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Abstract

This work aims to contribute to modelling and fast predictive control of processes. It can
be divided into several topics.

Process modelling is investigated and an effective approximation technique is de-
scribed. It can be used to approximate an original non-linear process model as a hybrid
system with piecewise affine dynamics. We discuss three different cases, how one can ob-
tain the approximation of an arbitrary nonlinear function. The most trivial case assumes
that the analytic form of the nonlinear term is already known. On the other hand, if
only some set of input-output measurements are given, we employ a two-stage procedure
to obtain the final approximation. This method aims to select the appropriate subset
of basis functions and consecutively finding a proper linear combination of them. Once
we possess the analytic formula of our approximated function, we can obtain the final
PWA approximation by solving standard nonlinear programs. We show, that under mild
assumptions, the task can be transformed into a series of one-dimensional problems. Fi-
nally, we demonstrate the efficiency of our technique on an illustrative example, involving
a highly nonlinear reactor.

The second part of the work deals with fast model predictive control. We investigate
the problem of reduction of the amount of memory needed to describe explicit MPC
solutions. The main idea of explicit MPC stems from pre-computation of the optimal
control action for all possible initial conditions and subsequently storing them in a form
of a look-up table. On one hand, this concept allows faster implementation, but on the
other, requirements for memory storage increase too. In order to eliminate this drawback,
we continue with a description of an effective, three-layer compression technique, allowing
fast implementation on low-cost hardware platforms. This three-layer procedure first
identifies similarities between polytopic regions in form of an affine transformation. If
such a mapping exists, certain regions can be represented using less data. The second
layer then applies data de-duplication to identify and remove repeating sequences of data.
Regions are then described by integer pointers to such a unique set. Finally Huffman
encoding is applied to compress such integer pointers using prefix-free variable-length
bit encoding. The chapter ends with efficiency evaluation of the proposed technique on
several, randomly generated feedback law examples.

The final chapter is devoted to the so-called operator splitting methods, by means
of one can solve convex optimisation problems very efficiently by simply decomposing
the original possibly complex problem into a series of simple operations well known from

linear algebra. Several algorithms and their range of applicability are presented.



Abstrakt

Praca sa venuje modelovaniu a rychlemu prediktivnhemu riadeniu procesov. Sklada sa
z viacerych tém.

V prvej casti sa zameriava na modelovanie procesov a aproximéciu pévodne neline-
arneho modelu za po castiach linedrny model, ktory je vhodnejsi pre pouzitie v rych-
lom prediktivnom riadeni. Navrhujeme efektivne aproximac¢né metddy, ktoré su aplikova-
telné vo viacerych pripadoch. Najjednoduchsi pripad predpokladé existenciu analytického
tvaru aproximovaného nelinedrneho vyrazu. Na druhej strane, pri existencii iba vstupno-
vystupnych dat, ziskanie finalnej aproximacie vyzaduje aplikovanie dvojkrokovej proce-
diry. Tato metéda sa vyznacuje hladanim prislusnej podmnoziny bazickych funkcii a
naslednym néjdenim koeficientov vhodnej linedrnej kombinacie. Ked mame k dispozicii
analyticky vyraz aproximovanej funkcie, riesenim sStandardnej tlohy nelinearneho prog-
ramovania lahko ziskame vysledni transfoméaciu, ktora je po castiach afinni. Navyse,
v praci ukazujeme, ze pri splneni istych podmienok tiloha méze byt pretransformovand na
sekvenciu jednorozmernych aproximacii. Efektivnost metédy je demonstrovand na vysoko
nelinedrnom modeli chemického reaktora.

Druhd cast prace sa zaobera rychlym prediktivnym riadenim. Uvazujeme problém
znizenia pamétovych narokov explicitnych prediktivnych regulatorov. Hlavna idea expli-
citného MPC spociva v predpocitani optimélneho akéného zdsahu pre vsetky mozné po-
¢iatoCné podmienky a ich naslednym ulozenim vo forme vyhladavacej tabulky. Na jednej
strane, tato metéda umoznuje rychlu implementéaciu, avSak za cenu vyssich paméatovych
narokov. Za ucelom eliminovania tohto nedostatku uvedieme opis efektivnej trojvrstvovej
komprimacnej techniky, takto umoznujic rychlu implementaciu na vypoctovych platfor-
méach s obmedzenou paméatovou kapacitou. Trojvstrvova procedura najprv identifikuje
podobnosti medzi polytopickymi regiénmi vo forme afinnej transfoméacie. V pripade exis-
tencie takéhoto zobrazenia mozu byt urcité regiény reprezentované tispornejsim spésobom.
Druhé vrstva eliminuje opakované sekvencie dat pomocou de-duplikécie. Po tejto proce-
dure regiony su charakterizované pomocou smernikov. Ziskand smernikova reprezentacia
je v konecnej faze nahradend bitovymi sekvenciami, ziskanych pomocou Huffmanovho
kédovania. Efektivnost komprimacnej techniky je vyhodnotena na roéznych nahodne ge-
nerovanych spéatnoviazbovych zakonov.

Posledna kapitola je venovana k réznym algoritmom sliiziacich na riesenie konvexnych
optimaliza¢nych problémov. Hlavna idea tychto algoritmov spociva v ich schopnosti pre-
transformovat originalny konvexny problém na sekvenciu jednoduchych operacii znamych

z oblasti linedrnej algebry. Porovname viaceré algoritmy a ich rozsahy pouzitelnosti.
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Chapter

Introduction

Mathematical models of physical plants play a crucial role in many areas connected to the
field of control theory. The most challenging problem is usually represented by finding a
compromise solution between the model’s accuracy and its complexity. Naturally, the best
possible simulation results can be achieved by nonlinear models, although control design
techniques based on such models are difficult. The most common way of simplification, in
order to avoid the usage of complex nonlinear models is represented by Taylor expansion,
which allows to create a linearized model around one operating point. However, this con-
cept solves our problem only partially, since it is not able to capture dynamical properties
of the original nonlinear model in the entire domain of interest. This drawback becomes
very significant with the increasing distance from the original operating point, resulting
in discrepancies between the trajectories obtained from the original, nonlinear model and
the approximated one. The most rational solution to the above addressed problem is to
use more approximation points, creating several local models. This idea can be captured
by the concept of hybrid systems (Morari et al. 2003), where the above mentioned multiple
linearization technique is realizable through the interconnection of continuous variables
with discrete ones. In other words, hybrid systems are capable to detect local models by
means of boolean variables and according on their truth value switch over to the corre-
sponding local model and pick up the respective expression associated with the particular
region. There are several available frameworks to describe such systems like MLD, PWA
models and max-min scaling functions. It was shown that under mild assumptions these
models are equivalent to each other (Heemels et al. 2001) and transformation between
these models is available too. In this work we propose an optimization-based procedure of
deriving PWA functions, wrapped in a MATLAB toolbox called AUTOPROX. The toolbox

is capable to approximate an arbitrary function as well as right-hand sides of differential
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equations, exploiting the concept of separability. This technique allows us to extend the
procedure to higher dimension by a simple transformation. Even functions, at first glance
non-separable, can be “chunked” into several number of separable terms. Generally, the
approach requires the analytic form of the function, but it can be effective even in case
of input-output measurements. We propose an efficient method, how one can overcome
the absence of analytic terms, where the coefficients multiplying the basis functions are

calculated by optimization.

Model predictive control has become very popular control strategy in the recent years
due to its ability to handle constraints. The main idea of this approach is based on
solving optimization problems in each sampling time and implement only the first control
action from the whole sequence, also known as receding horizon model predictive control
(RHMPC) (Bemporad et al. 2000b). By solving an optimization problem in each step, we
can push our states towards zero or track the reference, while guaranteeing optimality and
satisfaction of constraints. This so-called online method is very effective in slow processes
(e.g. chemical or petrochemical processes), but its implementation becomes cumbersome

for fast mechatronics processes.

Fortunately, at the beginning of the 21th century a new concept appeared, called ez-
plicit MPC (Bemporad et al. 2000a). This concept enables to implement such controllers
on fast systems, since the whole optimization procedure is performed off-line. Result of
this computation is a look-up table, containing the control laws, each associated to its
own region. The advantages are twofold. First, the control laws are affine functions of
states, thus obtainment of the corresponding control actions simply reduces to finding
the appropriate region, known as point location problem and pick up the corresponding
affine function belonging to the region. The second reason is also quite obvious, since
the regions over which the affine the control law is defined can be easily acquired by
multi-parametric programming. Explicit MPC (eMPC) is still very attractive, but un-
fortunately it also posesses some drawbacks. First of all, it is confined to problems of
small sizes. Furthermore,it is not able to adapt itself to control systems with varying
parameters, because the parameters of the controller are computed in advance. Very
challenging task is implementation of eMPC solutions on industrial control systems (e.g.
PLCs), where the total amount of allowable memory is usually only 2kB. For systems
with many states and inputs the real-time implementation of eMPC solutions becomes
difficult, since they usually contain more than 1000 regions. Moreover, if we take into
account the number of affine functions, associated to the regions, we can easily run out

of memory.

Therefore, second part of this work deals with an efficient compression technique to

reduce the memory footprint required by an eMPC controller in order to implement it on



low-cost platforms. We present here a three-stage procedure, by means of a substantial
reduction can be attained. The procedure contains three layers. The first one determines a
subset of regions, denoted as basis regions, by means of one can reconstruct the remaining
ones. We show how to formulate the search for such a mapping by solving a mixed-integer
problem, which is done off-line. If the transformation exists, the corresponding regions
can then be represented using less data. The second layer can either be applied on top
of the first one, or independently. Here, memory is saved by identifying positive and
negative duplicities in the half-space representation of several polytopic regions. The
duplicate occurrences are then represented as mere integer pointers to the unique set of
data. Compared to the first layer, the additional computation to be performed on-line
is significantly smaller. Finally, in the last layer we propose to compress the integer
pointers by Huffman encoding (Knuth 1985). Here, variable-length bit codewords are
assigned to each integer, depending on its frequency of abundance. Main benefit of the
proposed strategies is that they can be applied on top of all aforementioned complexity
reduction schemes. Saving in terms of memory is achieved at the price of an increase of
the implementation effort performed on-line. Therefore the approach is mainly suited for
situations where the implementation device posesses enough computational power, but

has severe memory limitations.

The significant progress that has been made in recent years both in hardware im-
plementations and in numerical computing has rendered real-time optimization-based
control a viable option when it comes to advanced industrial applications. More recently,
the need for control of a process in the presence of a limited amount of hardware re-
sources has triggered research in the direction of embedded optimization-based control.
Many efficient high-speed solvers have been developed for both linear and nonlinear con-
trol, based on either first order methods (FiOrdOs (Ullmann 2011)), interior point (IP)
methods (FORCES (Domahidi et al. 2012), CVXGEN (Mattingley and Boyd 2012)) or
active sets (QPOASES (Ferreau et al. 2008b)).

In this work we focus on systems with linear dynamics, giving rise to convex control
problems. We aim to explore a family of first order methods known as decomposition
schemes or operator splitting methods. In the simplest case, the abstract form of the

problem at hand is the minimization of the sum of two convex functions.

Formulations similar to the above have been studied extensively and we can look
for their roots in the method of multipliers (Hestenes 1969), the Arrow-Hurwicz method
(Arrow et al. 1958), Douglas-Rachford splitting (Douglas and Rachford 1956), and ADMM
(Gabay and Mercier 1976b, Glowinski and Marrocco 1975b). More recent references that
illustrate the applicability of such methods in modern engineering problems (signal and

image processing, big data analysis, machine learning) are by Boyd et al. (2011b) and
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Combettes and Pesquet (2011). The thesis Esser (2010) provides a nice and comprehensive
description of the connection of several splitting algorithms under a common framework.
Finally, the book (Bauschke and Combettes 2011) provides a mathematically rigorous
introduction to operator splitting methods in general Hilbert spaces.

Therefore, in the third part of this work we present three popular splitting algorithms,
the Alternating direction method of multipliers (ADMM), the Alternating minimization
algorithm (AMA ) and the primal-dual scheme from Chambolle and Pock I (CPI) and their
accelerated versions, Fast alternating direction method of multipliers (FADMM), Fast
alternating minimisation algorithm (FAMA), and primal-dual scheme from Chambolle
and Pock II (CPII). Our choice is motivated by the fact that the methods have been

analysed and extended by several communities, and their properties are well-understood.

Aims of the Thesis

The main goals of this thesis can be summarised as follows:

e The first field of contribution is modelling of hybrid systems, where we developed an
effective approximation technique to obtain the corresponding PWA approximation
of a nonlinear function either characterised by an analytic expression or by means of
a set of input-output measurements. Furthermore in order to simplify the underlying
procedure a software package called AUTOPROX was developed, by means of one
can easily obtain the final approximation of the nonlinear function. The proposed

approximation procedures were published in the following papers:

— M. Kvasnica, A. Sziics, and M. Fikar. Automatic derivation of optimal piece-
wise affine approximations of nonlinear systems. In Preprints of the 18th IFAC
World Congress Milano (Italy) August 28 - September 2, 2011, pages 8675—
8680, 2011c. URL http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1166.

— A. Sziics, M. Kvasnica, and M. Fikar. Optimal piecewise affine approximations
of nonlinear functions obtained from measurements. In jth IFAC Conference
on Analysis and Design of Hybrid Systems, Findhoven, Netherlands, pages 160—
165, 2012. URL http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1306.

— A. Szlics, M. Kvasnica, and M. Fikar. Matlab toolbox for automatic approxi-
mation of nonlinear functions. In M. Fikar and M. Kvasnica, editors, Proceed-
ings of the 18th International Conference on Process Control, pages 119-124,
Tatranskd Lomnica, Slovakia, June 14-17, 2011 2011a. Slovak University of
Technology in Bratislava. URL http://www.kirp.chtf.stuba.sk/publication_info.php?id


http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1166
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1306
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1138

e The second field of contribution is complexity reduction of explicit MPC solutions.
We developed an effective three-layer compression technique, which can be applied
to an arbitrary MPC solution. The underlying technique is able to significantly
reduce memory requirements of explicit predictive controllers, thus enabling their
implementation on industrial hardware platforms, e.g. PLCs. The proposed three-

layer compression technique can be found in the following publication:

— A. Szlics, M. Kvasnica, and M. Fikar. A memory-efficient representation of
explicit mpc solutions. In Proceedings of the 50th CDC and ECC, pages 1916—
1921, Orlando, Florida, 2011b. URL http://www.kirp.chtf.stuba.sk/publication_i

e Finally, the last field of contribution are operator splitting methods. This con-
cept refers to a set of algorithms capable of solving convex optimisation problems
by transforming them into a series of simple operations, e.g. matrix-vector multi-
plication. Furthermore, opposed to explicit MPC, these algorithms could be very

efficient for large-scale systems as well.

— G. Stathopoulos, A. Sziics, Y. Pu, and C Jones. Splitting methods in control. In
European control conference to appear, 2014. URL http://www.kirp.chtf.stuba.sk/pu


http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1210
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1484
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Chapter

Convex Sets and Functions

To understand the concepts of MPC, one has to take a deeper look on the basic building
blocks constituting the basic pillars of convex optimisation, such as sets or functions.
Therefore, in this chapter we will introduce some essential concepts from topology of sets,
e.g. closedness, boundedness and characterise the basic properties of convex sets and

functions.

2.1 Sets

Definitions in this section are due to Christophersen (2006), Griinbaum (2000), Weisstein
(2010).

Definition 2.1 (e-Ball) The open n-dimensional e-ball in R™ around a given point (cen-

ter) x. is the set
B(x.) :={x e R" | || — x| < €},

where the radius € > 0 and || - || denotes any vector norm (usually the Euclidean vector

norm || - ||2)-

Definition 2.2 (Neighborhood) The neighborhood of a subset S of X C R™ is defined
as a set N (S) with S C N (S) C X such that for each s € S there exist an n-dimensional
e-ball with B(s) C N (S) and € > 0.

Definition 2.3 (Convex set) A set S C R"s is convex if the line segment connecting
any pair of points of S lies entirely in S, i.e. if for any s1,s2 € S and any o with
0<a<1, we have

as;1+ (1 —a)se € 8.
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See Figs. 2.1(a), 2.1(b).

Definition 2.4 (Convex hull) The convez hull of a set S C R"s is the smallest convex
set containing S, i.e.

k

hull(S) :== {Z s

i=1

k
Vs; € S day, a; >0, Zaizl}.

i=1
Definition 2.5 (Closed set) A set S C R™ is closed if every point not in S has a

neighborhood disjoint from S, i.e.
Ve ¢ S,3¢ >0 such that B.(z)NS =10.

Definition 2.6 (Bounded set) A set S C R™ is bounded if it is contained inside some
ball B,.(-) of finite radius r, i.e.

Ir < oo, s € R"™ such that S C B,(s).
Definition 2.7 (Compact set) A set S is compact if it is closed and bounded.

Definition 2.8 (Set collection) S is called a set collection (in R™ ) if it is a collection

of finite number of ng-dimensional sets S;, i.e.
S:i= {Si}i\islv

where dim(S;) = ns and S; C R™ fori=1,...,Ns with Ns < co. A set collection of

sometimes also referred to as family of sets.

Definition 2.9 (Partition) A collection of sets {Si}f\fl is a partition of a set S if S =
UlNz‘SlSi and S; NS; for all i # j, wherei,j € {1,..., Ns}.

Definition 2.10 (Half-space)
S ={r:p'z<a}, (2.1)
where p is nonzero vector in R™, and « is a scalar.

Definition 2.11 (H-polyhedron) A conver set Q C R™ given as an intersection of

finite number of half-spaces

Q={zeR"| Q% <Q°} (2.2)
Definition 2.12 (H-polytope) A bounded polyhedron P C R™

P ={z € R"|P*z < P} (2.3)

is called H - polytope



2.2. FUNCTIONS 11

AW

Figure 2.1: Convex (a) and non-convex (b) set.

Definition 2.13 (V-polytope) A polytope can also be represented by means of a convex

combination of its vertices Vp:

772{xER”|m:Zai\/;i),0§aiSl,Zaizl}, (2.4)

i=1 i=1

where Véi) denotes the i-th vertex of P, and v, is the total number of vertices of P.

2.2 Functions
Definitions in this section are due to Christophersen (2006), Syau (1998).

Definition 2.14 (Vector 1-, co- , 2-norm) The vector 1-, co-, and 2-norm of x € R"
s defined as

n

n
el =Y Jwil,  [[alloo = max |zil, ||zl =) aF
i=1

1<i<n
i=1
respectively, where x; is the i-th element of x.

Definition 2.15 (Convex/concave function) A real-valued function f : X — R™f is

convez if its domain X C R™ is a convex set and
Ve, mp € X, 0<a<l = flaz+ (1 - a)rz) <af(xr)+ (1 —a)f(z2)

where < is to be considered component wise. f(-) is strictly convex if the last inequality

above is replaced by strict inequality. f(-) is concave if —1f(-) is convez.

Definition 2.16 (Affine function) A real-valued function f : X — R with X C R"
is affine if it is of the form f(x):= Fx + g, where F € R"*" qnd g € R/,
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Definition 2.17 (Piecewise affine function) A real-valued function fpwa : X +—
R™ with X C R™ is piecewise affine (PWA), if {Xl}fvz’fl is a partition of X and
frwa(z) :=Fx+g;, VveX,

where F; e R"*" g, e R, andi=1,...,Nx.

Definition 2.18 (Lower semi-continuous function) A real-valued function f : R —
R on a set S is a lower semi-continuous at a point x € S if, for each X € R, A < f(x),
there exists a neighbourhood U of x such that f(y) > X\ for all y € U. Function f : S —
[—00, +00] is said to be lower semi-continuous if f is lower semi-continuous at each point

of S.

2.3 Constrained Optimisation

A general constrained optimisation can be formulated as follows:

min  f(u)
u 2.5
st.: wesS (25)

Here the vector v € RY denotes the optimisation variable, f : R™ — R is the objective

function, and S is the constraint set.

Definition 2.19 Feasible and Optimal Solutions: Let f : R™ — R and consider the

constrained optimisation problem (2.5), where S is a nonempty set in R™.

e A point u € S is called a feasible solution to problem (2.5)

o If w € Sand f(u) > f(u) for each u € S, then @ is called an optimal solution, a

global optimal solution, or simply a solution to the problem.

e If 4 € S and if there exists an e— neighbourhood N, () around u such that f(u) >
f(@), for each u € S NN (@), then @ is called a local optimal solution.

e Ifu e S and f(u) > f(u) for each u € SN N(u), u # u, for some € > 0, then u is

called strict local optimal solution.

2.3.1 Linear Programming

If fin (2.5) is linear and S in (2.5) is defined by a set of linear inequalities g;(u) < 0,7 =
1,...,m, problem (2.5) can be reformulated and solved as a linear programming (LP)

problem.



2.3. CONSTRAINED OPTIMISATION 13

min Tu
u
st. Au <D, (2.6)
Acqu = begq

There are three fundamentally different types of algorithms for solving LPs: simplex,
interior-point (Hudzovi¢ 2004) and active set methods (K.Tone 1993). Even though the
former method has an exponential worst-case (Klee and Minty 2004), on average it solves
the problem in polynomial time (Karmakar 1984). Due to the fact that the latter method
has a polynomial worst case, both techniques are heavily utilised for solving linear pro-

gramming problems.

2.3.2 Quadratic Programming

If f is convex and quadratic and S is defined by set of linear inequalities g;(u) < 0, i =

1,...,m, problem (2.5) is referred to as a quadratic programming (QP) problem:

min  1/2u” Hu + cTu
st. Au <D, (2.7)

Aeqt = beg

For positive definite matrix H, the interior point methods (Murty 2006) solve the
problem in polynomial time. However, in case of H is indefinite, the problem becomes
NP-hard (Sahni 1974). In fact, one negative eigenvalue of matrix H is sufficient to turn the
underlying optimisation problem into a NP-hard problem. Furthermore, if the structure of
the underlying problem can be exploited (Maes 2010), active set methods are applicable as
well In chapter 5 we will introduce several algorithms by means of one can solve quadratic

programming problems very quickly.

2.3.3 Mixed-Integer Linear Programming

If the vector u of optimisation variables is composed of real and a binary part, i.e. u =
[ul | ul]T with u, € R™ and u, € {0,1}™, and the objective function f is linear and
constraint set S defined by linear inequalities g;(u) < 0,4 = 1,...,m, problem (2.5) is
referred to as a Mixed Integer Linear Program (MILP). Formally it can be stated as:

min czur + cgub
U
st Apup + Apup < b
Aeq,rur + Aeq,bub = beq
up € {0, l}nb

(2.8)
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The presence of binary variables makes solving these types of problems much harder
to solve compared to above mentioned methods, namely to LP and QP. Obviously, the
most straightforward approach to obtain the optimal solution is to enumerate all possible
combinations of binary variables and pick up the optimiser corresponding to an optimi-
sation problem with the lowest objective value. possible scenarios. Considering the fact
that in general there are n; binary variables, one would have to solve 2™ linear program-
ming problems. However, this technique is very time consuming, and more advanced
techniques have been developed, specifically Branch & Bound or Branch & Cut (Adjiman
et al. 1996a, Soland 1971) which in order to find the optimal solution do not need to

compute all the possible combinations.

2.3.4 Mixed-Integer Quadratic Programming

If the vector u of optimisation variables is composed of real and a binary part, i.e. u =
[ul, ul1" with u, € R™ and u, € {0,1}¥, and the objective function f is quadratic and
constraint set S defined by linear inequalities g;(u) <0, i =1,...,m, problem (2.5) is
referred to as a Mixed Integer Quadratic Program (MIQP). Formally it can be stated as

follows:

min  ul Hyu, +ul Houp + ul Hzup + ¢l uy + cf ug
s.t. Apup + Apup < b

Acqrtr + Aegptup = beg

up € {0, 1}

(2.9)

Similarly to MILP problems, one has to choose between enumerating all the possible
combinations or using more advanced techniques, like Branch & Bound to obtain the

optimal solution.
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Chapter

Modeling of Hybrid Systems

3.1 Introduction to Hybrid Systems

Hybrid systems represent a compact framework which captures behavior of systems where
continuous dynamics is coupled with discrete logic. Examples include, but are not limited
to systems with discrete-valued actuators (such as on/off switches), piecewise linear non-
linearities, and finite state machines. Mathematically, hybrid systems can be described

by the following frameworks:
e Piecewise affine systems (Sontag 1981)
e Mixed logical dynamical systems (Bemporad and Morari 1999b)
e Linear complementarity systems (Heemels et al. 2000)
e Extended linear complementarity systems (De Schutter 1999)
e Max-min-plus-scaling systems (De Schutter and Van den Boom 2001)

Under mild assumption all these frameworks are equivalent to each other (Heemels et al.
2001). In the sequel we will provide a comprehensive description of them.

This chapter is organized as follows. After formally stating the problem in Section 3.2,
we give a detailed description of our approximation procedure in Section 3.3. Next in
Section 3.4, we deal with the problem of obtaining the optimal PWA approximation
from input-output measurements. Then, we illustrate the functionality of our software
implementation in Section 3.5. Finally the proposed technique is demonstrated on a case
study, including a model of a highly nonlinear reactor in Section 3.8. Material of this
chapter is based on our results published in Kvasnica et al. (2010), Sziics et al. (2011a),
and Kvasnica et al. (2011c).

17
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3.1.1 Piecewise Affine Systems

PWA systems are defined by partitioning the state-input space into polyhedral regions

(2.12) and associating each region with a different linear (or affine) state-update equation:

A1I+Blu+61 if [ﬂ] € R
ot ={ s (3.1)
Ayz + Byu+cny if [i] €RnN

Here z € R™ is the state vector at time instance k, 1 is the successor state at the
next sampling instance, z € R™« is the control action, R; C R® ¥« =1, ... N are the
polyhedral regions of the joint state-input space, and N is the number of individual affine
dynamics. PWA systems arise naturally when nonlinear plants are approximated by the

technique of multiple linearization (Sontag 1981).

3.1.2 Mixed Logical Dynamical Systems

MLD systems represent systems governed by discrete logic by a system of linear in-
equalities involving binary variables, which can be derived using so-called big—M formu-
lation (Williams 1993). To illustrate the procedure, consider a logic statement of the
following form
1 ifaTz<b
0= (3.2)
0 otherwise
which connects the truth value of a binary variable d to satisfaction of the linear inequality
aTz < b (which involves a real-valued variable z € R"*) via a logic equivalence relation.
Let M and m denote, respectively, the maximum and minimum values which the linear

expression a’ z — b attains over the domain X C R"=, i.e.

M =maxalz — b, (3.3a)
reX

m =mina’ z — b. (3.3b)
reX

Then the IF-THEN-ELSE rule (3.2) is equivalent to satisfaction of the following system of
linear inequalities:
al’z —b< M(1-9), (3.4a)
alz —b>e+md. (3.4b)

Here, € is a small constant, typically the machine precision, used to convert a strict

inequality into a non-strict form. More complex logic expression involving e.g. one-way
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implication (< or =) and logic operations (and, or negation) can be translated in a
similar fashion, see e.g. Bemporad and Morari (1999b), Williams (1993).

In the most general form, autonomous MLD systems are described by

xT = Az + Byu+ Bsd + B,z + By, (3.5a)
E.x+FE,u+ Es6 + E.z < Ey, (3.5b)

where & € R"= is the vector of states, § € {0,1}" is the vector of binary variables, z € R"=
is the vector of auxiliary real variables, and A, Bs, B, By, E,, Es, E., Fy are matrices or
vectors of appropriate dimensions, Given a value of x and u, the state update ™ can
be computed by solving a feasibility problem, i.e. by finding a compatible combination
of binary ¢ and real z variables satisfy constraints (3.5b). An illustrative example of
transforming a PWA system into an MLD framework, as well as an extensive description

of several fields of applications can be found in Bemporad and Morari (1999a).

3.1.3 Linear Complementarity Systems

In this section the linear complementary systems (LCS) are introduced. In general an

LCS system can be described by the following equations

r" = Az + Bu (3.6a)
y=Cx+ Du (3.6b)
0<ylz>0 (3.6¢)

where A, B,C, D are matrices of appropriate dimension and variables u, z, y have
dimensions R™, R™ and RP. The last equation denotes orthogonality between = and y,
in other words, the dot product will be always zero, since the vectors are perpendicular.
Modeling approach based on LCS systems is frequently used, for instance in electrical
networks employing diodes. An exhaustive description of LCS systems, including, but

not limited to their practical applications can be found in Heemels (1999).

3.1.4 Extended Linear Complementarity Systems

Extended linear complementarity systems (ELCS) are a special subclass of hybrid systems,
which can be obtained from the above mentioned LCS systems. As it was described
in the previous Section 3.1.3 the dynamical behavior of a general LCS system can be
characterized by the equations (3.6a) (3.6b) subject to (3.6¢), which implies that at each
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time instant k& we are capable to construct an index set I C {1,2,...,m} such that
yi=0foriel (3.7
u; =0fori ¢ I (3.8)

Each index set represents a mode of the system. Therefore, in general there are 2™
different possible modes, but not all of them have to be necessarily feasible because of

other constraints on u and y. By elimination of the variable y, we can obtain the set of

equations,
Az + Bu=0 (3.9a)
Cz+Du>0 (3.9b)
x>0 (3.9¢)
(Cx+ Du)Tz =0 (3.9d)

serving for description of such a model structure. Description and practical applicability
of this framework can be found in De Schutter and Moor (1995; 1998).

3.1.5 Max-Min-Plus-Scaling Models

A max-min-plus-scaling (MMPS) function f of the variables z1,...,x, is defined by the

recursive formula

f =x; V amax(fk, fl) V min(fk, fl) V fk =+ fl V Bfka (310)

with i € {1,...,n}, a,8 € R, and where f; and f; are again MMPS functions. The
symbol "|" in (3.10) stands for "or". Consider a system that can be described by state

space equations of the following form:

ot = M, (z,u,v) (3.11a)
y(k) = My (z,u,v), (3.11b)

where M, and M, are MMPS functions, and where z is the state vector, y(k) the output
vector, and u(k) and v(k) are the input vectors. Systems, which behavior can be described
by (3.11a) are also called extended MMPS systems. Typical examples of MMPS systems
are digital circuits, computer networks and manufacturing plants. A gentle introduction
to MMPS functions can be found in Heemels et al. (2001) and a more specific topic
mainly focusing on utilising of the underlying mathematical framework in model predictive

control can be found in De Schutter and van den Boom (2001).
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3.2 Problem Statement

In this section we will show how to obtain the optimal PWA approximation of an arbitrary
continous nonlinear function described by an analytical expression. We consider a generic
dynamic system in discrete-time

T = f(x,u), (3.12)

where the vector field f(-,-) is assumed to be continuous in the state variables x € R"=
and in the inputs u € R™, and 2% denotes the successor state. System states and inputs
are assumed to be constrained to connected and closed domains X C R™* and & C R™,
respectively.

The objective is to approximate (3.12) by a different dynamic system z+ = f(x,u)
whose vector field f (z,u) is a PWA function which consists of a pre-specified number N

of local linear dynamics:

A1I+Blu—|—61 if [i]ERl

Fau) =4 s (3.13)
Anyz + Byu+cy if [i]GRN
Here, A; € R"=*"= B, € R™"=*™ ¢, € R" are the state-update matrices of the i-th local
linear approximation, and R; C R™=*" ig the region of validity of the i-th local model
satisfying R; # 0, int(R;) Nint(R;) =0, Vi # j, and U;R; = X x U.

Formally, the problem which we aim at solving can be stated as follows:

Problem 3.1 Given a nonlinear vector field f(xz,u) of system (3.12), find the PWA

approximation (3.13) of pre-specified complexity which minimizes the approxzimation error
Caprs = [ (£ = Faw,0))? dad (3.14)
where the integral is evaluated over the whole region of validity of (3.12), i.e. over X xU.

Remark 3.1 Since the approximation procedure discussed in the sequel considers only
the vector field in the right-hand-side of (3.12), continuous-time systems & = f(x,u) can

be treated as well.

3.3 Optimal PWA Approximation

In this section we propose how to solve Problem 3.1, i.e. how to obtain an optimal PWA
approximation f of pre-specified complexity as in (3.13) which optimally approximates a

given one-dimensional nonlinear function f : R — R, provided that the analytical form of
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f is known. Subsequently, we will show how to approximate nonlinear functions in higher
dimensions. i.e. f:R™ — R by utilising the basic one-dimensional building block.

We distinguish between 3 special cases. The first one, described in Section 3.3.1,
covers approximation of one-dimensional functions where f : R — R provided that the
domain of f is connected and closed. Then, in Section 3.3.2 we show how to extend the
procedure to approximation of multi-variable functions which satisfy a special property.
Finally, in Section 3.3.3 we illustrate how to solve Problem 3.1 where f is an arbitrarily

complex function, not satisfying any special properties.

3.3.1 Functions in One Variable

First, we consider the one-dimensional case, i.e. approximating a nonlinear function f(z) :
R — R, with a connected and closed domain Z C R, by a PWA function f(2) = a;z+¢; if
z € R;. Since Z is assumed to be connected and closed, it is a line segment [z, Z]. Regions
R; define the partition of such a line into N non-overlapping parts, i.e. Ry = [z, r1],
Ro =[r1, 2], ..., RN-1 = [rN—2, "™N—-1], RN = [rNn-1, Z] with U;R; = [z, Z]. Solving
Problem 3.1 then becomes to find the slopes a;, offsets ¢; and breakpoints r; such that

the approximation error is minimized, i.e.

i 1) = Fe) s (3.15a)

ajz+c  ifz €z 7]

s.t. fz)= : : (3.15b)
anz+cny if z €ry-q1, Z]

z2<rm < <ry-1 <7Z, (3.15¢)

a;1; + ¢ = Qi417; + Cit1, izl,...,N—l, (315(1)

where (3.15d) enforces continuity of f(z) along the breakpoints r;. The IF-THEN based
nonlinear constraint (3.15b) can be eliminated by observing that, by definition, regions

R; are non-overlapping, and the integral in (3.15a) can hence be written as

z N
/ (F(2) = F(2)2dz =3

z i=1

(/T” (f(Z) — (aiz + Ci))zdz), (3.16)

with ro = z and ry = Z. The nonlinear programming problem (NLP) (3.15) can therefore
be written as

N n
arrgnT Z (/ (f(2) = (aiz + ci))2 dz) (3.17a)
i=1  Jri-1

i—

s.t. §§T1<-~-§7"N71 SE, (317b)

a;r; +¢; :ai+1ri+ci+1, 1= 1,...,N71. (3170)
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For simple functions f(z), the integral in (3.17a) can be expressed in an analytical
form in unknowns as, ¢;, r;, along with the corresponding gradients. For more complex
expressions, the integrals can be evaluated numerically, e.g. by using the trapezoidal rule.
In either case, problem (3.17) can be solved to a local optimality e.g. by using the fmincon
solver of MATLAB. Alternatively, one can use global optimization methods (Adjiman
et al. 1996b, Chachuat et al. 2006, Papamichail and Adjiman 2004) which guarantee that

an e-neighborhood of the global optimum can be found.

Example 3.1 Consider the function f(z) = 23 on domain —1.5 < z < 1.5. The analytic
form of the integral (3.17a) is

with ro = —1.5 and rny = 1.5. The PWA approzimation of f(z) with N = 3 regions was
obtained by solving the NLP (3.17) using fmincon, which took 0.12s on a 3.4 GHz CPU
running MATLAB 2012b. The obtained PWA approximation is then given by

417972 +3.1621 if — 1.5 < 2 < —0.8423
f(z) = {0.42572 if —0.8423 < » < 0.8423
41797z — 31621 if 0.8423 <z < 1.5

The value of the integral error assuming only 8 approximation segments was 0.031. Nat-
urally, quality of the approximation can be improved by increasing the complexity of the
PWA function, i.e. by enlarging N. By simply increasing the number of approzimation
segments to 5 we were able to reduce the integral error to 0.005. Graphical representation
of the corresponding PWA approximations with N = 3 and N = 5 are shown, respectively,
in Figures 3.1(a) and 3.1(b).

Example 3.2 Consider the function f(z) = |z|+0.52%—sin (2®) on domain —1 < 2z < 2.5,
graph of which is shown in Figure 3.2(a). Since no analytic expression of the integral
n (3.17a) could be obtained, we have opted for numeric integration of the cost while
solving the NLP problem (3.17) by fmincon. The PWA approzimations for N = 3 and
N =7 are shown in Figures 3.2(a) and 3.2(b). In case of 8 approzimation segments the
computation took 0.97 s, and the integral error was 0.65. By increasing the number of
segments to 7, the computational procedure took approximately 3 s, but the approximation

error was reduced by a factor of 30.
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) S— : : : — S S— ‘ : : —
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z z

(a) PWA approximation with 3 regions. (b) PWA approximation with 5 regions.

Figure 3.1: Graph of f(z) = 2° (blue line) and the PWA approximations f(z) (red dashed

lines)

-1 0 1 2 -1 0 1 2
z z
(a) PWA approximation with N = 3 regions. (b) PWA approximation with N = 7 regions.

Figure 3.2: Graph of f(z) = |2|+0.52? —sin (23) (blue line) and the PWA approximations
f (2) (red dashed lines).



3.3. OPTIMAL PWA APPROXIMATION 25

3.3.2 Multivariable Separable Functions

The task is to approximate a given multivariable function f(z1,...,2,) : R — R with
domain Z C R” by a PWA function f (21,..., 2n), defined over the same domain, such

that the approximation error (3.14) is minimized and the following assumption is fulfilled.

Assumption 3.1 The function f(z1,...,2,) can be written as >, O‘i(Hg;pi fj(z]))

Definition 3.1 (Williams (1993)) Function f(z1,...,2,) is called separable if it can

be expressed as the sum of functions of a single variable, i.e. f(z1,...,2n) = fi1(z1) +
e _|_ fn(zn).

If f(z1,...,2n) is readily separable (e.g. when f(z1,22) = €*' + sin (z2)), its optimal
PWA approximation can be obtained by applying the 1D scenario of Section 3.3.1 to the
individual components of the function, i.e. f(z1,...,2,) = fi(z1) + -+ + fu(zn). The
total number of regions over which the PWA approximation f (+) is defined is hence given
by Z?Zl N;, where Nj; is the pre-specified complexity of the j-th approximation fj(zj)

A surprisingly large number of non-separable functions can be converted into the
separable form by applying a simple trick, elaborated in more details e.g. in Williams
(1993). To introduce the procedure, consider a non-separable function f(z1,22) = 2129

with domain Z := [z;, Z1] X [24, Z2]. Define two new variables
y1= (21 +22), Y2 = (21— 22). (3.18)

Then it is easy to verify that 1/4(y? — y3) = 2122. The coordinate transformation
therefore transforms the original function into a separable form, where both terms (y?
and y3) are now functions of a single variable. The procedure of Section 3.3.1 can thus
be applied to compute PWA approximations of fy, (y1) := y? and fy,(y2) := y3, where
the function arguments relate to z; and z» via (3.18). Important to notice is that f;, (+)
and f,,(-) have different domains, therefore their PWA approximations fy, (1) ~ y? and
fua(y2) = y3 will, in general, be different. Specifically, the domain of f,, (-) is ly,, V1]
with y, = min{z; + 20 | 2, <21 <Z1, 2 <20 <Zp}and J; = max{z + 22 | z2; < 21 <
Z1, zy < 22 < Z2}. Similarly, the domain of fy,() is [y,, ¥,], whose boundaries can be
computed by respectively minimizing and maximizing z; — z2 subject to the constraint

[21, 22]T € Z. The overall PWA approximation f (21, 22) & 2122 then becomes

Fla1,22) = Va(fyy (21 + 22) = fa (21 — 22)). (3.19)

The value of f (21, z2) for any points 21, 22 is obtained by subtracting the value of the PWA
function f,,(-) evaluated at the point z; — 2o from the function value of f,, (-) evaluated

at z1 + 2o, followed by a linear scaling.
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The procedure naturally extends to multivariable functions represented by the product
of two nonlinear functions of a single variable, i.e. f(z1,22) = f1(21)f2(22). Here, the

transformation (3.18) becomes

y1 = fi(z1) + fa(z2),  y2 = fi(21) — fa(22)- (3.20)

Therefore, 1/4(y? — y3) = f(21,22) still holds. Let f,, (v1) := v and fy,(y2) := y3. The
domain of fy, () is [y,, ¥1] and domfy,(-) = [y,, Y] with

y, = min{fi(z1)+ fa(22) | [21, 2] € Z}, (3.21a)
7 = max{fi(z1) + fa(22) | [21, 22]" € 2}, (3.21Db)
y, = min{fi(z1) = fa(z2) | [21, 2" € 2}, (3.21¢)
7, = max{fi(z21) - f2(22) | [21, 2]" € 2}, (3.21d)

which can be computed by solving four NLP problems.

Finally, since all expressions are now functions of a single variable, the PWA ap-
proximations fi(21) ~ f1(21), fa(22) & fa(22), fy, (1) = fy, (1), and fy, (y2) = fy, (y2)
can be computed by solving the NLP (3.17). The overall optimal PWA approximation

f(z1,22) = f(z1,22) then becomes

T, 22) = Y For (i) + a(22)) = Fua (1) = Fal2))). (3.22)
The evaluation procedure is similar as above. lL.e., given the arguments z; and 2o, one first
evaluates %) = f1(21) and Z, = fa(22). Subsequently, one evaluates §; = f,, (-) with the

argument Z; + Zo, then §p = ny(-) at the point Z; — Z3. Finally, f(zl,ZQ) = 1/a(g1 — §2).

Example 3.3 Consider a non-separable function given as the product of the two functions
discussed in Examples 5.1 and 3.2, i.e. f(z1,22) = f1(21)f2(22) with fi(z1) = 23, fa(22) =
|22|4+0.523 —sin (29)2 on domain [—1.5, 1.5] x[—1, 2.5]. Graph of the function is shown in
Figure 3.3(a). In order to convert f(z1,z2) into a separable form, we introduce variables
y1 and yy as per (3.20). The PWA approzimation f(z1,2) ~ f(z1,22) is then given
by (3.22). Here, fi(z1) was obtained by approzimating fi(z1) by a PWA function with 3
regions as shown in Figure 3.1(a), while fg(Zg) ~ fo(2z2) was approximated by 7 regions as
depicted in Figure 3.2(b). Subsequently, the domains [gl, 7] and [gQ, U] were computed
via (3.21), which resulted into domy; = [—3.374, 9.095] and domys = [—9.095, 3.374].
Finally, the PWA approzimations fyl (y1) =~ y? and fyg (y2) ~ y2 were obtained by solving
the NLP (3.17) with N = 2. Graphs of y3, y3 and their respective PWA approzimations
are presented in Figure 3.4. The overall approximation f(zl, z9) therefore consists of 14
regions. Despite a rather crude approximation of the square functions, the combined PWA

function (3.22), shown in Figure 3.3(b), features only a minor average approrimation
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0o ~_-— 0
z -1 Z

(a) Graph of f(z1, 22). (b) Approximation f(z1,2z2)

Figure 3.3: Graph of f(z1, 22) and its PWA approximation (3.22) in Example 3.3.

error of 3% and a worst-case error of 15%. By increasing the number of linearizations
for y? and y? from N =2 to N = 4 (hence increasing the complexity of f(z1,22) from 14
to 18 regions), the average and worst-case errors can be further reduced to 1% and 8%,

respectively.

I Y2,
(a) y? (d) v3

Figure 3.4: Functions y? (blue) and their PWA approximation fy, (y;) (red dashed lines)
in Example 3.3.

Separation of multivariable functions with more than two terms can be performed in
an inductive manner. Consider f(z1, 29, 23) = f1(21) f2(22) f3(23). First, approximate the
product f1(z1)f2(z2) by a PWA function of the form of (3.22), which requires four PWA

approximations

RO = A0) 0= f20), Fu () =t () =43,
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with y; and y2 asin (3.20). Let fo(21, 22) := f1(21) f2(22). Then f(z1, 22, 23) = fa(21,22) f3(23),
which can again be approximated as a product of two functions. Specifically, define

ys = fa(-) + f3(23),  ya = fa() = fa(23), (3.23)

and hence f, (21, 22)f3(23) = 1/4(y3 — y3). The domains over which y3 and y? need to be

approximated are, respectively, [gg, 74| and [Q4, 7,] with

y, = min{fi(21)f2(22) + f3(23) |z € Z}, (3.24a)
U3 = max{fi(z1)fa(22) + f3(23)] 2 € Z}, (3.24b)
y, = min{fi(z1)f2(22) — fa(2s) |z € Z}, (3.24¢)
¥y = max{fi(21)f2(22) — f3(23)]z € Z}, (3.24d)

and z = [z1, 29, 23]7. Subsequently, three additional PWA approximations

Fuas) = 43, fuu(ya) =y, fs(z3) = fa(z3)

need to be computed over the corresponding domains. The aggregated optimal PWA
approximation f(zy,2,23) &~ f(z1)f(22)f(23) consists of 7 individual approximations
and is given by

fi) = 1/4(fy3 (fo + f3(23)) = Fuu (fa — Fu(23)) ) (3.25)

Js Ja

Here, fa is the function value of fa(zhzg) ~ f1(z1)f2(22) at z; and zo, where fa() is
obtained from (3.22), i.e.:

fa = 1/4<fy1 (fl(Zl) + fz(zz)) - fyz (fl(zl) - f2(22)) ) (3:26)

91 U2

The overall PWA approximation f (21, 22, z3) can then be evaluated, for any z1, 22, 23 € Z,

by computing the function values of the respective approximations in the following order:

Step 1: g1 = fy, (fi(z1) + fa(22)),
Step 2: g = [y, (fi(z1) — fa(22),
Step 3: §i3 = fy, (Y/4(91 — §2) + fa(23)),
Step 4: G1 = fy,(Ya(ir — 52) — fa(z3)),

Step 5: f(z1,22,23) = Y/4(J3 — 94).

Such an inductive procedure can be repeated ad-infimum to derive PWA approxima-

tions of any multivariable function which satisfies Assumption 3.1. In general, the PWA
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approximation will consists of 2p + n individual PWA functions, where n is the number
of variables in f(z1,...,2,) and p is the number of products between individual subfunc-
tions fj(z;). As an example, for f(-) := a1 fi(21)f2(22) fa(24) + a2f3(23) f5(25) we have
p = 3. We remark that inclusion of scalar multipliers o; into the PWA description of the
form (3.25)—(3.26) is straightforward and only requires linear scaling of the corresponding

terms.

3.3.3 Multivariable Nonseparable Functions

When the nonlinear function f : R™ — R to be approximated does not satisfy Assump-

tion 3.1, we propose to proceed as follows. As a rather general setup, consider that

f(Z) = fout,l(fout,Q(fout,S(' o (fln(z))))) (327)

with the inner function fi, : R™ — R satisfying Assumption 3.1 and arbitrary outer
functions fout; : R = R, ¢ = 1,...,m — 1. This relation can be further generalized to
include sums and/or products of functions.

As a specific example, consider

f(21,22) = exp(z122), (3.28)

where fin(21,22) = 2120 and fout(w) = exp(w). To derive an optimal PWA approxi-
mation f of (3.28) , we introduce the substitution w = fi,(21,22). Since fi, satisfies
Assumption 3.1, the procedure of Section 3.3.2 can be applied to find its optimal PWA
approximation w = fm(zl,zg) ~ z123. Define two new variables y; = (21 + 22) and
yo = (21 — 22). Then 1/a(y? — y3) = 212 trivially holds. Subsequently we can solve
the NLP (3.17) to obtain optimal PWA approximations f,, (y) ~ > on domain ly,> V1l
and fy2 (y) ~ y? on domain [yz, Ts). We remark that although both functions to be ap-
proximated are the same (y?), their respective domains will be different and are given
by (3.21). Their PWA approximations will therefore differ as well. Next we derive a PWA
approximation of fou(w) &~ exp(w) again by solving (3.17). Value of the overall PWA
approximation f(z1,22) ~ exp(z122) at a particular point (2, z2) can then be obtained

by evaluating the corresponding 1D approximations in the following order:
L g1 = fy (21 + 22)
2. o = fys (21 — 22)
3. = 1/4(j1 — §2)

4. f(Zl,ZQ) = fout(w)
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Such an substitution approach can be generalized to derive optimal PWA approxima-

tions of general nonlinear functions in the form of (3.27) by the following procedure:

1. Obtain optimal PWA approximation of the inner function f,,(z) using the procedure

in Section 3.3.2.

2. Define new variables w; and approximate the 1D functions f;(w;), i =m—1,...,1,
by solving (3.17).

If the multivariable inner function fj, : R™ — R with domain Z consists of more than

two terms, its PWA approximation can be performed in an inductive manner. Consider

fin(z1,22,23) = f1(21)f2(22) f3(z3). First, approximate the product fi(z1)f2(22) by a
PWA function of the form of (3.22), which requires four PWA approximations

A0 = 0, 0= f20), Fu() =i, () =93,

with y1 and y2 asin (3.20). Let fu (21, 22) := f1(21)f2(22). Then f(21, 22, 23) = fa(21, 22) f3(23),

which can again be approximated as a product of two functions. Specifically, define

ys = fa() + f3(23),  ya = fu() = fa(2s), (3.29)

and hence f,(z21,22)f3(23) = 1/4(y3 — y7). The domains over which y2 and y? need to be

approximated are, respectively, [33’ 74| and [&, 7,] with

y, = min{fi(z1)f2(22) + f3(23) |z € 2}, (3.30a)
Us = max{fi(21)f2(22) + fs(z3) |2 € Z}, (3.30b)
y, = min{fi(21)f2(22) — f3(23) |2z € Z}, (3.30c)
vy = max{fi(z1)f2(22) — f3(23) ]z € Z}, (3.30d)

and z = [z1, 22, 23]7. Subsequently, three additional PWA approximations

Fus(W3) = Y3, fuu(ya) = v3, fa(zs) = falzs)

need to be computed over the corresponding domains. The aggregated optimal PWA

approximation f(z1,22,23) & f(z1)f(22)f(23) consists of 7 individual approximations

and is given by

Fnl) = Ya( Juu(fu + Fs(2)) = Fou(fo = Fal29)) ) (3:31)
93 Ja
Here, fa is the function value of fa(21,22) ~ f1(z1)f2(22) at z; and zo, where fa() is
obtained from (3.22), i.e.:

fo= a(fur (Fi1) + Fal22)) = Fo (fil21) = () ). (3:32)

0 U2
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The overall PWA approximation ﬁ,1(21722,23) can then be evaluated, for any z1, 2o,
z3 € Z, by computing the function values of the respective approximations.

Such an inductive procedure can be repeated ad-infimum to derive PWA approxi-
mations of any multivariable inner function. In general, the PWA approximation will
consists of 2p + n, + m — 1 individual PWA functions, where n, is the number of
variables, m is the number of functions in (3.27) and p is the number of products
between individual subfunctions f;(z;) in the inner function fi,. As an example, for
fin(2) := a1 f1(21) fa(22) fa(z4) + a2 f3(23) f5(25) we have p = 3. We remark that inclusion
of scalar multipliers a; into the PWA description of the form (3.31)—(3.32) is straightfor-

ward and only requires linear scaling of the corresponding terms.

3.4 Approximation of Nonlinear Functions from Input-

Output Data

This section deals with the problem of obtaining PWA approximation of arbitrary non-
linear function, when instead of an analytic expression only input-output measurements
are given. Therefore, our first step is represented by seeking for an appropriate fitting
function f. We propose to use a technique to compute an optimal linear combination of

basis functions in the following form:
P
flz) = aifi2), (3.33)
i=1

where a; € R are scalar multipliers and f; are the basis functions. Therefore, in Sec-
tion 3.4.2 we propose three different approaches to obtain the coefficients of the underlying
fitting function. The most straightforward way to obtain the coefficients of the underly-
ing linear combination is to solve a simple unconstrained optimisation problem. Further
extension to the aforementioned approach is represented by a constrained quadratic pro-
gram, which purpose is to minimise the cardinality of the vector containing the coefficients
multiplying the respective basis functions. Alternatively, one can directly minimise the
number of non-zero coefficients, however, this approach requires solving a mixed-integer
linear programming problem.

After having obtained the desired analytic formula, we can proceed in our approxima-

tion procedure as it was described in Section 3.3.

3.4.1 Problem Definition

We are given a T samples of input data z; € Z C R™ from some closed and bounded set

Z, and the corresponding measurements y; € R, ¢ = 1,...,T. We want to fit the data
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with a PWA function f : R"* — R with N regions which satisfies two design requirements:

R1: fis well-posed (Bemporad and Morari 1999¢) on Z, i.e it satisfies int(R;)Nint(R;) =
(Z), V’L#] and UjRj 227]:1,,]\7

R2: f is a good fit which achieves a low fitting error eg, = Zle(yi — f(z:))%

Solving this problem (i.e. determining regions R; C R™ and parameters a; € R"z,
¢; €R,j=1,...,N), however, is not trivial (Kvasnica et al. 2011c) if the input samples
z; are vectors, i.e. when n, > 1. The difficult part is how to divide the domain Z into
non-overlapping regions R; without creating “holes”, i.e. guaranteeing that the union
U;R; completely covers Z if dimension(Z) > 1.

To overcome this difficulty, we propose to split the search for the PWA function f into
two steps. In the first stage we fit the input data, represented by the (z;, y;) pairs, with

a nonlinear function y = f(z):

Problem 3.2 Given are T samples of input-output data (z;, y;), i = 1,...,T. Fit the
data with a multivariable function f : R™ — R such that the fitting error efy = 23;1(92’ —

f(2:))? is minimized.

Once the analytical form of the fitting function f is available, in the second step we
search for its optimal PWA approximation, as it was described in the previous sections.
In order to fulfill the requirements stated in 3.4.1 in Section 3.4.2 we propose to solve
Problem 3.2 by a simple unconstrained optimization problem to find an appropriate linear

combination of the basis functions.

3.4.2 Function Fitting

To solve Problem 3.2 we need to determine the analytical form of the fitting function f

which minimizes the fitting error ZiT:l(yi — f(24))%. The usual approach is to select a

subspace of basis functions fi,..., f, : R™ — R such that
f(Z)=arfi(z) + -+ anfu(z). (3.34)
The task then is to determine coefficients a; € R, ¢ = 1,...,n which parametrize f and

provide an optimal fit.

Needless to say, selection of the basis functions is crucial in obtaining a good fit.
In many situations the basis is chosen by hand, employing prior knowledge about the
analytical form of the nonlinearity from which the input-output data originated. One
such an example was provided in Section 3.3.3.

If this prior information is not available, one can resort to a rather broad selection of

basis functions (Boyd and Vandenberghe 2004b). One common subspace of functions on
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R consists of polynomials of degree less than n. The simplest basis consists of the powers,
ie. fi(z)=z2"Yi=1,...,n

We can also consider polynomials on R™=, with a maximum total degree n

fit)= Y At (3.35)
i1+ t+in<n
or a maximum degree for each variable. An another common option is to use trigonometric

polynomials of degree less than n with basis
sin(kz), k=1,...,n—1, cos(kz),k=0,...,n—1. (3.36)

Regardless of the choice of the basis functions, it is important to notice that f as
in (3.34) is linear in the unknown coefficients ayq,. .., a,. Therefore Problem 3.2 can be

easily solved by solving a simple unconstrained optimization problem in the form

T
min Z(yZ — f(z))% (3.37)
i=1

The unknown coefficients «; can be obtained e.g. by taking derivative of (3.37) equal to
Z€ero.

The fitting problem (3.37) can be further extended to obtain a simple form of the fitting
function f by minimizing the cardinality of the vector of parameters a = [aq,. .., q,]
in (3.34). A simple heuristic approach would be to minimize the 1-norm of @ (Boyd and
Vandenberghe 2004b):

T
min 3" (y; — £(z0)) +lalls, (3.38)
=1

which can be cast as a constrained quadratic program. The tuning parameter v > 0 here
acts as a regularization coefficient.

A more rigorous approach is to directly minimize the number of non-zero components
of a. This can be achieved by introducing a set of binary indicators 6; € {0, 1}, j =
1,...,n which fulfill

(a; #0) = (5, = 1). (3.39)

By employing the big-M technique (Bemporad and Morari 1999c, Williams 1993) we can

rewrite (3.39) into a set of inequalities which are linear in 6; and o;:
— Méj S a; § Méj, (340)

where M is a sufficiently large number. It is then easy to verify that minimization of the

number of nonzero components amounts to minimizing the sum of corresponding binary
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indicators, i.e.

T n

min Y (yi— f(2)? 7D (3.41a)
i=1 j=1

s.t. —M5j S Q; S M(Sj, ] = 1, e, ny (341b)

which provides a good fit of minimal cardinality. Problem (3.41) is a mixed-integer
quadratic program which can be solved to global optimality using state-of-the-art solvers
(ILOG, Inc. 2003, Lofberg 2004). Complexity of (3.41) is primarily determined by the

number of binary variables, i.e. by the number n of basis functions considered in (3.34).

Apart from the technique, based on solving an unconstrained optimization problem,
one can apply approaches seeking the optimal PWA affine approximation problem from
input-output data by using an alternative method employing neural networks (Stevek
et al. 2012). In this work we have proposed to exploit the advantages provided by or-
thogonal activated function based neural networks (OAF-NN) to obtain the parameters

of the linear combination of the final fitting function.

3.4.3 Complete Scheme

In order to solve Problem 3.2, one needs combine results of Section 3.4 with the approaches

of Section 3.3 in the following manner:

1. Obtain the analytic form of the function (3.34), which best fits the given set of data,
applying the technique described in Section 3.4.2

2. Find the optimal PWA approximation of the obtained analytic fit by one of the
methods described in Sections 3.3.1, 3.3.2, and 3.3.3.

Example 3.4 Consider a set of input-output data shown in Figure 3.5(a). To fit these
data with a PWA function, we have first applied the procedure of Section 3.4.2 to obtain
an optimal fit by the functionf(z) = Z?Zl a; fi(z) which consists of basis functions f1 =1,

fa =sin(z122) and f3 = cos(z1 — z2). By solving (3.37) we have obtained
f(z1,22) = 0.02 + 0.08sin(z122) + 1.2 cos(z1 — 22), (3.42)

shown in Figure 3.5(b). To derive an optimal PWA approximation of f in (3.42) we have
applied the aforementioned procedure to approzimate sin(zy292) by first approximating z1 zo
by a PWA function fi(z1,22) and sin(w) by fo(w). Approzimation of cos(z1 — z2) was
performed in a similar manner. The resulting PWA approximation of (3.42), consisting

of 15 regions, is depicted in Figure 3.5(c).
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1 1
Z

(a) Input-output data (z;, y;) with z; € R2.

15

(b) Optimal fit with a trigonometric polynomial ba-  (c) Graph of optimal PWA approximation

sis. f(z1,22)

Figure 3.5: Two-dimensional fit from Example 3.4.

3.5 Software Implementation

An algorithmic implementation of the inductive separation procedure of Section 3.3.2 is
discussed next, provided that all functions are given in their symbolic representation.
The procedure relies on two basic building blocks. The first one, represented by Algo-
rithm 3.5.1, constructs the PWA approximation of a product of two functions, i.e. com-
putes f(z;,2;) ~ fi(zi)f;i(z;). Strictly speaking, the algorithm differentiates between two
scenarios. If either f; or f; are PWA functions which approximate the product of some
other functions (say fi =~ fpfy), then f~ fifj is computed as shown in (3.29)-(3.32).
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*
5 Yol

(a) Step 1. (b) Step 2. (c) Step 3.

Figure 3.6: Parsing tree T built by Algorithm 3.5.2.

Otherwise the procedure evidenced by (3.18)—(3.22) is followed.

Algorithm 3.5.2 then utilizes this block to construct a parse tree which defines the
PWA approximation of the product of multiple functions, i.e. [[;_, fi(z;). To illustrate
the procedure, consider f(z1,z22,25,24) = f1(21)f2(22)f3(23) fa(z4). First, the stack of
“unexplored” functions & = {f4, f3, fo, f1} is formed. In the first pass of the while
cycle, fi and fy are popped from the stack and the PWA approximation fa ~ f1f2 is
computed by Algorithm 3.5.1. Subsequently, f, is pushed back to S (which then becomes
S = {f4, f3, fa}), and new nodes of the parse tree T are created as shown in Figure 3.6(a).
The procedure then repeats from Step 4. L.e., f3 and fa are popped from S, fb =~ f3f, is
computed, and the parse tree is updated as illustrated in Figure 3.6(b). Due to Step 6,
S = {fa, fb}, and the algorithm therefore performs one more pass at which f, ~ f4fy is
created and inserted into the tree, which finally looks like in Figure 3.6(c). The algorithm
thereupon terminates since S = {f,} contains a single element.

If the function to be approximated contains sums of products, e.g. when f(z1, 22, 23, 24) =
a1 f1(z1) fa(z2)+aa f3(23) f4(24), separate parsing trees have to be built by Algorithm 3.5.2
for each component of the summation. We remark that treating the scaling factors «;
only involves scaling the bottom-most node of the corresponding tree by the respective
.

The parsing tree generated by Algorithm 3.5.2 can be readily used to convert the PWA
approximation f(z1,...,2,) ~ Y]l i i (z;) into a suitable mathematical model, which
can subsequently be used for simulations, analysis, or control synthesis. Therefore we have
created a software tool which takes a parsing tree T (or several such trees to accommo-
date for sums of products of functions), and automatically generates the corresponding
HYSDEL representation of such a PWA approximation.

Next, we discuss software implementation of the approximation procedure described
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Algorithm 3.5.1 PWA approximation of f;(z;)f;(2;)
REQUIRE: Functions f;(z;), f;j(2;).
OUTPUT: Approximation f(z;,2;) =~ fi(2)f;(z;).
1: Obtain the PWA approximations fi(z;) ~ fi(z:) and f;(z;) = f;(z;) by solving two
NLPs (3.17).
2 Get y., U, Y and 7, from (3.21) or (3.30).
3: Compute the PWA approximations ngi (yi) =~ y? and fyj (y;) ~ yj2 on domains [gi, 7]
and [gj, ;] by solving two NLPs (3.17).

4: return f;(z;), f;(2;), and the symbolic representation of f(z;, z;).

Algorithm 3.5.2 PWA approximation of [, fi(z:)
REQUIRE: Functions f;(z;).
OUTPUT: f(z1,...,2,) ~ [1I, fi(zi).

1: Create an empty last-in-first-out stack S and an empty tree T.
Push fi(z;), i =n,...,1 to the stack S.

while S has more than one element do

Pop two elements f;(z;) and fi(zy) from S.

Obtain fj(z;), f;(z;), and f(zj, 2x) ~ f;(2;) fr(zx) by calling Algorithm 3.5.1.
Push f(zj,2) to S.

Create nodes f;(z;), fx(z1) and insert them to 7.

Create a node f(z;, 2;) and append it as a child of nodes f;j(z;) and fi(z).

end while

return Tree 7 representing f(z1,...,2,) = [[1m, fi(2)-

-
=




38 CHAPTER 3. MODELING OF HYBRID SYSTEMS

above. The implementation is provided in a form of an open-source MATLAB toolbox,
called AUTOPROX, which is freely available from http://www.kirp.chtf.stuba.sk/~sw/.
The toolbox provides two types of user interfaces. Input data can either be provided di-

rectly from the command line or, alternatively, entered using a graphical interface.

3.6 Command-Line Interface

The command-line interface is illustrated first by revisiting Example 3.1. To approximate
the function f(z) = 23, one proceeds as follows:

syms z

f =273

bounds = [-1.5, 1.5]

regions = 3

[aprx, datal] = autoprox_1d(f, bounds, regions)

Here, AUTOPROX uses the Symbolic Toolbox to define symbolic representation of
the function to be approximated on a given domain (represented by the bounds variable),
with a given number of PWA segments (the regions variable). The first output argu-
ment (denotes as aprx here) is a function handle, which can be used e.g. to plot the
approximation:

x = -1.5:0.001:1.5
plot(x, x.73, x, aprx(x), ’--’)

which will generate a plot as seen in Figure 3.1(a). The second output (stored in the data
variable) can be used to export the PWA approximation into the HYSDEL language:

hysdel_1id(data, ’filename.hys’)

The generated HYSDEL model can be subsequently compiled by the HYSDEL com-
piler, which will provide a mathematical model suitable e.g. for control synthesis.

Approximation of 2D functions can be performed in a similar manner. Let us again
consider Example 3.4, i.e. the task is to approximate the function f(z1,22) = 23(|22| +
0.522 — sin (22)?) on domain [—1.5, 1.5] x [—1, 2.5]. Again, the first step is to define the
function using symbolic variables:

syms zl1 z2

f1 = z173

f2 = abs(z2) + 0.5%z272 - sin(z273)

Next, the function domain and number of approximation segments need to be pro-
vided:

f1_bounds = [-1.5, 1.5]

f2 bounds = [-1, 2.5]

f1l_regions = 3



3.7. GRAPHICAL USER INTERFACE (GUI) 39

1]
~

f2_regions

yl_regions

y2_regions
Finally, the approximation f(z1,2) can be obtained by calling

[aprx,datal = autoprox_2d(f1,f2,f1_bounds,f2_bounds,...

f1_regions, f2_regions,yl_regions, y2_regions)

Similarly as in the previous example, the aprx output is a function handle which can

be used to directly evaluate the approximation at some given values of z; and 2z, e.g.

zl = 0.5
z2 = -1
true_value = z173*(abs(z2) + 0.5%z272 - sin(z273))

aprx_value = aprx(zl, z2)

The second output (called data) again serves to generate the HYSDEL version of the
approximation:

hysdel_2d(data, ’filename.hys’)

Approximation of n-dimensional functions can be obtained by calling the autoprox_nd
function. A detailed description of its calling syntax is omitted due to brevity, but is
provided in the distribution package of AUTOPROX.

3.7 Graphical User Interface (GUI)

The GUI allows to perform the approximation in an easily accessible manner where all
data can be entered conveniently without the need to remember the exact calling syntax
of individual approximation functions.

The main window of the GUI is shown in Figure 3.7. The user starts by selecting
the type of approximation using radio buttons. Then, he provides the symbolic repre-
sentation of the function to approximate in the FUNCTION text box. The domain of
the function, represented by its minimal and maximal bounds, has to be filled out next.
After providing all necessary details, the user can select the number of approximation
regions by a drop-down menu, as shown in Figure 3.8. Afterwards, the approximation
is computed by clicking the SPLIT button. A concise statistical evaluation of the ap-
proximation will then appear in a corresponding section of the GUI. It informs the user
about the approximation quality, represented by average and worst-case approximation
errors. Finally, the approximation can be exported to a HYSDEL source by clicking the
EXPORT button.
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Figure 3.8: GUI windows after performing approximation.

3.8 Case Study

Consider a continuous stirred tank reactor (CSTR) where the reaction A — B takes
place. The source compound is pumped into the reactor at a constant inflow with a
constant concentration. The chemical reaction is exothermic and a coolant liquid is
therefore pumped into the reactor’s jacket to prevent overheating. The input temperature

of the coolant is constant, while its flow rate g. can be manipulated and is considered an
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exogenous input. Concentration of the reactant c4 inside of the reactor, temperature of
the reactor mixture 1%, and temperature of the cooling liquid in the jacket 1. are the state
variables of the CSTR. The normalized material and energy balances of such a reactor

are then given by

éa = oy — agca —ascae 7,
9 = ag—asascae " + agl + arde, (3.43)
190 = agqc+ 049(79 - 190) - a10§6q63

with constants «; and 5. The state and input variables are considered to belong to inter-
valsca € [4, 4.2Jmolm ™3, 9 € [300, 320] K, ¥, € [290, 310] K, and g. € [0.002, 0.02] m®h~1.
The model features two nonlinearities: J.q. and cqe="?, both of which satisfy As-
sumption 3.1. Since the first one involves a direct product of two variables, its PWA
approximation f, &~ ¥.q. can be obtained as in (3.19) by first defining y; = Y. + ¢c,
y2 = Y — q., followed by approximating the functions y? and 335 by fyl (y1) and fy2 (y2),

respectively. Hence, the approximation fl (¥¢, @) & ¥eq. is represented by

fl (1907 QC) = 1/4(fy1 (790 + qC) - fyz (196 - qc))' (344)

The second nonlinearity can be approximated as in (3.22). First, the PWA approximation
§(9) = e="" is computed by solving (3.17). Then, y3 = ca + e~ 7", ys = ca — e~ /” are
defined, followed by computing the respective PWA approximations fyd(yg) ~ y3 and

fy4 (ya) = y3. fa(ca, ) = cae="" is thus given by

Foleasd) = 1/1(Fu(ea+3(0)) = Fiu(ea = 3(9))) (3.45)

The overall PWA approximation of the original nonlinear system & = f(z,u) with x =

[ca, ¥, 9.7 and u = q. is thus

éa ~ ap—agca — agfa(ca,V)),
9~ ay — oz5a2f2(cA, 19) + ag¥ + ard. + 9, (346)
s agge + ag(¥ — 9e) — a10f1(Ves e)s

Q

which can be easily converted into the general PWA form (3.13) as described in Section 3.2.

To assess approximation accuracy, we have investigated the open-loop evolution of the
original nonlinear model (3.43) and compared it to the behavior of its PWA approxima-
tion (3.46). To derive the PWA model, we have chosen 3 regions for fy, (-), f,, () in (3.44)
and f,, (-), fy.(-) in (3.45), and N = 2 for §(f) ~ e~"/”. The simulation results are shown
in Figure 3.9. To better illustrate advantages of the PWA approximation, the simulation

scenario also shows evolution of linearized version of (3.43) around the nominal steady



42 CHAPTER 3. MODELING OF HYBRID SYSTEMS

state ¢ = 4.13, ¥° = 304, 97 = 297, and ¢ = 0.006. As can be seen from the results,

the PWA approximation clearly outperforms the model based on a single linearization.

Specifically, the model (3.46) provides a 15 times more accurate tracking of the nonlinear

profile compared to the linear model. Important to notice is that the PWA model consists

of 14 local linear models. By increasing N to 7 when approximating f, (), f,,(-) in (3.44)

and fys(), fy4() in (3.45), the approximation accuracy is 60 times better compared to

the linear model. The cost to be paid is the increased model complexity, which would

then consist of 30 regions.

0 200 ~ 400 600
time [min]
(a) Evolution of c4.

0 200 400 600
time [min]
(c) Jacket temperature.

312

310y

308y

306¢

304

30% 200 400 600

time [min]
(b) Reactor temperature.

14

127

10r

0 200 400 600
time [min]
(d) Randomly varying coolant flowrate.

Figure 3.9: Simulation results for the CSTR. Red line: nonlinear model (3.43), blue
dashed line: PWA model (3.46), black dotted line: linear approximation.
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3.9 Summary

In this chapter we proposed an optimisation-based approach to derive PWA approxi-
mation of nonlinear systems whose vector field is an a-priori known function of multiple
variables. We showed that, under a certain assumption, the problem boils down to solving
a series of one-dimensional problem. Subsequently, by utilising this basic one-dimensional
building block we extended our procedure to multidimensional separable functions. Fi-
nally, we showed that by means of proper substitutions one can transform an arbitrary
non-separable function into a separable one, hence allowing implementation of the un-
derlying approximation procedure. In the most trivial case we assumed that the analytic
expression of the approximated non-linear function is given. To overcome the difficulty
stemmed from the absence of the analytical formula, we proposed to use an efficient two-
stage optimisation-based technique to derive PWA approximations of static nonlinearities
obtained from measured data. The first part of the procedure is focused on finding the
best fit of measured data by a pre-specified set of basis functions. The result of this
stage is an analytical formula of the fitting function which is subsequently used as an
input to the second step. Once we have the analytical expression we can easily apply
our procedure to obtain the final approximation. We also discussed the algorithmic and
software implementation of the underlying approximation procedure. Specifically, we in-
troduced a new software tool which is capable of exporting the obtained optimal PWA
approximations into the HYSDEL language. This brings two crucial advantages. First,
the HYSDEL compiler can be used to convert the PWA approximation into a mathe-
matical form, which is then suitable e.g. for control design. Second, since the exported
approximation is described in a human-readable format, it can be further fine-tuned by
hand. We concluded this chapter by illustrating the approximation procedure involving

a model of a highly non-linear chemical reactor.
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Chapter

Explicit Model Predictive Control

MPC is a control strategy where based on the measurements z(t) of plant’s states at time
t, a mathematical model of the plant is used to predict the evolution of the plant up to
time ¢t + N. Here, N is called the prediction horizon. A sequence of future control inputs
is then calculated by optimizing the predicted plant behavior while taking constraints on
states and inputs into account. MPC is usually implemented in the so-called receding
horizon (RH) fashion. In this setup only the first element of the optimal control sequence
is actually implemented to the plant and the rest is discarded. This repetitive optimization
is then repeated every time new state measurements become available. This repetitive
optimization is used to introduce feedback into the control scheme such that the effects
of unpredicted disturbances can be mitigated.

As shown in Bemporad et al. (2002b) the effort of implementing MPC in the Receding
Horizon fashion (RHMPC) can be substantially reduced by pre-computing the optimal
control action for all possible initial conditions as a function . For a large class of MPC
problems, such a function can be shown to take a form of (PWA) function, which is
composed of a set of polytopic regions and the associated affine feedback expressions.
The main benefit is that obtaining the optimal control input at each sampling instance
reduces to a mere function evaluation, which can be performed efficiently even on simple
control devices in a matter of mili- and microseconds.

On the other hand, to achieve such a simple and fast implementation, all pre-computed
data have to be stored in the memory of the target control hardware. Although this aspect
is often neglected in the literature, in fact it plays a prominent role when implementing
explicit MPC solutions on devices with low available memory storage. Typical examples
include programmable logic controllers (PLCs) and embedded microchips, which are one

of the most frequently used types of industrial control platforms. Such devices usually
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only provide 2-8 kilobytes of memory capacity, a figure which represents a significant
challenge in explicit MPC. Needless to say, unless all pre-computed data can be fit into
memory, the controller cannot be implemented in practice. Therefore it is of imminent
importance to keep the memory footprint S(x) on an acceptable level.

The rest of this chapter is organised as follows. In Section 4.1 we briefly characterise
explicit model predictive control. This description is followed by the problem statement
in Section 4.2. Next, in Section 4.3 we provide a comprehensive literature overview
regarding complexity reduction of explicit MPC solutions. Section 4.4 introduces our
three-layer compression technique, by means of one can significantly reduce the memory
requirements of explicit predictive controllers. The chapter ends with efficiency evaluation
of our proposed methodology on randomly generated feedback laws, which is followed by
a summary, where the main advantages and drawbacks of our proposed methodology will
be discussed Material in this chapter is based on our results published in Sziics et al.
(2011D).

4.1 Properties of Explicit Model Predictive Control

We consider the class of constrained, discrete-time, linear time-invariant systems
gt =Tx+Zu, z€X, uel, (4.1)

where z € R™ is the state vector, " is the successor state, © € R™ is the vector of
control inputs, and X C R™, i{ C R"™ are given polytopic sets. For system (4.1) we

define the constrained finite-time optimal control problem:

N-1
min 3 1Quznsilly + | Quunly (4.20)
Un k=0
s.t. Trr1 = Lag + Zug, xpyp1 €X, up €U (4.2b)

where x;, and uy denote, respectively, the state and input predictions at time instance k,
initialized by the measurements of the current state x¢. The prediction is carried out over
a finite prediction horizon N. The explicit representation of the receding horizon MPC
feedback u* = [I 0 --- 0JU% can be found as a PWA function of the initial condition z

by solving (4.2) as a parametric program:
Theorem 4.1 (Bemporad et al. (2002b)) The RHMPC feedback u* for problem (4.2)
with p € {1,2,00} is given by
Fix+ G, Zf(E € R1
u* = k(x) = (4.3)

Frr+Ggr ifx € Rpg,
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where:
e k:R"™ — R™ 4s a continuous PWA function;
o R; ={z | Hix < K;} are polytopes with H; € R%*"= K, e R% i=1,...,R;

e the set of feasible initial conditions  := {x | Jug,...,un—1 s.t. (4.2b) holds} is a

convez polytope;
o {R;}E | is a partition of Q, i.e. UyR; =Q and R; N R; =0 for all i # j.
|

The advantage of such an explicit representation is obvious: obtaining the optimal
control action for a given x reduces to a mere evaluation of the function k, which is a two-
stage process. In the first step, index i of the region which contains the state measurements
is to be identified. This problem is referred to as the point location problem (Snoeyink
1997). Then, in the second step, the optimal control action is computed by evaluating
u* = Fyx 4+ G;. The point location problem can be solved e.g. by traversing the regions
sequentially according to Algorithm 4.1.1 (its output is (} if = ¢ U;R,;, in which case there

is no feasible u which would guarantee satisfaction of constraints in (4.2b)).

Algorithm 4.1.1 Point location
1: fori=1,...,R do
2: if H;xz < K; then

3: return ¢
4: end if
5. end for

4.2 Problem Definition

The crucial downside of the explicit MPC approach, however, is that the number of regions
tends to be large, often above the limits of typical control hardware implementation
platforms. Specifically, the amount of memory needed to execute Algorithm 4.1.1 on-line

at each sampling instant, expressed as the number of floating-point numbers, is

i=1
where R is the number of regions and ¢; is the number of defining half-spaces of the i-th

region. Clearly, as R increases, and as the regions become more complex (i.e. with growing
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¢i), the memory footprint of x can easily exceed the provided memory capacity. Therefore,
when targeting implementation devices with low memory storage, it is important to devise
a more memory-efficient representation of the feedback law k. In order to reduce the
memory footprint of an arbitrary explicit model predictive controller we propose to apply a
three-stage compression technique. In the first stage we obtain a set of unique half-spaces,
representing the polytopic regions. Then, the expressions obtained from the previous stage
are denoted by an integer subscript, hence allowing to represent the given controller by
less data, since storing of an integer value requires only 2 bytes compared to floating-point
numbers, which consume 4 or even more 8 bytes, depending on the processor architecture.
In the final stage we exploit the concept of Huffman encoding, by means we acquire an
efficient bit representation of the integer indexes, according to the frequency of their

occurrences.

4.3 Overview of Methods for Complexity Reduction
in Explicit Model Predictive Control

Complexity of the resulting eMPC controller can be decreased in several ways. One
method is based on relaxation of optimality (Bemporad and Filippi 2003, Jones and
Morari 2009, Ulbig et al. 2007), by means simpler, but only suboptimal solution can be
achieved. Alternatively, one can supplant the original regions of the explicit solution with
simpler objects e.g. hypercubes (Johansen and Grancharova 2003) or simplexes (Grieder
et al. 2004, Scibilia et al. 2009) or interpolate the solution only from a small subset of
regions (Rossiter and Grieder 2005). Although, all these methods in some cases can lead
to a remarkable reduction of complexity, generally they do not guarantee substantial
simplification. Moreover, they are characterized by suboptimality and stability issues.

The second main direction deals with simplification of already existing explicit solution
and its replacement by a simpler functional dependence. This option involves optimal
merging of regions (Geyer et al. 2008), elimination of regions, where the control action
is saturated (Kvasnica and Fikar 2010) or elimination of saturated regions by separating
functions (Kvasnica et al. 2011b). By these approaches substantial complexity reduction
can be attained without loss of generality. Replacement of explicit control laws with
smooth functions is also available either by the sum of wavelet curves (Summers et al.
2009), Laguerre polynomials (Valencia-Palomo and Rossiter 2010) or by ordinary multi-
dimensional polynomials (Kvasnica et al. 2008; 2011a).

Third direction deals with the fastest evaluation of explicit solutions for a given value
of initial condition. Standardly, this task is realized by sequential searching of all regions,

which leads to linear complexity of this implementation stage. Number of operations,
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required to perform such a policy can be decreased by creating appropriate search trees
(Tondel et al. 2003), where the complexity of the searching is only logarithmic in number
of regions. Acceleration can be aimed by exploiting the convexity of the objective function
(Baotic et al. 2008) or the continuity of the control law (Wen et al. 2009).

4.4 Main Results

In this section we show how to represent regions R; more efficiently by exploiting their
geometric properties. Each of the proposed three layers can be viewed at as a “com-
pression” mechanism. Needless to say, additional computational effort needs then to be
performed on-line to “decompress” the data. We provide quantification of such an addi-
tional effort as a function of the problem size. Decompression is performed on-the-fly on
a region-by-region basis.

Only the polytopic nature of regions R; is exploited by the proposed complexity re-
duction procedure. Continuity of £ and convexity of the feasible set {2 are not required.
Therefore the approach is applicable to generic PWA function x defined over polytopes.
The scope of this work therefore extends to scenarios where tracking of a non-zero ref-
erence is achieved by a suitable augmentation of the state vector, or where linear hybrid
systems are used as prediction models. For the same reason the procedure can be applied
to post-process RHMPC feedback laws generated by other complexity reduction schemes,
e.g. those reviewed in Kvasnica (2009).

To quantify achievable reduction in memory, we will assume that double-precision
floating point numbers consume 8 bytes, while integers can be represented by 2 bytes.
Each individual mathematical operation on a float or on an integer will be denoted as
one FLOP.

4.4.1 Complexity Reduction via Affine Transformations

First we show how to represent some regions using less data by exploiting geometric
similarities of such polytopes. We remind that the memory footprint of a region R, =
{z | Hjz < K;} with H; € R%*" and K; € R% is ¢j(ny + 1) real numbers with

¢j > ng + 1. Here, we look for affine transformations A; jx 4 b; ; such that
R = {Ai’jl’ + bi,j | RS R]} (45)

If there exist A; ; € R™*™ and b; ; € R™ which map R, onto R;, then the memory
footprint of x is reduced as follows: for each ¢, j for which the mapping exists, the half-

space representation of the j-th region (i.e. matrices H;, K; with variable number of rows
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¢;) can be replaced by matrices A, ;, b; ; with fixed number of rows n,. Then, once z € R;
is to be verified in Step 2 of Alg. 4.1.1, it suffices to check whether A; jx 4+ b; ; € R, i.e.

T € Rj =4 Ai,jﬂf + bi,j €R;. (46)

It follows that memory footprint of region R is reduced by (¢; —nz)(n,+1) real numbers
by only storing A; ;,b; ; instead of Hj;, K;. Since ¢; > ngy + 1 in practice, a significant

reduction can be achieved.

Definition 4.1 Let the polytopic partition {R;}, be given. The index setZg C {1,..., R}
is called the index set of generating regions of the partition if for each j ¢ I there exists
an i € Zg and the associated affine map A; jx + b; ; such that (4.5) holds.

Lemma 4.1 Let i, j be given and let Vi = [vi1,...,0ipn,] and V; = [vj1,...,0n,]
denote, respectively, the extremal vertices of R; and R;. Then an affine transformation
which guarantees (4.6) exists if there exist A;,; € R™ ™ b, . € R™, and a binary
permutation matriz P € {0, 1} ™ with > | Py =1, Yk, > | Py =1, Vk such
that

= V,P. (4.7)

Proof of Lemma 4.1 Since V; and V; are extremal vertices, (4.6) is equivalent to
xz € convh(V;) & (A;jz+ b; ;) € convh(V;) (4.8)

where convh(-) denotes convex hull. By convezity of R; and Rj, the affine transformation

exists if for each s € {1,...,n,}, there exists at € {1,...,n,} such that
Ai jvjs + bij = Vi, (4.9)

i.e. when there exists an appropriate permutation of vertices V; such that (4.9) holds
Vs. But this is equivalent to existence of a binary permutation matriz P whose rows and

columns sum up to 1. Hence (4.7) follows.

Problem (4.7) is a feasibility problem with real variables 4, ;, b; ; and the binary
variables P, which can be solved by off-the-shelf software, like GLPK (Makhorin 2001)
or CPLEX (ILOG, Inc. 2003). One can also look for a numerically scaled solution by,
1+ (16

which requires solving, at most, 1/2n,(n, — 1) MIP problems (4.7). In practice, it will

in addition, minimizing || A; ; |1. Regions R; are processed by Algorithm 4.4.1,

be less, since only regions with the same number of vertices need to be processed. The

algorithm returns an auxiliary array J which denotes feasible i—j combinations. If 7; # ()
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Algorithm 4.4.1
1: Initializejj :®7 Aj :w, Bj :(Z),j:2,---,R
2: fori=1,...,R—1do

3: forj=i+1,...,Rdo

4 if J; =0 and (4.7) is feasible then
5 Aj— Ay, Bj by, Jj 1

6: end if

7. end for

8: end for

for some j, then J; points to its associated generating region. If 7; = (), then R; is a
generating region on its own, i.e. Zg = {j | J; = 0}.
Given the arrays of affine transformations A and B, the point-location task can be

implemented by Algorithm 4.4.2. The size of its input arguments is

S(Ri) = cilne +1)+ > na(ng +1), (4.10)
i€la i¢1g

a reduction by 3.7 (c; — ng)(n, + 1) floating point numbers compared to the stan-
dard approach, cf. (4.4). The memory saving is hence proportional to the number of
non-generating regions. The algorithm loops through regions sequentially. If a generat-
ing region is encountered, z € R; is checked directly. Otherwise, (4.6) is exploited and
Ajx+Bj € R; is checked instead. Saving in terms of memory is traded for an increase in
execution time. Here, compared to Algorithm 4.1.1, one needs to evaluate the affine trans-
formations whenever a non-generating region is encountered, which requires »_,. 7, (2n2)
FLOPs in the worst case.

Algorithm 4.4.2
1: for j=1,...,Rdo

2 if j € J then

3 i Jj, v+ Az + B;
4 else

5: 14 ]

6 end if

7 if H;xz < K; then

8 return j

9: end if

10: end for
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Example 4.1 Consider a double integrator sampled at 1 second, given by the following

1 1 1
rt = [O 11 x+ [0'5‘| u, (4.11)

where the states and inputs are constrained, respectively, by |x;| < 5,1 =1, 2, and |u| < 1.
With the choice of p=1, Qy = [3 9], Qu =1, and N =10 in (4.2), the explicit RHMPC

feedback law consists of 230 regions, shown in Figure 4.1. Storing all regions would

state-space representation:

require 2466 floating point numbers, or 19 kilobytes. Algorithm 4.4.1 has found feasible
affine transformations for 198 regions, representation of which can be simplified by only
storing A; j and b; ;. Remaining 32 generating regions need to be represented using the
full data, i.e. by matrices H;, K;. Here, the 198 affine transformations contribute by
1188 numbers, while the 32 regions require 402 floats. It follows that the total required
memory is decreased from 19 to 12 kilobytes. The worst-case number of FLOPs' needed
to perform point location via Algorithm 4.4.2 is 6143 compared to 4110 operations for
Algorithm 4.1.1.

4.4.2 Data De-Duplication

Instead of having to store all data (i.e. all matrices H; and K;), one can use de-duplication
to first identify unique rows of H = [H7 .. #%Z]T € R™*"= and K = [kT .. k%]T e R™
with m = ZZR ¢;. Denote the unique rows by H and K. If cardinality of H (K) is smaller
than number of rows in H (K), then the amount of memory can be significantly decreased
by storing, for each region, only the pointers to H and . The saving is twofold. First,
memory size of a pointer is smaller than for a floating point number. Second, since a
single pointer is assigned to each row of H (which is n, dimensional), the amount of
memory is decreased n, times for each entry.

As an example, consider three regions given in their respective half-space representa-
tion by

0 1

1 -0.5 Y b o9
_ —0. _ —0. _ | o -1
Hl—[o —1:|7H2_|:—10.5:|aH3_|:0 1]7
-1 0.5 0 -1 1
4
0

K, = {1.5] , Ko = {3
0 0

The sets of unique rows are

H={[o1], [1-05], [0-1], [-105]},
K ={-31,-15,0, 1.5, 24, 3.1, 5.0}.

11t is worth noting that even slow CPUs typically found in industrial control hardware are able to
perform tens of millions of FLOPs per second. With the reported computational figures the control

algorithm could therefore be executed at the sampling range of hundreds of kilohertz.
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Figure 4.1:
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Xl

Regions of the explicit MPC solution for Example 4.1. Each of the 198 yellow
regions can be obtained by applying a suitable affine transformation (4.6) to

one of the 32 generating regions, shown in red.
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The corresponding (unsigned) index set representation of the polytopic regions is then

Th, = {1’ 2,3, 4}a Tk, = {55 6, 2, 3}7
Im, ={1,2,4,3}, Ig, = {5, 7, 1, 3},
Th, = {4’ 3,1, Q}a Ik, = {3a 3, 4, 6}7

where each element of 7y and Zx points to the corresponding entry in H and K.
Cardinality of H and X, and hence the required storage space, can be further reduced

by eliminating entries which are negations of others, i.e.
H={[o1], [t -05]}, K={-3.1, —1.5, 0, 2.4, 5.0}.
Then the (signed) index set representation becomes

IHl - {17 2, -1, 72}) IKl - {43 -1, 2, 3}7
IH2 = {17 27 —2, —1}, IK2 = {4, 5, 17 3}, (412)
IHS = {_2’ _15 17 2}5 IK3 = {35 37 _27 _l}a

In this simple example, memory footprint of regions R; was reduced from 36 floating
point numbers representing matrices H;, K; to 9 floats for H, K, and 24 integer pointers.
Assuming that one float is represented by 8 bytes and an integer by 2 bytes, de-duplication
reduces required memory from 288 bytes to 120 bytes.

Remark 4.1 Needless to say, the same de-duplication approach can be used to reduce

memory footprint of affine transformations in (4.6).

Algorithms 4.1.1 and 4.4.2 can be easily accommodated to exploit the signed index
set representation. Whenever H;x < K; needs to be checked, one constructs, on-the-
fly, matrices H; and K; by H; = {sign(j)H; | j € Tnm,} and K; = {sign(j)K; | j €
Tk, }. This involves negating the corresponding rows, depending on the sign of the index.
Therefore execution of Algorithms 4.1.1 and 4.4.2 requires, at most, Zgl 2¢; additional
FLOPs.

Example 4.2 We revisit Example 4.1 and remind that the full set of 230 regions can
be equivalently represented by 32 generating regions and by 198 associated affine trans-
formations (4.5). The generating regions are described by 134 half-spaces, which require
134(n, +1) floating point numbers (n, = 2 in this example). Here, the sets of rows unique
under unity scaling, i.e. H and KC, only contains 17 and 47 entries, respectively, which is
equivalent to 17n, +47 floating point numbers. The corresponding index sets Ty, and Lk,

contribute by 2 x 134 integers. After de-duplication is applied to A; and B; as well, the
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Table 4.1: Frequencies of integers to encode.

Integer | -2 -1 1 2 3 4 5
Frequency 1 21 1 4 2 1

total memory footprint is reduced from 12 kilobytes reported in Example 4.1 to just 7.5
kilobytes. This comes at the expense of performing additional 1644 FLOPs to reconstruct

the regions on-the-fly using index set representations.

4.4.3 Compression of Index Set Representations

Given are index set representations Ty = U;Zg, and Zx = U;Zk,, whose entries point to
corresponding rows in the set of unique elements H and K. In traditional implementation,
each element of Zy and Zx would need to be represented as a (signed) integer, i.e. by
16 bits (provided that cardinality of H and K does not exceed 2!6). A more efficient
representation can be obtained by using a prefiz-free variable-length encoding where bit-
wise codewords are assigned to each element of the index sets. Length of a codeword is
inverse-proportional to its abundance, such that size of Zx and Zy is compressed as much

as possible.

Proposition 4.2 (Dasgupta et al. (2006)) Given an index set T and an array of fre-
quencies F, Algorithm 4.4.3 generates an optimal coding tree T(Z) as a full binary tree
where the symbols to encode are at the leaves, and where each codeword is generated by a

path from root to leaf, interpreting left traversal as 0 and right as 1.

As an illustration, consider the index sets in (4.12) and let Ty = Tk, ULk, UZk,. Then
the integers to encode appear with frequencies reported in Table 4.1. The corresponding
Huffman tree is shown in Figure 4.2. Here, the optimal codewords are C(Zg) = {[—2 :
111],[-1 : 001],[1 : 110],[2 : 101],[3 : 01],[4 : 000],[5 : 100]}. It is easy to verify that
such an encoding is prefix-free, i.e. that no codeword is a prefix of another codeword.
Moreover, the most abundant integer 3 is encoded using fewest number of bits as to
minimize the total length of binary representation of Zx. Hence, instead of storing Tk as
an array of 12 integers (i.e., 24 bytes), it suffices to store the tree (7 integers or 14 bytes)
and 12 codewords of a total size 32 bits, or 4 bytes.

Size of the tree is proportional to the number of unique elements of the encoded set
of integers Z. Decoding of a particular sequence of bits boils down to traversing the tree
until a leaf is reached, whereupon the tree returns to its root. Decompression effort is

therefore proportional, in the worst case, to the length m of the longest codeword. In
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Figure 4.2: Huffman tree for
Ik =14,-1,2,3,4,51,3,3,3, -2, —1}.

Algorithm 4.4.3 Huffman encoding Dasgupta et al. (2006)

1: Let Q be a priority queue, ordered by positive frequencies F = [f1,..., fn]
2. fork=n+1,...,2n—1do

3: i< deletemin(Q), j < deletemin(Q)

4:  Create a node k with children 4, j

5. Fr<Fi+F;

6: insert(Q,k)

7

: end for

total, Zf’zl 2¢;m operations are required to reconstruct regions R; on-the-fly from their

respective encoded index set representations.

Remark 4.2 Traversing the tree only requires performing bit-wise operations, which are
much cheaper than multiplications or additions on floating point numbers. Therefore a
mere increase in FLOPs by a factor of n does not necessarily mean that evaluation speed

would drop n times. In practice, it will be less.

Example 4.3 We continue with Example 4.2 where it was shown that 134 signed integers
Ty pointing to one of the 17 unique rows of H, and 134 signed integers Ly for the 47
unique elements of IC are required for the index set representation of generating regions.
The trees T (Zx) and T (Zx) were build by Algorithm 4.4.3 in 0.05 seconds. The trees had
26 and 63 leave nodes, respectively. Fach element of Ty, Tx was encoded as a prefiz-free
sequence of bits. For Ly, the minimal codeword length was 3, the mazimal was 6. For Ty,
the minimal and maximal code lengths were 4 and 7, respectively. It follows that the index
sets Ty and Lg , which originally required 2 x 134 integers, can be equivalently represented
by the two trees (which need 89 integers) and 2 x 134 bit sequences, which in total attribute
by 527 bits, or 66 bytes. Therefore memory footprint of the index set representations is

reduced from 536 bytes to 244 bytes. Decompression of the bit codewords in a suitable
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Table 4.2: Average accumulated compression factors.

] ng \ Sec. 4.4.1 | Sec. 4.4.2 | Sec. 4.4.3

2 1.5 4.3 8.2
3 1.3 5.9 13.7
4 1.7 8.1 24.6
) 1.5 10.4 43.2

modification of Algorithm 4.4.2 would require additional 3570 FLOPs, in the worst case.

4.5 Efficiency Evaluation

To asses efficiency of the proposed three-layer procedure on generic data, we have an-
alyzed randomly-generated explicit RHMPC feedback laws for dimensions 2 < n, < 5.
For each dimension, 20 random RHMPC feedback laws were generated by the MPT
Toolbox (Kvasnica et al. 2004). Each controller was then processed by applying, consecu-
tively, the similarity transformation of Section 4.4.1, then de-duplication of Section 4.4.2,

followed by data compression of Section 4.4.3.

For various state dimensions, Figure 4.3 shows achieved memory reduction factors, i.e.
the ratios between memory size of the original solution and the corresponding compression
layer. Note that the figures show accumulated data, i.e. improvement of a particular layer
upon a previous one. The unity basis corresponds to size of the original, uncompressed,
RHMPC solution. As can be observed, reduction of memory size by a factor of 20 is
not unusual. The average values are also summarized in Table 4.2. As expected, the
compression factors increase with growing number of states. This trend is mostly notable

for the de-duplication and compression methods.

Results in Figure 4.4 then quantify the factor by which the number of floating point
operations increases in order to “decompress” a particular layer, with Algorithm 4.1.1
being the basis. However, as noted in Remark 4.2, this factor is not directly proportional
to a slowdown in evaluation speed when the Huffman encoding layer is concerned. Al-
though the evaluation effort is substantially increased, it is always out-weighted by a more
substantial reduction in terms of memory. With growing problem dimension and number
of regions, complexity of Algorithm 4.1.1 naturally increases. It is due to this fact that

the relative factors in Figure 4.4 actually tend to improve when n, is enlarged.
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Figure 4.3: Accumulated reduction in memory storage achieved by individual layers (blue
is for the similarity transformation, green for de-duplication, and red for com-

pression). Note that individual figures have different scales on the y axis.

4.6 Summary

In this work, instead of decreasing S(x) by reducing the number of regions, we look for
a memory efficient representation of x which requires less data. The procedure consists
of three layers. The first one determines a subset of regions which can be obtained by
applying affine transformation of the remaining regions. We show how to formulate the
search for such a mapping by solving a mixed-integer problem, which is done off-line. If
the transformation exists, the corresponding regions can then be represented using less
data. The second layer can either be applied on top of the first one, or independently.
Here, memory is saved by identifying positive and negative duplicities in half-space rep-
resentation of several polytopic regions. The duplicate occurrences are then represented
as mere integer pointers to the unique set of data. Compared to the first layer, the ad-
ditional computation to be performed on-line is much smaller. Finally, in the last layer
we propose to compress the integer pointers by Huffman encoding (Knuth 1985). Here,
variable-length bit codewords are assigned to each integer, depending on its frequency of

abundance. Main benefit of the proposed strategies is that they can be applied on top of
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Figure 4.4: Accumulated increase in on-line computation needed to implement a partic-

ular layer (blue is for the similarity transformation, green for de-duplication,

and red for compression).

all aforementioned complexity reduction schemes. Saving in terms of memory is achieved
at the price of an increase of the implementation effort performed on-line. Therefore the
approach is mainly suited for situations where the implementation device poses enough

computational power, but has severe memory limitations.
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Chapter

Operator Splitting Methods in Control

In the previous chapter we have introduced explicit model predictive control as a method
by means of one can solve MPC problems very quickly. In other words for systems with
modest size, i.e. up to 4 state variables the solution can be obtained within microseconds.
Besides this method is suitable for small-scale systems, we have also stated that this
approach provides optimal solution only for fixed parameters. In order to eliminate the
above mentioned downsides, in this chapter we will introduce a novel computational
framework which can solve the underlying MPC problem very quickly. Furthermore,
these algorithms do not posses any restrictions on the dimension of the corresponding
problem. These methods, in general are denoted as alternating direction methods.

Alternating direction methods have attracted a lot of attention in many fields, e.g.
signal processing, machine learning, and computer vision, where people need to address
large-scale optimisation problems with non-differentiable objectives, and have already
been shown that they are suitable for solving such problems. Recently it has been found
out that MPC problems can often be transformed into a convex optimisation problem with
a differentiable and a non-differentiable indicator function, thus enabling application of
the aforementioned alternating methods.

Motivated by the interconnection between MPC and convex optimisation problems,
in this section we describe several algorithms to solve convex optimal control problems
quickly. The algorithms we present rely on an operator splitting technique. Such a
technique breaks the problem into two parts, a quadratic optimal control problem (which
can be solved very efficiently) and a set of single period optimisation problems (which can
be solved in parallel, often analytically). An iteration that alternates these two steps then
converges to a solution. We demonstrate that the proposed algorithms can solve optimal

control problems to an acceptable accuracy very rapidly, indicating that it is suitable

65
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for use in e.g. high-frequency control applications. Another advantage of our methods is
that in many cases, after some off-line pre-computation, the algorithm requires no division
operations. In these cases it can be implemented in fixed-point arithmetic, for example
on a field-programmable gate array (FPGA) for high-speed embedded control.

The rest of the chapter is organised as follows. In Secion 5.1 we describe the main
computational techniques and fields related to fast model predictive control, which is
followed by the problem statement in Section 5.2. Next, in Section 5.3 we characterise a set
of algorithms serving to solve convex optimisation problems in a fast and efficient manner.
Subsequenly, we discuss several possibilities of the improvement in a convergence rate in
Section 5.4. The chapter concludes by a case study presented in Section 5.5. Material of
this chapter is based on our results published in the accepted paper (Stathopolous et al.
2014).

5.1 Prior and Related work

In this section we give a brief overview of some important prior work in several related

areas.

Interior-point methods. A generic interior-point solver which does not exploit the
problem structure would scale in complexity with cube of the time-horizon (Betts 2001).
If the structure of the underlying problem is exploited, however, the complexity only grows
linearly. In Wang and Boyd (2008) the authors developed a custom interior-point method
that can solve quadratic optimal control problems with box constraints very rapidly by
exploiting problem structure. A similar approach was taken by Rao et al. (2004). For
work detailing efficient primal-dual interior-point methods to solve the quadratic programs
(QPs) that arise in optimal control see for example Akerblad and Hansson (2004), Hansson
(2000), Hansson and Boyd (1998).

Automatic code generation. Typically creating a custom interior-point solver is a
very labor-expensive exercise. In Mattingley and Boyd (2012) the authors describe the
automatic generation of high speed custom solvers directly from high level descriptions of
the problem. These automatically generated custom solvers are tailored to the problem

at hand, providing dramatic speedups over generic solvers.

Explicit MPC. Explicit model predictive control is a technique for solving quadratic
optimal control problems with polyhedral constrains (Bemporad et al. 2002a, Tgndel et al.

2001), with all data fixed except of the initial state. In this case the solution is a piecewise
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affine function of the initial state. The polyhedra that define the regions, and the associ-
ated coefficients in the affine function, can be computed off-line. Solving the problem then
reduces to searching in a lookup table, and then evaluating the affine function (which is
division free). Due to the exponential growth in the number of regions, explicit MPC can
realistically only be applied to system with very modest numbers of states and constraints.
For an extension that can handle larger problems by using partial enumeration see Pan-
nocchia et al. (2006). A more thorough description related to basic properties of explicit
model predictive control, including but not limited to its mathematical description can

be found in chapter 4

Active set methods. Active set methods are a set of techniques for solving QPs that
are closely related to the simplex method for linear programming. They rely on identifying
the set of constraints that are active at the optimum and then solving a simpler problem
using just these constraints. The use of active set methods to solve the QPs that arise in

conrol has been explored by Ferreau et al. (2008a).

Fast gradient methods. Fast gradient methods inspired by Nesterov’s accelerated first
order methods (Nesterov 1983a), have been applied to the optimal control problem (Kogel
and Findeisen 2011, Richter et al. 2009; 2010). These techniques typically require only the
evaluation of a gradient and a projection at each iteration. Thus, they generally require

less computation than, say, interior-point methods, at the expense of high accuracy.

Embedded control. There has been much recent interest in using MPC in an embed-
ded control setting, for example in autonomous or miniature devices. The challenge is
to develop algorithms that can solve convex optimisation problems quickly, robustly and
within the limitations of on-board chip architectures. Many techniques have been inves-
tigated, including interior-point methods, active set methods and others; see e.g. Jerez
et al. (2011), Ling et al. (2008), Longo et al. (2011).

Operator splitting. The technique we employ in this thesis relies on the work done
on monotone operators and operator splitting methods. The history of operator splitting
goes back to the 1950s; ADMM itself was introduced in the mid-1970s by Glowinski
and Marrocco (1975a) and Gabay and Mercier (1976a). It was shown in Gabay (1983)
that ADMM is a special case of splitting technique known as Douglas-Rachford splitting,
and Eckstein and Bertsekas (1992) showed in turn that Douglas-Rachford splitting is a
special case of the proximal point algorithm. For convergence results for operator splitting
algorithms and example applications see Boyd et al. (2011a) and the references therein.

Operator splitting has seen use in many application areas, see, e.g. Annergren et al.
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(2012), Tondel and Johansen, Wahlberg et al. (2012). In Lin et al. (2012) the authors use
operator splitting to develop sparse feedback gain matrices for linear-quadratic control

problems.

5.2 Problem Formulation

In this work we focus on systems with linear dynamics, giving rise to convex control
problems. The purpose of this work is to explore a family of first order methods known as
decomposition schemes or operator splitting methods. In the simplest case, the abstract
form of the problem at hand is the minimization of the sum of two convex functions and
can be written as

minimize f(x)+ g(Az) , (5.1)

with variables € R™, where f : R" — (—o00,00] and g : R™ — (—o00, 00| are proper,
lower semi-continuous (Isc) convex functions and A : R™ — R™ is a linear map. A
splitting method can be applied to the above problem after rewriting it as
minimize z)+g(z
f(x) +9(2) 652)
subject to Ax =z ,
by alternatively (or simultaneously) minimizing over f and g. A dual variable update
for the equality constraint ensures that the solutions of problems (5.2) and (5.1) are
identical. Inequality constraints are already present in the formulation in the form of

indicator functions, i.e., a membership function for a set C

So(x) = { 0 wed (5.3)

oo otherwise.

Although it is established that splitting methods are quite beneficial when applied
to large-scale problems (Guler 1992), their potential in solving small to medium scale
embedded optimization problems has not been studied so extensively. Our purpose is
to study the behavior of such algorithms as solvers of control-related problems of that
scale. Our effort focuses on identifying special characteristics of these problems and how
they can be exploited by some popular splitting methods. Some of the questions that we

attempt to answer are:

1. Tt is very common in practice that optimal control problems come with a quadratic
objective, since in this way stability can be proven for regulation or tracking pur-

poses. What is the best way to exploit this smooth term?

2. Given that a control problem has to be solved repeatedly (e.g., MPC), how can

warm-starting affect the speed?
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3. Given the structure of the problem at hand, which algorithms will converge more

quickly?
We narrow the general formulation to our problems of interest which can, without loss
of generality, be written as

M
minimize  (1/2)27Qz + T2+ Y 1;(Tiz + t;) (5.4)
i=1 :

subject to Az =10 ,
with variable z € R", where Q € S%, T; € RPi*" ¢ € R*" t € RY*" A € R™*",
and b € R'*™ Finally, parameter M denotes the number of functions I; The following

assumption holds:
Assumption 5.1 The functions l; : RPi — (—o0, 00| are closed, lsc convex functions.

Formulation (5.4) is quite general and can describe a wide range of convex optimisation
problems. The choice of the quadratic part (1/2)z7Qz+c” 2z and the equality constraints
Az = b being represented in an explicit way is motivated by the standard form that
control problems take.

For lighter notation, we define f(z) = {(1/2)27Qz+c"z | Az=b}. We also
denote the concatenated vectors and matrices associated with the affine term in the [;’s as
T=(Ty,...,Ty) and t = (¢1,...,tr). Using slack variables y; = Tyz+¢;, it =1,..., M,

the Lagrangian for (5.4) is written as

M M
L=f(z)+ Z li(y:) + Z (Niy —ti = Tiz 4+ yi) (5.5)

where \; € RPi are dual variables associated with the equality constraints introduced
above. We can recover the optimum by solving

(N, 2% y") = arginax argmin L(A, z,y) , (5.6)
2y

where A = (A1,..., ) €RP, y = (y1,...,ym) ERP, p = Zij\ilpi. For solving problem
(5.4) we consider three approaches, namely solving a saddle point problem either on the
Lagrangian, the augmented Lagrangian function or a generic saddle-point formulation
that involves taking the Legendre-Fenchel dual of the functions I;(-).

The augmented Lagrangian (Boyd et al. 2011b) for problem (5.4) is defined by

M M M
Ly=f()+ 3 L)+ > it =Tz +y) + 5D =ti—Tiz+ul® . (57)
i=1 i=1 i=1
for p > 0 and the problem to solve becomes

(\*, 2%, y*) = argi\nax riuyn Ly(\ z,y) . (5.8)
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Another option is to apply some partial dualization to the Lagrangian formulation,
resulting in a primal-dual equivalent that is easier to solve. Making use of the Legendre-

Fenchel conjugate,

I7(Ni) = sup (Tiz + ti, Ni) — Li(Tiz + 1) (5.9)

, where pair of angle brackets in the above mentioned expression for (5.9) stands for dot

product. Functions [;(T;z + t;) can now be expressed as

li(TiZ + ti) = sup <TZZ +t;, )\z> — l:()\l) . (510)
)\.

i

In this way the affine argument of [;(-) appears in a bilinear term and [’ (-) becomes a

function of a simple argument. Consequently we can solve the saddle-point formulation

(2%, \*,v*) = min argmax S(z, \,v) , (5.11)
z2€Z AV
where
M
S=(Tz4+t,\)+ (Az —b,v) +(1/2)2TQz + Tz — Zl:(/\Z) . (5.12)
i=1

Note that the equality constraints Az = b are now treated explicitly by means of the
multiplier v. It is interesting that for indicator functions of convex cones, the Legendre-
Fenchel dual (Bauschke 2006) is the indicator function of the polar cone, rendering the

evaluation of [} easy, especially for the standard self-dual cones.

5.3 The Algorithms

The three approaches for solving (5.4), i.e., (5.6), (5.8), and (5.11) originate from Rock-
afellar’s Prozimal method of multipliers (Rockafellar 1956). When applying decomposition
to this method, we obtain a unified framework for the three algorithms, known as the

Prozimal alternating direction method of multipliers (PADMM) which is written as:

Remark 5.1 Termination criteria for all methods have been derived in the spirit of
(Goldstein et al. 2012; Section 1). We define primal and dual residuals for ADMM
(FADMM) as

rk =—t—Tz+ Y, Sk = _pTT(yk - yk_l) )
for AMA (FAMA) the primal residual

R =—t—Tz4y ,
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while for CPI and CPII we have accordingly

1

k k+1 k

ro=—(z —Zz .
( )

Termination holds whenever ||r*||2 < € and ||s*|2 < e.

Remark 5.2 Besides the parameters defined in the corresponding section related to the
specific algorithm, matrices given in problem 5.4 are required as well. Qutput of the

underlying algorithms is a one-dimensional array containing the optimiser.

Algorithm 5.3.1 Proximal Alternating Direction Method of Multipliers (PADMM)
REQUIRE: Initialize 2° € R", 3? € RPi, \° € RPi and p > 0

loop
M
1: 2" —argmin  f(2) + Z </\f, —T;z) +
# i=1
M
(0/2) Y| = ti = Tz + 41> + (1/2) 12 — 2*|I3,
i=1

2 yF =argmin  Li(y) + (AL yi) + (p/2)]] — ti—
Yi

T2+ yill® + (1/2)lyi — i3y, i=1,..., M
3 ML= N\ p(—ty — TRt Y =1, M

end loop

Algorithm 5.3.1 comes with many names, e.g., Linearized proximal method of multipli-
ers (L-PMM) (Shefi and Teboulle 2014), Split Inezact Uzawa (SIU) (Zhang et al. 2011),
Generalized Alternating Direction Method of Multipliers (GADMM) (Deng and Yin 2012).
The matrices Py, P»; are positive semidefinite and offer some flexibility in preconditioning
the proximal term. The second step of the algorithm is a prozimal minimization step and

can be written via the prox operator of a function, defined as
(@) = inf { 7() + o1y — a? (5.13)
rox ,¢(z) := in —|ly — =z . .
Prox ¢ Inf S+ 5l

From this scheme we can recover:

e Alternating direction method of multiplier (ADMM) Glowinski and Marrocco (1975b),
Gabay and Mercier (1976b): We set P, = 0 and P»; = 0. ADMM converges in func-
tion values f(z%) + Zf\il Li(y¥) — p*, in the residual y* — T2* —t — 0, as well
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as to the dual optimum A* for an arbitrarily large stepsize p and with no extra

assumptions.

Algorithm 5.3.2 Alternating direction method of multiplier (ADMM)
REQUIRE: Initialize z° € R?, \° € R?, and p > 0
loop

M
1. FF+1 =argmin f(z) + Z <)\f, —Ez) +
# i=1
M
(p/2) Yl —ti — Tiz + o2

=1
2: yFtl = proxui;. (Tizk—i-l Tt — )‘?/P> Li=1,....M

Ll

1
3 ALty — TP Y =1, M
end loop

e Alternating minimization algorithm (AMA) (Tseng 1991): The algorithm is a hybrid
scheme, consisting of minimizing the original Lagrangian (5.5) in Step 2, and the
augmented one (5.7) in Step 3 (drop all colored terms in Algorithm 5.3.1). In
this way, the quadratic coupling that comes from the augmented Lagrangian term
in the first step vanishes, allowing for further decomposition if the structure of f
permits to do so. In order to ensure convergence, the stepsize p has to be taken as
e<p< ”4%%—6, where € € (0, HQ%%) and f has to be strongly convex, with convexity
modulus oy. Under these assumptions, convergence of the primal sequence 2k — 2>,
the dual sequence A\* — A\* and the residual sequence y* — T2* —t — 0 can be

proven (Tseng 1991).

Algorithm 5.3.3 Alternating minimization algorithm (AMA)
REQUIRE: Initialize A\’ € R?, and p within permitted range
loop
1: 251 = argmin ~ f(2) + M, (\F, —T;z)
2yl = prcjx%li (T;25 T+t = N Jp),i=1,..., M

30 AL = \E g p(—ty — TPt oyt =1, M

end loop

e Chambolle-Pock primal-dual scheme, basic version (CPI) (Chambolle and Pock
2011): Chambolle and Pock’s scheme solves problem (5.11) by means of the alter-
nation procedure (presented in Algorithm 5.3.4) which is seemingly different from
Algorithm 5.3.1.
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Algorithm 5.3.4 Chambolle-Pock I (CPI)

REQUIRE: Initialize \° € R?, 10 € R™ 2% € R™. Choose 7, p > 0 and 7p||(T, A)||*> <1,
6 € [0,1].
loop

1: )\f'H = Prox,: ()\f + p(T;zF 1 + ti)) yi=1,....M
2: vR L =k 4 p(AZF —b)
M
3: M =argmin (1/2)27Qz + T2 + Z T (2, NP1 +
S =1
(2, ATUFFY 4 (1/27) |2 — 29|12
4 ZFHL = ZhHL (Rt ok

end loop

As is proven in Shefi and Teboulle (2014), Algorithm 5.3.4 is equivalent to Algorithm
5.3.1, for the special choices P»; = 0 and P, = (1/7)] — pzi]\il TIT;, with 6 = 1.
In this way, Algorithm 5.3.4 linearizes the quadratic term that appears in Step 1 of
Algorithm 5.3.1 and hence decouples the minimization problem. Note that AMA
achieves the same decoupling, but in a different way. The cost of simplifying the
optimization problem comes, as in AMA, with restrictions to the stepsizes, since
the condition 7p||(T, A)||?> < 1 has to hold.

5.4 Accelerated Convergence

There are various extensions of the three methods we presented that can significantly

improve their performance in practical applications. In general there are two ways to

improve timings:

1.

Improving the theoretical convergence rates, which is done by exploiting properties

of the functions in (5.4).

. Speeding up the computations, which can be done is several ways, e.g., fast numer-

ical linear algebra, preconditioning of the data.

In many cases the two approaches are competing. For example, one can precondition the

problem so that an accelerated variant of a method can be used, but at the same time

some favorable sparsity pattern of the original problem is lost. In our experience, there is

no “golden rule” when it comes to choosing a particular method and applying the various

extensions for speeding it up. The choice of the method should be motivated from the

problem’s structure and vice-versa. In the subsections that follow we aim at providing
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the reader with a wide overview of several variants of the methods that improve the
convergence rates. Computational speedup is not explored in the current version of the

article due to space limitations.

5.4.1 How to Split

The first question that comes to mind when using a splitting method is how to perform the
splitting. This choice can heavily affect the speed of the algorithm. Choosing a splitting
pattern is equivalent to formulating the two subproblems that have to be solved in the
algorithmic schemes 5.3.2, 5.3.3 or 5.3.4. Consequently, the choice will also restrict the

options for acceleration. A general guideline would be the following:

1. Both subproblems should have a closed form solution if possible; if not, they should
be cheap to solve. The whole purpose of using splitting on (5.4) is to end up with

simpler subproblems.

2. More precisely, the proximal step should be simple to solve. The step constitutes
often of projections onto simple constraint sets, or proximal minimizations with

respect to norms.

3. Expensive operations, like matrix inversions, should be avoided. If there are quan-

tities that do not change during the execution, they should be prefactored.

4. If an accelerated version of an algorithm can be used without heavily altering a

well-structured problem, then it should be used.

ADMM In this case, most of the flexibility comes in Step 2, since Step 3 is either a sim-
ple projection or a proximal minimization operation, provided [; is simple. The augmented
Lagrangian term will contribute with a quadratic term of the form (p/2)2T (Zf\il TlTTl) z
to the objective, hence even if @ is a diagonal matrix, the resulting quadratic term is most
probably dense. In this sense, one can either minimize the resulting quadratic function
restricted to the subspace Az = b, i.e., solve a KKT system (see O’Donoghue et al.
(2012)), or by eliminating the equality constraint. Note that this is equivalent to taking
a Newton step on a quadratic perturbation of f(z), which explains why this approach
needs relatively few iterations for convergence. The bottleneck is the matrix inversion
that has to be performed at each iteration. If p is constant, one can use either a sparse
LDL factorization on the KKT system, or a Cholesky factorization in the second case and
consequently solve by means of forward-backward substitution (Boyd and Vandenberghe
2004a; Appendix C).
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AMA The method is applicable under the assumption that f is strongly convex. On
the other hand, if the assumption holds and f has some structure (e.g., diagonal, block
diagonal), the method should be preferred since the matrix inversion can be very cheap.
In several MPC applications this is not the case though, since, in order to ensure strong
convexity, f becomes a dense quadratic form for the condensed problem. Note that the
spectral radius (Rota and Strang 1960) of T and the minimum eigenvalue of the quadratic

term will affect the choice of the stepsize, many times leading to a very small one.

CPI This method combines properties of the other two, in the sense that the first step is
still decoupled but there is no strong convexity assumption. In order to avoid densification
of the quadratic term, we choose to treat the equality constraints in a Lagrangian fashion
(Step 2), a choice that, along with the stepsizes’ limitations, can render the algorithm slow
to converge in iterations’ number. Keeping Step 3 simple allows for moving some (simple)
constraints directly in the objective (z € Z), if the resulting optimization problem has a
closed form solution. The algorithm is built such that it favors simple computations in

the expense of more iterations.

5.4.2 Improvements in the Convergence Rate

All three schemes have benefited from Nesterov’s optimal relaxation sequence as intro-
duced in Nesterov (1983b). Nesterov’s method is a variant of gradient descent, where,

instead of a gradient descent update {z*} sequence one uses the over-relaxed sequence

{a*}:

aftt = (1 + 1/4(ak)2 + 1) /2, (5.14a)

ok —1

W(.’I;k — .%'k_l) (514b)

i’k+1 _ xk: +

with a® = 1. Application of the scheme results in an O(1/k?) global rate of convergence
in function values; a rate that is optimal for first order methods. Convergence in terms
of the sequences is trickier to prove. Roughly speaking, when the optimal O(1/k?) rate
in terms of the primal (dual) function values is achieved, the primal (dual) sequences
converge with rate O(1/k) (Chambolle and Pock 2011, Goldstein et al. 2012, Shefi and
Teboulle 2014).

Linear convergence rates have also been proven for ADMM and CP methods under
specific assumptions on the structure of problem (5.4). Due to space limitations we only
present the extensions of the methods that are based on Nesterov’s acceleration or similar

techniques, and we collect all other special cases in a table in the end of the section.
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ADMM For ADMM, convergence of the sequences {z*}, {y*}, {\*} with rate O(1/vk)
is proven in the recent work of Shefi and Teboulle (2014). These rates are global and come
with no further assumptions on the structure of the problem.

A fast version of the method (FADMM), based on Nesterov’s acceleration, was first
presented in Goldstein et al. (2012). The algorithm is presented below.

Algorithm 5.4.1 Fast alternating direction method of multiplier (FADMM)
REQUIRE: Initialize o® =1, §° = y~! € R?, A= )\le RP and p >0
loop

1, 2, 3: Same as in ADMM using the over-relaxed sequences M and 9k,
4: if E* > 0! then
5:  Apply Nesterov’s scheme (5.14a) to A\¥ and y*.
6: else
70 oFtl =1, gFtt = yF and AP = \F
8: end if
end loop

Nesterov’s optimal relaxation is applied on the sequences {y*} and {\*}. The authors
use an adaptive restarting scheme based on the residuals’ error (O’Donoghue and Candes
2012). Since the accelerated sequences often exhibit an oscillatory behavior and might
over(under)shoot the optimal value, a check is performed, and if the residuals increase in
two subsequent iterations, the acceleration scheme is reset.

FADMM can be shown to have a global O(1/k?) convergence rate in the dual function’s
values under the assumption that f and I; are strongly convex and furthermore I; are
quadratic. In the absence of these limiting assumptions, we can have an empirically fast
convergence with unproved rate. All details are given in Goldstein et al. (2012). Note
that FADMM can be applied to the same family of problems as ADMM with no extra

assumptions and small additional computational cost.

FAMA The accelerated version of AMA makes use of Nesterov’s acceleration scheme
on the dual sequence {\*} (Goldstein et al. 2012). Under the same stepsize restriction
as in the basic version, convergence of the dual objective value at rate O(1/k?) has been
proven, inspired from the convergence proof of the FISTA algorithm (Beck and Teboulle
2009). Same as with FADMM, FAMA can practically be applied to every problem that
AMA can solve.

CPII For the basic version of CP (CPI), a partial primal-dual gap is shown to shrink
with rate O(1/k) in an ergodic sense for the sequences {2*}, {\*} and {v*}. CP algorithm
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Algorithm 5.4.2 Fast alternating minimization algorithm (FAMA)
REQUIRE: hitialize a® = 1, \ = A™! € R?, and p < 13>
loop

1, 2, 3: Same as in ADMM using the over-relaxed dual sequence AE.
4: Apply Nesterov’s scheme (5.14a) to A*.
end loop

comes with an accelerated variant, under the assumption that f is uniformly convex,
denoted here as the second method of Chambolle and Pock (CPII). The acceleration is
achieved by means of adaptive changes of the primal and dual stepsizes T and p, as well

as of the relaxation parameter 6, which are updated according to the scheme:
0F = 1/\/1 4 297k, 7R = ghrh ol = ok gk

where v < oy, assuming knowledge of the convexity modulus of f. The variant results
in a global O(1/k) convergence rate for the primal sequence {z*}, (Chambolle and Pock
2011; Theorem 2).

Algorithm 5.4.3 Chambolle-Pock II (CPII)
REQUIRE: Initialize \°> = 0 € R?, 19 = 0 € R™ 20 € R” and p° 7% > 0,
(T, A)|? < 1, 0 € [0,1].
loop
1, 2, 3: Same as in CPL.
4: ok — 1/\/m7 TR = ghrk R+l = ph gk
5: Same as Step 5 of CPI.
end loop

In case that @ is diagonal, the extra computational cost that comes from the acceler-

ation is insignificant.

5.5 Case Study

We demonstrate some of the methods presented in the previous sections with an optimal
control problem that involves MPC for tracking of a reference signal. We focus on ex-
plaining how to rewrite our problems so that we maximally exploit the ideas presented in
Section 5.4.

In this example the linearized model of a Boeing 747-200 (B747) is considered (Hartley
et al. 2013). The model has n = 12 states and m = 17 inputs and the aim is tracking
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of a reference signal r(k) for three of the states. We discretize with sampling period
T, = 0.2s and consider in total a signal of 115 setpoints. Firstly, a steady state target
calculator computes a pair of setpoints (dzs(k),dus(k)) for the aircraft, according to
a desired reference signal. Subsequently, an MPC controller is tracking the delivered
setpoint. The steady-states are generated by solving a strongly convex dense QP with n+
m = 29 variables and bound constraints on the inputs (Hartley et al. 2013; Section II,B).
The affine term in the objective is a function of r(k), hence the optimization has to be
performed as many times as is the length of the reference signal. The MPC problem is
a simple quadratic one, with () = 0 and the same bound constraints on the inputs. The

affine term is also time-varying since it is a function of the generated setpoints.

Steady state calculator The problem to solve is

minimize %HSTHSGS — hy(k)T0,

(5.15)
subject to  Oin < 05 < Opas

with variables 8, € R"*™™ and H, = 0. Since the objective is strongly convex, we can
use accelerated versions of the methods. To this end, FAMA and CPII are valid options,
however, the dense structure of H; would require a forward backward substitution at
each iteration, something that can be avoided. We thus take the Cholesky factorization
of Hy, i.e., H, = LL", L is lower triangular and invertible and perform a change of basis,
és = L70,. Now the problem can be reformulated as
minimize %éfés — hs(k)T8,

: (5.16)
subject to Cls <d ,

with variables 6, € R"*™, hy(k) = L~ hy(k). The matrix-vector pair (C,d) describes the
polytopic constraints that are now imposed in the place of the simple bound constraints
that we had in (5.15). This is the price paid for eliminating the dense Hessian in the
objective. By introducing a slack variable y = C, — d, y < 0, we can apply FAMA to
the modified problem with f(,) = %ézés — hy(k)T8,, 1(y) =0_(y), T =C, t = —d. For
the stepsize we choose p = 1/Amax(CTO).

As a second option, we use ADMM with the parameters tuned as in Ghadimi et al.

(2013) in the same setting. This version achieves linear convergence rate by means of the

optimal stepsize selection p =1/ \/ Amin (CCT) Amax (CCT). In our case C is singular and

so we consider the smallest nonzero eigenvalue.

Accordingly we can use CPII. Problem 5.16 can be written in a saddle point form as

mmmm{wa¢»+lﬂ&mwfaaQ%,
6, A 2



5.6. SUMMARY 79

so we can use CPII with Z = R [*(\) = §,.()\), T, t as defined above. Note that there
are no equality constraints, hence there is no v-update. We initialize the primal stepsize
79 = 100 according to (Chambolle and Pock 2011; Theorem 2).

We solve the problem 115 times with the affine term varying slightly from one iteration
to the other. We terminate based on the residual decrease, with the accuracy threshold
set to 1072 for FAMA and CPII and 10~* for ADMM (see Remark 5.1). FAMA needs
495 iterations on average, with average time 0.85 ms per solve, ADMM 194 iterations at
0.56 ms per solve and CPII 1100 iterations at 4.9 ms per solve. The solutions achieved
are quite accurate, with a normed relative error (||0s — 0%[|//|0%]|) of ~ 1075 for all the
methods, sumed over all 115 instances. The optimal stepsize selection renders ADMM
clearly superior in this case.

Main advantage of the presented methods stem from the fact, that while eMPC con-
trollers are able to compute the corresponding control action in range of micro-seconds
they are limited by the dimension of the given problem. In other words, for systems
with relatively small amount of state variables the aforementioned approach produces
satisfactory results. For more complex problems containing more optimisation variables
or “non-trivial” constraints, one has to find a way to make the problem much simpler.
On the other hand, the presented algorithms do not have any restrictions regarding the

complexity of the underlying problem.

MPC for tracking The MPC problem described in (Hartley et al. 2013; Section IT)

can be written in the condensed form

minimize 6. 07 + h(k)Td,,

(5.17)
subject to C4,, <d ,

with variables 6, € RNV™  after having changed the basis in the same way as before. We
solve the problem for the following scenarios: N = 5, cold start, warm started at the
primal and dual optima of the previous solve. The outputs are reported in Table 5.1.
ADMM behaves significantly better than the other two methods in terms of iterations,
but FAMA is faster overall in timings. With the number of variables increasing, the
cost per iteration starts being more evident when using ADMM. We observe that warm

starting makes a big difference in terms of iteration counts.

5.6 Summary

In this chapter we have introduced a novel method serving to solve wide range of convex

optimisation problems quickly. We have shown that under mild assumptions a control
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Table 5.1: Efficiency evaluation of the presented algorithms in terms of number iterations

and runtime

ADMM FAMA CPII

N =5 | Av. No. Iters. | 1362 \548 2279 \778 1544\825
Cold\Warm
Min.\Max. No. Iters. | 72\1504 83\5947 1\2111
Warm
Av. Time Cold \Warm 46.90\19.82 42.74 \14.82 | 75.16 \40.53
Relative error ||(z,u) — | 1.61 x 107* | 1.62x 10=*% | 1.61 x 107*
(@, w)|/ [l (", )|

related problem, for instance an MPC formulation can be transformed into a convex op-
timisation problem, where the objective function will be given as a sum of a differentiable
and non-differentiable function, where the latter one is represented by an indicator func-
tion of a constraint set. The main advantage of the aforementioned transformation stems
from the ability to solve the modified problem by means of simple operations, known
from linear algebra, mainly multiplications between matrices and vectors. Next, we have
introduced a common computational framework from which we have subsequently derived
three popular splitting methods. After having introduced the basic versions of the under-
lying algorithms, we have derived their accelerated versions, mostly based on Nesterov’s
relaxation sequence. We have concluded the chapter by a non-trivial example of a Boe-
ing 747 aircraft, where have demonstrated the functionality of the presented algorithms
assuming different scenarios and assessed the efficacy of the given framework in terms of

number of iterations and runtimes.



Chapter

Conclusions and Contributions of the
Thesis

This work deals with combined topics of modelling and model predictive control of pro-
cesses. We try to introduce several techniques and approaches that make MPC fast and
reliable method usable also for embedded devices. These include (i) a novel approxima-
tion technique for modelling of nonlinear processes, (ii) a new compression technique,
serving for memory efficient representation of eMPC solutions, and (iii) several on-line
algorithms by means of one can solve convex optimisation problems very efficiently.
Approximation of nonlinear process behaviour by piece-wise affine models helps to
solve MPC problems more efficiently. In case of input-output data we proposed to solve a
simple, unconstrained optimization problems. Next, we discussed approximation of single-
variable functions, which then serve as the basic building blocks to perform the task in
higher dimensions, by transforming it into a series of one-dimensional problems. Proce-
dures and algorithms reported in this work are implemented in our AUTOPROX toolbox,
which is freely available for download from http://www.kirp.chtf.stuba.sk/~sw/. The
toolbox provides an easy-to-use interface to derivation of optimal PWA approximations
and is also capable to exporting the resulting models into the HYSDEL language. The
proposed technique is suitable to obtain an approximation of an arbitrary non-linear
function if the analytic form of the underlying function is already given. Furthermore,
obtainment of the parameters of the corresponding PWA function always boils down to
a sequence of approximations of single variable functions, which mathematically can be
expressed as a non-linear programming problem. Next, since the proposed procedure
focuses on static nonlinearities, it can be applied to a right hand side of an arbitrary

system of differential equations as well. On the other hand, in higher dimensions, during
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the transformation of the original problem into series of simpler ones, one has to introduce
auxiliary functions, which has two main downsides. Firstly, for functions described by
complex formula containing many variables, the analytic form of the final approximation
function can be quite complex. Moreover, due to the already mentioned transformation,
evaluation of the final approximation error can be cumbersome as well, because the propa-
gation of the approximation error in case of multivariable functions is not straightforward
at all. Therefore, in the future, besides improvement of the existing software package, we
would like to focus on finding a more rigorous approach characterising the propagation

of the corresponding approximation error.

In the second part of the work we have proposed to decrease memory requirements for
implementation of explicit MPC solutions by applying three compression-like approaches.
First, mixed-integer programming was used to derive suitable affine transformations which
allow certain regions to be represented using fixed amount of data. Then, de-duplication
was utilised to identify a unique subset of data and converting the regions into index set
representations. Finally, the integer indices were compressed by Huffman encoding. By
means of a large case study we have demonstrated that a significant memory saving can
be achieved. This reduction comes at the price of having to perform additional computa-
tion on-the-fly, amount of which was quantified for each level. Efficiency of de-duplication
and compression increases with growing problem dimension, which is due to the fact that
regions become more complex. The proposed methodology is suitable to reduce the mem-
ory footprint of an arbitrary explicit MPC solution, even in the case of a discontinuous
solution. Furthermore, it can be applied on top of other complexity reduction schemes,
and many times the memory footprint can be reduced by a factor of 50. On the down-
side, this reduction comes at the price in a form of an increased on-line computation
during the decompression phase. Unfortunately, efficacy of our proposed compression
algorithm heavily depends on the geometric structure of the underlying explicit MPC
solution. Nonetheless, the biggest drawback stems from the property of explicit MPC
itself, since this approach is mainly applicable for small-scale systems, and the prediction
model has to be either a linear or a hybrid one, in a form of a PWA or MLD model.
Therefore, one possible future direction regarding this drawback should be a development
of methods ensuring control laws in a closed form for non-linear systems too. However,
the "curse of dimensionality" remains a severe disadvantage of this methodology. One
way to overcome this problem is to apply the recently becoming popular combinatorial
approach, which, however, has its own drawbacks too. Another option could be usage of

fast on-line algorithms, briefly summarised in the next section.

The final part deals with operator splitting methods which under some assumptions

allow to convert the original convex optimisation problem into a sequence of single oper-
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ations, more specifically operations between vectors and matrices. We described a couple
of algorithms, and their accelerated versions. We concluded the chapter with an exam-
ple, where we showed the applicability of the aforementioned algorithms. The described
numerical framework is capable to solve wide range of convex optimisation problems
within mili- and microseconds, depending on the complexity of the given problem. The
algorithms are mainly composed of elementary operations performed on matrices and vec-
tors, hence they are easily implementable in mid-level languages, like C, or in embedded
systems with specific hardware architecture. Nonetheless, for small-scale systems these
methods can not compete with explicit model predictive control, where obtainment of
the respective control action reduces to a mere function evaluation. Furthermore, in this
framework we always assume linear models and in case of MLD or PWA models, one
has to apply some non-convex splitting methods, where are still a lot of open questions
currently under active research. Bottom line, the presented algorithms are more universal
compared to explicit MPC in terms of scalability, but the main bottleneck in this setup is
the requirement of a linear dynamics. In the future we would like to focus on non-convex
problems, extending the range of applicability of operator splitting methods. Moreover,
since the presented algorithms are both applicable on small- and large scale systems, we
are planning to investigate efficacy of these methods on distributed systems containing a

huge number of optimisation variables.
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Resumé

Prekladana dizertacna praca sa zaoberd s kombinovanou tematikou modelovania a pre-
diktivneho riadenia procesov. Praca sa sklada z troch, vzajomne sa prelinajicich oblasti,

ktoré su nasledovné:

e nova aproximacna metdda, sliziaca na opis dynamickych vlastnosti nelinedrnych

procesov

e trojvrstvova komprimacnd technika, pomocou ktorej dokazeme radikalne znizit pa-

méatové naroky explicitnych prediktivnych regulatorov

e mnozina on-line algoritmov, ktoré dokazu efektivne riesit siroku skalu optimalizac-

nych problémov

Matematické modely redlnych zariadeni hraji velmi doleziti tlohu vo viacerych ob-
lastiach spojenych s procesnym riadenim. Najvacsou vyzvou je ndjst matematicky model,
ktory je dostatocne presny a zaroven nie prili§ zlozity. Pochopitelne, najpresnejsie si-
mulacné vysledky st dosiahnutelné pomocou nelinearnych modelov, avSak tedria navrhu
riadenia, zalozena na béaze uz spomenutych modelov nie je rozpracovand v dostatocnej
miere. Najbeznejsim spdsobom zjednodusenia je rozvoj do Taylorovho radu, ktory umoz-
nuje tvorbu linearizovaného modelu v okoli jedného operac¢ného bodu. Modely ziskané
touto procedirou dokazu exaktne opisat dynamické vlastnosti pévodného nelinedrneho
modelu v okoli zvoleného opera¢ného bodu, ale ich presnost klesa so vzrastajicou vzdia-
lenostou od vybraného lineariza¢ného bodu. Najracionalnejsim riesenim je pouzit viacero
aproximacnych bodov, takto vytvarajic rozny pocet lokalnych modelov. Matematicky
moze byt tato idea reprezentovand pomocou hybridnych systémov. Hybridné modely do-
kazu prepojit spojiti dynamiku s logickymi premennymi a na zaklade pravdivostnej hod-
noty binarnych premennych mame moznost si vybrat prislusny lokdlny model. V prvej

casti tejto prace sme si predstavili novii aproximacni techniku, pomocou ktorej hladanie
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parametrov vyslednej aproximovanej funkcie dokazeme naformulovat ako optimaliza¢ny
problém. Ukézali sme, ze za istych podmienok pévodny, dost ¢asto zlozity problém do-
kazeme pretransformovat na sekvenciu jednorozmernych aproximacénych problémov. Vy-
uzitim zédkladného, jednorozmerného stavebného kamena, nasu metédu sme rozsirili na
dvojrozmerné funkcie. Navyse sme ukézali, ze pomocou vhodnych substiticii, dokdzeme
pretransformovat Tubovolnt neseparovatelnt funkciu do separovatelnej podoby. Pri naj-
trividlnejSom scenari sme predpokladali existenciu analytického tvaru nelinedrnej aproxi-
movanej funkcie, na druhej strane pri absencii nelinedrneho vyrazu sme navrhovali ap-
likovat dvojkrokovt procediru na ziskanie aproximacnej funkcie zo vstupno-vystupnych
dat, kde v prvej faze sme sa snazili najst koeficienty aproximacnej funkcie. Ked sme uz
mali k dispozicii analyticky tvar aproximovanej funkcie, aplikovanim nasej procediry sme
lahko ziskali findlnu aproximdaciu. Predstavend aproximacna procedura je zabalend do
kompaktného softvérového balika, ktory zaroven umoznuje export parametrov optimalne;
PWA aproximécie do jazyka HYSDEL.

V druhej polovici 20.storocia prediktivne riadenie sa stalo velmi populdrnou riadia-
cou stratégiou, hlavne kvoli jeho vlastnosti efektivne sa zaobchadzat s ohrani¢eniami.
Hlavna idea tohoto pristupu spociva v rieSeni optimaliza¢ného problému v kazdej periéde
vzorkovania, takto ziskajuc sekvenciu optimélnych akénych zasahov. Z tejto sekvencie
sa vyextrahuje prvy iba clen a aplikuje sa do realneho zariadenia. Tato metodolégia sa
velmi casto oznacuje ako riadenie s pohyblivym horizontom. RieSenim optimaliza¢ného
problému v kazdom kroku dokdzeme tlacit stavové velic¢iny do nuly alebo sledovat ne-
jakt referenént trajektoriu. Takyto on-line pristup je velmi efektivny v pripade systémov
s pomalou dynamikou, na druhej strane, jeho implementacia je tazkopadna pre rychle
mechatronické procesy. Nastastie, na zaciatku 21. storocCia bolo ukazané, ze namiesto
rieSenia optimalizacnej metddy on-line, optimalne riesenie sa da predpocitat pre vsetky
mozné pociatoéné podmienky off-line, ¢o sa oznacuje ako explicitné prediktivne riadenie.
Takto ziskané riesenie sa d4 ulozit vo forme vyhladavacej tabulky, ktora obsahuje samotné
zékony riadenia a k nim prislichajice regiony. Vyhody st dvojaké. Vsetky zdkony riadenia
st affinnou funkciou stavovej veli¢iny, ¢o znamenad, zZe ziskanie prislusného zakona riadenia
sa redukuje na najdenie konkrétneho regiéonu a naslednt evaluaciu k nemu prislichajticej
affinnej funkcie. Druht vyhodu predstavuje fakt, Ze riesenie sa da ziskat pomocou multi-
parametrického programovania. Explicitné MPC stéle predstavuje velmi atraktivny smer,
avSak disponuje aj s velkym nedostatkom. Tato metdda je predovsetkym aplikovatelna
pre systémy s mensim poc¢tom stavov. Dalej, nedokéze sa adaptovat pre riadenie systémov
s Casovo premenlivymi parametrami, pretoze parametre takéhoto regulatora st ratané pre
zafixovanych parametroch. Obrovski vyzvu predstavuje aj implementécia takejto riadia-

cej stratégie na vypoctovych platforméach s obmedzenym mnozstvom paméte.
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Preto, v druhej casti tejto prace sme navrhovali efektivnu komprimacénut techniku, sli-
ziacu na znizenie pamétovych narokov explicitnych prediktivnych regulatorov. Prva vrstva
néjde podmnozinu regiénov, pomocou ktorych sa daji bez problémov zrekonstruovat tie
zvysné. Ukazali sme, Ze problém hladania bazickych regiénov sa dé naformulovat ako
problém celociselného programovania. Druhé vrstva sa moéze aplikovat na data pochadza-
juce z tej prvej alebo nezavisle. V tomto pripade, pamét sa setri identifikdciou pozitivnych
a negativnych duplicit v prislusnej polpriestorovej reprezentacii polytopickych regiénov.
Najdené duplicity su reprezentované ako prosté smerniky na mnozinu unikatnych dat.
Na poslednej vrstve, smerniky ziskané z druhej vrstvy sa zakéduji pomocou Huffma-
novho kédovania. Smerniky, reprezentované pomocou celych ¢isiel st asociované bitovymi
vzormi, a to v zévislosti od frekvencie ich vyskytu. Hlavnymi vyhodami tejto metody su,
7e je aplikovatelnd na Tubovolné explicitné riesenie a v niektorych pripadoch pamétovy
otlacok sa méze redukovat az 50-nasobne. Ne druhej strane, efektivnost metody je vysoko
zavisla na geometrickej struktire daného riesenia. Navyse, pri rieSeni prislusného opti-
malizacného problému vzdy sa uvazuje linedrny alebo hybridny predikény model. Preto,
v budicnosti by sme sa chceli zameriavat na hladanie rieseni zdkonov riadenia v uzavretej
forme uvazovanim nelinedrnych predikénych modelov. Avsak hlavny nedostatok, tykajtci
sa Skalovatelnosti explicitného prediktivneho riadenia ostdva nadalej velkym problémom,

ktory by sa dalo mozno odstranit aplikovanim rychlych on-line algoritmov.

Metdda alternativnych smerov upttala velkt pozornost v predovsetkym v oblastiach
spracovania signalov, strojového ucenia, kde Tudia potrebuju riesit optimalizacné prob-
lémy s velkym poctom premennych a nediferencovatelnou tcelovou funkciou. Navyse
bolo ukéazané, ze aj MPC formulacie mézu byt pretransformované do podoby konvex-
nych optimaliza¢nych metdd, obsahujicich diferencovatelnt a nediferencovatelni ¢ast vo
forme indikatorovej funkcie, takto umoznujic implementiciu metod alternativnych sme-
rov. Prave to prepojenie medzi prediktivnym riadenim a konvexnou optimalizaciou nas
viedlo k takzvanym operatorovym metédam, pomocou ktorych pri splneni istych predpo-
kladov dokazeme prekonvertovat pévodny konvexny optimaliza¢ny problém na sekvenciu
jednoduchych operacii znamych z linedrnej algebry. V tretej ¢asti prace sme opisovali sadu
on-line algoritmov, sliziacich na riesenie Sirokej skaly konvexnych optimaliza¢nych algo-
ritmov. Ukéazali sme, ako sa daji odvodif uz spomenuté algoritmy z jednotnej struktury,
charakterizujicej spolo¢né ¢rty kazdého algoritmu. Najprv sme charakterizovali zakladné
algoritmy a nasledne ich akcelerované verzie. Ako to uz bolo spomenuté, prezentované al-
goritmy obsahuji jednoduché operacie vykonanych pomocou matic alebo vektorov, preto
st jednoducho implementovatelné napriklad v programovacom jazyku C alebo v zabudo-
vanych systémoch so Specidlnou hardvérovou architektirou. Musi sa vsak skonstatovat, ze

pre dynamické systémy s mensSim poctom stavov odprezentované algoritmy nemézu kon-
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kurovat explicitnému prediktivnemu riadeniu, kde ziskanie akénych zasahov sa redukuje
na jednoduchi evaludciu affinnej funkcie. Velkou restrikciou tychto algoritmov dalej je
v tom, ze uvazuje sa iba linedrna dynamika. V pripade hybridnych predikénych modelov
by sme museli siahat po niektorej z metéd nekonvexnej operatorovych metod, ktoré su

stale predmetom aktivneho vyskumu.

102



	1 Introduction
	I MATHEMATICAL BACKGROUND
	2 Convex Sets and Functions
	2.1 Sets
	2.2 Functions
	2.3 Constrained Optimisation
	2.3.1 Linear Programming
	2.3.2 Quadratic Programming
	2.3.3 Mixed-Integer Linear Programming
	2.3.4 Mixed-Integer Quadratic Programming



	II HYBRID SYSTEMS
	3 Modeling of Hybrid Systems
	3.1 Introduction to Hybrid Systems
	3.1.1 Piecewise Affine Systems
	3.1.2 Mixed Logical Dynamical Systems
	3.1.3 Linear Complementarity Systems
	3.1.4 Extended Linear Complementarity Systems
	3.1.5 Max-Min-Plus-Scaling Models

	3.2 Problem Statement
	3.3 Optimal PWA Approximation
	3.3.1 Functions in One Variable
	3.3.2 Multivariable Separable Functions
	3.3.3 Multivariable Nonseparable Functions

	3.4 Approximation of Nonlinear Functions from Data
	3.4.1 Problem Definition
	3.4.2 Function Fitting
	3.4.3 Complete Scheme

	3.5 Software Implementation
	3.6 Command-Line Interface
	3.7 Graphical User Interface (GUI)
	3.8 Case Study
	3.9 Summary


	III Complexity Reduction in Explicit Model Predictive Control
	4 Explicit Model Predictive Control
	4.1 Properties of Explicit Model Predictive Control
	4.2 Problem Definition
	4.3 Overview of Methods for Complexity Reduction in Explicit Model Predictive Control
	4.4 Main Results
	4.4.1 Complexity Reduction via Affine Transformations
	4.4.2 Data De-Duplication
	4.4.3 Compression of Index Set Representations

	4.5 Efficiency Evaluation
	4.6 Summary


	IV Fast Model Predictive Control
	5 Operator Splitting Methods in Control
	5.1 Prior and Related work
	5.2 Problem Formulation
	5.3 The Algorithms
	5.4 Accelerated Convergence
	5.4.1 How to Split
	5.4.2 Improvements in the Convergence Rate

	5.5 Case Study
	5.6 Summary

	6 Conclusions and Contributions of the Thesis
	Bibliography
	List of Publications
	Curriculum Vitae
	Resumé


