
cation in INR. This feature has been implemented in order to avoid situations when user
unexpectedly exits laboratory during the measurement or control task procedure. Once
the user closes the browser, the ControlApp is terminated and cannot perform any tasks
in order to reset laboratory to its default state. There are two tags in configuration file
(Example 4.4) which implementer can set up to handle these kind of situations. First one
<timerBasedUserControl> activates the timer in INR which handles the predefined pro-
cedure and defines the period in which the client application invokes the reset of this timer.
The predefined procedure consists of commands which set TAGs listed in second tag
<resetToDefaultBeforeHalt> to its default values and function that halts the execution
of BASIC scripts in INR (e.g. control algorithms). If user enters the laboratory which uses
the configuration with user control from Example 4.4, the client application will generate
the command TSET 1,30:ONTIMER 1,’bulb_tag@=0:led_tag@=0:fan_tag=0:HALT’.
This batch command is then sent to rcgi.bin/ScriptCtrlForm service. The timer 1 will
execute the code after 30 seconds, but if the user is still on-line, the client application
periodically (each 10 seconds) sends the command TSET 1,30, which resets the timer’s
timeout. As the result, the final procedure (reset of laboratory to default setting) is
applied only if client application does not contact the INR for longer than 30 seconds.
The last optional tag inside the user control configuration (<rlmsWdPolling>) defines
the hidden TAG variable that informs ULM system (in this case RLMS WebLab-Deusto)
that user is still present in laboratory.

Example 4.4: XML fragment of configuration file for definition of user control

<userControl >

<timerBasedUserControl active ="true" timeoutSec ="30"

checkIntervalSec ="10"/>

<resetToDefaultBeforeHalt tagList ="bulb_tag ,led_tag , fan_tag "/>

<rlmsWdPolling active ="true" tag=" wd_polling "/>

</ userControl >

A list of pre-implemented services (described in Sec. 4.3.2) of INR and file paths are
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provided in <comConfig> tag of configuration file (Example 4.5).

Example 4.5: XML fragment of configuration file for definition of communication services
and files paths

<comConfig >

<ewGeneral url="http ://147.175.79.44/ " />

<ewMainDirectory url="usr/ controlapp /" />

<ewMainFile url=" ControlApp .html" />

<ewTagXML url="usr/ controlapp / config / tagXML .shtm"/>

<ewTagForm url="rcgi.bin/ UpdateTagForm " />

<ewBasicEditForm url="rcgi.bin/ ScriptEditForm " />

<ewBasicRSForm url="rcgi.bin/ RunStopProgForm " />

<ewBasicExecForm url="rcgi.bin/ ScriptCtrlForm " />

</ comConfig >

The last part of configuration file contains information about the restrictions of labo-
ratory usage. They define which situations must be separately handled. Each restriction
type is defined by a single tag with three attributes. Attribute active accepts boolean
value true or false which determine whether is restriction active or not. Additional
message and img define the text information and image that appear in pop-up window
in GUI. Situations that are handled by these restrictions are detected in source code of
ControlApp. Example 4.6 shows the restriction for input signals, which ensures that user
is allowed to update their values only in valid boundaries. Otherwise the action is ignored
and warning window appears (Fig. 4.6).

Example 4.6: XML fragment of configuration file for definition of restrictions

<restrictions >

<onInputOutOfLimits active ="true" message ="Input is out of allowed

boundaries ." img="image/ no_sign .png"/>

</ restrictions >

MHSA allows developers and implementers to create automatic control scenarios in
two different ways. Controllers can be implemented in control layer directly in PLC. In
that case, the controllers are hard-coded and users can tune those parameters, which are
linked to GUI as TAG variables. One PLC can provide several different control tasks for
one experiment, or in the case when one PLC is used to control more systems, even to
control several of them. In such case, some logical switches must be implemented in PLC
and INR to avoid conflict situations.

The second scenario is the control algorithm running on supervision layer inside the
INR. As mentioned before, INR is able to execute user-defined scripts in BASIC lan-



4.3. Multipurpose Hardware and Software Architecture 59

Figure 4.6: Warning window appears when user tries to set invalid input

guage. This function was used to develop a feature which allows user to choose from
predefined control algorithms, to upload them to INR, and to run them directly from
client application.

Figure 4.7: Control window of client application with selected controller

The control window (Fig. 4.7) is the main tool in client application that allows
to user to apply automatic control algorithms to remote process. In similar way as
other parts of application, it also depends on specific configuration of experiment. Im-
plementers of laboratory can define control algorithms in configuration files with pre-
defined structure. During the construction of GUI, client application loads the file
listOfControlAlgorithms.xml, where information about available algorithms is pro-
vided (Example 4.7).
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Example 4.7: Configuration file with a list of control algorithms

<listOfControlAlgorithms >

<algorithm name=" Simple relay"

path=" controlAlg / simple_relay / simple_relay .xml"/>

<algorithm name="PID velocity "

path=" controlAlg / pid_velocity / pid_velocity .xml"/>

<algorithm name="PID vel. anti - windup "

path=" controlAlg / pid_velocity_aw / pid_velocity_aw .xml"/>

</ listOfControlAlgorithms >

This file does not contain definitions of algorithms, just their names and paths to their
particular files. Each control scenario is located in a separate directory containing two
files. The first is XML file with definition of signals used in algorithm, appearance setup,
and BASIC script for algorithm definition. The second is the image file with the picture
of schema that represents the control scenario. This picture is used in client application as
the background for control window layout. This file determines which control algorithms
are provided to user in client application (Fig. 4.8).

Figure 4.8: Drop-down list with control algorithms

Configuration file for definition of control algorithm contains general information such
as author’s name, date of creation, path to image file and it’s layout resolution, and tag
with a short description (Example 4.8).

Example 4.8: Fragment of file for control algorithm definition: general information

<generalInfo author =" Martin Kaluz" date=" 24.10.2012 "/>

<schema img=" pid_velocity / schema .png" width="817" height ="284"/>

<description >

<![ CDATA[ description of algorithm ]]>

</ description >

This file also contains the list of signals and variables used by an algorithm (Exam-
ple 4.9). Client application distinguishes three types of them, the <systemInput> and
<systemOutput> which define the symbolical variables for interconnection of algorithm
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with specific input and output signals, and <tag> for definition of additional non-signal
variables used by algorithm. Symbolic input and output variables are used to define a
place in BASIC script (as unique string ::input:: or ::output::), where real definition
of signal’s TAG is placed before the algorithm is uploaded into INR’s program environ-
ment. These two tags also creates the drop-down lists in control scheme and provide user
with opportunity to select which of available signals will be used by controller as inputs
and outputs of system.

Example 4.9: Fragment of file for control algorithm definition: signals and variables

<signals >

<systemInput string =":: input ::" showX="500" showY="95"

displayValue ="false" />

<systemOutput string =":: output ::" showX="500" showY="130"

displayValue ="true" showX="730" showY="110"/>

<tag name="w_sp" showX="24" showY="100"/>

<tag name="u_sat" showX="385" showY="165"/>

<tag name="Kp" showX="260" showY="70"/>

<tag name="Ti" showX="260" showY="100"/>

<tag name="Td" showX="260" showY="130"/>

</ signals >

This way, user can selects the specific signals which will be connected to control scheme
(Fig. 4.9). The main benefit of this approach is that one controller can be used to control
each subsystem of connected plant separately. Each signal and variable tag can contain
the optional attributes with the coordinates in scheme, where the box with actual value
will be displayed.

Figure 4.9: Drop-down lists with selection of signals to be connected to control algorithm

The last part of control definition file is the algorithm itself. It is split in two scripts,
first for initialization (<initial>) and second for in-loop execution (<cyclic>).

ControlApp also provides a tool for download of measured data (Fig. 4.10). User can
open the window where a selection of important signals and variables is provided. This
list contains data that were measured during the whole period of laboratory session. By
selecting a specific series, ControlApp will print out data in one of available formats. These
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are comma and semicolon separated values, XML structure, and matrix in MATLAB
syntax.

Figure 4.10: Data window with selected series in XML format

Another part of GUI is the logging window (Fig. 4.11), where all major events of
ContorlApp and user actions are recorded. This component does not have the impor-
tant role in operation of client application, but can be used to collect information about
unexpected behavior that can be reported to the administrator of laboratory. Among
the logs of normal operation, this window also provides an information about errors and
exceptions if they occur.

Figure 4.11: Window with usage information of client application
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4.4 Application Scope

As mentioned above, the MHSA is capable to serve any kind of device that can be
operated by PLC. This fact directly indicates the main scope of applications for which
the architecture is generally aimed. Since the realm of remote laboratories is quite broad,
nowadays covering most scientific and educational areas, the nature of experiments and
their applications can significantly differ. In this section we discuss and pick up those
applications for which the MHSA is generally suitable and also those where architecture
can be used with some limitations.

The MHSA is generally suitable for implementation of remote laboratories for techno-
logical processes that use sensors and actuators operated by standard electrical signals.
These include processes of chemical technology like chemical reactors, distillation columns,
hydraulic systems (example of a coupled tank system is given in Section 8.2), thermal
transfer processes (example of an air-flow heat exchanger is given in Section 8.4), and
other types of laboratory training devices (example of laboratory implementation with
thermo-optical device is provided in Section 8.1).

Even though the MHSA is based on devices aimed on industrial usage and with some
additional operation-based security modifications can be used also for smaller industrial
applications, the architecture itself is mainly designed for implementation of remote lab-
oratories in academic scale.

Other types of experiments that can easily be connected to this architecture are those
based on electro-mechanical actuators (example of DC motor implementation is given in
Section 8.3). This extends the usability of architecture also for some specific applications
in robotics area, mostly for robotic arms and other types of manipulators. Although we
do not show the example of application in robotics, available works in literature provide
some examples of PLC-based control of robotic devices (Stankovski et al., 2010; Zhong,
2012). As MHSA is PLC-based architecture it is capable to serve this kind of devices as
well. On the other side, PLCs are unsuitable for other robotic applications, especially
those operated by structured instructions and also those operated wirelessly.

4.5 MHSA Advantages and Limitations

The MHSA provides several features that are contributional to remote laboratory devel-
opment. The most significant are: the possibility to connect various types of automatic
control experiments without the need of changes in architecture or source code; embranch-
ment capacity of architecture (more than one experimental node behind INR); significant
time savings in implementation process; and two control layers that allow the use of
advanced process control methods like adaptive control, model predictive control, etc.
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The main advantages/limitations of MHSA are summarized in the following lists.
Advantages of MHSA:

• INR substitutes computer (server machine) in architecture,

• reduced time and effort of implementation,

• no server-side programming required (services already implemented in INR),

• allows direct use of AJAX to industrial hardware,

• fully configurable cross-browser client application,

• supports most of PLC brands on the market (also industrial protocols),

• two hardware layers for control algorithms (INR, PLC),

• SCADA system not required,

• one INR can manage up to 16 PLCs.

Limitations of MHSA:

• architecture is bound to specific type of INR (eWON COSY 141, 2005CD/4005CD,
2101CD/4101CD, 2104/4104),

• laboratory node must contain PLC type supported by INR,

• limited INR’s memory (14MB for Web server, 11MB internal/script memory),

• limited PLC’s operational memory (depends on type),

• limited possibilities of scripting in INR (BASIC language – only one script at a
time),

• communication between client application and INR is limited to the use of standard
HTTP request-response model.



Chapter 5

Low-Cost Architectures

This chapter shows a different approach to the development of RLA than the one de-
scribed in the previous chapter. While in the case of MHSA, the main objective was to
put a strong emphasis on usability for laboratory experiments with no consideration of
their type and nature, the low-cost approach follows a different objective – minimization
of overall expenses related to RLA’s composition. Even in this case, the main idea of
multipurposiveness can be retained, but obviously, it requires a lot more development
effort from the side of RLA creators. These architectures use cheap electronic compo-
nents like single-board computers, programmable integrated circuits, micro-controllers
and electronic development platforms.

“To invent, you need a good imagination and a pile of junk.”
Thomas A. Edison

Unlike the approaches using ready-made solutions, low-cost architectures are built on
cheap and in its initial form often featureless hardware components. Therefore, this low-
cost concept requires incorporation of following operational parts (ordered from back-end
to front-end).

• Signal interface – is used for direct physical interaction between device under control
and hardware controller. This interface ensures the transfer of process information
from laboratory system to back-end services of architecture, and the control ac-
tions in the opposite way. In this work we will consider and work only with signal
interfaces based on electrical variables. Signal interface, in the case of electrical
variables, uses a set of A/D converters to transfer analog signals to their digital
representation required by the processing unit.

• Experiment-side processing unit – is a small computer, micro-controller or any kind
of hardware device with programmable logic that is directly capable to control sig-
nal interface and simultaneously to communicate with other parts of architecture.

65
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This component is called experiment server, because it provides services for control
and observation of laboratory equipment. If the architecture is branched on one
of the upper levels located before the experiment server, this device coupled with
the experiment is called a laboratory node. In the literature, the use of branched
structure of RLA is very popular (Section 4.2 – case 3). The reason is the efficiency
of communication and reduction of development costs in the case of multiple ex-
periment laboratory setup. The main differences between single-node and branched
low-cost architecture are shown in Fig. 5.1. In practice, most of applications of
low-cost RLAs use electronic development boards, equipped with micro-controllers
and additional communication interfaces (Ethernet, WiFi, UART, SPI, I2C, etc.).

• Communication infrastructure – is a specific communication network between labo-
ratory node and front-end client application in the case of single-node architecture,
or between several nodes and laboratory server in branched architecture.

• Laboratory server – is a computer that serves the communication between user
and particular node. In low-cost architectures, standard desktop computer can be
substituted by a cheaper alternative such as single-board computer. Laboratory
server performs several essential tasks for properly working RL. They are:

– provision of client side application (for Web-based RLs)

– provision of communications services for client application

– forwarding of communication to and from specific node

– ensuring the network security of laboratory

– provision of credentials and permissions for users and services

– supervision of laboratory nodes

• Client application – is the front-end software implementation of RL. A role of client
application is to provide remote user with an appropriate set of features/tools for:

– observation of the remote physical system’s behavior in the form of numerical
data, graphs, or optionally live video from remote camera;

– interaction with the remote system on the level of signal interface (manual
control of actuators) and program (update of control parameters);

– acquisition of measured data in order to their further processing;

– application of automatic control strategies;

– provision of experiment booking system or interconnection with upper level
management system (e.g. LMS or RLMS).
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Figure 5.1: Low-cost architectures based on micro-controllers

5.1 ArPi Branched Low-Cost Architecture

The ArPi Branched Low-Cost Architecture (ABLA) is the architecture, based on two
types of hardware devices: the single-board computer Raspberry Pi and Atmel AVR 8-bit
micro-controller development board Arduino UNO/Arduino Yún. This architecture uses
a branched structure with top layer communication coordinator which is implemented on
Raspberry Pi computer (representing laboratory server), and a set of experimental servers
on the bottom layer (control layer), implemented in AVR micro-controllers (Fig. 5.2).

5.1.1 Hardware

Raspberry Pi (model B, revision 2) is a single-board computer with the market price
about $35. It is based on System on Chip (SoC) Broadcom BCM28351 with embedded
ARM1176JZ-F applications processor (clock rate of 700 MHz), graphics processing unit
Broadcom VideoCore IV (clock rate of 250 MHz), 512 MB of SDRAM, and one integrated
USB. The storage is solved through the SD card slot, which supports SD, SDHC and
SDXC cards up to class 10 and capacity of 128GB2. Moreover, Raspberry Pi provides
two USB 2.0 ports (through integrated hub), 10/100Mbps Ethernet interface, composite
video output, HDMI video output and display serial interface. Low level communication
interface includes a set of GPIO pins, UART, SPI, and I2C. A detailed information about
Raspberry Pi hardware equipment can be found in Broadcom BCM2835 peripherals data-

1http://www.broadcom.com/products/BCM2835
2http://elinux.org/RPi_SD_cards

http://www.broadcom.com/products/BCM2835
http://elinux.org/RPi_SD_cards
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Figure 5.2: Structure of ArPi Lab

sheet3.
Market provides a wide spectrum of competing alternatives to Raspberry Pi, varying

in hardware features and price. The main reasons to use Raspberry Pi in ABLA was
based on the lower price than competing systems and the high level of support from
developers and community. Despite these reasons, the ABLA do not strictly requires a
specific type of computer used as laboratory server since its operational software is based
on open and multi-platform technologies. For the implementation of architecture with
high number of experiment nodes and therefore higher traffic load on laboratory server,
some more powerful low-cost alternatives of single-board computers can be considered as
well.

As mentioned before, ArPi Lab architecture uses two different types of control devices
as experiment servers, the Arduino UNO equipped with add-on Ethernet board (Eth-
ernet Shield), and Arduino YÚN. Even if both platforms use slightly different types of
micro-controllers (ATmega328p for UNO and ATmega32u4 for YÚN), main difference is
that YÚN contains additional embedded computer Atheros AR9331 running lightweight
Linux distribution OpenWRT Linino, WiFi chip, Ethernet port, hardware serial interface

3http://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

http://www.raspberrypi.org/wp- content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
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between micro-controller and embedded computer ensuring the internal communication.

5.1.2 Signal Interface

Both platforms provide the same physical interface for electrical signals operating on
voltage of 5V. They contain 14 digital pins while 6 of them can be configured to work in
Pulse-Width Modulation (PWM) mode and generate signals useful for control of analog
actuators. First two digital pins are connected to hardware buffer and they can be used
as transmitter (TX) and receiver (RX) for serial communication interface. PWM pins
have 8 bit resolution with the internal digital representation of 0-255.

The average value of PWM signal ȳ is expressed as

ȳ = 1
T

T∫
0

f(t)dt. (5.1)

We assume that the waveform of pulse function f(t) reaches only the values ymax for
0 < t < TD and ymin for TD < t < T (pulse shape), where D is the duty cycle. Therefore,
the equation (5.1) can be written as

ȳ = 1
T

 T D∫
0

ymax dt+
T∫

T D

ymin dt

 (5.2)

which gives the algebraic form

ȳ = Dymax + (1−D) ymin. (5.3)

The equation (5.3) shows that average value of PWM signal ȳ is linear function of
duty cycle D, while D can reach values from 0 to 1 (0 − 100%). Waveforms of PWM
signals for different duty cycles are shown in Fig. 5.3.

The definition of PWM duty cycles of Arduino boards is in the form of integer value.
The ATmega328p micro-controller provides 3 timers that are used for operation of Ar-
duino’s 6 PWM pins. The Timer 0 (8-bit) serves pins 5 and 6, Timer 1 (16-bit) pins 9
and 10, and Timer 2 (8-bit) pins 3 and 11. The default resolution for all 6 PWM pins
is 8-bit and therefore they can produce 256 different pulse signals, represented by 8-bit
integer I = {0, 1, . . . , 255} in the internal C++ code. Then the minimum step of average
value is defined as

∆ȳ = ymax − ymin

Imax − Imin
. (5.4)

Depending on the operating voltage (ymin = 0V , ymax = 5V ), and internal repre-
sentation (Imin = 0, Imax = 255), the minimum step of average value of PWM signal is
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Figure 5.3: Measured PWM signals of Arduino UNO pin 3 with period T = 0.0204s
(frequency f = 490Hz) for different duty cycles D = {0%, 24.7%, 49.8%, 74.9%, 100%}

∆ȳ = 0.0196V. This value also represent the maximum precision which can be used for
control of signal interface on 8-bit pins.

Another characteristic of PWM signals that has influence on the quality of interaction
with the physical system is the frequency of signal itself. This is very important property
in relation to control. In the ArPi Lab, signal interface is a part of the control loops
between the control algorithms inside micro-controller and physical system. Default PWM
frequencies provided by Arduino UNO boards are 590Hz on pins 3, 9, 10, 11 and 977Hz on
pins 5, 6. These frequencies are sufficient for most control applications in ArPi Lab, which
require sampling period no lower than dozens of milliseconds. However, some systems
require higher frequency of control loop executions in order to preserve their stability or
qualitative characteristics. If the sampling time of control loop is lower than sampling
of PWM control signal, these requirements cannot be guaranteed. For example, if the
system under control has a fast dynamics and discrete control loop ensures the stability
with sampling frequency of 1 kHz (e.g. magnetic levitation system in Chapter 7.4.2),
neither the 590Hz or 977Hz PWM can be used to preserve the information of control
action. In this case Theorem 5.1.1 by Shannon (1998) can be applied.

Theorem 5.1.1. (Shannon’s sampling theorem) If a function f(t) contains no frequencies
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higher than ω, it is completely determined by giving its ordinates at a series of points
spaced 1/2ω seconds apart.

Based on this information, the sufficient PWM frequency for discrete control with
sampling of 1 kHz must be no lower than 2 kHz to keep the consistency of transferred
action to system.

AVR micro-controller ATmega328p used in ArPi Lab allows code-based changes of
PWM frequencies. By default, Timer1 and Timer2 have the base frequency fB for digital
pins 31250Hz and Timer0 base frequency 62500Hz. By choosing the value of divisors
d = {1, 8, 32, 64, 128, 256, 1024}, the produced PWM frequency fP W M = fB

d can be scaled
to values from ∼31Hz to ∼31 kHz on Timer1 and Timer2 and two times higher on Timer0.
A detailed overview of available PWM frequencies for ATmega328p (Atmel Corp., 2009)
is shown in Table 5.1. The ATMega32u4 (Atmel Corp., 2010) uses different internal timer
architecture, but principles of frequency scaling are retained.

Table 5.1: List of available frequencies on PWM pins of Arduino UNO (real values mea-
sured by oscilloscope are shown in brackets)

Divisor fTimer0 [Hz] fTimer1 [Hz] fTimer2 [Hz]
1 62500 (62409.3) 31250 (31326.5) 31250 (31327.2)
8 7812.50 (7801.1) 3906.25 (3915.9) 3906.25 (3916.0)
32 N/A N/A 967.56 (979.0)
64 976.56 (975.2) 488.28 (489.5) 488.28 (489.5)
128 N/A N/A 244.14 (244.7)
256 244.14 (243.8) 122.07 (122.4) 122.07 (122.4)
1024 61.04 (60.9) 30.52 (30.6) 30.52 (30.6)

As the addition, both boards used in ArPi Lab provide 6 analog input pins with the
10-bit resolution (internal digital representation of 0-1023). They allow to interconnect
the micro-controller with the analog sensors of controlled system.

5.1.3 Services of Laboratory Server

A laboratory server role is to physically and communicatively separate the local parts of
architecture (experimental nodes) from the outer network in order to secure laboratory
resources. In ArPi Lab architecture, Raspberry Pi computer is equipped with Web server
Apache 2, PHP processor and MySQL database system. Based on these technologies,
two main services are implemented: the configuration provider; and communication for-
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warder. Both services share the resources in database, where information about particular
experiment settings are stored. The main ArPi Lab database arpi_lab contains 2n + 1
tables, while n is the number of experimental nodes in laboratory. One separate table
arpi_nodes contains the list of all configured and ready-to-use experimental nodes in
laboratory setup. This table stores:

• node_id – the key index referring to specific validation table;

• name – the name of experimental node (e.g. dev_uDAQ28/LT_01 for first instance of
thermo-optical RL);

• description – text information about experimental node;

• node_url – the network address of experiment server in Local Area Network (LAN);

• verification_key – public identification hash code of experimental node (used
as external credential in data exchange between client application and laboratory
server);

• node_key – private identification hash code of experimental node (used as internal
credential in data exchange between laboratory server and experiment server);

• ui_video_setup – condensed text string with optional information about video
services of IP camera/s (containing name of camera, resolution, appearance setup,
and network addresses of video and image capture services);

• ui_appearance_setup – condensed text string with settings for visual layout of
client application. The structure of entry is [CSS style path]|[width of graphs]|[height
of graphs]|[default num. of point in graphs]|[max num. of points in graph]|[allow
full view], e.g. default.css|500|250|100|1000|true.

Other tables use the generic names in the form arpi_node_validator_n. These
contain information about each signal and variable of physical laboratory device linked
to internal logic of RL. Each record contains:

• name – defines the full name of signal that is used in client application for information
purposes;

• ext_rep – is a self descriptive short text string used for identification of signal/-
variable in the external communication between client application and laboratory
server (e.g. temp for temperature);
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• int_rep – is the integer number used for identification of signal in internal com-
munication between laboratory server and experiment server (in the case of signal,
it is the number of pin, and for internal variables, index of array, where variable is
stored);

• type – is a short text string, identifying the operational type of data transferred
through internal communication (PWM – PWM-operated output, AI – analog input,
DO – digital output, DI – digital input, VAR – internal variable, CS – controller
switch);

• min_resolution and max_resolution – are information about minimum and max-
imum integer value that specific type of signal can reach (0-255 for 8-bit PWM, and
0-1023 for 10-bit AI). This values are used for proper conversion of signal values
from internal to external representation and the opposite way. For types of DO, DI,
VAR and CS, these entries are set to 1 (no conversion);

• min_val and max_val – are information about minimum and maximum real values
that signal can reach. They represent the physical boundaries (e.g. 0.0-5.0 for
operational voltage of signal). As well as the resolutions, these entries are set to 1.0
for transferred information that do not require conversion;

• unit – is text string, holding the information about engineering unit of signal (e.g.
V – volts, % – percentage value, etc.);

• ui_setup – is condensed text string containing optional initial definition of signal
value and settings for visualization of each signal in client application. The structure
of this entry is [default value]|[show graph switch]| [graph color], e.g. 0|1|green for
signal of bulb voltage in thermo-optical plant laboratory. Default value of signal is
automatically applied on start of client application. The switch for graphs can be
set to three different values: 0 – always display graph on start-up, 1 – display on
demand (graph is constructed in DOM of client application, but shows only after
user’s request), 2 – never display graph (graph is not even constructed in DOM);

• control_bind – is the informative integer representing the interconnection of signal
with one or more control algorithms provided in remote laboratory. Signals and
variable which have no relation to control scenarios are marked with number -1.
Those which are available for all control scenarios (such as inputs and outputs
of system) are marked with number 0. If the specific signal/variable is defined
for a specific algorithm, the control_bind is set to integer value that represents
identifier of such algorithm. E.g. if PID controller is defined in database table
arpi_node_control_n with id entry set to 1, the associated variables of controller
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parameters Kp, Ti, and Td, have control_bind entry also set to 1. This informs
the operational software of remote laboratory that these three variables have to be
provided together with PID controller;

• bind_type – is additional text information of signal type in relation to controller
(input, output, parameter, setpoint, switch, etc.).

The arpi_lab database stores only the information of available control algorithms in
tables with generic names arpi_node_control_n, where n is the identifier of experiment
node (same as for validator tables). Each table contain a list of algorithms with identifier,
name, description, and path to image file with control schema. The actual algorithm of
specific controller is defined in micro-controller of experiment node.

In laboratory server, two main PHP Hypertext Preprocessor (PHP) services operate
with data stored in arpi_lab database. The config_loader.php reads database tables
to generate initial configuration for client application. The forwarder.php ensures the
transfer of communication from client application to experimental node and the opposite
way and simultaneously performs signal/variable conversion and validation. There are
three main reasons for this concept of services used in laboratory server. Firstly, the ser-
vices ensure that automatically generated content of client application is always adapted
to specific experiment. Secondly, they provide translation between human comprehensi-
ble data to data usable by machine (micro-controller). For explanation, it would be very
difficult for developers and implementers to create new laboratory configurations based
just on simplistic data directly dedicated for micro-controllers. Thirdly, they ensure the
internal security of laboratory. Since these services are publicly available on the Internet,
they answer only to requests containing valid authentication key, predefined structure
of data and their correctness. Only in the case when request is evaluated as valid, it is
translated to internal data structure and sent to experiment node.

5.1.4 Services of Experiment Server

The internal logic of each experiment server is written in C++ language and implemented
in embedded micro-controller of Arduino board. Standard Arduino’s Integrated Develop-
ment Environment (IDE) contains a set of built-in APIs, additional libraries, and C++
to AVR compiler avr-gcc. The programs written for ArPi Lab nodes uses the same logic
and differs only in network settings and internal identifiers. The network service of ex-
periment server processes the requests from laboratory server. The data are transferred
by the synchronous HTTP in the JavaScript Object Notation (JSON) structure. The
structure of request body is shown in Example 5.1.
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Example 5.1: JSON structure of internal representation request (double-slash comments
have only informative purpose and they are not contained in transferred data)

{" node_key ": "03 ae9ec81b ",

"mode": 1, // 0 - read signals , 1 - write and read signals

"PWM": {"3": 255, // Internal representation of signal

"5": 27, // pins and 8-bit integer values 0 -255

"6": 154},// put as PWM outputs .

"DO": {"8": 1} // digital output on pin 8 set to high value

}

The services of experiment server are designed to provide two types of operation, the
manual control of experiment and automatic control. In manual operation, all requests
for signal update/acquirement are directly transferred to signal interface. Automatic
control uses algorithms with tunable parameters to control connected system. Each ex-
periment provides several types of controllers which user can choose and set up. The
micro-controller, which executes the program in experiment server, contains two com-
putational parts. These are executed in one thread but with different priority levels.
The main program contains the initial setup, communication, data processing, code for
manual control of experiment, and second program defined as routine which is executed
with the higher priority than main part and it is invoked by Timer-based events. The
algorithms for automatic control are placed inside of this routine in order to be applied
in real-time mode. More information about real-time execution of control scenarios is
provided in Chapter 7.4.

The program in experiment server is after compilation stored in the flash memory of
Arduino UNO and it can take up to 32kB. It is executed on power up of the board and
it remains stored until a new program is uploaded to the device. The main program is
defined in two sections, setup() which is executed once at start-up and loop() executed
in cycle. The setup() contain initialization of network communication, configuration of
signal interface, and timing of routines based on interrupts. The loop() section contains
the code for communication handling, signal interface control (manual mode), and addi-
tional data processing. The program flow is as follows. All required variables and objects
are created and then initial setup is executed. Program periodically checks the commu-
nication buffer for incoming requests from laboratory server. If data appears in buffer
they are read into temporary buffer of program as array of characters and decoded into
JSON structure by aJSON library4. Next procedure is the security check if the request
came from trusted source by comparison of node_key entry with key defined for this
particular experiment server. If validation is successful, program reads the mode entry

4https://github.com/interactive-matter/aJson

https://github.com/interactive-matter/aJson
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Figure 5.4: Experiment server program flow

to get the information if the client has sent new data which have to be written into the
signal interface, or if just requested the reading. Once the operation on signal interface is
finished, program generates the HTTP response header with status 200 (OK) and encodes
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the signal data into JSON structure which is along with the HTTP header written back
into communication buffer. This generates the HTTP response for the laboratory server.
The program flowchart is shown in Fig. 5.4.

The execution of automatic control algorithms is handled separately from the main
program. They are enclosed in the special function called Interrupt Service Routine (ISR)
which is invoked by internal events based on Timers/Counters. Predefined controllers are
represented by an integer number (control switch), which is used by user to control which
algorithm is computed. If no controller action is required (manual control – default), the
control switch is set to 0. Otherwise it uses the controller with the selected identifier.
More information about their implementation is given in Chapter 7.

5.1.5 Communication Principles

The implemented communication scenario is based on Arduino UNO development board.
The board itself does not provide Ethernet network interface. Therefore, in ArPi Lab
architecture planning we made the decision to equip each board with additional commu-
nication module (Ethernet Shield Rev-35). Since the communication service of experiment
server is implemented directly in micro-controller, and it affects the execution speed of
internal logic (signal processing and control algorithms), this scenario is used for any sys-
tem that do not require data sampling lower than 0.1 s. The second development board,
Arduino ÝUN is already equipped with Ethernet module and also the WiFi module, so
it can be used for implementation of wirelessly operated experimental nodes.

ArPi Lab setup contains two main network layers (Table 5.2): the external, between
client-side communication services and PHP forwarder service on laboratory server oper-
ated through Internet; and internal, between laboratory server and experimental nodes
operated through private LAN.

Table 5.2: ArPi Lab communication layers

Layer Internet Local network
Net. character public private
Protocol HTTP HTTP
Data structure JSON JSON
Comm. model asynchronous synchronous
Back-end serv. Apache + PHP Embedded HTTP
Credentials authorization key private node key

5http://arduino.cc/en/Main/ArduinoEthernetShield

http://arduino.cc/en/Main/ArduinoEthernetShield
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The best way how to explain the communication scenario in ArPi Lab architecture
is to track the user’s request from client application to physical system and then track
the response. There are two types of requests produced on the side of the client. First
are standard predefined periodic calls to services in order to keep the data flow through
architecture. These requests are sent with the constant sampling period and their purpose
is to show actual process data in client application (e.g. the data used for dynamic graphs).
Second type of request is generated on user’s action and its purpose is to apply changes
on the side of experiment. For example, if user of laboratory performs the manual change
of system’s parameter/input, this action is handled by a separate request. Both types
are served by an asynchronous calls using the AJAX method from the internal JavaScript
logic of client application and they are processed through the same program threads.

arpi_com_canv
Exported at: Wed Oct 16 2013 11:49:06 GMT+0200
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Figure 5.5: Communication scenario of ArPi Lab’s architecture

The entire communication scenario is shown in Fig. 5.5. Requests are transferred
through HTTP and they are addressed to forwarder.php service in laboratory server.
The data in request body are structured in JSON representation (Example 5.2).

The forwarder.php script parses the body of request to associative array. If the
structure cannot be parsed by PHP’s method json_decode, script generates the JSON
response with error status code (list of codes is show in Table 5.3).
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Example 5.2: JSON structure of request sent by client application

{" client_auth_key " : "3 ea68b4c4c ",

"mode" : 1, // 0 - read signals , 1 - write/read signals

" signals " : {" bulb_voltage " : 2.14, // Define changes of

" led_voltage " : 5.0, // signals .

" test_digital8 " : 1

}

}

Table 5.3: List of error codes

Code Text code Meaning
01 MYSQL_CONN_ERR Database connect error.
02 MYSQL_QUER_ERR MySQL query error.
03 CLIENT_AUTH_KEY Authorization error.
04 INVAL_AUTH_KEY Invalid authorization.
05 JSON_PARSE_ERR JSON parse error.
(6) HTTP_STAT_CODE Exp. sever HTTP status.

If parse procedure is successful, the script creates the connection to MySQL database
arpi_lab and from table arpi_nodes loads the record where field verification_key

matches the authorization key sent from client application (otherwise, the error code is
produced). Then the record node_id (which has value n) is used to load the validation
data from table arpi_node_validator_n. For each signal/variable in JSON structure
sent from user (Example 5.2), a validation and numerical conversion procedure is per-
formed. The validation lies in comparison of signals/variables names with those collected
from validator table and correctness of numerical data. If names match and requested
values fulfill predefined requirements, they are transcribed from external to internal rep-
resentation (Example 5.3) dedicated for micro-controller of experiment server.

Example 5.3: JSON structure of request for experiment server

{" node_key " : "03 ae9ec81b ",

"mode" : 1,

"PWM" : {"3" : 109, "5" : 255},

"DO" : {"8" : 1}

}

6http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
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From this point, transferred data are no longer represented by couples of variable name
and value in real engineering units, but they are directly dedicated for micro-controller
and its signal interface. Signals and variables are split into groups according to the type
of their usage. Signals physically operated by pins with pulse modulation are grouped
under the "PWM" key, digital outputs under "DO" key, other variables under "VAR" key,
and controller switches under "CS" key. Internal keys for PWM and digital signals are
transcribed from signal name to number of pin, where signal is connected to physical
interface. E.g. in Example 5.2 the signal controlling voltage of bulb has variable name
(JSON key) "bulb_voltage". For this signal, arpi_node_validator_n table provides
information that signal is of type PWM, it is connected to the digital pin 3 with 8-bit
resolution (0-255), and it can reach values between 0 and 5V. This information is used
for numerical conversion of signal value 2.14V to integer number 109. The equation used
for computation of integer value is

Vint =
⌊
Vreal

Rmax −Rmin

Vmax − Vmin

⌋
, (5.5)

where Vint is computed integer representation of real value Vreal, Rmax and Rmin are
integer boundaries of Vint, given by pin’s resolution (0 and 255 for 8-bit), and Vmax and
Vmin are maximum and minimum values which Vreal can reach (determined by its physical
boundaries). Symbols b.c denote integer part of the expression.

When the experiment server receives the data, it performs the processing described in
Fig. 5.4. The generated response is transferred through the same way as the request, but
since it comes from the trusted source, not additional validation is required on the side
of laboratory server. The only task performed before the transcription back to external
representation is the conversion of numbers to engineering units. Then the laboratory
server generates the response for user.

5.1.6 Client Application

ArPi Lab uses the client side application ArPiLabClient as the user interface. ApPiLab-
Client is the general purpose Web-based application written in JavaScript. The applica-
tion provides a similar concept of on-fly content generation as the application for MHSA-
based laboratories. The main difference between ControlApp and ArPiLabClient is in
technologies used for development and communication. While ControlApp source codes
are written and provided in Java and for implementation compiled into JavaScript, the
ArPiLabClient is written directly in JavaScript, which simplifies the development phase,
debugging, and possible improvements. As mentioned before, ABLA uses the JSON as
unified structure of transferred data between different parts of architecture. JSON is
native form of object notation for JavaScript and therefore it is used in ArPiLabClient
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for each communication thread.
The client application is built on the top of free-to-use and open source technologies.

It uses the HTML5 for the static structure of Web page provided to the user. However it
contain only a minimal amount of HTML content required for attachment of style sheets
and main JavaScript processing files. A set of Cascading Style Sheets (CSS) definitions,
inherited from jQuery UI library, are provided along with the client application. From
these, user or implementer can choose a specific one that will be applied on Web page.
Additional style sheet can be imported through configuration of laboratory. JavaScript
source codes of ArPiLabClient consist of external libraries and main program. Libraries
are used mostly for improvement of user interface in order to add high level of interactivity
and responsiveness. Client application uses following JavaScript libraries.

• jQuery7 – is an open source extension of JavaScript APIs which simplifies code
writing and provides the optimized methods for DOM manipulation, handling of
events, and AJAX. In most aspects of client side Web development, jQuery is
considered a multi-browser library with wide support. ArPiLabClient uses jQuery
as the main API for application development.

• jQuery UI8 – is an extension library for jQuery, which provides a set of components
for GUI improvement. ArPiLabClient uses several widgets from jQuery UI such as
dialog windows, menu, progress bar, slider, and drag- and-drop behavior.

• jQuery DialogExtend9 – is a third party extension for jQuery UI, providing addi-
tional features for dialog windows.

• jQuery Flot10 – is a plotting library for JavaScript. In client application, it is used
for generation of online charts.

The processing scripts of client application can be divided into several parts, each
ensuring different task.

• main – is a functional part that controls overall program flow of client application.

• basicConfig – is an object that provides the URL to two main services of laboratory
server (config-loader.php and forwarder.php)

• language – is an object with description text of GUI components in different lan-
guages. The language selector is collected from URL string, where variable lang is
defined. Currently, the client application supports English and Slovak language.

7http://jquery.com/
8https://jqueryui.com/
9https://github.com/ROMB/jquery-dialogextend

10http://www.flotcharts.org/

http://jquery.com/
https://jqueryui.com/
https://github.com/ROMB/jquery-dialogextend
http://www.flotcharts.org/
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(a) Full configura-
tion of remote lab-
oratory

(b) Configuration of signals
and variables

(c) Configuration of appearance,
video, and control algorithms

Figure 5.6: JSON structure of laboratory configuration, returned by laboratory server
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• configLoader – is a functional part gathering all necessary information for ArPi-
LabClient operation and GUI construction. During the initiation of client ap-
plication, it collects the configuration data for particular laboratory setup from
config-loader.php service.

• DataCollector – is a class used for acquisition of operational and process data from
experiment. It consists of data container and methods for storing and loading data.
During the laboratory session, each sample collected form experiment is stored in
object of this class.

• DataTables – is a set of classes used for construction of tables in GUI. Each table
contains a different type of signals or variables, therefore each has its own class
and constructor. Client application distinguishes four types of tables. Input table
allows user to directly manipulate input signals of controlled process. Output table
shows actual values of system’s outputs. Var table allows user to change additional
variables associated to controlled process (e.g. controller parameters). Digital table
stores additional signals/variables which can reach only binary values. Each digital
signal/variable can be manipulated by toggle switch button.

• menu – is a functional part that creates a menu bar on the top of GUI.

• videoFrames – is a functional part that constructs windows with attached video
streams from remote IP cameras.

• GraphConstructor – is a class that ensures layout of online charts with process data.
Each chart is attached in separate draggable window.

• ControlWindow – is a class responsible for layout and operation of window that
provides automatic control algorithms.

The program flow is similar to ControlApp. First of all, client application reads the
authorization key that is provided by a third side (ULM system) in the URL. Then the
application collects the URLs of services of laboratory server. It performs the AJAX re-
quest to config-loader.php with attached authorization key. The request data uses the
same structure as the example 5.2, but contains only "client_auth_key" entry. Config-
uration loader will return the full set of configuration data for that particular laboratory,
since the authorization key is bound to specific configuration tables in database. The
example of configuration for laboratory equipped with thermo-optical device is shown in
Fig. 5.6.

After the configLoader successfully receives data, a whole JSON structure is parsed
into the JavaScript object, which is later used by particular functional parts to create
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Figure 5.7: Layout of tables with signals and variables

user interface. The menu is first graphical component that is created because it holds
the references for other components. Using the information about signal/variables and
their properties, for each type of them a separate table is constructed. A set of tables for
particular GUI is shown in Fig. 5.7.

When data tables are successfully created, the main data holder object is created
from DataCollector class. This object holds all data samples continuously collected
from experiment, which are used also in tables and graphs.

Then GraphConstructor class creates windows with graphs of selected signals and
variables and attach them to the GUI (Fig. 5.8).

Figure 5.8: Layout of windows with graphs

Video streams are displayed also in separated windows (Fig. 5.9). In most cases,
remote experiments do not require more than one video stream. However, ArPiLabClient
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does not limit the number of video streams that can be displayed in GUI. Currently,
ArPiLabClient supports each type of IP camera or streaming service that can provide
video as Motion JPEG or single-image snapshots.

Figure 5.9: Wireless IP camera used in ArPi Lab (left) and its image displayed in GUI
(right)

The last two components that are constructed in GUI initiation before the client
application is put into the operation are the control window and data download window.
First one (Fig. 5.10) allows user to switch from manual mode into automatic control
mode, by selection, configuration and execution of specific controller. In this window, each
controller provides an scheme of control loop, where user can select which input/output
signals will be connected to it. Controller parameters appear in table with variables
(Fig. 5.7) once the user selects a specific controller.

When the initiation of GUI and configuration of client application is finished, the
main operational script is run with predefined frequency of execution. In each execution,
application gathers an actual data sample from experiment and updates tables, graphs,
and control window. Sampling timing can be set up in by implementer to achieve collec-
tion of appropriate amount of data that are necessary for user to understand nature of
experiment and analyze it properly. Sampling of client application could be selected with
the respect to the smallest time constant of the experiment that affects measured data.

Data are provided to the user in the same way as in MHSA’s ControlApp, by a data
download window. However as the part of future work, we plan to develop an exter-
nal data-logging system with database that will allow user to access the measured data
anytime.

While data collection is automated and performed with specific timing, the requests
of user (manipulation of experiment) are based on real actions handled by JavaScript
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Figure 5.10: Control window with selected PID controller

events. They are sent to controlled system immediately after user performs the action.

5.2 Power Management

In laboratory practice, but also in common life, we meet situations when electronic equip-
ment fails and the only option is restart. This issue is typical for networking devices like
routers and switches, but can occur for electronics in general. In remote laboratories,
this issue is even more significant. Failure of networking device can cause the outage of
connection between students and labs, and in worse case, the overall loss of control/ad-
ministration over the labs.

ArPi Lab uses a sophisticated method of power management to deal with hardware
failures and power related issues. Each functional part of hardware architecture is pow-
ered by electric source that can be managed and monitored remotely (Fig. 5.11). For this
purpose we use the sets of programmable power outlet strips (Gembird Silver Shield),
which are controlled by Power Management Server (PMS) through USB. PMS is the
Apache based HTTP Web server running on Raspberry Pi computer. Unlike other hard-
ware parts of ArPi Lab architecture, the PMS is the only device in laboratory that uses
separate power and network line for its operation.

If an outage of hardware is reported to administrator, he/she can log-in to PMS’s
terminal through Secure Shell (SSH) and can restart or power off the faulty device.

Even if the power management is fully operable through SSH, we plan to extend
this system by a secured Web interface for power lines control. Moreover, we consider
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Figure 5.11: ArPi Lab power management

to implement automatic fault detection to run in PMS for scanning both hardware and
communication issues.

5.3 Application Scope, Advantages, and Limitations

The application scope of ABLA is very similar to MHSA. While the implementation of
specific experimental system in MHSA is dependent on PLC connectivity, for ABLA it
relies on the connectivity of experiment server (Arduino board). The experiment node
equipped with Arduino UNO is capable to control laboratory equipment by low-current
voltage signals in range of 0-5V. It can manipulate with 6 PWM-driven actuators, another
8 digital signals, and read 6 analog sensors. The Arduino boards are generally suitable
for control of various electro-mechanical systems such as DC motors (Neto et al., 2012),
stepper motors (Barber and Crespo, 2013), or more complex systems such as robots (Al-
Busaidi, 2012).

The main advantages/limitations of ABLA are summarized in following lists.
Advantages of ABLA:
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• experiment server is a low-cost device (Arduino board),

• multipurpose concept reduces implementation time and effort,

• fully configurable and universal client application,

• high level of branching capability without significant grow of costs per each new
laboratory,

• reproducibility,

• laboratory server runs on low-cost device (Raspberry Pi),

• usage of open-source technologies.

Limitations of ABLA:

• low-cost hardware does not provide enough performance for computational tasks of
high complexity,

• choice of hardware for experiment server is limited to Arduino boars with Ethernet
capability,

• limited memory of micro-controller (32kB for program and 2kB for dynamic vari-
ables in ATMega328p),

• control algorithms must be hard-coded into micro-controller,

• communication is a part of micro-controller’s program (for Arduino UNO),

• signal interface of Arduino boards does not provide such wide capabilities as indus-
trial solutions.



Chapter 6

Upper Level Management

The Upper Level Management (ULM) is a concept of overall control of one or a set of RLs.
It is dedicated to manage experimental resources, users, access model, usage, permissions
and most of all, the publishing of RLs. In the realm of information technologies designed
for educational purposes, two main classes of ULM systems are available: the Learning
Management Systems (LMSs) and Remote Laboratory Management Systems (RLMSs).

6.1 Learning Management Systems

The LMS are Web-based information systems that allow to merge information sources
and activities focused on similar topic into groups. They provide all of above mentioned
features, but they are mainly aimed on educational purposes. The most renown LMSs
currently available are Blackboard Learn1 and JoomlaLMS2 from commercial systems
and Moodle3 from open source and free-to-use systems. The main advantage of open
source systems is that they can be extended by new modules and plug-ins developed by
community. In the realm of on-line experimentation LMSs are widely used for publishing
of virtual simulation and also remote laboratories. In work by Fernandez et al. (2012a),
the authors show an interoperability platform, which consists of modules, intended for
interconnection of various types of virtual and remote laboratories with LMS Moodle.

6.2 Remote Laboratory Management Systems

The RLMSs are specific-purpose management systems designed for usage on the top of
RLs. The main idea of such systems is to ensure following features.

1http://www.blackboard.com/Platforms/Learn/Overview.aspx
2http://www.joomlalms.com
3http://moodle.com
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• On-line publishing of laboratories. Since RLs are provided as Internet tools, they
should be both, visible and accessible for every person interested in their usage.
While the choice of accessibility level is up to the providers of laboratories, visibility
is necessary for creation of awareness about their existence. The publishing model
should allow users to find the RLs though search engines or at least as the reference
from topic-related Internet sources. In contrast with single-laboratory publishing,
the RLMSs are able to attract a high numbers of users, and as the result, increase
the self indexing in search engines like Google, Yahoo!, Baidu, Bing, Ask, and others.

• Provision of APIs for RL development. Most of renowned RLMSs provide a set of
programming tools and interfaces for development and implementation of laborato-
ries. From this point of view, they act as modular environments for interconnection
of client-side and experiment-side parts of RLs, which can be based on different
technologies. This feature allows developers to incorporate they existing laborato-
ries into one management system, even they have been designed to work as separate
sources.

• Typological grouping of laboratories. In educational context, it is often very impor-
tant to interconnect the remote laboratories with the specific subject. The RLMSs
allows educators to group laboratories with similar topic (like electronics, physics,
control systems, etc.) and provide them as a set of tools for laboratory exercises.

• Allocation of users to groups and roles. This feature is very common in all infor-
mation systems where specific content is provided to user or a group of users, and
it is based on permissions given by an administration authority (same principles as
for LMSs).

• Management of users’ accesses and permissions. From the nature of RL’s operation
it is obvious that users’ accesses must be managed in whole different way than
accesses to other kind of software-driven systems. It is caused by the presence of
real laboratory equipment at the end of RL’s architecture. The majority of remote
experiments can be operated only by a one user at the time. This rule is often
applied for security reasons, for example to avoid a contradictory effects caused by
two or more users operating in RL at the same time, which causes at least corruption
of experiment.

• Sharing of resources. Most of RLMSs are able to provide their resources to other
management systems. This way, users of one RLMS can access laboratories pub-
lished by other institution. Federation of RLs is nowadays one of the most fre-
quented techniques of their expansion across academic area. The main benefits are
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that even institutions with limited financial resources or developers base (which are
essential for implementation of RLs to education) can make an agreements with
other institutions and use their existing laboratories as their own.

6.3 RLMS WebLab-Deusto

WebLab-Deusto4 (Fig. 6.1) is an open source5 RLMS developed in the University of
Deusto. The early versions of WebLab-Deusto were in the form of ad hoc RLs (García-
Zubia et al., 2005). Since then, the whole system has undergone a significant development
(Orduña et al., 2011) and became one of the most respected and used RLMSs in the
academic area. A detailed description of WebLab-Deusto is provided in Orduña (2013).

Figure 6.1: Login page of WebLab Deusto (left) and list of available laboratories (right)

In addition to the University of Deusto, several other educational institutions have
adopted the WebLab-Deusto, mostly European universities, but also lower level institu-
tion such as high schools and even secondary schools. The Slovak University of Technology
in Bratislava is the one of universities that participate on federation of remote laboratories
using this system.

6.3.1 Laboratory Management and User Management

WebLab-Deusto allows administrator to manage instances of laboratories, in the meaning
of visibility, accessibility, and level of privileges for particular user, group of users, or a
role. Laboratories can be divided into groups by a specific type of experiment or by a
application area. They can be e.g. robotic experiments, automatic control laboratories,

4http://www.weblab.deusto.es
5https://github.com/weblabdeusto/weblabdeusto

http://www.weblab.deusto.es
https://github.com/weblabdeusto/weblabdeusto
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laboratories focused on electronics, etc. At the management level, administrator grants
the permissions for users to access laboratories for a specific time and with a particular
priority index. For example, students from home university have higher priority to access
laboratory than other registered user, and they have higher priority than guests. The
priority applies when several users with different privileges request the usage of the same
laboratory. Since WebLab-Deusto uses queuing of users (alternative to calendar booking),
they are additionally ordered by priority indexes (Fig. 6.2).

Figure 6.2: Queuing of users with different priority index

WebLab-Deusto also provides another feature of user access management, the load
balance. It is applied in the situations when several users request to access the same
experiment and system provides more than one copy of such experiment. Then accesses
are distributed over the copies to serve users in less time. This principle is shown in
Fig. 6.3.

Figure 6.3: Distribution of users among more copies of the same laboratory

6.3.2 Remote Laboratory Development

Although RLMS WebLab-Deusto is primarily the management system, one of the main
features is a provision of APIs for experiment development. It provides interfaces for
both, connection of existing laboratories as well as development of new. In current ver-
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sion, WebLab-Deusto allows developers to implement their own laboratories on different
software technologies. They are JavaScript, Java and Adobe Flash for client side and C,
C++, Java, LabVIEW, .NET, Node.js and Python for server side.

There are two types of principles how WebLab-Deusto can handle connected labora-
tories. Firstly, it can be used as pure management and scheduling system that handles
only the access of users, while RL relies on different operational architecture. These
laboratories are called unmanaged laboratories. Second type is the managed laboratory
which is build on WebLab-Deusto APIs, while the whole communication is served through
management system itself.

6.3.3 Inter-Institutional Usage

Inter-institutional collaboration is one of the most actual topics in the world of remote
experimentation these days. Since the academic area provides a relatively high amount
of e-learning tools and on-line experiments (virtual and remote laboratories) that are
provided only for a certain groups of users, it is necessary to reduce their local isolation
and expand them to the outside world.

“A common feature of most existing remote laboratories, whether for educa-
tional or industrial purposes, is that they offer stand-alone solutions, with limited or
no capability to cooperate with other platforms. Most of these solutions are developed
as special or ad hoc solutions relying on different types of technologies and both com-
puter and human languages and often use heterogeneous and incompatible hardware
and software tools. In that sense, the major challenge in current remote laboratories
appears to be the lack of standardization, impeding the modularity, portability, and
scalability of solutions, as well as interoperability between different solutions.”

Gomes and Bogosyan (2009)

One of the most valuable features of WebLab-Deusto is capability to share remote
laboratories between different instances of the same management system, while each can
be deployed on different university and in the different country. This highly desired
property is beneficial for any institution that wants to provide its remote laboratories in
the world (advertise them), but even more for those institutions who cannot afford their
own remote experiments. The principle of remote laboratory sharing through WebLab-
Deusto is called federation. It is based on an agreement between two or more institutions,
but it is fully managed by the system.

Each RL that has been developed in this work (Chapter 8) are provided to the Univer-
sity of Deusto. In return University of Deusto provides their laboratories (mostly focused
on electronics and robotics) to the Slovak University of Technology in Bratislava (STU).
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The WebLab-Deusto allows not only the sharing of resources, but also re-sharing. For ex-
planation, if STU requests the University of Deusto (UD) for provision of new laboratory
and UD will agree, the WebLab-Deusto (WD) instance of STU will have the permission
to access the WD at UD and use that particular laboratory. In this mechanism the
consumer’s WD system acts as the regular user for provider’s WD system. In addition,
once the particular instance is allowed to consume laboratories of other system, it is also
allowed to re-share them to third party, but only with as high level of permission as given
by provider. This mechanism is shown in Fig.6.4.

Figure 6.4: Federation of remote laboratories between three universities
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Chapter 7

Implementation of Control Algorithms

This chapter deals with common problems of control implementation for real applications
in remote laboratories. As it is well known, a significant part of control theory deals with
mathematical expressions on theoretical level, using apparatus from differential calculus,
which is very useful for control design of modern applications. However, a time when
continuous physical controllers have been used in a large scale has passed, and now, most
of applications rely on hardware that operates, based on its physical nature, in discrete
time. Therefore the implementer of control has two options: to design controller directly
with the respect to discrete operation; or to design a continuous controller and then to
choose an appropriate method of implementation on discrete-working hardware.

The following sections 7.1–7.3 provide an overview of control scenarios used in devel-
oped remote laboratories. Each controller is described in general form and form suitable
for implementation. Additionally, in section 7.4 a discussion of control loops execution
with respect to time is provided.

7.1 PID Controllers

PID controllers belong to large class of controllers with three separate action components:
proportional, integral and, derivative. The mathematical realization of PID controller can
differ from type to type, but from all of them three forms are most commonly used in
practice. They are the standard form, parallel form, and serial form. The theory of PID
controllers described in this section is well elaborated in Åström and Hägglund (1995).

7.1.1 Standard Form

The standard form (often called the ideal form) is most commonly used form of PID
controller realization in practice and theory. It is characterized by the interaction between
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its action components. In this form, the proportional component multiplies both integral
and derivative components. The schematic structure of standard from is show in Fig 7.1.

Σ

+

+

+

ActionError
P I

D

Figure 7.1: Standard form of PID controller

Assuming that input to controller structure is control error e(t), proportional compo-
nent is the gain P = Ke(t), integral component I can be written as

I = 1
Ti

t∫
0

e(τ)dτ, (7.1)

and derivative component D as
D = Td

de(t)
dt , (7.2)

whereK is the gain of controller, Ti is integral time constant, and Td is derivative constant.
Then the output of controller (action) u(t) can be expressed as

u(t) = K

e(t) + 1
Ti

t∫
0

e(τ)dτ + Td
de(t)
dt

 . (7.3)

7.1.2 Parallel Form

Parallel PID (Fig. 7.2) is the non-interacting form of realization. In this form the P , I,
and D components are separated and final action is computed as sum of three indepen-
dent actions. Parallel PID is often used for practical implementation due to its ease of
realization and possibility to tune the parameters independently on each other.

Unlike the standard form, in parallel PID the control error e(t) is directly propagated
through all three components separately. Then the P component is P = Kpe(t), whereKp

is the gain of proportional action. Other two components use the same expressions as the
standard form (equations (7.1) and (7.2)). The mathematical expression for controller’s
output u(t) will be

u(t) = Kpe(t) + 1
Ti

t∫
0

e(τ)dτ + Td
de(t)
dt . (7.4)
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Figure 7.2: Parallel form of PID controller

7.1.3 Serial Form

Serial form of PID controller (Fig. 7.3) is used mostly in applications of process industry.
This form can be described as the serial connection of PD and PI controller.

Σ

+

ActionError
P Σ

+

+ +
DI

Figure 7.3: Serial form of PID controller

The output of serial PID controller is defined as

u(t) = K

e(t) + 1
Ti

t∫
0

e(τ)dτ

(1 + Td
de(t)
dt

)
. (7.5)

7.1.4 Setpoint Weighting

PID controllers are often implemented in two-degree-of-freedom control scheme using
the setpoint weighting. For standard form (7.3), the weighting factors β ∈ 〈0; 1〉 and
γ ∈ 〈0; 1〉 are defined to distribute the propagation of control error (equations (7.6) and
(7.7)) through P and D components.

eP (t) = βw(t)− y(t) (7.6)

eD(t) = γw(t)− y(t) (7.7)
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Then, (7.3) can be rewritten as

u(t) = K

eP (t) + 1
Ti

t∫
0

e(τ)dτ + Td
deD(t)
dt

 . (7.8)

This form can be presented as two controllers and parameters β and γ allow to handle
reaction to setpoint and disturbance changes separately.

7.1.5 Implementation of PID Controller

Since all three mentioned forms of PID controllers (equations (7.3), (7.4), and (7.5)) are
continuous time control laws, they cannot be directly implemented as a set of algorithmic
expressions. They must be transferred to discrete time before their implementation into
micro-controller’s logic. By discretization, a continuous time domain became a set of
points with a fixed step h that represents absolute distance between two neighboring
points k and k + 1.

Then, the control error function can be rewritten as

e(t) = e(k). (7.9)

The integral term can be approximated by a summation of partial areas computed by
trapezoidal rule (other possibilities include forward, backward, or more advanced forms,
see for example Bobál et al. (2005))

t∫
0

e(τ)dτ ≈ h
k∑

i=1

e(i) + e(i− 1)
2 , (7.10)

and derivative term can be approximated by a backward difference

de(t)
dt
≈ e(k)− e(k − 1)

h
. (7.11)

Then the standard form of PID controller (7.3) can be rewritten as

u(k) = K

(
e(k) + h

Ti

k∑
i=1

e(i) + e(i− 1)
2 + Td

e(k)− e(k − 1)
h

)
. (7.12)

The equation (7.12) is called position form of digital PID control algorithm. However
this form is unsuitable for direct implementation in micro-controllers, because it requires
all previous values of control error in each step. This would have an undesirable effect on
micro-controller’s memory. More effective form of this controller can be achieved by its
transcription into incremental form (often called velocity form of digital PID). Incremental
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form is derived from (7.12) defining the difference of controller’s output between two steps
∆u = u(k)− u(k − 1).

u(k) = u(k − 1) +K

[
(e(k)− e(k − 1)) + h

Ti

(
e(k)− e(k − 1)

2

)
+ (7.13)

+Td

h
(e(k)− 2e(k − 1) + e(k − 2))

]
The velocity form of digital PID algorithm (7.13) has several beneficial properties

contrary to position form (equation (7.12)). It requires only one previous value of control
action u(k − 1) and three values of control error, the actual e(k) and two previous e(k −
1) and e(k − 2). Another important property is the bumpless transfer, which avoids
bumps of control signal in situations such as online changes of parameters, switching of
controller’s mode (on/off), or changing between different controllers. This form can be
directly implemented into computer or micro-controller as a set of algorithmic expressions.

7.1.6 Algorithmization of PID Controller

The algorithm for computation of control law can be split into two parts. First is the
initialization, where all controller parameters and initial values of control actions and
errors have to be set. The second part is periodical execution of control task, which
involves measurement of system’s output (controlled variable), computation of control
error, computation of control action, and update of system’s input (manipulated variable).
This second part of control algorithm can be handled in two different ways with respect
to timing: with variable step size; and as real time control. Each algorithm implemented
in ArPi Lab is applied in real time (Section 7.4). Since the control law requires values of
errors and actions in previous steps, they must be defined in first part of algorithm. Initial
states of control actions can be set to zero values, and for control errors to either zero
values or values of actual error between setpoint and measured output of system (lessen
the bump effect). The algorithmization of PID controller in velocity form (Equation
(7.13)) can be then written as follows.

Initialization :

define parameters K,T i, Td, h

define setpoint w

read system ’s output y

define e(k − 1) = e(k − 2) = w − y
define u(k − 1) = 0

Loop:
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read system ’s output y(k)
compute control error e(k) = w − y(k)
compute control law:

P (k) = K(e(k)− e(k − 1))
I(k) = Kh/Ti((e(k)− e(k − 1)/2))
D(k) = KTd/h(e(k)− 2e(k − 1) + e(k − 2))
u(k) = u(k − 1) + P (k) + I(k) +D(k)

apply saturation for u(k) (if needed )

update system (apply u(k) on input)

shift k → k − 1
Go to Loop

PID controllers can be tuned using various techniques. Traditional tuning methods,
which are still very popular and often used in practice are for example Ziegler-Nichols
(Ziegler and Nichols, 1942) and Cohen-Coon (Cohen and Coon, 1953). Some modern
methods are based on iterative and learning approaches (Abedini and Zarabadipour,
2011; Jian-Xin and Deqing, 2007) or autotuning approaches using relay-based feedback
(Prokop et al., 2005) and swarm algorithms (Zhu et al., 2013). An exhaustive survey of
PID tuning methods can be found in O’Dwyer (2009).

7.2 Transfer Function and State-Space Representation
of Systems

Transfer function is the frequency domain expression of Linear Time Invariant (LTI)
system. In control theory, a wide spectrum of controller design methods are heading to
this form. The relation between frequency domain and state space representations of LTI
systems is described in detail in Mikleš and Fikar (2007). A general form of transfer
function is

G(s) = Y (s)
U(s) = bms

m + bm−1s
m−1 + · · ·+ b1s+ b0

ansn + an−1sn−1 + · · ·+ a1s+ a0
= B(s)
A(s) , (7.14)

where Y (s) is the Laplace transform of system’s output and U(s) is the Laplace transform
of system’s input in time domain y(t) and u(t), for zero initial conditions. Physical
properness requirement dictates that n ≥ m.

In order to obtain a form suitable for algorithmic implementation it is necessary to
transfer equation (7.14) into time domain by the inverse Laplace transform

L−1{Y (s)A(s)} = L−1{U(s)B(s)}, (7.15)
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which leads to a differential equation

any
(n)(t) + an−1y

(n−1)(t) + · · ·+ a1y
′(t) + a0y(t) = (7.16)

bmu
(m)(t) + bm−1u

(m−1)(t) + · · ·+ b1u
′(t) + b0u(t).

Since (7.16) requires computation of n-th derivative of y(t) and m-th derivative of
u(t), it is transformed to a state-space form, which is much easier to solve by numerical
algorithms. Using the substitution

x1(t) = y(t), x2(t) = y′(t), . . . , xn(t) = y(n−1)(t), (7.17)

the equation (7.16) can be rewritten as a set of ordinary differential equations in state-
space form (Equations (7.18)–(7.22)).

ẋ = Ax + Bu (7.18)



ẋ1

ẋ2
...

ẋn−1

ẋn


=



−an−1
an

−an−2
an

· · · − a1
an

− a0
an

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0





x1

x2
...

xn−1

xn


+



1
0
...
0
0


u (7.19)

y = Cx +Du (7.20)

C =
[

bm−1
an
− an−1bm

a2
n

bm−2
an
− an−2bm

a2
n

· · · b1
an
− a1bm

a2
n

b0
an
− a0bm

a2
n

]
(7.21)

D = bn

an
(7.22)

7.2.1 Implementation of State-Space

Previous section has shown that each controller defined as the ratio of two polynomials
can be transferred into a set of Ordinary Differential Equations (ODEs) (equations (7.23)–
(7.25)).

ẋ1 = −an−1

an
x1 −

an−2

an
x2 − · · · −

a1

an
xn−1 −

a0

an
xn + u (7.23)

ẋ2 = x1 (7.24)
...

ẋn = xn−1 (7.25)
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Since the computer-based implementation of problem defined in the form of ODEs
must be solved numerically, an appropriate solver method must be chosen. Because state
space representation is a set of ODEs of 1st order, a non-stiff method Runge-Kutta 4
(RK4) with fixed step (Butcher, 2008) has been selected as numerical solver. Using the
numerical solver RK4 is simplified for time invariant systems

x′(t) = f(x(t)), x(t0) = x0, (7.26)

for step size h = t(k)− t(k − 1), the numerical solution of ODE (7.26) will be

x(k) = x(k − 1) + 1
6h(p1 + 2p2 + 2p3 + p4), (7.27)

where

p1 = f(x(k − 1)) (7.28)

p2 = f(x(k − 1) + h

2 p1) (7.29)

p3 = f(x(k − 1) + h

2 p2) (7.30)

p4 = f(x(k − 1) + hp3). (7.31)

The original problem of differential calculus is reduced to algebraic problem and can
be directly implemented as a set of algorithmic expressions into micro-controller.

7.2.2 Algorithmization of Transfer Function in State-Space Form

Numerical solution of above mentioned mathematical problem will give the control action
in k-th step of sampling. To perform this task, control system requires its previous states
x(k− 1) = {x1(k− 1), x2(k− 1), · · · , xn(k− 1)} and actual control error e(k). If transfer
function is used as control system, the control error e substitutes the input u in equation
(7.23) and the output of control system y (equation (7.20)) represents the control action
u (input to controlled system). Then the algorithmization of transfer function controller
computed in state space is following.

Initialization :

define TF numerator b̄ = (b0, b1, · · · , bm)
define TF denominator ā = (a0, a1, · · · , an)
define state vector x̄ = (0, 0, · · · , 0)
for i = 1 to n:

calculate Ci (from (7.21))
define D (from (7.22))
define setpoint w
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define step size h

Loop:

read system ’s output y(k)
compute control error e(k) = w − y(k)
compute control law:

define X = 0
for i = 1 to n:

p̄ = (p1, p2, p3, p4) for ẋi (from 7.28− 7.31)

xi(k) = xi(k − 1) + h/6(p1 + 2p2 + 2p3 + p4)
X = X + Cixi(k)

u(k) = X +D e(k)
apply saturation for u(k) (if needed )

update system (apply u(k) on input)

Go to Loop

7.3 Discrete Transfer Function

The most suitable forms of controllers for implementation on micro-controllers are those
defined in discrete time. The discrete transfer function is suitable form because it can be
designed both, directly with the respect to control sampling or in continuous time and
then discretized. Discrete transfer function can be written in general form as

G(z) = Y (z)
U(z) = b0 + b1z

−1 + · · ·+ bm−1z
−m+1 + bmz

−m

a0 + a1z−1 + · · ·+ an−1z−n+1 + anz−n
= B(z)
A(z) . (7.32)

Using the inverse Z-transform

Z−1{Y (z)A(z)} = Z−1{U(z)B(z)} (7.33)

for the initial conditions ∀ k < 0 : y(k) = 0 ∧ u(k) = 0, we obtain the difference equation

a0y(k) + a1y(k − 1) + · · ·+ an−1y(k − n+ 1) + any(k − n) = (7.34)

b0u(k) + b1u(k − 1) + · · ·+ bm−1u(k −m+ 1) + bmu(k −m)

This form can be rewritten into (7.35), which is suitable for direct implementation as the
algorithmic expression.

y(k) =
n∑

i=1
− ai

a0
y(k − i) +

m∑
j=0

bj

a0
u(k − j) (7.35)
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7.3.1 Algorithmization of Discrete Transfer Function

Unlike for the continuous problem (section 7.2.2), the algorithmization of direct discrete
form is less computationally complex and therefore suitable for control of fast systems
or for implementation on less powerful hardware. The algorithm of discrete transfer
function of n-th order is shown below. In this control system, the control error notation
e substitutes the notation of inputs u in equation (7.35) and the notation for output of
control system y represents the control action u (input to controlled system).

Initialization :

define TF numerator b̄ = (b0, b1, · · · , bm)
define TF denominator ā = (a0, a1, · · · , an)
define setpoint w

read system ’s output y

define e(k − 1) = e(k − 2) = · · · = e(k − n) = w − y(k)
define u(k − 1) = u(k − 2) = · · · = u(k −m) = 0

Loop:

read system ’s output y(k)
compute control error e(k) = w − y(k)
compute control law:

u(k) = 0
for i = 1 to n:

u(k) = u(k) + u(n− i) a(i)/a(0)
for j = 1 to m:

u(k) = u(k) + e(m− j) b(j)/a(0)
apply saturation for u(k) (if needed )

update system (apply u(k) on input)

shift k → k − 1
Go to Loop

7.4 Real-Time Control

All control scenarios in ArPi Lab are implemented as Real-Time Control Systems (RCSs)
with the use of embedded controllers (AVR micro-controllers). RCS is a closed-loop
control system which is executed in precise fixed time steps, in which following tasks have
to be done:

• gathering of process data,
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• computation of control law,
• process update.

Literature provides some interesting approaches of real-time control using the low-cost
micro-controllers (Marau et al., 2008) and also those equipped on Arduino development
boards (Shajahan and Anand, 2013). Approaches that apply the real-time control for
remote laboratories can be found in Janík and Žáková (2012). Theory and design of
RCSs are well described in Laplante and Ovaska (2011).

7.4.1 Implementation of RCS

In the world of micro-controllers, real-time computations are performed via Interrupt Ser-
vice Routines (ISRs), invoked by events of internal timers. ISR is a set of operations with
higher execution priority than other operations programmed in micro-controller (com-
monly in loop section). During such event, a standard program flow is interrupted for
necessary time to perform operations defined in ISR. As mentioned in Section 5.1.2, Ar-
duino UNO contains three timers (Timer0, Timer1, and Timer2) from which the Timer1 is
a 16-bit timer and other two are 8-bit. Each timer has its own counter register that stores
an integer value representing the amount of timer ticks from last counter overflow/reset.
A timer with 8-bit resolution overflows each 256 ticks and timer with 16-bit resolution
each 65536 ticks. Timer-based interrupts on AVR micro-controllers provide two ways how
ISRs can be handled. First is based on event of counter overflow and second on event of
compare match. Counter overflow is limited to 7 different values of clock divisor. A timer
speed (frequency of counter register increment) can be written as follows:

fT = fC

d
, d = {1, 8, 32, 64, 128, 256, 1024}, (7.36)

where fT is timer frequency, fC is a base clock frequency of micro-controller and d is
divisor. Assume the use of Timer1, with divisor d = 1024. The frequency of timer will be
fT = 16·106

1024 = 15625Hz, which is the number of counted register increments per 1 second.
As mentioned above, Timer1 will overflow after 65536 increments that is approximately
every 4.2 seconds. This value is also the highest possible step size that can be achieved
on interrupts of ATMega328p. However, this is not a limitation, because higher sizes of
steps can be achieved using program flags based on count of overflows.

Scaling the timer frequency is only one of two available mechanism how to set up
timing for ISR execution. Second approach is based on comparison of current counter
value with predefined value in Compare Match Register (CMR). This register is of same
resolution as counter associated to it. Implementer of micro-controller logic can choose
the value of CMR which will be compared with counter value in each tick of timer. If
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values in both registers are equal, the ISR is executed. The frequency of ISR execution
fISR can be computed as

fISR = 1
h

= fC

d(VCMR + 1) , (7.37)

where VCMR is the current value of match register of counter and h is time step between
executions. Since the timing of ISRs is set up programmatically by choice of VCMR, the
equation (7.37) can be rewritten as

VCMR = fC

d fISR
− 1, (7.38)

where −1 term (+1 in equation (7.37)) is the shift of integer value, because micro-
controllers’ programs use the indexing from 0.

7.4.2 Example: Real-Time Control of Magnetic Levitation

In this section we show a demonstration of real time control implementation, which is
used for all controllers applied in ArPi Lab. In order to demonstrate the possibilities of
Arduino micro-controllers and their suitability for control of various systems, an unstable
system with very fast dynamic CE1521 (Fig. 7.4) was selected for this example.

Figure 7.4: Magnetic levitation CE152

Manipulated variable is voltage applied on coil and controlled variable is a position
of the ferromagnetic ball inside magnetic field. In signal interface, the position of ball
is represented by a voltage taken from the proximity sensor. According to model based
simulations, this process requires control loop execution frequency no less than 500Hz
(h = 2 × 10−3s), to ensure stability. The sufficient control sampling for CE152 proved

1http://www.humusoft.com/produkty/models/ce152/

http://www.humusoft.com/produkty/models/ce152/
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to be h = 10−3s. As mentioned above, RCSs are operated with precise frequency of
execution. ISR-driven control system creates a time windows from one interrupt to the
following one (Fig. 7.5).

k k + 2hk + h k + 3h

interruptinterrupt interrupt interrupt

TC(k) TC(k+h) TC(k+2h)TF (k) TF (k+h) TF (k+2h)

control
compute

control
compute

control
computefree computing time free computing time free computing time

Figure 7.5: Execution of control in real time using ISR

The choice of proper step size h is essential for real time control of micro-controllers.
Assuming that implementation of control scenario must satisfy the real time criterion
TC(k) ≤ h, which says that time required for computation of control law TC in step k

(including all operations of measurement and update) must be less or equal to step size h,
we must determine the TC max in order to choose an appropriate step size. The maximum
time of control law computation depends on its complexity and micro-controller’s per-
formance. The TC max can be determined experimentally as a maximum time measured
for the execution of control law in its most complex form. Due to the requirements for
fast control loops we have selected the form of controller as the discrete transfer function
(Section 7.3). This structure of controller does not contain any logical nodes in algorithm
flow, therefore the computation time is approximately the same for executions even with
different values of variables and parameters (e.g. one operation on floating point number
takes always the same time, regardless of its value). Then the only factor with strong im-
pact on computation time is the complexity of controller itself, which for discrete transfer
function is represented by its order.

First phase of control system design with the respect to time window constraint is
determination of TC max values for different orders of discrete controllers. Measurement of
execution time was performed for orders from 0 to 8, while duration of ISR was measured
by two independent devices. First is the internal Timer of Arduino and second is digital
oscilloscope. Results are show in Fig. 7.6.

Figure shows the linear grow of TC max with the increasing order of transfer function.
Another important conclusion of measurement is that the micro-controller ATMega328p
(Arduino UNO) is capable to fulfill the requirement for real time control of magnetic
levitation CE152 with h = 10−3s for controller complexity up to 6th order.

To achieve h = 10−3s using the micro-controller ATMega328p (ArPi Lab node), which
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Figure 7.6: Execution time of discrete controllers of different complexity

base clock works on frequency fC = 16.106Hz, we must select clock divisor value d = 1
(for the best precision) and compute the value for CMR from equation (7.38):

VCMR = fC

dfISR
− 1 = 16× 106

1× 103 − 1 = 15999. (7.39)

Using these settings, the CMR will reach value 15999 exactly 1 millisecond after last
reset. Another important setting is the frequency of PWM signal used as control variable.
Because the CE152 is characterized by its very fast dynamics, it is appropriate to select
the highest possible PWM frequency provided by micro-controller. According to section
5.1.2, this frequency is 62.5kHz and it can be achieved on Arduino UNO’s pin 3 or 11,
using divisor d = 1.

The next step is design of controller. Using the mathematical model provided by
the manufacturer of CE152 and simulating the PID control in MATLAB Simulink with
manual tuning of parameters, the following discrete controller was designed.

G(z) = 105.5− 206.2338z−1 + 100.7429z−2

1− 1.1353z−1 + 0.1353z−2 (7.40)

The controller (7.40) is of 2nd order and according to data in Fig. 7.6 its execution time
should not exceed 500µs. This statement has been proved by an external measurement on
oscilloscope (Fig. 7.7), using two reference digital signals. First signal (blue line) switches
between states every time the ISR is executed, while width of green pulses represents the
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duration of controller computation. As can be seen in figure, this control scenario still
leaves more than half of computing time free for other tasks like communication and
processing.

Figure 7.7: Execution of control in real time using ISR

An application of real time control scenario, using discrete transfer function (7.40) is
shown in Fig. 7.8. In this case, the magnetic coil voltage has been manipulated in order
to control the position of ball over the desired setpoint. It is important to mention that
upper graph does not show real values of control variable, but mean values of PWM.
Since the control signal uses high frequency, it is impossible to visualize it in its raw from.

Figure 7.8: Real time control of magnetic levitation CE152





Chapter 8

Implemented Laboratories

As the practical result of this thesis, several different applications of remote laboratories
have been implemented on both mentioned architectures. These laboratories provide
remote control of following systems:

• thermo-optical device uDAQ28/LT,

• system of coupled tanks for liquid storage,

• three tank system uDAQ28/3H,

• air flow heat exchanger,

• DC motors.

8.1 Thermo-Optical System Laboratory

The uDAQ28/LT (Huba et al., 2006) is a laboratory training system designed for control
education. It is suitable for signal processing, experimental system identification, data
acquisition, and various types of control tasks. The plant provides three inputs (voltage for
bulb, fan, and light diode) and eight outputs which can be measured (actual and filtered
temperature inside tube, reference environment temperature, actual and filtered light
intensity inside tube, fan RPM, and current taken by fan). Therefore, several subsystems
of the plant can be measured. The most commonly used are the optical channel where bulb
voltage acts as input, light intensity as output and LED voltage as optional disturbance
signal, and thermo-optical channel with bulb voltage as input, temperature as output
and fan voltage as optional disturbance signal. The physical description and detailed
mathematical model of plant is provided in Jelenčiak et al. (2009).

113
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Currently three units of this system are implemented as RL on both architectures.
One device is connected to MHSA through PLC Siemens S7-300 and two are provided
through ABLA served by Arduino UNO as experiment servers.

Figure 8.1: Thermo-optical device uDAQ28/LT (left) and corresponding remote labora-
tory session (right)

The MHSA-based laboratory with uDAQ28/LT (Fig. 8.1) was actually the first lab-
oratory implemented in this work and it is also the laboratory with the longest uninter-
rupted period of operation (15 months). Since the deployment of RLMS WebLab-Deusto
for management of RLs (May 2013), 214 experimental sessions have been performed in
this particular laboratory.

8.2 Hydraulic System Laboratory

A system of coupled tanks is the educational process representing a very common problem
in industry, the control of fluid level in storage reservoirs. This system consists of two series
of tanks separated by manually operated valves and buffer tanks. In the actual setup,
this system is split in two independent subsystems and implemented as two separately
operated RLs. Both instances are connected to MHSA and served by the PLC VIPA
300S.

A couple of tanks represents a second order system because the level measurement
is performed only in the bottom tanks. From the control point of view, the experiment
acts as single-input single-output system, where input is the power of pump in percent
of maximum performance (operated by voltage signal) and output is the level in second
tank (measured in voltage).

Another similar system uDAQ28/3H has been implemented on ABLA (Fig. 8.3).
It provides three tanks interconnected with hoses, operated by two-state valves. The
liquid is pumped into tanks from the main reservoir by two pumps (operated by analog
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Figure 8.2: System of coupled tanks (left) and corresponding remote laboratory session
(right)

signals) which can be controlled in manual or automatic way. Two of valves separate
tanks from each other and another three are used to control the outlet from tanks to the
main reservoir. These valves are used to reconfigure the experimental system to the form
required for the measured scenario. The manipulated variables in process are voltages
given on pumps and controlled variables are levels in individual tanks, measured by a
pressure difference sensors.

Figure 8.3: Hydraulic system uDAQ28/3H

8.3 DC Motor Laboratory

The direct current motor can be used as very clear demonstration of electro-mechanical
system. Implemented RLs provide two such experiments. First is re-configurable DC
motor shown in Fig. 8.4. This device provide several different physical configuration
by varying the inertia (different sizes of flywheel) and friction (break position). The
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manipulated variable of this system is the motor voltage and measured variable is speed
of rotor (rotations per minute). This experiment is provided as MHSA-based laboratory
and it is connected to architecture through older type of PLC Siemens S7-200.

Figure 8.4: DC motor (left) and corresponding remote laboratory session (right)

The second direct current motor provided in RL is a small low-cost device show in
Fig. 8.5. This experiment is connected to ArPi Lab. System provides one input (motor
voltage) and one output (speed of rotor). The measurement of motor speed is implemented
by counting pulses on the optical sensor, while one full rotation of motor is represented
by four pulses. This device is directly connected to the signal interface of Arduino board
and does not require any additional electronic components.

Figure 8.5: Low-cost DC motor connected to Arduino UNO (experiment server)

8.4 Heat Exchanger Laboratory

The air-flow heat exchanger is a process that demonstrates the mechanism of heat transfer
from solid heating element to the air. This heat exchanger consists of tube inside which
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the actuators (fan and resistive coil) and sensors (air flow and temperature) are located.
The fan is used to control the air flow inside the tube and electrical resistive coil to heat it
up. Students can measure the transient processes on three subsystems. First uses the coil
voltage as input, temperature as output, and changes of air flow as optional disturbance.
The second is similar heat transfer subsystem, but uses air flow as manipulated variable
and coil voltage as disturbance. The third subsystem is a pure mass-transfer system,
where the manipulated variable is voltage given on fan and controlled variable is air flow
rate.

This RL is implemented on MHSA and the experiment serving device used is the PLC
VIPA 300S, which is the same device that controls the hydraulic system of coupled tanks
(section 8.2). This is the proof of architecture’s branching capability.

Figure 8.6: Air flow heat exchanger (left) and corresponding remote laboratory session
(right)

8.5 Usage

This section provides the information about RL usage. Since the laboratories based on
low-cost architecture (ArPi Lab) have been implemented recently and they are still in the
pre-final development phase, we will provide only the evaluation of usage for MHSA-based
laboratories.

The administration tools of RLMS WebLab Deusto allow to track users’ activities,
as well as the usage of laboratories in general. We have collected the usage data for all
laboratories provided to students. From overall 9 laboratories, 5 have been developed
at home institute and 4 are provided as federated from University of Deusto. Table 8.1
shows a list of laboratories and their rough usage information.

According to the user tracking there were overall 714 laboratory sessions since the
March 20, 2013. From these, 288 accesses were from the university campus (computer
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Table 8.1: List of laboratories and their usage information

System RL identifier Provider Category Available since In use for Sessions Avg. time/session
uDAQ28/LT therma-plant-udaq28tl STU Control labs March 20, 2013 14 months 214 6min 23,8s

Coupled tanks tanks-measure STU Control labs September 24, 2012 8 months 61 12min 40,7s
Coupled tanks tanks-control STU Control labs September 24, 2013 8 months 74 4min 5,5s

DC motor dc-motor-control STU Control labs December 10, 2013 5 months 133 6min 25,9s
Heat exchanger air-heat-exchanger STU Control labs January 22, 2014 4 months 47 3min 2,9s

Robot robot_movement UD Robot exp. March 20, 2013 14 months 56 1min 36,2s
Aquarium /w submarine submarine UD Aquatic exp. March 20, 2013 14 months 94 1min 21,8s

PIC ud-logic UD PIC exp. March 20, 2014 14 months 21 42,2s
VISIR visir UD VISIR exp. March 20, 2015 14 months 14 52,2s

714

laboratories and access points of local network), and 426 accesses were from outside the
campus. From the all evaluated sessions, more than one third (282) were performed
through the demo user account, which allows to access laboratories in the same way as
regular users, but with less available session time. The number of sessions performed by
regular registered users is 432.

Since the RLs are particularly bounded to the education process, the schedule of aca-
demic year is also reflected in the time-line of laboratory usage. Most of experimental
sessions were performed during the running semester, while during the holidays the us-
age of laboratories dropped down rapidly. The time-line of usage for above mentioned
laboratories is shown in Fig. 8.7.
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Figure 8.7: Time-line of laboratory usage from March 2013 to May 2014
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In the past two semesters, RLs have been also used as the exercising supplement for
the standard education process. The laboratories with the thermo-optical system have
been used in the laboratory exercises of the course “Theory of Automatic Control II”.
In this course, students performed their tasks in RL, such as measurement of transient
characteristics of system and PID control.

Other students were encouraged to use the RLs to perform measurement for their
term projects, as well as the final projects of bachelor study. Several other students
have participated on the RL implementation, mostly of MHSA-based laboratories. They
performed the connection of controlled processes to PLCs, implementation of control
algorithms, and the configuration of INR variables to allow remote control. Students
have participated on implementation of coupled tanks, DC motor, and heat exchanger.

Currently, the MHSA-based RLs are located in two laboratory rooms. Each laboratory
room is connected to outside world by its own INR. The local infrastructure is shown in
Fig. 8.8. In this figure a laboratory B is a typical case of branched architecture, where one
INR is handling two PLCs, as well as one PLC is controlling two different experiments
and three RLs (coupled tanks provide two systems).

local_labs2
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Figure 8.8: Local laboratory infrastructure

All implemented remote laboratories are available through RLMS WebLab-Deusto,
published at http://weblab.chtf.stuba.sk.

http://weblab.chtf.stuba.sk




Chapter 9

Conclusions and Future Work

This work offers two concepts of multipurpose architectures for remote laboratories. These
approaches bring a new way of development, which significantly reduces the time and
effort requirements needed for implementation of new laboratory instances. The possi-
bilities of both architectures were investigated in practice on the specific cases of imple-
mented laboratories. The evaluation has been performed mostly for laboratories based
on Multipurpose Hardware and Software Architecture (MHSA), since the ArPi Branched
Low-Cost Architecture (ABLA) has been developed only recently. The MHSA-based lab-
oratories provide several experiments, namely thermo-optical device, hydraulic system
with coupled tanks, DC motor, and air-flow heat exchanger. These experiments have
been in usage for a longer period of time. The growing usage statistics and positive users’
feedback shown the potential of remote laboratories as the full-featured supplementary
tools for education and exercising in automation related areas. Created remote laborato-
ries have been used as the educational tools in regular course with laboratory exercises
and several students also participated on their development and the implementation of
control scenarios.

The MHSA proved to be very suitable for a wide scope of applications on different
laboratory processes. Additionally it provided very robust industrial solution with lesser
requirement on maintenance than other types of architectures. The capability of branch-
ing on two levels (INR and PLC) is also very beneficial, mostly from the perspective of
price of future extensions. From the control point of view, MHSA provides two processing
layers that can be used for wide scale of automatic control schemes.

The ABLA has shown a potential of low-cost hardware for the development of remote
laboratories. Contrary to common solutions based on relatively expensive computers or
industrial devices, which price can grow up to thousands of euros, the ABLA uses the
single-board computers Raspberry Pi and Arduino development boards in overall cost of
several dozens of euros for one experimental node. Even this architecture shows some

121
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drawbacks from development view such as requirement of building from scratch, and
limitations in connectivity and performance, this solution is still beyond the early expec-
tations and proved to be an adequate alternative to commonly used types of architectures
with high benefit on the price and technological openness.

However the main contribution of both types of developed architectures is their univer-
sality of usage and way how new experiments can be incorporated in the remote laborato-
ries. The concept of implementation is designed as close as possible to plug and play idea
so implementer does not require deeper knowledge of technologies used in architecture or
writing the source code for new laboratories. The process of implementation is reduced
just to the connection of experiment to architecture and its appropriate configuration.

During the last years at the Institute of Information Engineering, Automation and Math-
ematics, we realized that remote laboratory development is never-ending challenge with
the increasing requirements and evolving technologies. There is no remote laboratory
solution that can be considered as perfect. There are always possible improvements and
extensions that can be applied from different points of view such as didactics, usage, in-
teroperabillity, technological enhancements, and many other. Our future work will focus
mostly on those aspects, which we consider beneficial for the fluent usage in the education
process. The main idea is to provide complex solution, a set of tools, that will allow stu-
dents to perform wide scale tasks and study assignments remotely through the Internet.
Since remote laboratories are just the part of this wider context, we plan to develop an
additional extensions for them, which will provide the following features:

• Online data storage. Current remote laboratories allow user to download data
measured during session in the batch form. The must do that before they leave the
laboratory, otherwise the data are lost. Therefore the future vision is to develop such
kind of acquisition system that will automatically store all data measured during
the remote session and assign them to a specific user. User will be able access and
visualize data any time without need to access the specific remote laboratory again.
This system is considered to be designed as PHP or Python Web-based module for
MySQL database with a set of service-oriented APIs for the interconnection with
remote laboratories and other systems that will be able to process measured data.

• Processing of data. In the control education and especially in laboratory practices,
students often require more than just possibility to measure process data, but also
supplementary processing tools. Once the student acquire process data, there are
several necessary tasks before the controller for process can be designed and tested
in remote laboratory. In our future work we plant to design modular Web tools
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that will allow students to filter measured data, determine the mathematical model
of process by identification, and design and tune the controller by a set of standard
methods.

• Design of custom control schemes. Allowing users to design their own automatic
control scenarios is one of the most desired challenges in the current state-of-the-
art of remote laboratories. This problem is still opened with no general solution
available in literature. Even some of published laboratories, mostly those focused
on electronics, provide several features that allows users to upload simple control
programs, the full-featured solution that would allow users to generate custom con-
trol programs for automatic control experiments, with the respect to target device
restrictions, still does not exists. There are two main problems that must be solved
in order to bring such feature into practice. First is the security concern of labora-
tory. This can solved by an appropriate choice of technologies, concept of control
design system and selection of restrictions for users. The second and most chal-
lenging problem is the question how to design and compose such software that will
transfer human-comprehensible form of control scheme into source dedicated to tar-
get device with limited memory, performance and specific modes of operation. We
consider that visual environment for control design in the form of graphical block
diagramming tool would be the best solution even for users with no programming
skills. Moreover, this kind of software must perform several mandatory tasks such
as transcription of visual representation of control into algorithmic form, its valida-
tion and security check, addition of operational source code, pre-upload testing, and
compilation into machine code (required for most of control devices such as PLCs
and micro-controllers).

Another goals of future work are related to expansion of remote experimentation
across the domestic and foreign education systems, and the extension of current inter-
institutional collaboration.
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Resumé

Predkladaná dizertačná práca pojednáva o vývoji viacúčelových a nízkonákladových ar-
chitektúr vzdialených laboratórií. Vzdialené laboratórium je špeciálny prípad experimen-
tálneho laboratória s priestorovo rozloženými časťami. Pozostáva z pevných komponentov
(hardvéru) a programových komponentov (softvéru), ktoré sú medzi sebou špecificky pre-
viazané. Neoddeliteľnou súčasťou vzdialených laboratórií je experimentálne vybavenie,
ktoré je obsluhované na diaľku prostredníctvom počítačových sietí. Vo väčšine prípadov
sú takéto laboratóriá pripojené na Internet a sú ovládané webovými aplikáciami cez in-
ternetový prehliadač alebo dedikovanými aplikáciami umiestnenými v počítači, resp. mo-
bilnom zariadení užívateľa. Takýto softvér, tiež nazývaný klientská aplikácia, komunikuje
prostredníctvom siete s koncovými službami architektúry vzdialeného laboratória a posky-
tuje užívateľovi sadu nástrojov pre pozorovanie reálneho laboratórneho vybavenia a jeho
ovládanie na diaľku. Koncová architektúra vzdialených laboratórií je sústava zariadení,
ktoré obsluhujú komunikáciu medzi užívateľom a experimentom, pričom pre jednotlivé
aplikačné uplatnenia môže byť rôzneho typu a nadobúdať rôzne rozmiestnenie z pohľadu
infraštruktúry a prenosu informácií. Typ architektúry je zväčša určený na základe poža-
dovaného spôsobu využitia a v nemalej miere aj povahou experimentálneho zariadenia,
ktoré obsluhuje. V práci uvádzame základné typy architektúr, ktoré sa najčastejšie vy-
skytujú v praxi, pričom ku každej z nich je uvedená charakteristika a príklady využitia.
Jednotlivé prípady sú hodnotené na základe ukazovateľov, akými sú cena, požiadavky
na hardvérový a softvérový vývoj, výpočtový výkon, flexibilita využitia, a technologická
rozšíriteľnosť. Hardvérové usporiadanie jednotlivých typov architektúr je zobrazené na
obrázku 4.1 a ich vyhodnotenie na základe vyššie spomenutých ukazovateľov je uvedené
v tabuľke 4.1.

Vzdialené laboratóriá majú využitie najmä v oblasti vzdelávania, kde tvoria plno-
hodnotný doplnok pre laboratórnu prax, pričom prinášajú výhody, akými sú možnosť
vykonávať experimenty z ľubovoľného miesta s pripojením na Internet a v ľubovoľnom
čase, bez nutnosti fyzickej prítomnosti v laboratóriu. Aplikácie vzdialených laboratórií sa
vyskytujú takmer vo všetkých oblastiach vzdelávania a aplikovanej vedy. Sem patrí fyzika,
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chémia, medicína a v podstate celá oblasť inžinierskych disciplín, napr. energetika, prie-
myselné systémy, počítačová komunikácia, elektronika, robotika, systémy automatického
riadenia a iné.

Hlavnou motiváciou pre vznik tejto práce je fakt, že väčšina dostupných hardvérovo-
softvérových architektúr sú v podstate ad hoc riešenia, alebo riešenia založené na posky-
tovaní vývojových aplikačných rozhraní a neponúkajú možnosť univerzálneho využitia a
budovania vzdialených laboratórií nenáročnou cestou. Architektúry takýchto laboratórií
sú navrhnuté pre použitie s konkrétnym typom experimentálneho zariadenia, a to nielen
po hardvérovej, ale hlavne po softvérovej stránke. Jednotlivé súčasti, akými sú operačný
a komunikačný softvér, klientske aplikácie a softvér pre ovládanie experimentu, sú na-
vrhnuté tak, aby fungovali iba pre experiment, pre ktorý boli vytvorené. Aj keď takýto
prístup prináša funkčné vzdialené laboratória, je sám o sebe veľmi neefektívny, a to hlavne
vtedy, ak je vyžadované pripojenie iného typu experimentálneho zariadenia do architek-
túry, resp. reprodukovanie riešenia pre viacero rôznych laboratórií. V takom prípade musia
vývojári často pristúpiť k tvorbe architektúry od začiatku a navrhnúť/upraviť ju pre toľko
prípadov, koľko rôznych typov zariadení zamýšľajú použiť. Vzhľadom k tomu, že samotný
vývoj vzdialených laboratórií je časovo náročná úloha, sú nové prístupy budovania viacú-
čelových architektúr veľmi žiadané.

Predkladaná dizertačná práca ponúka nový koncept tvorby takýchto experimentálnych
prostriedkov, ktorého úlohou je oddelenie fázy implementácie vzdialených laboratórií od
samotnej fázy vývoja architektonických častí. Hlavnou myšlienkou je poskytnúť taký tech-
nologický aparát, ktorý umožní implementovať širokú triedu procesných laboratórií časovo
nenáročným spôsobom a bez nutnosti toho, aby realizátor do hĺbky ovládal technické pros-
triedky, ktoré laboratórium využíva (hardvér, programovacie jazyky a pod.). Takýto cieľ
bolo možné dosiahnuť s využitím koncových obslužných zariadení, ktoré umožnia pripojiť
do architektúry rôzne typy technologických procesov a súčasne operačný a klientský soft-
vér, ktorý je navrhnutý univerzálne a je možné ho jednoducho nakonfigurovať pre využitie
s akýmkoľvek typom ovládaného procesu.

Teoretickým prínosom práce sú dva koncepty viac-účelovej hardvérovo-softvérovej ar-
chitektúry. Prvá je založená na priemyselných zariadeniach, akými sú programovateľné
logické automaty (PLC) a priemyselné sieťové smerovače. Táto architektúra je špecifická
tým, že je postavená na robustných priemyselných komponentoch, priamo navrhnutých
na nepretržitú prevádzku. Hlavnou výhodou tejto architektúry je, že poskytuje hotové
hardvérové a čiastočne aj softvérové riešenie a dokáže obsluhovať veľmi širokú triedu
procesných zariadení. Architektúra pozostáva z dvoch operačných vrstiev (obrázok 4.2),
pričom na oboch je možné ju rozvetviť (obrázok 4.3). Spodná vrstva (tzv. riadiaca vrstva)
obsahuje ovládaný/riadený proces (experiment) pripojený prostredníctvom elektrických
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signálov k PLC, ktoré slúži na priamu interakciu s akčnými a meracími členmi procesu. Na
vyššej vrstve (tzv. správcovskej vrstve) sa nachádza priemyselný sieťový smerovač, ktorý
umožňuje obsluhovať jednotlivé dvojice PLC-proces a taktiež sprostredkovať komunikáciu
medzi procesom a užívateľom. Z pohľadu automatického riadenia poskytuje táto architek-
túra dve riadiace vrstvy, keďže okrem PLC aj priemyselný smerovač obsahuje prostredie
pre vykonávanie užívateľských algoritmov. Klientská časť je poskytovaná ako webová ap-
likácia, ktorá sa spúšťa v prostredí internetového prehliadača. Je navrhnutá tak, aby bola
konfigurovateľná pre akýkoľvek experiment, ktorý je možné pripojiť k architektúre.

Druhá architektúra vychádza z rovnakého konceptu univerzálnosti, avšak jej hardvé-
rové časti pozostávajú z nízkonákladových komponentov (obrázok 5.2). Fyzikálna kon-
štrukcia obsahuje laboratórny server, založený na otvorených a voľne dostupných tech-
nológiách a implementovaný na jednodoskovom počítači Raspberry Pi. Na nižšej úrovni
z pohľadu architektúry sa nachádzajú tzv. experimentálne uzly, ktoré pozostávajú z ovlá-
daných/riadených zariadení a obslužného hardvéru, ktorým sú vývojové elektronické plat-
formy na báze mikroovládačov Arduino UNO. Mikroovládače prostredníctvom elektric-
kého signálového rozhrania zabezpečujú priamu interakciu s akčnými a meracími členmi
laboratórneho procesu. Hlavnou výhodou tejto architektúry je jej cena, ktorá je rádovo
nižšia ako u bežných typov vzdialených laboratórií, ktoré používajú štandardné počítače a
priemyselné moduly/karty na ovládanie procesov a zber dát. Použitie laboratórneho ser-
vera ako komunikačnej brány do privátnej siete ponúka možnosť vetvenia architektúry,
pričom jeden takýto server môže (v závislosti od typu počítača a jeho výkonu) obsluhovať
aj desiatky vzdialených laboratórií. Klientská aplikácia pracuje na podobnom princípe ako
u predchádzajúcej architektúry, teda je plne konfigurovateľná pre akýkoľvek laboratórny
proces, ktorý je možné pripojiť k signálovému rozhraniu mikroovládača.

Práca sa taktiež zaoberá implementáciou riadiacich algoritmov pre mikroovládače.
V praktickej časti uvádzame postup vhodnej úpravy a algoritmizácie niektorých štan-
dardných typov regulátorov pre ich v diskrétne vykonávanie a taktiež princíp realizácie
riadenia v reálnom čase. Riadiace algoritmy implementované pre vzdialené laboratóriá sú
napr. štandardné, sériové a paralelné PID regulátory, spojité prenosové funkcie (a vo vše-
obecnosti regulátory vo forme podielu dvoch polynómov) a diskrétne prenosové funkcie.

Na vyššie spomínaných architektúrach bolo v rámci praktického prínosu práce imple-
mentovaných niekoľko vzdialených laboratórií, poskytujúcich rôzne typy experimentov.
Pripojené boli procesy ako tepelno-optická sústava, dva typy hydraulických systémov so
zásobníkmi kvapaliny, dva typy elektrických pohonov a vzduchový výmenník tepla. Všetky
laboratória založené na prvom type architektúry boli v prevádzke dostatočne dlho, aby
bolo možné vyhodnotiť ich využívanie. Od 20. marca 2013 bolo evidovaných celkovo 714
prípadov užívania vzdialených laboratórií, z čoho 288 prístupov bolo evidovaných z uni-
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verzitnej siete a 426 z vonkajších sietí. Zoznam laboratórií a základné informácie o ich
užívaní sú uvedené v tabuľke 8.1 a časová os užívania laboratórií počas jedného roka je
zobrazená na obrázku 8.7. Použitie laboratórií v praxi ukázalo, že navrhnuté architektúry
ponúkajú veľmi robustné riešenie, čo sa týka prevádzkyschopnosti a spôsob implementácie
nových laboratórií prináša výrazné časové úspory v porovnaní s existujúcimi prístupmi.

V predkladanej práci taktiež uvádzame spôsob publikovania experimentov na Inter-
nete prostredníctvom systému pre správu vzdialených laboratórií RLMS WebLab-Deusto.
Tento systém bol zavedený na Ústave informatizácie, automatizácie a matematiky, STU
v Bratislave, ako súčasť spolupráce zdieľania vzdialených laboratórií s Univerzitou Deusto
v Bilbau. Prostredníctvom WebLab-Deusto dochádza k poskytovaniu vytvorených proces-
ných laboratórií univerzite v Španielsku. Opačným smerom, Univerzita Deusto poskytuje
svoje vzdialené laboratóriá STU v Bratislave.

Pre ďalšie pokračovanie tejto práce uvažujeme s vývojom komplexného softvérového
riešenia pre zber a spracovanie dát nameraných vo vzdialených laboratóriách, ako aj
s vývojom systému, ktorý by umožnil užívateľom navrhovať a aplikovať vlastné riadiace
algoritmy pre procesné laboratóriá. Taktiež uvažujeme s rozširovaním experimentálnej
základne o nové vzdialené laboratórne procesy, či už ich pripájaním k vyvinutým archi-
tektúram, alebo prostredníctvom zdieľania existujúcich laboratórií s inými akademickými
inštitúciami.
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