
SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

Reference number: FCHPT-19990-26488

Algorithms for Process Modelling and Fast Model

Predictive Control

DISSERTATION THESIS

Bratislava, 2014 Ing. Alexander Szűcs

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

Reference number: FCHPT-19990-26488

Algorithms for Process Modelling and Fast Model

Predictive Control

DISSERTATION THESIS

Study program: Process Control

Study field number: 2621

Study field: 5.2.14 Automation

Workplace: Department of Information Engineering and Process Control

Supervisor: Prof. Ing. Miroslav Fikar, DrSc.

Co-supervisor: Doc. Ing. Michal Kvasnica, PhD.

Bratislava, 2014 Ing. Alexander Szűcs

�✁✂✄☎✆ ✝✞✟✄✠✡☛✟☞✌ ✂✍ ✎✠✏✑✞✂✁✂✒✌ ✟✞ ✓✡☎☞✟☛✁☎✄☎
✔✞☛☞✟☞✕☞✠ ✂✍ ✔✞✍✂✡✖☎☞✟✂✞ ✗✞✒✟✞✠✠✡✟✞✒✘ ✙✕☞✂✖☎☞✟✂✞ ☎✞✚ ✛☎☞✑✠✖☎☞✟✏☛

✜☎✏✕✁☞✌ ✂✍ ✢✑✠✖✟✏☎✁ ☎✞✚ ✜✂✂✚ ✎✠✏✑✞✂✁✂✒✌
✙✏☎✚✠✖✟✏ ✌✠☎✡✣ ✤✥✦✧★✤✥✦✩
✪✠✒✫ ✬✂✫✣ ✜✢✭✮✎✯✦✰✰✰✥✯✤✱✧✲✲

✳✴✵✵✶✷✸✹✸✴✺✻ ✸✼✶✵✴✵ ✸✺✽✴✾

�☞✕✚✠✞☞✣ ✿❀❁❂ ❃❄❅❆❇❀❈❅❉ ❊❋●❍■

�☞✕✚✠✞☞❏☛ ✔❑✣ ▲▼◆❖❖

�☞✕✚✌ P✡✂✒✡☎✖✖✠✣ ◗❘❙❚❯❱❱ ❲❙❳❨❘❙❩

�☞✕✚✌ ✍✟✠✁✚✣ ❬❭▲❭❪◆ ❫❴❨❙❵❫❨❛❙❳

✎✑✠☛✟☛ ☛✕P✠✡✄✟☛✂✡✣ ❜❘❙❝❭ ❞❳❡❭ ❢❛❘❙❱❩❫❣ ❤❛✐❫❘❥ ❦❘❧❚❭

✎✂P✟✏✣ ❃❄❁♠❉♥♦♣q■ r♠❉ s❉♠❍❅■■ t♠❈❅❄❄♥❀❁ ❇❀❈ ✉❇■♦ t♠❈❅❄ s❉❅❈♥❍♦♥✈❅

✇♠❀♦❉♠❄

✙☛☛✟✒✞✖✠✞☞ P✡✂✏✠✚✕✡✠ ✍✡✂✖✣ ✥✤✫ ✥✰✫ ✤✥✦✥

❑☎☞✠ ✂✍ ☞✑✠☛✟☛ ☛✕①✖✟☛☛✟✂✞✣ ✥✤✫ ✥✰✫ ✤✥✦✧

②③ ④③

⑤⑥⑦③ ⑧⑨⑩❶❷⑥❸⑩❹ ④❺❻❼❽
❾❿➀➁➂➃

➄❹➅➆③ ⑤⑥⑦③ ➇➈❹➅❽⑨❷➉ ➊➈➋❷❹➌ ➍❹④❼③
➎➂➏➐ ❿➑ ➐➂➒➏➃➓➔➂→➓

➄❹➅➆③ ⑤⑥⑦③ ➇➈❹➅❽⑨❷➉ ➊➈➋❷❹➌ ➍❹④❼③
❾➓➣➐↔ ➒➃❿↕➃➏➔➔➂ ➙➣➒➂➃➁➛➙❿➃

Acknowledgements

I consider myself a lucky guy due to having a chance to absolve my PhD study in two

different countries, supervised by two well known scientists in the field of automatic

control, namely by Michal Kvasnica and Colin Jones. Even though the previous four

years were rather difficult, I am heavily indebted to them. I have not just learned from

them a lot, but they have introduced me two fundamentally different ways of approaching

and solving problems, made my skills more versatile. Without a doubt, regardless what I

will end up doing, the skills and knowledge acquired over the last four years will remain

useful throughout my entire future career.

I would like to express my gratitude to prof. Miroslav Fikar too, who gave me a lot

of freedom during my studies, intervening to it only when it was necessary. Nonetheless,

his guidance was absolutely helpful and inevitable to succeed.

I have started this section by stating that I think I am a lucky person. Frankly, I have

never thought that one day I might be somewhere where I am at the moment. For this

and for many other things I want to further express my thanks to my friends, namely

to Tomaš, Juro, Lukaš and to the group of “Gabos”, who despite of my complex, many

times annoying personality were keep supporting me and have contributed to my life in

a form of unforgottable memories by means of different parties and discussions.

Special thanks go to my ex-girlfriend, Erika, who helped me a lot during my bachelor

studies and pushed me towards studying. I think it was a good push. Thank you!

My biggest thanks go to my family for their mental support provided during my

doctoral studies. Without their help, I would have already left the academia.

Alexander Szűcs

Bratislava, 2014

Abstract

This work aims to contribute to modelling and fast predictive control of processes. It can

be divided into several topics.

Process modelling is investigated and an effective approximation technique is de-

scribed. It can be used to approximate an original non-linear process model as a hybrid

system with piecewise affine dynamics. We discuss three different cases, how one can ob-

tain the approximation of an arbitrary nonlinear function. The most trivial case assumes

that the analytic form of the nonlinear term is already known. On the other hand, if

only some set of input-output measurements are given, we employ a two-stage procedure

to obtain the final approximation. This method aims to select the appropriate subset

of basis functions and consecutively finding a proper linear combination of them. Once

we possess the analytic formula of our approximated function, we can obtain the final

PWA approximation by solving standard nonlinear programs. We show, that under mild

assumptions, the task can be transformed into a series of one-dimensional problems. Fi-

nally, we demonstrate the efficiency of our technique on an illustrative example, involving

a highly nonlinear reactor.

The second part of the work deals with fast model predictive control. We investigate

the problem of reduction of the amount of memory needed to describe explicit MPC

solutions. The main idea of explicit MPC stems from pre-computation of the optimal

control action for all possible initial conditions and subsequently storing them in a form

of a look-up table. On one hand, this concept allows faster implementation, but on the

other, requirements for memory storage increase too. In order to eliminate this drawback,

we continue with a description of an effective, three-layer compression technique, allowing

fast implementation on low-cost hardware platforms. This three-layer procedure first

identifies similarities between polytopic regions in form of an affine transformation. If

such a mapping exists, certain regions can be represented using less data. The second

layer then applies data de-duplication to identify and remove repeating sequences of data.

Regions are then described by integer pointers to such a unique set. Finally Huffman

encoding is applied to compress such integer pointers using prefix-free variable-length

bit encoding. The chapter ends with efficiency evaluation of the proposed technique on

several, randomly generated feedback law examples.

The final chapter is devoted to the so-called operator splitting methods, by means

of one can solve convex optimisation problems very efficiently by simply decomposing

the original possibly complex problem into a series of simple operations well known from

linear algebra. Several algorithms and their range of applicability are presented.

Abstrakt

Práca sa venuje modelovaniu a rýchlemu prediktívnemu riadeniu procesov. Skladá sa

z viacerých tém.

V prvej časti sa zameriava na modelovanie procesov a aproximáciu pôvodne neline-

árneho modelu za po častiach lineárny model, ktorý je vhodnejší pre použitie v rých-

lom prediktívnom riadení. Navrhujeme efektívne aproximačné metódy, ktoré sú aplikova-

teľné vo viacerých prípadoch. Najjednoduchší prípad predpokladá existenciu analytického

tvaru aproximovaného nelineárneho výrazu. Na druhej strane, pri existencii iba vstupno-

výstupných dát, získanie finálnej aproximácie vyžaduje aplikovanie dvojkrokovej proce-

dúry. Táto metóda sa vyznačuje hľadaním príslušnej podmnožiny bázických funkcií a

následným nájdením koeficientov vhodnej lineárnej kombinácie. Keď máme k dispozícii

analytický výraz aproximovanej funkcie, riešením štandardnej úlohy nelineárneho prog-

ramovania ľahko získame výslednú transfomáciu, ktorá je po častiach afinná. Navyše,

v práci ukazujeme, že pri splnení istých podmienok úloha môže byť pretransformovaná na

sekvenciu jednorozmerných aproximácií. Efektívnosť metódy je demonštrovaná na vysoko

nelineárnom modeli chemického reaktora.

Druhá časť práce sa zaoberá rýchlym prediktívnym riadením. Uvažujeme problém

zníženia pamäťových nárokov explicitných prediktívnych regulátorov. Hlavná idea expli-

citného MPC spočíva v predpočítaní optimálneho akčného zásahu pre všetky možné po-

čiatočné podmienky a ich následným uložením vo forme vyhľadávacej tabuľky. Na jednej

strane, táto metóda umožňuje rýchlu implementáciu, avšak za cenu vyšších pamäťových

nárokov. Za účelom eliminovania tohto nedostatku uvedieme opis efektívnej trojvrstvovej

komprimačnej techniky, takto umožňujúc rýchlu implementáciu na výpočtových platfor-

mách s obmedzenou pamäťovou kapacitou. Trojvstrvová procedúra najprv identifikuje

podobnosti medzi polytopickými regiónmi vo forme afinnej transfomácie. V prípade exis-

tencie takéhoto zobrazenia môžu byť určité regióny reprezentované úspornejším spôsobom.

Druhá vrstva eliminuje opakované sekvencie dát pomocou de-duplikácie. Po tejto proce-

dúre regióny sú charakterizované pomocou smerníkov. Získaná smerníková reprezentácia

je v konečnej fáze nahradená bitovými sekvenciami, získaných pomocou Huffmanovho

kódovania. Efektívnosť komprimačnej techniky je vyhodnotená na rôznych náhodne ge-

nerovaných spätnoväzbových zákonov.

Posledná kapitola je venovaná k rôznym algoritmom slúžiacich na riešenie konvexných

optimalizačných problémov. Hlavná idea týchto algoritmov spočíva v ich schopnosti pre-

transformovať originálny konvexný problém na sekvenciu jednoduchých operácií známych

z oblasti lineárnej algebry. Porovnáme viaceré algoritmy a ich rozsahy použiteľnosti.

Contents

1 Introduction 1

I MATHEMATICAL BACKGROUND 7

2 Convex Sets and Functions 9

2.1 Sets . 9

2.2 Functions . 11

2.3 Constrained Optimisation . 12

2.3.1 Linear Programming . 12

2.3.2 Quadratic Programming . 13

2.3.3 Mixed-Integer Linear Programming 13

2.3.4 Mixed-Integer Quadratic Programming 14

II HYBRID SYSTEMS 15

3 Modeling of Hybrid Systems 17

3.1 Introduction to Hybrid Systems . 17

3.1.1 Piecewise Affine Systems . 18

3.1.2 Mixed Logical Dynamical Systems 18

3.1.3 Linear Complementarity Systems 19

3.1.4 Extended Linear Complementarity Systems 19

3.1.5 Max-Min-Plus-Scaling Models . 20

3.2 Problem Statement . 21

3.3 Optimal PWA Approximation . 21

3.3.1 Functions in One Variable . 22

xi

3.3.2 Multivariable Separable Functions 25

3.3.3 Multivariable Nonseparable Functions 29

3.4 Approximation of Nonlinear Functions from Data 31

3.4.1 Problem Definition . 31

3.4.2 Function Fitting . 32

3.4.3 Complete Scheme . 34

3.5 Software Implementation . 35

3.6 Command-Line Interface . 38

3.7 Graphical User Interface (GUI) . 39

3.8 Case Study . 40

3.9 Summary . 43

III Complexity Reduction in Explicit Model Predictive Con-

trol 45

4 Explicit Model Predictive Control 47

4.1 Properties of Explicit Model Predictive Control 48

4.2 Problem Definition . 49

4.3 Overview of Methods for Complexity Reduction in Explicit Model Predic-

tive Control . 50

4.4 Main Results . 51

4.4.1 Complexity Reduction via Affine Transformations 51

4.4.2 Data De-Duplication . 54

4.4.3 Compression of Index Set Representations 57

4.5 Efficiency Evaluation . 59

4.6 Summary . 60

IV Fast Model Predictive Control 63

5 Operator Splitting Methods in Control 65

5.1 Prior and Related work . 66

5.2 Problem Formulation . 68

5.3 The Algorithms . 70

5.4 Accelerated Convergence . 73

5.4.1 How to Split . 74

5.4.2 Improvements in the Convergence Rate 75

5.5 Case Study . 77

5.6 Summary . 79

6 Conclusions and Contributions of the Thesis 81

Bibliography 85

List of Publications 95

Curriculum Vitae 97

Resumé 99

List of Abbreviations

ADMM Alternating Direction Method of Multiplier

AMA Alternating Minimisation Algorithm

CP I Chambolle-Pock I

CP II Chambolle-Pock II

ELCS Extended Linear Complementary Systems

eMPC explicit Model Predictive Control

FADMM Fast Alternating Direction Method of Multiplier

FAMA Fast Alternating Minimisation Algorithm

HYSDEL Hybrid System Description Language

LCS Linear Complementary Systems

MLD Mixed Logical Dynamic

MPC Model Predictive Control

PLC Programmable Logic Controller

PWA Piecewise Affine

PADMM Proximal Alternating Direction Method of Multipliers

RHMPC Receding Horizon Model Predictive Control

xv

Chapter 1

Introduction

Mathematical models of physical plants play a crucial role in many areas connected to the

field of control theory. The most challenging problem is usually represented by finding a

compromise solution between the model’s accuracy and its complexity. Naturally, the best

possible simulation results can be achieved by nonlinear models, although control design

techniques based on such models are difficult. The most common way of simplification, in

order to avoid the usage of complex nonlinear models is represented by Taylor expansion,

which allows to create a linearized model around one operating point. However, this con-

cept solves our problem only partially, since it is not able to capture dynamical properties

of the original nonlinear model in the entire domain of interest. This drawback becomes

very significant with the increasing distance from the original operating point, resulting

in discrepancies between the trajectories obtained from the original, nonlinear model and

the approximated one. The most rational solution to the above addressed problem is to

use more approximation points, creating several local models. This idea can be captured

by the concept of hybrid systems (Morari et al. 2003), where the above mentioned multiple

linearization technique is realizable through the interconnection of continuous variables

with discrete ones. In other words, hybrid systems are capable to detect local models by

means of boolean variables and according on their truth value switch over to the corre-

sponding local model and pick up the respective expression associated with the particular

region. There are several available frameworks to describe such systems like MLD, PWA

models and max-min scaling functions. It was shown that under mild assumptions these

models are equivalent to each other (Heemels et al. 2001) and transformation between

these models is available too. In this work we propose an optimization-based procedure of

deriving PWA functions, wrapped in a MATLAB toolbox called AUTOPROX. The toolbox

is capable to approximate an arbitrary function as well as right-hand sides of differential

1

2 CHAPTER 1. INTRODUCTION

equations, exploiting the concept of separability. This technique allows us to extend the

procedure to higher dimension by a simple transformation. Even functions, at first glance

non-separable, can be “chunked” into several number of separable terms. Generally, the

approach requires the analytic form of the function, but it can be effective even in case

of input-output measurements. We propose an efficient method, how one can overcome

the absence of analytic terms, where the coefficients multiplying the basis functions are

calculated by optimization.

Model predictive control has become very popular control strategy in the recent years

due to its ability to handle constraints. The main idea of this approach is based on

solving optimization problems in each sampling time and implement only the first control

action from the whole sequence, also known as receding horizon model predictive control

(RHMPC) (Bemporad et al. 2000b). By solving an optimization problem in each step, we

can push our states towards zero or track the reference, while guaranteeing optimality and

satisfaction of constraints. This so-called online method is very effective in slow processes

(e.g. chemical or petrochemical processes), but its implementation becomes cumbersome

for fast mechatronics processes.

Fortunately, at the beginning of the 21th century a new concept appeared, called ex-

plicit MPC (Bemporad et al. 2000a). This concept enables to implement such controllers

on fast systems, since the whole optimization procedure is performed off-line. Result of

this computation is a look-up table, containing the control laws, each associated to its

own region. The advantages are twofold. First, the control laws are affine functions of

states, thus obtainment of the corresponding control actions simply reduces to finding

the appropriate region, known as point location problem and pick up the corresponding

affine function belonging to the region. The second reason is also quite obvious, since

the regions over which the affine the control law is defined can be easily acquired by

multi-parametric programming. Explicit MPC (eMPC) is still very attractive, but un-

fortunately it also posesses some drawbacks. First of all, it is confined to problems of

small sizes. Furthermore,it is not able to adapt itself to control systems with varying

parameters, because the parameters of the controller are computed in advance. Very

challenging task is implementation of eMPC solutions on industrial control systems (e.g.

PLCs), where the total amount of allowable memory is usually only 2 kB. For systems

with many states and inputs the real-time implementation of eMPC solutions becomes

difficult, since they usually contain more than 1000 regions. Moreover, if we take into

account the number of affine functions, associated to the regions, we can easily run out

of memory.

Therefore, second part of this work deals with an efficient compression technique to

reduce the memory footprint required by an eMPC controller in order to implement it on

3

low-cost platforms. We present here a three-stage procedure, by means of a substantial

reduction can be attained. The procedure contains three layers. The first one determines a

subset of regions, denoted as basis regions, by means of one can reconstruct the remaining

ones. We show how to formulate the search for such a mapping by solving a mixed-integer

problem, which is done off-line. If the transformation exists, the corresponding regions

can then be represented using less data. The second layer can either be applied on top

of the first one, or independently. Here, memory is saved by identifying positive and

negative duplicities in the half-space representation of several polytopic regions. The

duplicate occurrences are then represented as mere integer pointers to the unique set of

data. Compared to the first layer, the additional computation to be performed on-line

is significantly smaller. Finally, in the last layer we propose to compress the integer

pointers by Huffman encoding (Knuth 1985). Here, variable-length bit codewords are

assigned to each integer, depending on its frequency of abundance. Main benefit of the

proposed strategies is that they can be applied on top of all aforementioned complexity

reduction schemes. Saving in terms of memory is achieved at the price of an increase of

the implementation effort performed on-line. Therefore the approach is mainly suited for

situations where the implementation device posesses enough computational power, but

has severe memory limitations.

The significant progress that has been made in recent years both in hardware im-

plementations and in numerical computing has rendered real-time optimization-based

control a viable option when it comes to advanced industrial applications. More recently,

the need for control of a process in the presence of a limited amount of hardware re-

sources has triggered research in the direction of embedded optimization-based control.

Many efficient high-speed solvers have been developed for both linear and nonlinear con-

trol, based on either first order methods (FiOrdOs (Ullmann 2011)), interior point (IP)

methods (FORCES (Domahidi et al. 2012), CVXGEN (Mattingley and Boyd 2012)) or

active sets (QPOASES (Ferreau et al. 2008b)).

In this work we focus on systems with linear dynamics, giving rise to convex control

problems. We aim to explore a family of first order methods known as decomposition

schemes or operator splitting methods. In the simplest case, the abstract form of the

problem at hand is the minimization of the sum of two convex functions.

Formulations similar to the above have been studied extensively and we can look

for their roots in the method of multipliers (Hestenes 1969), the Arrow-Hurwicz method

(Arrow et al. 1958), Douglas-Rachford splitting (Douglas and Rachford 1956), and ADMM

(Gabay and Mercier 1976b, Glowinski and Marrocco 1975b). More recent references that

illustrate the applicability of such methods in modern engineering problems (signal and

image processing, big data analysis, machine learning) are by Boyd et al. (2011b) and

4 CHAPTER 1. INTRODUCTION

Combettes and Pesquet (2011). The thesis Esser (2010) provides a nice and comprehensive

description of the connection of several splitting algorithms under a common framework.

Finally, the book (Bauschke and Combettes 2011) provides a mathematically rigorous

introduction to operator splitting methods in general Hilbert spaces.

Therefore, in the third part of this work we present three popular splitting algorithms,

the Alternating direction method of multipliers (ADMM), the Alternating minimization

algorithm (AMA) and the primal-dual scheme from Chambolle and Pock I (CPI) and their

accelerated versions, Fast alternating direction method of multipliers (FADMM), Fast

alternating minimisation algorithm (FAMA), and primal-dual scheme from Chambolle

and Pock II (CPII). Our choice is motivated by the fact that the methods have been

analysed and extended by several communities, and their properties are well-understood.

Aims of the Thesis

The main goals of this thesis can be summarised as follows:

• The first field of contribution is modelling of hybrid systems, where we developed an

effective approximation technique to obtain the corresponding PWA approximation

of a nonlinear function either characterised by an analytic expression or by means of

a set of input-output measurements. Furthermore in order to simplify the underlying

procedure a software package called AUTOPROX was developed, by means of one

can easily obtain the final approximation of the nonlinear function. The proposed

approximation procedures were published in the following papers:

– M. Kvasnica, A. Szűcs, and M. Fikar. Automatic derivation of optimal piece-

wise affine approximations of nonlinear systems. In Preprints of the 18th IFAC

World Congress Milano (Italy) August 28 - September 2, 2011, pages 8675–

8680, 2011c. URL http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1166.

– A. Szűcs, M. Kvasnica, and M. Fikar. Optimal piecewise affine approximations

of nonlinear functions obtained from measurements. In 4th IFAC Conference

on Analysis and Design of Hybrid Systems, Eindhoven, Netherlands, pages 160–

165, 2012. URL http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1306.

– A. Szűcs, M. Kvasnica, and M. Fikar. Matlab toolbox for automatic approxi-

mation of nonlinear functions. In M. Fikar and M. Kvasnica, editors, Proceed-

ings of the 18th International Conference on Process Control, pages 119–124,

Tatranská Lomnica, Slovakia, June 14-17, 2011 2011a. Slovak University of

Technology in Bratislava. URL http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1138

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1166
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1306
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1138

5

• The second field of contribution is complexity reduction of explicit MPC solutions.

We developed an effective three-layer compression technique, which can be applied

to an arbitrary MPC solution. The underlying technique is able to significantly

reduce memory requirements of explicit predictive controllers, thus enabling their

implementation on industrial hardware platforms, e.g. PLCs. The proposed three-

layer compression technique can be found in the following publication:

– A. Szűcs, M. Kvasnica, and M. Fikar. A memory-efficient representation of

explicit mpc solutions. In Proceedings of the 50th CDC and ECC, pages 1916–

1921, Orlando, Florida, 2011b. URL http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1210

• Finally, the last field of contribution are operator splitting methods. This con-

cept refers to a set of algorithms capable of solving convex optimisation problems

by transforming them into a series of simple operations, e.g. matrix-vector multi-

plication. Furthermore, opposed to explicit MPC, these algorithms could be very

efficient for large-scale systems as well.

– G. Stathopoulos, A. Szűcs, Y. Pu, and C Jones. Splitting methods in control. In

European control conference to appear, 2014. URL http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1484

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1210
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1484

Part I

MATHEMATICAL

BACKGROUND

7

Chapter 2

Convex Sets and Functions

To understand the concepts of MPC, one has to take a deeper look on the basic building

blocks constituting the basic pillars of convex optimisation, such as sets or functions.

Therefore, in this chapter we will introduce some essential concepts from topology of sets,

e.g. closedness, boundedness and characterise the basic properties of convex sets and

functions.

2.1 Sets

Definitions in this section are due to Christophersen (2006), Grünbaum (2000), Weisstein

(2010).

Definition 2.1 (ǫ-Ball) The open n-dimensional ǫ-ball in R
n around a given point (cen-

ter) xc is the set

Bǫ(xc) := {x ∈ R
n | ‖x− xc‖ < ǫ},

where the radius ǫ > 0 and ‖ · ‖ denotes any vector norm (usually the Euclidean vector

norm ‖ · ‖2).

Definition 2.2 (Neighborhood) The neighborhood of a subset S of X ⊆ Rn is defined

as a set N (S) with S ⊂ N (S) ⊆ X such that for each s ∈ S there exist an n-dimensional

ǫ-ball with Bǫ(s) ⊆ N (S) and ǫ > 0.

Definition 2.3 (Convex set) A set S ⊆ Rns is convex if the line segment connecting

any pair of points of S lies entirely in S, i.e. if for any s1, s2 ∈ S and any α with

0 ≤ α ≤ 1, we have

αs1 + (1− α)s2 ∈ S.

9

10 CHAPTER 2. CONVEX SETS AND FUNCTIONS

See Figs. 2.1(a), 2.1(b).

Definition 2.4 (Convex hull) The convex hull of a set S ⊆ Rns is the smallest convex

set containing S, i.e.

hull(S) :=

{
k∑

i=1

αisi ∀si ∈ S ∃αi, αi ≥ 0,

k∑

i=1

αi = 1

}

.

Definition 2.5 (Closed set) A set S ⊆ Rns is closed if every point not in S has a

neighborhood disjoint from S, i.e.

∀x /∈ S,∃ǫ > 0 such that Bǫ(x) ∩ S = ∅.

Definition 2.6 (Bounded set) A set S ⊆ R
ns is bounded if it is contained inside some

ball Br(·) of finite radius r, i.e.

∃r <∞, s ∈ R
ns such that S ⊆ Br(s).

Definition 2.7 (Compact set) A set S is compact if it is closed and bounded.

Definition 2.8 (Set collection) S is called a set collection (in R
ns) if it is a collection

of finite number of ns-dimensional sets Si, i.e.

S := {Si}NS

i=1,

where dim(Si) = ns and Si ⊆ R
ns for i = 1, . . . , NS with NS < ∞. A set collection of

sometimes also referred to as family of sets.

Definition 2.9 (Partition) A collection of sets {Si}NS

i=1 is a partition of a set S if S =

∪NS

i=1Si and Si ∩ Sj for all i 6= j, where i, j ∈ {1, . . . , NS}.

Definition 2.10 (Half-space)

S = {x : pT x ≤ α}, (2.1)

where p is nonzero vector in R
n, and α is a scalar.

Definition 2.11 (H-polyhedron) A convex set Q ⊆ R
n given as an intersection of

finite number of half-spaces

Q = {x ∈ R
n |Qxx ≤ Qc} (2.2)

Definition 2.12 (H-polytope) A bounded polyhedron P ⊂ R
n

P = {x ∈ R
n | Pxx ≤ Pc} (2.3)

is called H - polytope

2.2. FUNCTIONS 11

s1

s2

S

(a)

s1

s2

S
(b)

Figure 2.1: Convex (a) and non-convex (b) set.

Definition 2.13 (V-polytope) A polytope can also be represented by means of a convex

combination of its vertices Vp:

P =

{

x ∈ R
n | x =

vp∑

i=1

αiV
(i)

p , 0 ≤ αi ≤ 1,

vp∑

i=1

αi = 1

}

, (2.4)

where V(i)
p denotes the i-th vertex of P, and vp is the total number of vertices of P.

2.2 Functions

Definitions in this section are due to Christophersen (2006), Syau (1998).

Definition 2.14 (Vector 1-, ∞- , 2-norm) The vector 1-, ∞-, and 2-norm of x ∈ R
n

is defined as

||x||1 :=
n∑

i=1

|xi|, ||x||∞ := max
1≤i≤n

|xi|, ||x||2 :=
n∑

i=1

x2
i

respectively, where xi is the i-th element of x.

Definition 2.15 (Convex/concave function) A real-valued function f : X 7→ R
nf is

convex if its domain X ⊆ Rn is a convex set and

∀x1, x2 ∈ X , 0 ≤ α ≤ 1 =⇒ f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

where ≤ is to be considered component wise. f(·) is strictly convex if the last inequality

above is replaced by strict inequality. f(·) is concave if −1f(·) is convex.

Definition 2.16 (Affine function) A real-valued function f : X 7→ R
nf with X ⊆ R

n

is affine if it is of the form f(x) := Fx + g, where F ∈ R
nf ×n and g ∈ R

nf .

12 CHAPTER 2. CONVEX SETS AND FUNCTIONS

Definition 2.17 (Piecewise affine function) A real-valued function fP W A : X 7→
R

nf with X ⊆ R
n is piecewise affine (PWA), if {Xi}NX

i=1 is a partition of X and

fPWA(x) := Fix + gi ∀x ∈ Xi,

where Fi ∈ R
nf ×n, gi ∈ R

nf , and i = 1, . . . , NX .

Definition 2.18 (Lower semi-continuous function) A real-valued function f : R 7→
R on a set S is a lower semi-continuous at a point x ∈ S if, for each λ ∈ R, λ ≤ f(x),

there exists a neighbourhood U of x such that f(y) ≥ λ for all y ∈ U . Function f : S 7→
[−∞, +∞] is said to be lower semi-continuous if f is lower semi-continuous at each point

of S.

2.3 Constrained Optimisation

A general constrained optimisation can be formulated as follows:

min
u

f(u)

s.t. : u ∈ S
(2.5)

Here the vector u ∈ R
N denotes the optimisation variable, f : Rn → R is the objective

function, and S is the constraint set.

Definition 2.19 Feasible and Optimal Solutions: Let f : R
n → R and consider the

constrained optimisation problem (2.5), where S is a nonempty set in R
n.

• A point u ∈ S is called a feasible solution to problem (2.5)

• If ū ∈ S and f(u) ≥ f(ū) for each u ∈ S, then ū is called an optimal solution, a

global optimal solution, or simply a solution to the problem.

• If ū ∈ S and if there exists an ǫ− neighbourhood Nǫ(ū) around u such that f(u) ≥
f(ū), for each u ∈ S ∩ Nǫ(ū), then ū is called a local optimal solution.

• If ū ∈ S and f(u) ≥ f(ū) for each u ∈ S ∩ Nǫ(ū), u 6= ū, for some ǫ ≥ 0, then ū is

called strict local optimal solution.

2.3.1 Linear Programming

If f in (2.5) is linear and S in (2.5) is defined by a set of linear inequalities gi(u) ≤ 0, i =

1, . . . , m, problem (2.5) can be reformulated and solved as a linear programming (LP)

problem.

2.3. CONSTRAINED OPTIMISATION 13

min
u

cT u

s.t. Au ≤ b,

Aequ = beq

(2.6)

There are three fundamentally different types of algorithms for solving LPs: simplex,

interior-point (Hudzovič 2004) and active set methods (K.Tone 1993). Even though the

former method has an exponential worst-case (Klee and Minty 2004), on average it solves

the problem in polynomial time (Karmakar 1984). Due to the fact that the latter method

has a polynomial worst case, both techniques are heavily utilised for solving linear pro-

gramming problems.

2.3.2 Quadratic Programming

If f is convex and quadratic and S is defined by set of linear inequalities gi(u) ≤ 0, i =

1, . . . , m, problem (2.5) is referred to as a quadratic programming (QP) problem:

min
u

1/2uT Hu + cT u

s.t. Au ≤ b,

Aequ = beq

(2.7)

For positive definite matrix H, the interior point methods (Murty 2006) solve the

problem in polynomial time. However, in case of H is indefinite, the problem becomes

NP-hard (Sahni 1974). In fact, one negative eigenvalue of matrix H is sufficient to turn the

underlying optimisation problem into a NP-hard problem. Furthermore, if the structure of

the underlying problem can be exploited (Maes 2010), active set methods are applicable as

well In chapter 5 we will introduce several algorithms by means of one can solve quadratic

programming problems very quickly.

2.3.3 Mixed-Integer Linear Programming

If the vector u of optimisation variables is composed of real and a binary part, i.e. u =

[uT
r , uT

b]T with ur ∈ R
nr and ub ∈ {0, 1}nb , and the objective function f is linear and

constraint set S defined by linear inequalities gi(u) ≤ 0, i = 1, . . . , m, problem (2.5) is

referred to as a Mixed Integer Linear Program (MILP). Formally it can be stated as:

min
u

cT
r ur + cT

b ub

s.t. Arur + Abub ≤ b

Aeq,rur + Aeq,bub = beq

ub ∈ {0, 1}nb

(2.8)

14 CHAPTER 2. CONVEX SETS AND FUNCTIONS

The presence of binary variables makes solving these types of problems much harder

to solve compared to above mentioned methods, namely to LP and QP. Obviously, the

most straightforward approach to obtain the optimal solution is to enumerate all possible

combinations of binary variables and pick up the optimiser corresponding to an optimi-

sation problem with the lowest objective value. possible scenarios. Considering the fact

that in general there are nb binary variables, one would have to solve 2nb linear program-

ming problems. However, this technique is very time consuming, and more advanced

techniques have been developed, specifically Branch & Bound or Branch & Cut (Adjiman

et al. 1996a, Soland 1971) which in order to find the optimal solution do not need to

compute all the possible combinations.

2.3.4 Mixed-Integer Quadratic Programming

If the vector u of optimisation variables is composed of real and a binary part, i.e. u =

[uT
r , uT

b]T with ur ∈ R
nr and ub ∈ {0, 1}n

b , and the objective function f is quadratic and

constraint set S defined by linear inequalities gi(u) ≤ 0, i = 1, . . . , m, problem (2.5) is

referred to as a Mixed Integer Quadratic Program (MIQP). Formally it can be stated as

follows:

min
u

uT
r H1ur + uT

r H2ub + uT
b H3ub + cT

r ur + cT
b ub

s.t. Arur + Abub ≤ b

Aeq,rur + Aeq,bub = beq

ub ∈ {0, 1}nb

(2.9)

Similarly to MILP problems, one has to choose between enumerating all the possible

combinations or using more advanced techniques, like Branch & Bound to obtain the

optimal solution.

Part II

HYBRID SYSTEMS

15

Chapter 3

Modeling of Hybrid Systems

3.1 Introduction to Hybrid Systems

Hybrid systems represent a compact framework which captures behavior of systems where

continuous dynamics is coupled with discrete logic. Examples include, but are not limited

to systems with discrete-valued actuators (such as on/off switches), piecewise linear non-

linearities, and finite state machines. Mathematically, hybrid systems can be described

by the following frameworks:

• Piecewise affine systems (Sontag 1981)

• Mixed logical dynamical systems (Bemporad and Morari 1999b)

• Linear complementarity systems (Heemels et al. 2000)

• Extended linear complementarity systems (De Schutter 1999)

• Max-min-plus-scaling systems (De Schutter and Van den Boom 2001)

Under mild assumption all these frameworks are equivalent to each other (Heemels et al.

2001). In the sequel we will provide a comprehensive description of them.

This chapter is organized as follows. After formally stating the problem in Section 3.2,

we give a detailed description of our approximation procedure in Section 3.3. Next in

Section 3.4, we deal with the problem of obtaining the optimal PWA approximation

from input-output measurements. Then, we illustrate the functionality of our software

implementation in Section 3.5. Finally the proposed technique is demonstrated on a case

study, including a model of a highly nonlinear reactor in Section 3.8. Material of this

chapter is based on our results published in Kvasnica et al. (2010), Szűcs et al. (2011a),

and Kvasnica et al. (2011c).

17

18 CHAPTER 3. MODELING OF HYBRID SYSTEMS

3.1.1 Piecewise Affine Systems

PWA systems are defined by partitioning the state-input space into polyhedral regions

(2.12) and associating each region with a different linear (or affine) state-update equation:

x+ =







A1x + B1u + c1 if [x
u] ∈ R1

...
...

AN x + BN u + cN if [x
u] ∈ RN

(3.1)

Here x ∈ R
nx is the state vector at time instance k, x+ is the successor state at the

next sampling instance, x ∈ R
nu is the control action, Ri ⊆ R

nx+nu , i = 1, . . . N are the

polyhedral regions of the joint state-input space, and N is the number of individual affine

dynamics. PWA systems arise naturally when nonlinear plants are approximated by the

technique of multiple linearization (Sontag 1981).

3.1.2 Mixed Logical Dynamical Systems

MLD systems represent systems governed by discrete logic by a system of linear in-

equalities involving binary variables, which can be derived using so-called big–M formu-

lation (Williams 1993). To illustrate the procedure, consider a logic statement of the

following form

δ =







1 if aT x ≤ b

0 otherwise
(3.2)

which connects the truth value of a binary variable δ to satisfaction of the linear inequality

aT x ≤ b (which involves a real-valued variable x ∈ R
nx) via a logic equivalence relation.

Let M and m denote, respectively, the maximum and minimum values which the linear

expression aT x− b attains over the domain X ⊆ R
nx , i.e.

M = max
x∈X

aT x− b, (3.3a)

m = min
x∈X

aT x− b. (3.3b)

Then the IF-THEN-ELSE rule (3.2) is equivalent to satisfaction of the following system of

linear inequalities:

aT x− b ≤M(1− δ), (3.4a)

aT x− b ≥ ǫ + mδ. (3.4b)

Here, ǫ is a small constant, typically the machine precision, used to convert a strict

inequality into a non-strict form. More complex logic expression involving e.g. one-way

3.1. INTRODUCTION TO HYBRID SYSTEMS 19

implication (⇐ or ⇒) and logic operations (and, or negation) can be translated in a

similar fashion, see e.g. Bemporad and Morari (1999b), Williams (1993).

In the most general form, autonomous MLD systems are described by

x+ = Ax + Buu + Bδδ + Bzz + B0, (3.5a)

Exx + Euu + Eδδ + Ezz ≤ E0, (3.5b)

where x ∈ R
nx is the vector of states, δ ∈ {0, 1}nδ is the vector of binary variables, z ∈ R

nz

is the vector of auxiliary real variables, and A, Bδ, Bz, B0, Ex, Eδ, Ez, E0 are matrices or

vectors of appropriate dimensions, Given a value of x and u, the state update x+ can

be computed by solving a feasibility problem, i.e. by finding a compatible combination

of binary δ and real z variables satisfy constraints (3.5b). An illustrative example of

transforming a PWA system into an MLD framework, as well as an extensive description

of several fields of applications can be found in Bemporad and Morari (1999a).

3.1.3 Linear Complementarity Systems

In this section the linear complementary systems (LCS) are introduced. In general an

LCS system can be described by the following equations

x+ = Ax + Bu (3.6a)

y = Cx + Du (3.6b)

0 ≤ y ⊥ x ≥ 0 (3.6c)

where A, B, C, D are matrices of appropriate dimension and variables u, x, y have

dimensions Rm, Rn and Rp. The last equation denotes orthogonality between x and y,

in other words, the dot product will be always zero, since the vectors are perpendicular.

Modeling approach based on LCS systems is frequently used, for instance in electrical

networks employing diodes. An exhaustive description of LCS systems, including, but

not limited to their practical applications can be found in Heemels (1999).

3.1.4 Extended Linear Complementarity Systems

Extended linear complementarity systems (ELCS) are a special subclass of hybrid systems,

which can be obtained from the above mentioned LCS systems. As it was described

in the previous Section 3.1.3 the dynamical behavior of a general LCS system can be

characterized by the equations (3.6a) (3.6b) subject to (3.6c), which implies that at each

20 CHAPTER 3. MODELING OF HYBRID SYSTEMS

time instant k we are capable to construct an index set I ⊆ {1, 2, . . . , m} such that

yi = 0 for i ∈ I (3.7)

ui = 0 for i /∈ I (3.8)

Each index set represents a mode of the system. Therefore, in general there are 2m

different possible modes, but not all of them have to be necessarily feasible because of

other constraints on u and y. By elimination of the variable y, we can obtain the set of

equations,

Ax + Bu = 0 (3.9a)

Cx + Du ≥ 0 (3.9b)

x ≥ 0 (3.9c)

(Cx + Du)T x = 0 (3.9d)

serving for description of such a model structure. Description and practical applicability

of this framework can be found in De Schutter and Moor (1995; 1998).

3.1.5 Max-Min-Plus-Scaling Models

A max-min-plus-scaling (MMPS) function f of the variables x1, . . . , xn is defined by the

recursive formula

f = xi ∨ α max(fk, fl) ∨min(fk, fl) ∨ fk + fl ∨ βfk, (3.10)

with i ∈ {1, . . . , n}, α, β ∈ R, and where fk and fl are again MMPS functions. The

symbol "|" in (3.10) stands for "or". Consider a system that can be described by state

space equations of the following form:

x+ = Mx(x, u, v) (3.11a)

y(k) = My(x, u, v), (3.11b)

where Mx and My are MMPS functions, and where x is the state vector, y(k) the output

vector, and u(k) and v(k) are the input vectors. Systems, which behavior can be described

by (3.11a) are also called extended MMPS systems. Typical examples of MMPS systems

are digital circuits, computer networks and manufacturing plants. A gentle introduction

to MMPS functions can be found in Heemels et al. (2001) and a more specific topic

mainly focusing on utilising of the underlying mathematical framework in model predictive

control can be found in De Schutter and van den Boom (2001).

3.2. PROBLEM STATEMENT 21

3.2 Problem Statement

In this section we will show how to obtain the optimal PWA approximation of an arbitrary

continous nonlinear function described by an analytical expression. We consider a generic

dynamic system in discrete-time

x+ = f(x, u), (3.12)

where the vector field f(·, ·) is assumed to be continuous in the state variables x ∈ R
nx

and in the inputs u ∈ R
nu , and x+ denotes the successor state. System states and inputs

are assumed to be constrained to connected and closed domains X ⊂ R
nx and U ⊂ R

nu ,

respectively.

The objective is to approximate (3.12) by a different dynamic system x+ = f̃(x, u)

whose vector field f̃(x, u) is a PWA function which consists of a pre-specified number N

of local linear dynamics:

f̃(x, u) =







A1x + B1u + c1 if [x
u] ∈ R1

...
...

AN x + BN u + cN if [x
u] ∈ RN .

(3.13)

Here, Ai ∈ R
nx×nx , Bi ∈ R

nx×nu , ci ∈ R
nx are the state-update matrices of the i-th local

linear approximation, and Ri ⊂ R
nx×nu is the region of validity of the i-th local model

satisfying Ri 6= ∅, int(Ri) ∩ int(Rj) = ∅, ∀i 6= j, and ∪iRi = X × U .

Formally, the problem which we aim at solving can be stated as follows:

Problem 3.1 Given a nonlinear vector field f(x, u) of system (3.12), find the PWA

approximation (3.13) of pre-specified complexity which minimizes the approximation error

eaprx :=
∫

(f(x, u)− f̃(x, u))2 dxdu, (3.14)

where the integral is evaluated over the whole region of validity of (3.12), i.e. over X ×U .

Remark 3.1 Since the approximation procedure discussed in the sequel considers only

the vector field in the right-hand-side of (3.12), continuous-time systems ẋ = f(x, u) can

be treated as well.

3.3 Optimal PWA Approximation

In this section we propose how to solve Problem 3.1, i.e. how to obtain an optimal PWA

approximation f̃ of pre-specified complexity as in (3.13) which optimally approximates a

given one-dimensional nonlinear function f : R→ R, provided that the analytical form of

22 CHAPTER 3. MODELING OF HYBRID SYSTEMS

f is known. Subsequently, we will show how to approximate nonlinear functions in higher

dimensions. i.e. f : Rnz → R by utilising the basic one-dimensional building block.

We distinguish between 3 special cases. The first one, described in Section 3.3.1,

covers approximation of one-dimensional functions where f : R → R provided that the

domain of f is connected and closed. Then, in Section 3.3.2 we show how to extend the

procedure to approximation of multi-variable functions which satisfy a special property.

Finally, in Section 3.3.3 we illustrate how to solve Problem 3.1 where f is an arbitrarily

complex function, not satisfying any special properties.

3.3.1 Functions in One Variable

First, we consider the one-dimensional case, i.e. approximating a nonlinear function f(z) :

R→ R, with a connected and closed domain Z ⊂ R, by a PWA function f̃(z) = aiz +ci if

z ∈ Ri. Since Z is assumed to be connected and closed, it is a line segment [z, z]. Regions

Ri define the partition of such a line into N non-overlapping parts, i.e. R1 = [z, r1],

R2 = [r1, r2], . . ., RN−1 = [rN−2, rN−1], RN = [rN−1, z] with ∪iRi = [z, z]. Solving

Problem 3.1 then becomes to find the slopes ai, offsets ci and breakpoints ri such that

the approximation error is minimized, i.e.

min
ai,ci,ri

∫ z

z

(f(z)− f̃(z))2 dz (3.15a)

s.t. f̃(z) =







a1z + c1 if z ∈ [z, r1]
...

...

aN z + cN if z ∈ [rN−1, z]

(3.15b)

z ≤ r1 ≤ · · · ≤ rN−1 ≤ z, (3.15c)

airi + ci = ai+1ri + ci+1, i = 1, . . . , N − 1, (3.15d)

where (3.15d) enforces continuity of f̃(z) along the breakpoints ri. The IF-THEN based

nonlinear constraint (3.15b) can be eliminated by observing that, by definition, regions

Ri are non-overlapping, and the integral in (3.15a) can hence be written as
∫ z

z

(
f(z)− f̃(z)

)2
dz =

N∑

i=1

(∫ ri

ri−1

(
f(z)− (aiz + ci)

)2
dz

)

, (3.16)

with r0 = z and rN = z. The nonlinear programming problem (NLP) (3.15) can therefore

be written as

min
ai,ci,ri

N∑

i=1

(∫ ri

ri−1

(
f(z)− (aiz + ci)

)2
dz

)

(3.17a)

s.t. z ≤ r1 ≤ · · · ≤ rN−1 ≤ z, (3.17b)

airi + ci = ai+1ri + ci+1, i = 1, . . . , N − 1. (3.17c)

3.3. OPTIMAL PWA APPROXIMATION 23

For simple functions f(z), the integral in (3.17a) can be expressed in an analytical

form in unknowns ai, ci, ri, along with the corresponding gradients. For more complex

expressions, the integrals can be evaluated numerically, e.g. by using the trapezoidal rule.

In either case, problem (3.17) can be solved to a local optimality e.g. by using the fmincon

solver of MATLAB. Alternatively, one can use global optimization methods (Adjiman

et al. 1996b, Chachuat et al. 2006, Papamichail and Adjiman 2004) which guarantee that

an ǫ-neighborhood of the global optimum can be found.

Example 3.1 Consider the function f(z) = z3 on domain −1.5 ≤ z ≤ 1.5. The analytic

form of the integral (3.17a) is

N∑

i=1

(
c2

i (ri + ri−1) + aici(r2
i − r2

i) +
a2

i

3
(r3

i − r3
i−1)−

−ci

2
(r4

i − r4
i−1)− 2ai

5
(r5

i − r5
i−1) +

1
7

(r7
i − r7

i−1)
)
,

with r0 = −1.5 and rN = 1.5. The PWA approximation of f(z) with N = 3 regions was

obtained by solving the NLP (3.17) using fmincon, which took 0.12 s on a 3.4 GHz CPU

running MATLAB 2012b. The obtained PWA approximation is then given by

f̃(z) =







4.1797z + 3.1621 if − 1.5 ≤ z ≤ −0.8423

0.4257z if − 0.8423 ≤ z ≤ 0.8423

4.1797z − 3.1621 if 0.8423 ≤ z ≤ 1.5

The value of the integral error assuming only 3 approximation segments was 0.031. Nat-

urally, quality of the approximation can be improved by increasing the complexity of the

PWA function, i.e. by enlarging N . By simply increasing the number of approximation

segments to 5 we were able to reduce the integral error to 0.005. Graphical representation

of the corresponding PWA approximations with N = 3 and N = 5 are shown, respectively,

in Figures 3.1(a) and 3.1(b).

Example 3.2 Consider the function f(z) = |z|+0.5z2−sin (z3) on domain −1 ≤ z ≤ 2.5,

graph of which is shown in Figure 3.2(a). Since no analytic expression of the integral

in (3.17a) could be obtained, we have opted for numeric integration of the cost while

solving the NLP problem (3.17) by fmincon. The PWA approximations for N = 3 and

N = 7 are shown in Figures 3.2(a) and 3.2(b). In case of 3 approximation segments the

computation took 0.97 s, and the integral error was 0.65. By increasing the number of

segments to 7, the computational procedure took approximately 3 s, but the approximation

error was reduced by a factor of 30.

24 CHAPTER 3. MODELING OF HYBRID SYSTEMS

-1.5 -1 -0.5 0 0.5 1 1.5
-4

-2

0

2

4

z

f
(z

),
f̃

(z
)

(a) PWA approximation with 3 regions.

-1.5 -1 -0.5 0 0.5 1 1.5
-4

-2

0

2

4

z
f

(z
),

f̃
(z

)
(b) PWA approximation with 5 regions.

Figure 3.1: Graph of f(z) = z3 (blue line) and the PWA approximations f̃(z) (red dashed

lines)

.

-1 0 1 2

0

1

2

3

4

5

6

z

f
(z

),
f̃

(z
)

(a) PWA approximation with N = 3 regions.

-1 0 1 2

0

1

2

3

4

5

6

z

f
(z

),
f̃

(z
)

(b) PWA approximation with N = 7 regions.

Figure 3.2: Graph of f(z) = |z|+0.5z2−sin (z3) (blue line) and the PWA approximations

f̃(z) (red dashed lines).

3.3. OPTIMAL PWA APPROXIMATION 25

3.3.2 Multivariable Separable Functions

The task is to approximate a given multivariable function f(z1, . . . , zn) : Rn → R with

domain Z ⊂ R
n by a PWA function f̃(z1, . . . , zn), defined over the same domain, such

that the approximation error (3.14) is minimized and the following assumption is fulfilled.

Assumption 3.1 The function f(z1, . . . , zn) can be written as
∑n

i=1 αi

(
∏qi

j=pi
fj(zj)

)

.

Definition 3.1 (Williams (1993)) Function f(z1, . . . , zn) is called separable if it can

be expressed as the sum of functions of a single variable, i.e. f(z1, . . . , zn) = f1(z1) +

· · ·+ fn(zn).

If f(z1, . . . , zn) is readily separable (e.g. when f(z1, z2) = ez1 + sin (z2)), its optimal

PWA approximation can be obtained by applying the 1D scenario of Section 3.3.1 to the

individual components of the function, i.e. f̃(z1, . . . , zn) = f̃1(z1) + · · · + f̃n(zn). The

total number of regions over which the PWA approximation f̃(·) is defined is hence given

by
∑n

j=1 Nj , where Nj is the pre-specified complexity of the j-th approximation f̃j(zj).

A surprisingly large number of non-separable functions can be converted into the

separable form by applying a simple trick, elaborated in more details e.g. in Williams

(1993). To introduce the procedure, consider a non-separable function f(z1, z2) = z1z2

with domain Z := [z1, z1]× [z2, z2]. Define two new variables

y1 = (z1 + z2), y2 = (z1 − z2). (3.18)

Then it is easy to verify that 1/4(y2
1 − y2

2) = z1z2. The coordinate transformation

therefore transforms the original function into a separable form, where both terms (y2
1

and y2
2) are now functions of a single variable. The procedure of Section 3.3.1 can thus

be applied to compute PWA approximations of fy1
(y1) := y2

1 and fy2
(y2) := y2

2 , where

the function arguments relate to z1 and z2 via (3.18). Important to notice is that fy1
(·)

and fy2
(·) have different domains, therefore their PWA approximations f̃y1

(y1) ≈ y2
1 and

f̃y2
(y2) ≈ y2

2 will, in general, be different. Specifically, the domain of fy1
(·) is [y

1
, y1]

with y
1

= min{z1 + z2 | z1 ≤ z1 ≤ z1, z2 ≤ z2 ≤ z2} and y1 = max{z1 + z2 | z1 ≤ z1 ≤
z1, z2 ≤ z2 ≤ z2}. Similarly, the domain of fy2

()̇ is [y
2
, y2], whose boundaries can be

computed by respectively minimizing and maximizing z1 − z2 subject to the constraint

[z1, z2]T ∈ Z. The overall PWA approximation f̃(z1, z2) ≈ z1z2 then becomes

f̃(z1, z2) = 1/4(f̃y1
(z1 + z2)− f̃y2

(z1 − z2)). (3.19)

The value of f̃(z1, z2) for any points z1, z2 is obtained by subtracting the value of the PWA

function f̃y2
(·) evaluated at the point z1 − z2 from the function value of f̃y1

(·) evaluated

at z1 + z2, followed by a linear scaling.

26 CHAPTER 3. MODELING OF HYBRID SYSTEMS

The procedure naturally extends to multivariable functions represented by the product

of two nonlinear functions of a single variable, i.e. f(z1, z2) = f1(z1)f2(z2). Here, the

transformation (3.18) becomes

y1 = f1(z1) + f2(z2), y2 = f1(z1)− f2(z2). (3.20)

Therefore, 1/4(y2
1 − y2

2) = f(z1, z2) still holds. Let fy1
(y1) := y2

1 and fy2
(y2) := y2

2 . The

domain of fy1
(·) is [y

1
, y1] and domfy2

(·) = [y
2
, y2] with

y
1

= min{f1(z1) + f2(z2) | [z1, z2]T ∈ Z}, (3.21a)

y1 = max{f1(z1) + f2(z2) | [z1, z2]T ∈ Z}, (3.21b)

y
2

= min{f1(z1)− f2(z2) | [z1, z2]T ∈ Z}, (3.21c)

y2 = max{f1(z1)− f2(z2) | [z1, z2]T ∈ Z}, (3.21d)

which can be computed by solving four NLP problems.

Finally, since all expressions are now functions of a single variable, the PWA ap-

proximations f̃1(z1) ≈ f1(z1), f̃2(z2) ≈ f2(z2), f̃y1
(y1) ≈ fy1

(y1), and f̃y2
(y2) ≈ fy2

(y2)

can be computed by solving the NLP (3.17). The overall optimal PWA approximation

f̃(z1, z2) ≈ f(z1, z2) then becomes

f̃(z1, z2) = 1/4

(

f̃y1

(
f̃1(z1) + f̃2(z2)

)
− f̃y2

(
f̃1(z1)− f̃2(z2)

))

. (3.22)

The evaluation procedure is similar as above. I.e., given the arguments z1 and z2, one first

evaluates z̃1 = f̃1(z1) and z̃2 = f̃2(z2). Subsequently, one evaluates ỹ1 = f̃y1
(·) with the

argument z̃1 + z̃2, then ỹ2 = f̃y2
(·) at the point z̃1 − z̃2. Finally, f̃(z1, z2) = 1/4(ỹ1 − ỹ2).

Example 3.3 Consider a non-separable function given as the product of the two functions

discussed in Examples 3.1 and 3.2, i.e. f(z1, z2) = f1(z1)f2(z2) with f1(z1) = z3
1 , f2(z2) =

|z2|+0.5z2
2−sin (z2)3 on domain [−1.5, 1.5]×[−1, 2.5]. Graph of the function is shown in

Figure 3.3(a). In order to convert f(z1, z2) into a separable form, we introduce variables

y1 and y2 as per (3.20). The PWA approximation f̃(z1, z2) ≈ f(z1, z2) is then given

by (3.22). Here, f̃1(z1) was obtained by approximating f1(z1) by a PWA function with 3

regions as shown in Figure 3.1(a), while f̃2(z2) ≈ f2(z2) was approximated by 7 regions as

depicted in Figure 3.2(b). Subsequently, the domains [y
1
, y1] and [y

2
, y2] were computed

via (3.21), which resulted into domy1 = [−3.374, 9.095] and domy2 = [−9.095, 3.374].

Finally, the PWA approximations f̃y1
(y1) ≈ y2

1 and f̃y2
(y2) ≈ y2

2 were obtained by solving

the NLP (3.17) with N = 2. Graphs of y2
1, y2

2 and their respective PWA approximations

are presented in Figure 3.4. The overall approximation f̃(z1, z2) therefore consists of 14

regions. Despite a rather crude approximation of the square functions, the combined PWA

function (3.22), shown in Figure 3.3(b), features only a minor average approximation

3.3. OPTIMAL PWA APPROXIMATION 27

(a) Graph of f(z1, z2). (b) Approximation f̃(z1, z2)

Figure 3.3: Graph of f(z1, z2) and its PWA approximation (3.22) in Example 3.3.

error of 3% and a worst-case error of 15%. By increasing the number of linearizations

for y2
1 and y2

2 from N = 2 to N = 4 (hence increasing the complexity of f̃(z1, z2) from 14

to 18 regions), the average and worst-case errors can be further reduced to 1% and 8%,

respectively.

-2 0 2 4 6 8

0

20

40

60

80

y1
(a) y2

1

-8 -6 -4 -2 0 2

0

20

40

60

80

y2
(b) y2

2

Figure 3.4: Functions y2
i (blue) and their PWA approximation f̃yi

(yi) (red dashed lines)

in Example 3.3.

Separation of multivariable functions with more than two terms can be performed in

an inductive manner. Consider f(z1, z2, z3) = f1(z1)f2(z2)f3(z3). First, approximate the

product f1(z1)f2(z2) by a PWA function of the form of (3.22), which requires four PWA

approximations

f̃1(·) ≈ f1(·), f̃2(·) ≈ f2(·), f̃y1
(·) ≈ y2

1 , f̃y2
(·) ≈ y2

2 ,

28 CHAPTER 3. MODELING OF HYBRID SYSTEMS

with y1 and y2 as in (3.20). Let fa(z1, z2) := f1(z1)f2(z2). Then f(z1, z2, z3) = fa(z1, z2)f3(z3),

which can again be approximated as a product of two functions. Specifically, define

y3 = fa(·) + f3(z3), y4 = fa(·)− f3(z3), (3.23)

and hence fa(z1, z2)f3(z3) = 1/4(y2
3 − y2

4). The domains over which y2
3 and y2

4 need to be

approximated are, respectively, [y
3
, y3] and [y

4
, y4] with

y
3

= min{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (3.24a)

y3 = max{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (3.24b)

y
4

= min{f1(z1)f2(z2)− f3(z3) | z ∈ Z}, (3.24c)

y4 = max{f1(z1)f2(z2)− f3(z3) | z ∈ Z}, (3.24d)

and z = [z1, z2, z3]T . Subsequently, three additional PWA approximations

f̃y3
(y3) ≈ y2

3 , f̃y4
(y4) ≈ y2

4 , f̃3(z3) ≈ f3(z3)

need to be computed over the corresponding domains. The aggregated optimal PWA

approximation f̃(z1, z2, z3) ≈ f(z1)f(z2)f(z3) consists of 7 individual approximations

and is given by

f̃(·) = 1/4

(

f̃y3

(
f̂a + f̃3(z3)

)

︸ ︷︷ ︸

ŷ3

− f̃y4

(
f̂a − f̃4(z3)

)

︸ ︷︷ ︸

ŷ4

)

. (3.25)

Here, f̂a is the function value of f̃a(z1, z2) ≈ f1(z1)f2(z2) at z1 and z2, where f̃a(·) is

obtained from (3.22), i.e.:

f̂a = 1/4

(

f̃y1

(
f̃1(z1) + f̃2(z2)

)

︸ ︷︷ ︸

ŷ1

− f̃y2

(
f̃1(z1)− f̃2(z2)

)

︸ ︷︷ ︸

ŷ2

)

. (3.26)

The overall PWA approximation f̃(z1, z2, z3) can then be evaluated, for any z1, z2, z3 ∈ Z,

by computing the function values of the respective approximations in the following order:

Step 1: ŷ1 = f̃y1
(f̃1(z1) + f̃2(z2)),

Step 2: ŷ2 = f̃y2
(f̃1(z1)− f̃2(z2),

Step 3: ŷ3 = f̃y3
(1/4(ŷ1 − ŷ2) + f̃3(z3)),

Step 4: ŷ4 = f̃y4
(1/4(ŷ1 − ŷ2)− f̃3(z3)),

Step 5: f̃(z1, z2, z3) = 1/4(ŷ3 − ŷ4).

Such an inductive procedure can be repeated ad-infimum to derive PWA approxima-

tions of any multivariable function which satisfies Assumption 3.1. In general, the PWA

3.3. OPTIMAL PWA APPROXIMATION 29

approximation will consists of 2p + n individual PWA functions, where n is the number

of variables in f(z1, . . . , zn) and p is the number of products between individual subfunc-

tions fj(zj). As an example, for f(·) := α1f1(z1)f2(z2)f4(z4) + α2f3(z3)f5(z5) we have

p = 3. We remark that inclusion of scalar multipliers αj into the PWA description of the

form (3.25)–(3.26) is straightforward and only requires linear scaling of the corresponding

terms.

3.3.3 Multivariable Nonseparable Functions

When the nonlinear function f : Rnz → R to be approximated does not satisfy Assump-

tion 3.1, we propose to proceed as follows. As a rather general setup, consider that

f(z) = fout,1(fout,2(fout,3(· · · (fin(z))))) (3.27)

with the inner function fin : R
nz → R satisfying Assumption 3.1 and arbitrary outer

functions fout,i : R → R, i = 1, . . . , m − 1. This relation can be further generalized to

include sums and/or products of functions.

As a specific example, consider

f(z1, z2) = exp(z1z2), (3.28)

where fin(z1, z2) = z1z2 and fout(w) = exp(w). To derive an optimal PWA approxi-

mation f̃ of (3.28) , we introduce the substitution w = fin(z1, z2). Since fin satisfies

Assumption 3.1, the procedure of Section 3.3.2 can be applied to find its optimal PWA

approximation w̃ = f̃in(z1, z2) ≈ z1z2. Define two new variables y1 = (z1 + z2) and

y2 = (z1 − z2). Then 1/4(y2
1 − y2

2) = z1z2 trivially holds. Subsequently we can solve

the NLP (3.17) to obtain optimal PWA approximations f̃y1
(y) ≈ y2 on domain [y

1
, y1]

and f̃y2
(y) ≈ y2 on domain [y

2
, y2]. We remark that although both functions to be ap-

proximated are the same (y2), their respective domains will be different and are given

by (3.21). Their PWA approximations will therefore differ as well. Next we derive a PWA

approximation of f̃out(w) ≈ exp(w) again by solving (3.17). Value of the overall PWA

approximation f̃(z1, z2) ≈ exp(z1z2) at a particular point (z1, z2) can then be obtained

by evaluating the corresponding 1D approximations in the following order:

1. ỹ1 = f̃y1
(z1 + z2)

2. ỹ2 = f̃y2
(z1 − z2)

3. w̃ = 1/4(ỹ1 − ỹ2)

4. f̃(z1, z2) = f̃out(w̃)

30 CHAPTER 3. MODELING OF HYBRID SYSTEMS

Such an substitution approach can be generalized to derive optimal PWA approxima-

tions of general nonlinear functions in the form of (3.27) by the following procedure:

1. Obtain optimal PWA approximation of the inner function fm(z) using the procedure

in Section 3.3.2.

2. Define new variables wi and approximate the 1D functions fi(wi), i = m− 1, . . . , 1,

by solving (3.17).

If the multivariable inner function fin : Rnz → R with domain Z consists of more than

two terms, its PWA approximation can be performed in an inductive manner. Consider

fin(z1, z2, z3) = f1(z1)f2(z2)f3(z3). First, approximate the product f1(z1)f2(z2) by a

PWA function of the form of (3.22), which requires four PWA approximations

f̃1()̇ ≈ f1(·), f̃2(·) ≈ f2(·), f̃y1
(·) ≈ y2

1 , f̃y2
(·) ≈ y2

2 ,

with y1 and y2 as in (3.20). Let fa(z1, z2) := f1(z1)f2(z2). Then f(z1, z2, z3) = fa(z1, z2)f3(z3),

which can again be approximated as a product of two functions. Specifically, define

y3 = fa(·) + f3(z3), y4 = fa(·)− f3(z3), (3.29)

and hence fa(z1, z2)f3(z3) = 1/4(y2
3 − y2

4). The domains over which y2
3 and y2

4 need to be

approximated are, respectively, [y
3
, y3] and [y

4
, y4] with

y
3

= min{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (3.30a)

y3 = max{f1(z1)f2(z2) + f3(z3) | z ∈ Z}, (3.30b)

y
4

= min{f1(z1)f2(z2)− f3(z3) | z ∈ Z}, (3.30c)

y4 = max{f1(z1)f2(z2)− f3(z3) | z ∈ Z}, (3.30d)

and z = [z1, z2, z3]T . Subsequently, three additional PWA approximations

f̃y3
(y3) ≈ y2

3 , f̃y4
(y4) ≈ y2

4 , f̃3(z3) ≈ f3(z3)

need to be computed over the corresponding domains. The aggregated optimal PWA

approximation f̃(z1, z2, z3) ≈ f(z1)f(z2)f(z3) consists of 7 individual approximations

and is given by

f̃in(·) = 1/4

(

f̃y3

(
f̂a + f̃3(z3)

)

︸ ︷︷ ︸

ŷ3

− f̃y4

(
f̂a − f̃4(z3)

)

︸ ︷︷ ︸

ŷ4

)

. (3.31)

Here, f̂a is the function value of f̃a(z1, z2) ≈ f1(z1)f2(z2) at z1 and z2, where f̃a(·) is

obtained from (3.22), i.e.:

f̂a = 1/4

(

f̃y1

(
f̃1(z1) + f̃2(z2)

)

︸ ︷︷ ︸

ŷ1

− f̃y2

(
f̃1(z1)− f̃2(z2)

)

︸ ︷︷ ︸

ŷ2

)

. (3.32)

3.4. APPROXIMATION OF NONLINEAR FUNCTIONS FROM DATA 31

The overall PWA approximation f̃in(z1, z2, z3) can then be evaluated, for any z1, z2,

z3 ∈ Z, by computing the function values of the respective approximations.

Such an inductive procedure can be repeated ad-infimum to derive PWA approxi-

mations of any multivariable inner function. In general, the PWA approximation will

consists of 2p + nz + m − 1 individual PWA functions, where nz is the number of

variables, m is the number of functions in (3.27) and p is the number of products

between individual subfunctions fj(zj) in the inner function fin. As an example, for

fin(z) := α1f1(z1)f2(z2)f4(z4) + α2f3(z3)f5(z5) we have p = 3. We remark that inclusion

of scalar multipliers αj into the PWA description of the form (3.31)–(3.32) is straightfor-

ward and only requires linear scaling of the corresponding terms.

3.4 Approximation of Nonlinear Functions from Input-

Output Data

This section deals with the problem of obtaining PWA approximation of arbitrary non-

linear function, when instead of an analytic expression only input-output measurements

are given. Therefore, our first step is represented by seeking for an appropriate fitting

function f . We propose to use a technique to compute an optimal linear combination of

basis functions in the following form:

f(z) =
p

∑

i=1

αifi(z), (3.33)

where αi ∈ R are scalar multipliers and fi are the basis functions. Therefore, in Sec-

tion 3.4.2 we propose three different approaches to obtain the coefficients of the underlying

fitting function. The most straightforward way to obtain the coefficients of the underly-

ing linear combination is to solve a simple unconstrained optimisation problem. Further

extension to the aforementioned approach is represented by a constrained quadratic pro-

gram, which purpose is to minimise the cardinality of the vector containing the coefficients

multiplying the respective basis functions. Alternatively, one can directly minimise the

number of non-zero coefficients, however, this approach requires solving a mixed-integer

linear programming problem.

After having obtained the desired analytic formula, we can proceed in our approxima-

tion procedure as it was described in Section 3.3.

3.4.1 Problem Definition

We are given a T samples of input data zi ∈ Z ⊂ R
nz from some closed and bounded set

Z, and the corresponding measurements yi ∈ R, i = 1, . . . , T . We want to fit the data

32 CHAPTER 3. MODELING OF HYBRID SYSTEMS

with a PWA function f̃ : Rnz → R with N regions which satisfies two design requirements:

R1: f̃ is well-posed (Bemporad and Morari 1999c) on Z, i.e it satisfies int(Ri)∩int(Rj) =

∅, ∀i 6= j and ∪jRj = Z, j = 1, . . . , N .

R2: f̃ is a good fit which achieves a low fitting error efit =
∑T

i=1(yi − f̃(zi))2.

Solving this problem (i.e. determining regions Rj ⊆ R
nz and parameters aj ∈ R

nz ,

cj ∈ R, j = 1, . . . , N), however, is not trivial (Kvasnica et al. 2011c) if the input samples

zi are vectors, i.e. when nz > 1. The difficult part is how to divide the domain Z into

non-overlapping regions Rj without creating “holes”, i.e. guaranteeing that the union

∪jRj completely covers Z if dimension(Z) > 1.

To overcome this difficulty, we propose to split the search for the PWA function f̃ into

two steps. In the first stage we fit the input data, represented by the (zi, yi) pairs, with

a nonlinear function y = f(z):

Problem 3.2 Given are T samples of input-output data (zi, yi), i = 1, . . . , T . Fit the

data with a multivariable function f : Rnz → R such that the fitting error efit =
∑T

i=1(yi−
f(zi))2 is minimized.

Once the analytical form of the fitting function f is available, in the second step we

search for its optimal PWA approximation, as it was described in the previous sections.

In order to fulfill the requirements stated in 3.4.1 in Section 3.4.2 we propose to solve

Problem 3.2 by a simple unconstrained optimization problem to find an appropriate linear

combination of the basis functions.

3.4.2 Function Fitting

To solve Problem 3.2 we need to determine the analytical form of the fitting function f

which minimizes the fitting error
∑T

i=1(yi − f(zi))2. The usual approach is to select a

subspace of basis functions f1, . . . , fn : Rnz → R such that

f(z) = α1f1(z) + · · ·+ αnfn(z). (3.34)

The task then is to determine coefficients αi ∈ R, i = 1, . . . , n which parametrize f and

provide an optimal fit.

Needless to say, selection of the basis functions is crucial in obtaining a good fit.

In many situations the basis is chosen by hand, employing prior knowledge about the

analytical form of the nonlinearity from which the input-output data originated. One

such an example was provided in Section 3.3.3.

If this prior information is not available, one can resort to a rather broad selection of

basis functions (Boyd and Vandenberghe 2004b). One common subspace of functions on

3.4. APPROXIMATION OF NONLINEAR FUNCTIONS FROM DATA 33

R consists of polynomials of degree less than n. The simplest basis consists of the powers,

i.e. fi(z) = zi−1, i = 1, . . . , n.

We can also consider polynomials on R
nz , with a maximum total degree n

fi(z) =
∑

i1+···+in≤n

zi1

1 · · · zin
nz

, (3.35)

or a maximum degree for each variable. An another common option is to use trigonometric

polynomials of degree less than n with basis

sin(kz), k = 1, . . . , n− 1, cos(kz), k = 0, . . . , n− 1. (3.36)

Regardless of the choice of the basis functions, it is important to notice that f as

in (3.34) is linear in the unknown coefficients α1, . . . , αn. Therefore Problem 3.2 can be

easily solved by solving a simple unconstrained optimization problem in the form

min
T∑

i=1

(yi − f(zi))2. (3.37)

The unknown coefficients αi can be obtained e.g. by taking derivative of (3.37) equal to

zero.

The fitting problem (3.37) can be further extended to obtain a simple form of the fitting

function f by minimizing the cardinality of the vector of parameters α = [α1, . . . , αn]

in (3.34). A simple heuristic approach would be to minimize the 1-norm of α (Boyd and

Vandenberghe 2004b):

min
T∑

i=1

(yi − f(zi))2 + γ‖α‖1, (3.38)

which can be cast as a constrained quadratic program. The tuning parameter γ > 0 here

acts as a regularization coefficient.

A more rigorous approach is to directly minimize the number of non-zero components

of α. This can be achieved by introducing a set of binary indicators δj ∈ {0, 1}, j =

1, . . . , n which fulfill

(αj 6= 0)⇒ (δj = 1). (3.39)

By employing the big-M technique (Bemporad and Morari 1999c, Williams 1993) we can

rewrite (3.39) into a set of inequalities which are linear in δj and αj :

−Mδj ≤ αj ≤Mδj , (3.40)

where M is a sufficiently large number. It is then easy to verify that minimization of the

number of nonzero components amounts to minimizing the sum of corresponding binary

34 CHAPTER 3. MODELING OF HYBRID SYSTEMS

indicators, i.e.

min
T∑

i=1

(yi − f(zi))2 + γ

n∑

j=1

δj (3.41a)

s.t. −Mδj ≤ αj ≤Mδj , j = 1, . . . , n, (3.41b)

which provides a good fit of minimal cardinality. Problem (3.41) is a mixed-integer

quadratic program which can be solved to global optimality using state-of-the-art solvers

(ILOG, Inc. 2003, Löfberg 2004). Complexity of (3.41) is primarily determined by the

number of binary variables, i.e. by the number n of basis functions considered in (3.34).

Apart from the technique, based on solving an unconstrained optimization problem,

one can apply approaches seeking the optimal PWA affine approximation problem from

input-output data by using an alternative method employing neural networks (Števek

et al. 2012). In this work we have proposed to exploit the advantages provided by or-

thogonal activated function based neural networks (OAF–NN) to obtain the parameters

of the linear combination of the final fitting function.

3.4.3 Complete Scheme

In order to solve Problem 3.2, one needs combine results of Section 3.4 with the approaches

of Section 3.3 in the following manner:

1. Obtain the analytic form of the function (3.34), which best fits the given set of data,

applying the technique described in Section 3.4.2

2. Find the optimal PWA approximation of the obtained analytic fit by one of the

methods described in Sections 3.3.1, 3.3.2, and 3.3.3.

Example 3.4 Consider a set of input-output data shown in Figure 3.5(a). To fit these

data with a PWA function, we have first applied the procedure of Section 3.4.2 to obtain

an optimal fit by the functionf(z) =
∑3

i=1 αifi(z) which consists of basis functions f1 = 1,

f2 = sin(z1z2) and f3 = cos(z1 − z2). By solving (3.37) we have obtained

f(z1, z2) = 0.02 + 0.08 sin(z1z2) + 1.2 cos(z1 − z2), (3.42)

shown in Figure 3.5(b). To derive an optimal PWA approximation of f in (3.42) we have

applied the aforementioned procedure to approximate sin(z1z2) by first approximating z1z2

by a PWA function f̃1(z1, z2) and sin(w) by f̃2(w). Approximation of cos(z1 − z2) was

performed in a similar manner. The resulting PWA approximation of (3.42), consisting

of 15 regions, is depicted in Figure 3.5(c).

3.5. SOFTWARE IMPLEMENTATION 35

1

1.5

2

2.5

3

1
1.5

2
2.5

3

0

0.5

1

z
1z

2

y
=

 f(
z 1, z

2)

(a) Input-output data (zi, yi) with zi ∈ R2.

(b) Optimal fit with a trigonometric polynomial ba-

sis.

(c) Graph of optimal PWA approximation

f̃(z1, z2)

Figure 3.5: Two-dimensional fit from Example 3.4.

3.5 Software Implementation

An algorithmic implementation of the inductive separation procedure of Section 3.3.2 is

discussed next, provided that all functions are given in their symbolic representation.

The procedure relies on two basic building blocks. The first one, represented by Algo-

rithm 3.5.1, constructs the PWA approximation of a product of two functions, i.e. com-

putes f̃(zi, zj) ≈ fi(zi)fj(zj). Strictly speaking, the algorithm differentiates between two

scenarios. If either fi or fj are PWA functions which approximate the product of some

other functions (say fi ≈ fpfq), then f̃ ≈ fifj is computed as shown in (3.29)–(3.32).

36 CHAPTER 3. MODELING OF HYBRID SYSTEMS

f̃1 f̃2

f̃a

(a) Step 1.

f̃1 f̃2

f̃a

f̃3

f̃b

(b) Step 2.

f̃1 f̃2

f̃a

f̃3

f̃b

f̃4

f̃c

(c) Step 3.

Figure 3.6: Parsing tree T built by Algorithm 3.5.2.

Otherwise the procedure evidenced by (3.18)–(3.22) is followed.

Algorithm 3.5.2 then utilizes this block to construct a parse tree which defines the

PWA approximation of the product of multiple functions, i.e.
∏n

i=1 fi(zi). To illustrate

the procedure, consider f(z1, z2, z3, z4) = f1(z1)f2(z2)f3(z3)f4(z4). First, the stack of

“unexplored” functions S = {f4, f3, f2, f1} is formed. In the first pass of the while

cycle, f1 and f2 are popped from the stack and the PWA approximation f̃a ≈ f1f2 is

computed by Algorithm 3.5.1. Subsequently, f̃a is pushed back to S (which then becomes

S = {f4, f3, f̃a}), and new nodes of the parse tree T are created as shown in Figure 3.6(a).

The procedure then repeats from Step 4. I.e., f3 and f̃a are popped from S, f̃b ≈ f3fa is

computed, and the parse tree is updated as illustrated in Figure 3.6(b). Due to Step 6,

S = {f4, f̃b}, and the algorithm therefore performs one more pass at which f̃c ≈ f4fb is

created and inserted into the tree, which finally looks like in Figure 3.6(c). The algorithm

thereupon terminates since S = {f̃c} contains a single element.

If the function to be approximated contains sums of products, e.g. when f(z1, z2, z3, z4) =

α1f1(z1)f2(z2)+α2f3(z3)f4(z4), separate parsing trees have to be built by Algorithm 3.5.2

for each component of the summation. We remark that treating the scaling factors αi

only involves scaling the bottom-most node of the corresponding tree by the respective

αi.

The parsing tree generated by Algorithm 3.5.2 can be readily used to convert the PWA

approximation f̃(z1, . . . , zn) ≈∑

i αi

∏

j fj(zj) into a suitable mathematical model, which

can subsequently be used for simulations, analysis, or control synthesis. Therefore we have

created a software tool which takes a parsing tree T (or several such trees to accommo-

date for sums of products of functions), and automatically generates the corresponding

HYSDEL representation of such a PWA approximation.

Next, we discuss software implementation of the approximation procedure described

3.5. SOFTWARE IMPLEMENTATION 37

Algorithm 3.5.1 PWA approximation of fi(zi)fj(zj)

REQUIRE: Functions fi(zi), fj(zj).

OUTPUT: Approximation f̃(zi, zj) ≈ fi(zi)fj(zj).

1: Obtain the PWA approximations f̃i(zi) ≈ fi(zi) and f̃j(zj) ≈ fj(zj) by solving two

NLPs (3.17).

2: Get y
i
, yi, y

j
, and yj from (3.21) or (3.30).

3: Compute the PWA approximations f̃yi
(yi) ≈ y2

i and f̃yj
(yj) ≈ y2

j on domains [y
i
, yi]

and [y
j
, yj] by solving two NLPs (3.17).

4: return f̃i(zi), f̃j(zj), and the symbolic representation of f̃(zi, zj).

Algorithm 3.5.2 PWA approximation of
∏n

i=1 fi(zi)

REQUIRE: Functions fi(zi).

OUTPUT: f̃(z1, . . . , zn) ≈∏n
i=1 fi(zi).

1: Create an empty last-in-first-out stack S and an empty tree T .

2: Push fi(zi), i = n, . . . , 1 to the stack S.

3: while S has more than one element do

4: Pop two elements fj(zj) and fk(zk) from S.

5: Obtain f̃j(zj), f̃j(zj), and f̃(zj , zk) ≈ fj(zj)fk(zk) by calling Algorithm 3.5.1.

6: Push f̃(zj , zk) to S.

7: Create nodes f̃j(zj), f̃k(zk) and insert them to T .

8: Create a node f̃(zj , zk) and append it as a child of nodes f̃j(zj) and f̃k(zk).

9: end while

10: return Tree T representing f̃(z1, . . . , zn) ≈∏n
i=1 fi(zi).

38 CHAPTER 3. MODELING OF HYBRID SYSTEMS

above. The implementation is provided in a form of an open-source MATLAB toolbox,

called AUTOPROX, which is freely available from http://www.kirp.chtf.stuba.sk/∼sw/.

The toolbox provides two types of user interfaces. Input data can either be provided di-

rectly from the command line or, alternatively, entered using a graphical interface.

3.6 Command-Line Interface

The command-line interface is illustrated first by revisiting Example 3.1. To approximate

the function f(z) = z3, one proceeds as follows:

syms z

f = z^3

bounds = [-1.5, 1.5]

regions = 3

[aprx, data] = autoprox_1d(f, bounds, regions)

Here, AUTOPROX uses the Symbolic Toolbox to define symbolic representation of

the function to be approximated on a given domain (represented by the bounds variable),

with a given number of PWA segments (the regions variable). The first output argu-

ment (denotes as aprx here) is a function handle, which can be used e.g. to plot the

approximation:

x = -1.5:0.001:1.5

plot(x, x.^3, x, aprx(x), ’--’)

which will generate a plot as seen in Figure 3.1(a). The second output (stored in the data

variable) can be used to export the PWA approximation into the HYSDEL language:

hysdel_1d(data, ’filename.hys’)

The generated HYSDEL model can be subsequently compiled by the HYSDEL com-

piler, which will provide a mathematical model suitable e.g. for control synthesis.

Approximation of 2D functions can be performed in a similar manner. Let us again

consider Example 3.4, i.e. the task is to approximate the function f(z1, z2) = z3
1(|z2| +

0.5z2
2 − sin (z2)3) on domain [−1.5, 1.5]× [−1, 2.5]. Again, the first step is to define the

function using symbolic variables:

syms z1 z2

f1 = z1^3

f2 = abs(z2) + 0.5*z2^2 - sin(z2^3)

Next, the function domain and number of approximation segments need to be pro-

vided:

f1_bounds = [-1.5, 1.5]

f2_bounds = [-1, 2.5]

f1_regions = 3

3.7. GRAPHICAL USER INTERFACE (GUI) 39

f2_regions = 7

y1_regions = 2

y2_regions = 2

Finally, the approximation f̃(z1, z2) can be obtained by calling

[aprx,data] = autoprox_2d(f1,f2,f1_bounds,f2_bounds,...

f1_regions, f2_regions,y1_regions, y2_regions)

Similarly as in the previous example, the aprx output is a function handle which can

be used to directly evaluate the approximation at some given values of z1 and z2, e.g.

z1 = 0.5

z2 = -1

true_value = z1^3*(abs(z2) + 0.5*z2^2 - sin(z2^3))

aprx_value = aprx(z1, z2)

The second output (called data) again serves to generate the HYSDEL version of the

approximation:

hysdel_2d(data, ’filename.hys’)

Approximation of n-dimensional functions can be obtained by calling the autoprox_nd

function. A detailed description of its calling syntax is omitted due to brevity, but is

provided in the distribution package of AUTOPROX.

3.7 Graphical User Interface (GUI)

The GUI allows to perform the approximation in an easily accessible manner where all

data can be entered conveniently without the need to remember the exact calling syntax

of individual approximation functions.

The main window of the GUI is shown in Figure 3.7. The user starts by selecting

the type of approximation using radio buttons. Then, he provides the symbolic repre-

sentation of the function to approximate in the FUNCTION text box. The domain of

the function, represented by its minimal and maximal bounds, has to be filled out next.

After providing all necessary details, the user can select the number of approximation

regions by a drop-down menu, as shown in Figure 3.8. Afterwards, the approximation

is computed by clicking the SPLIT button. A concise statistical evaluation of the ap-

proximation will then appear in a corresponding section of the GUI. It informs the user

about the approximation quality, represented by average and worst-case approximation

errors. Finally, the approximation can be exported to a HYSDEL source by clicking the

EXPORT button.

40 CHAPTER 3. MODELING OF HYBRID SYSTEMS

Figure 3.7: Basic GUI window.

Figure 3.8: GUI windows after performing approximation.

3.8 Case Study

Consider a continuous stirred tank reactor (CSTR) where the reaction A → B takes

place. The source compound is pumped into the reactor at a constant inflow with a

constant concentration. The chemical reaction is exothermic and a coolant liquid is

therefore pumped into the reactor’s jacket to prevent overheating. The input temperature

of the coolant is constant, while its flow rate qc can be manipulated and is considered an

3.8. CASE STUDY 41

exogenous input. Concentration of the reactant cA inside of the reactor, temperature of

the reactor mixture ϑ, and temperature of the cooling liquid in the jacket ϑc are the state

variables of the CSTR. The normalized material and energy balances of such a reactor

are then given by

ċA = α1 − α2cA − α3cAe−β/ϑ,

ϑ̇ = α4 − α5α2cAe−β/ϑ + α6ϑ + α7ϑc, (3.43)

ϑ̇c = α8qc + α9(ϑ− ϑc)− α10ϑcqc,

with constants αi and β. The state and input variables are considered to belong to inter-

vals cA ∈ [4, 4.2] mol m−3, ϑ ∈ [300, 320] K, ϑc ∈ [290, 310] K, and qc ∈ [0.002, 0.02] m3 h−1.

The model features two nonlinearities: ϑcqc and cAe−β/ϑ, both of which satisfy As-

sumption 3.1. Since the first one involves a direct product of two variables, its PWA

approximation f̃a ≈ ϑcqc can be obtained as in (3.19) by first defining y1 = ϑc + qc,

y2 = ϑc − qc, followed by approximating the functions y2
1 and y2

2 by f̃y1
(y1) and f̃y2

(y2),

respectively. Hence, the approximation f̃1(ϑc, qc) ≈ ϑcqc is represented by

f̃1(ϑc, qc) = 1/4
(
f̃y1

(ϑc + qc)− f̃y2
(ϑc − qc)

)
. (3.44)

The second nonlinearity can be approximated as in (3.22). First, the PWA approximation

g̃(ϑ) ≈ e−β/ϑ is computed by solving (3.17). Then, y3 = cA + e−β/ϑ, y4 = cA − e−β/ϑ are

defined, followed by computing the respective PWA approximations f̃y3
(y3) ≈ y2

3 and

f̃y4
(y4) ≈ y2

4 . f̃2(cA, ϑ) ≈ cAe−β/ϑ is thus given by

f̃2(cA, ϑ) = 1/4

(

f̃y3

(
cA + g̃(ϑ)

)
− f̃y4

(
cA − g̃(ϑ)

))

(3.45)

The overall PWA approximation of the original nonlinear system ẋ = f(x, u) with x =

[cA, ϑ, ϑc]T and u = qc is thus

ċA ≈ α1 − α2cA − α3f̃2(cA, ϑ)
)
,

ϑ̇ ≈ α4 − α5α2f̃2(cA, ϑ) + α6ϑ + α7ϑc + ϑ, (3.46)

ϑ̇c ≈ α8qc + α9(ϑ− ϑc)− α10f̃1(ϑc, qc),

which can be easily converted into the general PWA form (3.13) as described in Section 3.2.

To assess approximation accuracy, we have investigated the open-loop evolution of the

original nonlinear model (3.43) and compared it to the behavior of its PWA approxima-

tion (3.46). To derive the PWA model, we have chosen 3 regions for f̃y1
(·), f̃y2

(·) in (3.44)

and f̃y3
(·), f̃y4

(·) in (3.45), and N = 2 for g̃(θ) ≈ e−β/ϑ. The simulation results are shown

in Figure 3.9. To better illustrate advantages of the PWA approximation, the simulation

scenario also shows evolution of linearized version of (3.43) around the nominal steady

42 CHAPTER 3. MODELING OF HYBRID SYSTEMS

state cs
A = 4.13, ϑs = 304, ϑs

c = 297, and qs
c = 0.006. As can be seen from the results,

the PWA approximation clearly outperforms the model based on a single linearization.

Specifically, the model (3.46) provides a 15 times more accurate tracking of the nonlinear

profile compared to the linear model. Important to notice is that the PWA model consists

of 14 local linear models. By increasing N to 7 when approximating f̃y1
(·), f̃y2

(·) in (3.44)

and f̃y3
(·), f̃y4

(·) in (3.45), the approximation accuracy is 60 times better compared to

the linear model. The cost to be paid is the increased model complexity, which would

then consist of 30 regions.

0 200 400 600
4.08

4.1

4.12

4.14

4.16

4.18

time [min]

c A

(a) Evolution of cA.

0 200 400 600
302

304

306

308

310

312

time [min]

ϑ

(b) Reactor temperature.

0 200 400 600
290

295

300

305

310

315

time [min]

ϑ c

(c) Jacket temperature.

0 200 400 600
2

4

6

8

10

12

14x 10
-3

time [min]

q c

(d) Randomly varying coolant flowrate.

Figure 3.9: Simulation results for the CSTR. Red line: nonlinear model (3.43), blue

dashed line: PWA model (3.46), black dotted line: linear approximation.

3.9. SUMMARY 43

3.9 Summary

In this chapter we proposed an optimisation-based approach to derive PWA approxi-

mation of nonlinear systems whose vector field is an a-priori known function of multiple

variables. We showed that, under a certain assumption, the problem boils down to solving

a series of one-dimensional problem. Subsequently, by utilising this basic one-dimensional

building block we extended our procedure to multidimensional separable functions. Fi-

nally, we showed that by means of proper substitutions one can transform an arbitrary

non-separable function into a separable one, hence allowing implementation of the un-

derlying approximation procedure. In the most trivial case we assumed that the analytic

expression of the approximated non-linear function is given. To overcome the difficulty

stemmed from the absence of the analytical formula, we proposed to use an efficient two-

stage optimisation-based technique to derive PWA approximations of static nonlinearities

obtained from measured data. The first part of the procedure is focused on finding the

best fit of measured data by a pre-specified set of basis functions. The result of this

stage is an analytical formula of the fitting function which is subsequently used as an

input to the second step. Once we have the analytical expression we can easily apply

our procedure to obtain the final approximation. We also discussed the algorithmic and

software implementation of the underlying approximation procedure. Specifically, we in-

troduced a new software tool which is capable of exporting the obtained optimal PWA

approximations into the HYSDEL language. This brings two crucial advantages. First,

the HYSDEL compiler can be used to convert the PWA approximation into a mathe-

matical form, which is then suitable e.g. for control design. Second, since the exported

approximation is described in a human-readable format, it can be further fine-tuned by

hand. We concluded this chapter by illustrating the approximation procedure involving

a model of a highly non-linear chemical reactor.

Part III

Complexity Reduction in

Explicit Model Predictive

Control

45

Chapter 4

Explicit Model Predictive Control

MPC is a control strategy where based on the measurements x(t) of plant’s states at time

t, a mathematical model of the plant is used to predict the evolution of the plant up to

time t + N . Here, N is called the prediction horizon. A sequence of future control inputs

is then calculated by optimizing the predicted plant behavior while taking constraints on

states and inputs into account. MPC is usually implemented in the so-called receding

horizon (RH) fashion. In this setup only the first element of the optimal control sequence

is actually implemented to the plant and the rest is discarded. This repetitive optimization

is then repeated every time new state measurements become available. This repetitive

optimization is used to introduce feedback into the control scheme such that the effects

of unpredicted disturbances can be mitigated.

As shown in Bemporad et al. (2002b) the effort of implementing MPC in the Receding

Horizon fashion (RHMPC) can be substantially reduced by pre-computing the optimal

control action for all possible initial conditions as a function κ. For a large class of MPC

problems, such a function can be shown to take a form of (PWA) function, which is

composed of a set of polytopic regions and the associated affine feedback expressions.

The main benefit is that obtaining the optimal control input at each sampling instance

reduces to a mere function evaluation, which can be performed efficiently even on simple

control devices in a matter of mili- and microseconds.

On the other hand, to achieve such a simple and fast implementation, all pre-computed

data have to be stored in the memory of the target control hardware. Although this aspect

is often neglected in the literature, in fact it plays a prominent role when implementing

explicit MPC solutions on devices with low available memory storage. Typical examples

include programmable logic controllers (PLCs) and embedded microchips, which are one

of the most frequently used types of industrial control platforms. Such devices usually

47

48 CHAPTER 4. EXPLICIT MODEL PREDICTIVE CONTROL

only provide 2-8 kilobytes of memory capacity, a figure which represents a significant

challenge in explicit MPC. Needless to say, unless all pre-computed data can be fit into

memory, the controller cannot be implemented in practice. Therefore it is of imminent

importance to keep the memory footprint S(κ) on an acceptable level.

The rest of this chapter is organised as follows. In Section 4.1 we briefly characterise

explicit model predictive control. This description is followed by the problem statement

in Section 4.2. Next, in Section 4.3 we provide a comprehensive literature overview

regarding complexity reduction of explicit MPC solutions. Section 4.4 introduces our

three-layer compression technique, by means of one can significantly reduce the memory

requirements of explicit predictive controllers. The chapter ends with efficiency evaluation

of our proposed methodology on randomly generated feedback laws, which is followed by

a summary, where the main advantages and drawbacks of our proposed methodology will

be discussed Material in this chapter is based on our results published in Szűcs et al.

(2011b).

4.1 Properties of Explicit Model Predictive Control

We consider the class of constrained, discrete-time, linear time-invariant systems

x+ = Γx + Ξu, x ∈ X , u ∈ U , (4.1)

where x ∈ R
nx is the state vector, x+ is the successor state, u ∈ R

nu is the vector of

control inputs, and X ⊂ R
nx , U ⊂ R

nu are given polytopic sets. For system (4.1) we

define the constrained finite-time optimal control problem:

min
UN

N−1∑

k=0

‖Qxxk+1‖p + ‖Quuk‖p (4.2a)

s.t. xk+1 = Γxk + Ξuk, xk+1 ∈ X , uk ∈ U (4.2b)

where xk and uk denote, respectively, the state and input predictions at time instance k,

initialized by the measurements of the current state x0. The prediction is carried out over

a finite prediction horizon N . The explicit representation of the receding horizon MPC

feedback u∗ = [I 0 · · · 0]U∗
N can be found as a PWA function of the initial condition x

by solving (4.2) as a parametric program:

Theorem 4.1 (Bemporad et al. (2002b)) The RHMPC feedback u∗ for problem (4.2)

with p ∈ {1, 2,∞} is given by

u∗ = κ(x) :=







F1x + G1 if x ∈ R1

...

FRx + GR if x ∈ RR,

(4.3)

4.2. PROBLEM DEFINITION 49

where:

• κ : Rnx → R
nu is a continuous PWA function;

• Ri = {x | Hix ≤ Ki} are polytopes with Hi ∈ R
ci×nx , Ki ∈ R

ci , i = 1, . . . , R;

• the set of feasible initial conditions Ω := {x | ∃u0, . . . , uN−1 s.t. (4.2b) holds} is a

convex polytope;

• {Ri}R
i=1 is a partition of Ω, i.e. ∪iRi = Ω and Ri ∩Rj = ∅ for all i 6= j.

�

The advantage of such an explicit representation is obvious: obtaining the optimal

control action for a given x reduces to a mere evaluation of the function κ, which is a two-

stage process. In the first step, index i of the region which contains the state measurements

is to be identified. This problem is referred to as the point location problem (Snoeyink

1997). Then, in the second step, the optimal control action is computed by evaluating

u∗ = Fix + Gi. The point location problem can be solved e.g. by traversing the regions

sequentially according to Algorithm 4.1.1 (its output is ∅ if x /∈ ∪iRi, in which case there

is no feasible u which would guarantee satisfaction of constraints in (4.2b)).

Algorithm 4.1.1 Point location

1: for i = 1, . . . , R do

2: if Hix ≤ Ki then

3: return i

4: end if

5: end for

4.2 Problem Definition

The crucial downside of the explicit MPC approach, however, is that the number of regions

tends to be large, often above the limits of typical control hardware implementation

platforms. Specifically, the amount of memory needed to execute Algorithm 4.1.1 on-line

at each sampling instant, expressed as the number of floating-point numbers, is

S(Ri) =
R∑

i=1

ci(nx + 1), (4.4)

where R is the number of regions and ci is the number of defining half-spaces of the i-th

region. Clearly, as R increases, and as the regions become more complex (i.e. with growing

50 CHAPTER 4. EXPLICIT MODEL PREDICTIVE CONTROL

ci), the memory footprint of κ can easily exceed the provided memory capacity. Therefore,

when targeting implementation devices with low memory storage, it is important to devise

a more memory-efficient representation of the feedback law κ. In order to reduce the

memory footprint of an arbitrary explicit model predictive controller we propose to apply a

three-stage compression technique. In the first stage we obtain a set of unique half-spaces,

representing the polytopic regions. Then, the expressions obtained from the previous stage

are denoted by an integer subscript, hence allowing to represent the given controller by

less data, since storing of an integer value requires only 2 bytes compared to floating-point

numbers, which consume 4 or even more 8 bytes, depending on the processor architecture.

In the final stage we exploit the concept of Huffman encoding, by means we acquire an

efficient bit representation of the integer indexes, according to the frequency of their

occurrences.

4.3 Overview of Methods for Complexity Reduction

in Explicit Model Predictive Control

Complexity of the resulting eMPC controller can be decreased in several ways. One

method is based on relaxation of optimality (Bemporad and Filippi 2003, Jones and

Morari 2009, Ulbig et al. 2007), by means simpler, but only suboptimal solution can be

achieved. Alternatively, one can supplant the original regions of the explicit solution with

simpler objects e.g. hypercubes (Johansen and Grancharova 2003) or simplexes (Grieder

et al. 2004, Scibilia et al. 2009) or interpolate the solution only from a small subset of

regions (Rossiter and Grieder 2005). Although, all these methods in some cases can lead

to a remarkable reduction of complexity, generally they do not guarantee substantial

simplification. Moreover, they are characterized by suboptimality and stability issues.

The second main direction deals with simplification of already existing explicit solution

and its replacement by a simpler functional dependence. This option involves optimal

merging of regions (Geyer et al. 2008), elimination of regions, where the control action

is saturated (Kvasnica and Fikar 2010) or elimination of saturated regions by separating

functions (Kvasnica et al. 2011b). By these approaches substantial complexity reduction

can be attained without loss of generality. Replacement of explicit control laws with

smooth functions is also available either by the sum of wavelet curves (Summers et al.

2009), Laguerre polynomials (Valencia-Palomo and Rossiter 2010) or by ordinary multi-

dimensional polynomials (Kvasnica et al. 2008; 2011a).

Third direction deals with the fastest evaluation of explicit solutions for a given value

of initial condition. Standardly, this task is realized by sequential searching of all regions,

which leads to linear complexity of this implementation stage. Number of operations,

4.4. MAIN RESULTS 51

required to perform such a policy can be decreased by creating appropriate search trees

(Tøndel et al. 2003), where the complexity of the searching is only logarithmic in number

of regions. Acceleration can be aimed by exploiting the convexity of the objective function

(Baotic et al. 2008) or the continuity of the control law (Wen et al. 2009).

4.4 Main Results

In this section we show how to represent regions Ri more efficiently by exploiting their

geometric properties. Each of the proposed three layers can be viewed at as a “com-

pression” mechanism. Needless to say, additional computational effort needs then to be

performed on-line to “decompress” the data. We provide quantification of such an addi-

tional effort as a function of the problem size. Decompression is performed on-the-fly on

a region-by-region basis.

Only the polytopic nature of regions Ri is exploited by the proposed complexity re-

duction procedure. Continuity of κ and convexity of the feasible set Ω are not required.

Therefore the approach is applicable to generic PWA function κ defined over polytopes.

The scope of this work therefore extends to scenarios where tracking of a non-zero ref-

erence is achieved by a suitable augmentation of the state vector, or where linear hybrid

systems are used as prediction models. For the same reason the procedure can be applied

to post-process RHMPC feedback laws generated by other complexity reduction schemes,

e.g. those reviewed in Kvasnica (2009).

To quantify achievable reduction in memory, we will assume that double-precision

floating point numbers consume 8 bytes, while integers can be represented by 2 bytes.

Each individual mathematical operation on a float or on an integer will be denoted as

one FLOP.

4.4.1 Complexity Reduction via Affine Transformations

First we show how to represent some regions using less data by exploiting geometric

similarities of such polytopes. We remind that the memory footprint of a region Rj =

{x | Hjx ≤ Kj} with Hj ∈ R
cj×nx and Kj ∈ R

cj is cj(nx + 1) real numbers with

cj ≥ nx + 1. Here, we look for affine transformations Ai,jx + bi,j such that

Ri = {Ai,jx + bi,j | x ∈ Rj}. (4.5)

If there exist Ai,j ∈ R
nx×nx and bi,j ∈ R

nx which map Rj onto Ri, then the memory

footprint of κ is reduced as follows: for each i, j for which the mapping exists, the half-

space representation of the j-th region (i.e. matrices Hj , Kj with variable number of rows

52 CHAPTER 4. EXPLICIT MODEL PREDICTIVE CONTROL

cj) can be replaced by matrices Ai,j , bi,j with fixed number of rows nx. Then, once x ∈ Rj

is to be verified in Step 2 of Alg. 4.1.1, it suffices to check whether Ai,jx + bi,j ∈ Ri, i.e.

x ∈ Rj ⇔ Ai,jx + bi,j ∈ Ri. (4.6)

It follows that memory footprint of region Rj is reduced by (cj−nx)(nx +1) real numbers

by only storing Ai,j , bi,j instead of Hj , Kj . Since cj ≫ nx + 1 in practice, a significant

reduction can be achieved.

Definition 4.1 Let the polytopic partition {Ri}R
i=1 be given. The index set IG ⊆ {1, . . . , R}

is called the index set of generating regions of the partition if for each j /∈ IG there exists

an i ∈ IG and the associated affine map Ai,jx + bi,j such that (4.5) holds.

Lemma 4.1 Let i, j be given and let Vi = [vi,1, . . . , vi,nv
] and Vj = [vj,1, . . . , vj,nv

]

denote, respectively, the extremal vertices of Ri and Rj. Then an affine transformation

which guarantees (4.6) exists if there exist Ai,j ∈ R
nx×nx , bi,j ∈ R

nx , and a binary

permutation matrix P ∈ {0, 1}nv×nv with
∑nv

m=1 Pm,k = 1, ∀k,
∑nv

m=1 Pk,m = 1, ∀k such

that
[

Ai,j bi,j

]
[

Vj

1

]

= ViP. (4.7)

Proof of Lemma 4.1 Since Vi and Vj are extremal vertices, (4.6) is equivalent to

x ∈ convh(Vj) ⇔ (Ai,jx + bi,j) ∈ convh(Vi) (4.8)

where convh(·) denotes convex hull. By convexity of Ri and Rj, the affine transformation

exists if for each s ∈ {1, . . . , nv}, there exists a t ∈ {1, . . . , nv} such that

Ai,jvj,s + bi,j = vi,t, (4.9)

i.e. when there exists an appropriate permutation of vertices Vi such that (4.9) holds

∀s. But this is equivalent to existence of a binary permutation matrix P whose rows and

columns sum up to 1. Hence (4.7) follows.

Problem (4.7) is a feasibility problem with real variables Ai,j , bi,j and the binary

variables P , which can be solved by off-the-shelf software, like GLPK (Makhorin 2001)

or CPLEX (ILOG, Inc. 2003). One can also look for a numerically scaled solution by,

in addition, minimizing ‖Ai,j‖1 + ‖bi,j‖1. Regions Ri are processed by Algorithm 4.4.1,

which requires solving, at most, 1/2nx(nx − 1) MIP problems (4.7). In practice, it will

be less, since only regions with the same number of vertices need to be processed. The

algorithm returns an auxiliary array J which denotes feasible i–j combinations. If Jj 6= ∅

4.4. MAIN RESULTS 53

Algorithm 4.4.1

1: Initialize Jj = ∅, Aj = ∅, Bj = ∅, j = 2, . . . , R

2: for i = 1, . . . , R− 1 do

3: for j = i + 1, . . . , R do

4: if Jj = ∅ and (4.7) is feasible then

5: Aj ← Ai,j , Bj ← bi,j , Jj ← i

6: end if

7: end for

8: end for

for some j, then Jj points to its associated generating region. If Jj = ∅, then Rj is a

generating region on its own, i.e. IG = {j | Jj = ∅}.
Given the arrays of affine transformations A and B, the point-location task can be

implemented by Algorithm 4.4.2. The size of its input arguments is

S(Ri) =
∑

i∈IG

ci(nx + 1) +
∑

i/∈IG

nx(nx + 1), (4.10)

a reduction by
∑

i/∈IG
(ci − nx)(nx + 1) floating point numbers compared to the stan-

dard approach, cf. (4.4). The memory saving is hence proportional to the number of

non-generating regions. The algorithm loops through regions sequentially. If a generat-

ing region is encountered, x ∈ Ri is checked directly. Otherwise, (4.6) is exploited and

Ajx +Bj ∈ Ri is checked instead. Saving in terms of memory is traded for an increase in

execution time. Here, compared to Algorithm 4.1.1, one needs to evaluate the affine trans-

formations whenever a non-generating region is encountered, which requires
∑

i/∈IG
(2n2

x)

FLOPs in the worst case.

Algorithm 4.4.2

1: for j = 1, . . . , R do

2: if j ∈ J then

3: i← Jj , x← Aix + Bi

4: else

5: i← j

6: end if

7: if Hix ≤ Ki then

8: return j

9: end if

10: end for

54 CHAPTER 4. EXPLICIT MODEL PREDICTIVE CONTROL

Example 4.1 Consider a double integrator sampled at 1 second, given by the following

state-space representation:

x+ =

[

1 1

0 1

]

x +

[

1

0.5

]

u, (4.11)

where the states and inputs are constrained, respectively, by |xi| ≤ 5, i = 1, 2, and |u| ≤ 1.

With the choice of p = 1, Qx = [1 0
0 1], Qu = 1, and N = 10 in (4.2), the explicit RHMPC

feedback law consists of 230 regions, shown in Figure 4.1. Storing all regions would

require 2466 floating point numbers, or 19 kilobytes. Algorithm 4.4.1 has found feasible

affine transformations for 198 regions, representation of which can be simplified by only

storing Ai,j and bi,j. Remaining 32 generating regions need to be represented using the

full data, i.e. by matrices Hi, Ki. Here, the 198 affine transformations contribute by

1188 numbers, while the 32 regions require 402 floats. It follows that the total required

memory is decreased from 19 to 12 kilobytes. The worst-case number of FLOPs1 needed

to perform point location via Algorithm 4.4.2 is 6143 compared to 4110 operations for

Algorithm 4.1.1.

4.4.2 Data De-Duplication

Instead of having to store all data (i.e. all matrices Hi and Ki), one can use de-duplication

to first identify unique rows of H = [HT
1

··· HT
R]T ∈ R

m×nx and K = [KT
1

··· KT
R]T ∈ R

m

with m =
∑R

i ci. Denote the unique rows by H and K. If cardinality of H (K) is smaller

than number of rows in H (K), then the amount of memory can be significantly decreased

by storing, for each region, only the pointers to H and K. The saving is twofold. First,

memory size of a pointer is smaller than for a floating point number. Second, since a

single pointer is assigned to each row of H (which is nx dimensional), the amount of

memory is decreased nx times for each entry.

As an example, consider three regions given in their respective half-space representa-

tion by

H1 =
[

0 1
1 −0.5
0 −1

−1 0.5

]

, H2 =
[

0 1
1 −0.5

−1 0.5
0 −1

]

, H3 =
[

−1 0.5
0 −1
0 1
1 −0.5

]

,

K1 =
[

2.4
3.1

−1.5
0

]

, K2 =
[

2.4
5.0

−3.1
0

]

, K3 =
[

0
0

1.5
3.1

]

.

The sets of unique rows are

H = {[0 1] , [1 −0.5] , [0 −1] , [−1 0.5]},
K = {−3.1, −1.5, 0, 1.5, 2.4, 3.1, 5.0}.

1It is worth noting that even slow CPUs typically found in industrial control hardware are able to

perform tens of millions of FLOPs per second. With the reported computational figures the control

algorithm could therefore be executed at the sampling range of hundreds of kilohertz.

4.4. MAIN RESULTS 55

-5 0 5

-3

-2

-1

0

1

2

3

x
1

x 2

Figure 4.1: Regions of the explicit MPC solution for Example 4.1. Each of the 198 yellow

regions can be obtained by applying a suitable affine transformation (4.6) to

one of the 32 generating regions, shown in red.

56 CHAPTER 4. EXPLICIT MODEL PREDICTIVE CONTROL

The corresponding (unsigned) index set representation of the polytopic regions is then

IH1
= {1, 2, 3, 4}, IK1

= {5, 6, 2, 3},
IH2

= {1, 2, 4, 3}, IK2
= {5, 7, 1, 3},

IH3
= {4, 3, 1, 2}, IK3

= {3, 3, 4, 6},

where each element of IH and IK points to the corresponding entry in H and K.

Cardinality of H and K, and hence the required storage space, can be further reduced

by eliminating entries which are negations of others, i.e.

H = {[0 1] , [1 −0.5]}, K = {−3.1, −1.5, 0, 2.4, 5.0}.

Then the (signed) index set representation becomes

IH1
= {1, 2, −1, −2}, IK1

= {4, −1, 2, 3},
IH2

= {1, 2, −2, −1}, IK2
= {4, 5, 1, 3}, (4.12)

IH3
= {−2, −1, 1, 2}, IK3

= {3, 3, −2, −1},

In this simple example, memory footprint of regions Ri was reduced from 36 floating

point numbers representing matrices Hi, Ki to 9 floats for H, K, and 24 integer pointers.

Assuming that one float is represented by 8 bytes and an integer by 2 bytes, de-duplication

reduces required memory from 288 bytes to 120 bytes.

Remark 4.1 Needless to say, the same de-duplication approach can be used to reduce

memory footprint of affine transformations in (4.6).

Algorithms 4.1.1 and 4.4.2 can be easily accommodated to exploit the signed index

set representation. Whenever Hix ≤ Ki needs to be checked, one constructs, on-the-

fly, matrices Hi and Ki by Hi = {sign(j)H|j| | j ∈ IHi
} and Ki = {sign(j)K|j| | j ∈

IKi
}. This involves negating the corresponding rows, depending on the sign of the index.

Therefore execution of Algorithms 4.1.1 and 4.4.2 requires, at most,
∑R

i=1 2ci additional

FLOPs.

Example 4.2 We revisit Example 4.1 and remind that the full set of 230 regions can

be equivalently represented by 32 generating regions and by 198 associated affine trans-

formations (4.5). The generating regions are described by 134 half-spaces, which require

134(nx +1) floating point numbers (nx = 2 in this example). Here, the sets of rows unique

under unity scaling, i.e. H and K, only contains 17 and 47 entries, respectively, which is

equivalent to 17nx +47 floating point numbers. The corresponding index sets IHi
and IKi

contribute by 2 × 134 integers. After de-duplication is applied to Aj and Bj as well, the

4.4. MAIN RESULTS 57

Table 4.1: Frequencies of integers to encode.

Integer −2 −1 1 2 3 4 5

Frequency 1 2 1 1 4 2 1

total memory footprint is reduced from 12 kilobytes reported in Example 4.1 to just 7.5

kilobytes. This comes at the expense of performing additional 1644 FLOPs to reconstruct

the regions on-the-fly using index set representations.

4.4.3 Compression of Index Set Representations

Given are index set representations IH = ∪iIHi
and IK = ∪iIKi

, whose entries point to

corresponding rows in the set of unique elements H and K. In traditional implementation,

each element of IH and IK would need to be represented as a (signed) integer, i.e. by

16 bits (provided that cardinality of H and K does not exceed 216). A more efficient

representation can be obtained by using a prefix-free variable-length encoding where bit-

wise codewords are assigned to each element of the index sets. Length of a codeword is

inverse-proportional to its abundance, such that size of IK and IH is compressed as much

as possible.

Proposition 4.2 (Dasgupta et al. (2006)) Given an index set I and an array of fre-

quencies F , Algorithm 4.4.3 generates an optimal coding tree T (I) as a full binary tree

where the symbols to encode are at the leaves, and where each codeword is generated by a

path from root to leaf, interpreting left traversal as 0 and right as 1.

As an illustration, consider the index sets in (4.12) and let IK = IK1
∪IK2

∪IK3
. Then

the integers to encode appear with frequencies reported in Table 4.1. The corresponding

Huffman tree is shown in Figure 4.2. Here, the optimal codewords are C(IK) = {[−2 :

111], [−1 : 001], [1 : 110], [2 : 101], [3 : 01], [4 : 000], [5 : 100]}. It is easy to verify that

such an encoding is prefix-free, i.e. that no codeword is a prefix of another codeword.

Moreover, the most abundant integer 3 is encoded using fewest number of bits as to

minimize the total length of binary representation of IK . Hence, instead of storing IK as

an array of 12 integers (i.e., 24 bytes), it suffices to store the tree (7 integers or 14 bytes)

and 12 codewords of a total size 32 bits, or 4 bytes.

Size of the tree is proportional to the number of unique elements of the encoded set

of integers I. Decoding of a particular sequence of bits boils down to traversing the tree

until a leaf is reached, whereupon the tree returns to its root. Decompression effort is

therefore proportional, in the worst case, to the length m of the longest codeword. In

58 CHAPTER 4. EXPLICIT MODEL PREDICTIVE CONTROL

3

-14 1 -25 2

0 1

Figure 4.2: Huffman tree for

IK = {4, −1, 2, 3, 4, 5, 1, 3, 3, 3, −2, −1}.

Algorithm 4.4.3 Huffman encoding Dasgupta et al. (2006)

1: Let Q be a priority queue, ordered by positive frequencies F = [f1, . . . , fn]

2: for k = n + 1, . . . , 2n− 1 do

3: i← deletemin(Q), j ← deletemin(Q)

4: Create a node k with children i, j

5: Fk ← Fi + Fj

6: insert(Q, k)

7: end for

total,
∑R

i=1 2cim operations are required to reconstruct regions Ri on-the-fly from their

respective encoded index set representations.

Remark 4.2 Traversing the tree only requires performing bit-wise operations, which are

much cheaper than multiplications or additions on floating point numbers. Therefore a

mere increase in FLOPs by a factor of n does not necessarily mean that evaluation speed

would drop n times. In practice, it will be less.

Example 4.3 We continue with Example 4.2 where it was shown that 134 signed integers

IH pointing to one of the 17 unique rows of H, and 134 signed integers IK for the 47

unique elements of K are required for the index set representation of generating regions.

The trees T (IH) and T (IK) were build by Algorithm 4.4.3 in 0.05 seconds. The trees had

26 and 63 leave nodes, respectively. Each element of IH , IK was encoded as a prefix-free

sequence of bits. For IH , the minimal codeword length was 3, the maximal was 6. For IK ,

the minimal and maximal code lengths were 4 and 7, respectively. It follows that the index

sets IH and IK , which originally required 2×134 integers, can be equivalently represented

by the two trees (which need 89 integers) and 2×134 bit sequences, which in total attribute

by 527 bits, or 66 bytes. Therefore memory footprint of the index set representations is

reduced from 536 bytes to 244 bytes. Decompression of the bit codewords in a suitable

4.5. EFFICIENCY EVALUATION 59

Table 4.2: Average accumulated compression factors.

nx Sec. 4.4.1 Sec. 4.4.2 Sec. 4.4.3

2 1.5 4.3 8.2

3 1.3 5.9 13.7

4 1.7 8.1 24.6

5 1.5 10.4 43.2

modification of Algorithm 4.4.2 would require additional 3570 FLOPs, in the worst case.

4.5 Efficiency Evaluation

To asses efficiency of the proposed three-layer procedure on generic data, we have an-

alyzed randomly-generated explicit RHMPC feedback laws for dimensions 2 ≤ nx ≤ 5.

For each dimension, 20 random RHMPC feedback laws were generated by the MPT

Toolbox (Kvasnica et al. 2004). Each controller was then processed by applying, consecu-

tively, the similarity transformation of Section 4.4.1, then de-duplication of Section 4.4.2,

followed by data compression of Section 4.4.3.

For various state dimensions, Figure 4.3 shows achieved memory reduction factors, i.e.

the ratios between memory size of the original solution and the corresponding compression

layer. Note that the figures show accumulated data, i.e. improvement of a particular layer

upon a previous one. The unity basis corresponds to size of the original, uncompressed,

RHMPC solution. As can be observed, reduction of memory size by a factor of 20 is

not unusual. The average values are also summarized in Table 4.2. As expected, the

compression factors increase with growing number of states. This trend is mostly notable

for the de-duplication and compression methods.

Results in Figure 4.4 then quantify the factor by which the number of floating point

operations increases in order to “decompress” a particular layer, with Algorithm 4.1.1

being the basis. However, as noted in Remark 4.2, this factor is not directly proportional

to a slowdown in evaluation speed when the Huffman encoding layer is concerned. Al-

though the evaluation effort is substantially increased, it is always out-weighted by a more

substantial reduction in terms of memory. With growing problem dimension and number

of regions, complexity of Algorithm 4.1.1 naturally increases. It is due to this fact that

the relative factors in Figure 4.4 actually tend to improve when nx is enlarged.

60 CHAPTER 4. EXPLICIT MODEL PREDICTIVE CONTROL

200 400 600 800
1
2

4

6

8

10

12

of regions

C
om

pr
es

si
on

 fa
ct

or

(a) nx = 2

1000 1500 2000
1

5

10

15

of regions

C
om

pr
es

si
on

 fa
ct

or

(b) nx = 3

2000 3000 4000 5000 6000 7000
1

5

10

15

20

25

of regions

C
om

pr
es

si
on

 fa
ct

or

(c) nx = 4

8000 9000 10000 11000
1

10

20

30

40

50

of regions

C
om

pr
es

si
on

 fa
ct

or

(d) nx = 5

Figure 4.3: Accumulated reduction in memory storage achieved by individual layers (blue

is for the similarity transformation, green for de-duplication, and red for com-

pression). Note that individual figures have different scales on the y axis.

4.6 Summary

In this work, instead of decreasing S(κ) by reducing the number of regions, we look for

a memory efficient representation of κ which requires less data. The procedure consists

of three layers. The first one determines a subset of regions which can be obtained by

applying affine transformation of the remaining regions. We show how to formulate the

search for such a mapping by solving a mixed-integer problem, which is done off-line. If

the transformation exists, the corresponding regions can then be represented using less

data. The second layer can either be applied on top of the first one, or independently.

Here, memory is saved by identifying positive and negative duplicities in half-space rep-

resentation of several polytopic regions. The duplicate occurrences are then represented

as mere integer pointers to the unique set of data. Compared to the first layer, the ad-

ditional computation to be performed on-line is much smaller. Finally, in the last layer

we propose to compress the integer pointers by Huffman encoding (Knuth 1985). Here,

variable-length bit codewords are assigned to each integer, depending on its frequency of

abundance. Main benefit of the proposed strategies is that they can be applied on top of

4.6. SUMMARY 61

200 400 600 800
1

2

4

6

of regions

F
LO

P
s

(a) nx = 2

1000 1500 2000
1

2

4

6

of regions

F
LO

P
s

(b) nx = 3

2000 3000 4000 5000 6000 7000
1

2

4

6

of regions

F
LO

P
s

(c) nx = 4

8000 9000 10000 11000
1

2

4

6

of regions

F
LO

P
s

(d) nx = 5

Figure 4.4: Accumulated increase in on-line computation needed to implement a partic-

ular layer (blue is for the similarity transformation, green for de-duplication,

and red for compression).

all aforementioned complexity reduction schemes. Saving in terms of memory is achieved

at the price of an increase of the implementation effort performed on-line. Therefore the

approach is mainly suited for situations where the implementation device poses enough

computational power, but has severe memory limitations.

Part IV

Fast Model Predictive Control

63

Chapter 5

Operator Splitting Methods in Control

In the previous chapter we have introduced explicit model predictive control as a method

by means of one can solve MPC problems very quickly. In other words for systems with

modest size, i.e. up to 4 state variables the solution can be obtained within microseconds.

Besides this method is suitable for small-scale systems, we have also stated that this

approach provides optimal solution only for fixed parameters. In order to eliminate the

above mentioned downsides, in this chapter we will introduce a novel computational

framework which can solve the underlying MPC problem very quickly. Furthermore,

these algorithms do not posses any restrictions on the dimension of the corresponding

problem. These methods, in general are denoted as alternating direction methods.

Alternating direction methods have attracted a lot of attention in many fields, e.g.

signal processing, machine learning, and computer vision, where people need to address

large-scale optimisation problems with non-differentiable objectives, and have already

been shown that they are suitable for solving such problems. Recently it has been found

out that MPC problems can often be transformed into a convex optimisation problem with

a differentiable and a non-differentiable indicator function, thus enabling application of

the aforementioned alternating methods.

Motivated by the interconnection between MPC and convex optimisation problems,

in this section we describe several algorithms to solve convex optimal control problems

quickly. The algorithms we present rely on an operator splitting technique. Such a

technique breaks the problem into two parts, a quadratic optimal control problem (which

can be solved very efficiently) and a set of single period optimisation problems (which can

be solved in parallel, often analytically). An iteration that alternates these two steps then

converges to a solution. We demonstrate that the proposed algorithms can solve optimal

control problems to an acceptable accuracy very rapidly, indicating that it is suitable

65

66 CHAPTER 5. OPERATOR SPLITTING METHODS IN CONTROL

for use in e.g. high-frequency control applications. Another advantage of our methods is

that in many cases, after some off-line pre-computation, the algorithm requires no division

operations. In these cases it can be implemented in fixed-point arithmetic, for example

on a field-programmable gate array (FPGA) for high-speed embedded control.

The rest of the chapter is organised as follows. In Secion 5.1 we describe the main

computational techniques and fields related to fast model predictive control, which is

followed by the problem statement in Section 5.2. Next, in Section 5.3 we characterise a set

of algorithms serving to solve convex optimisation problems in a fast and efficient manner.

Subsequenly, we discuss several possibilities of the improvement in a convergence rate in

Section 5.4. The chapter concludes by a case study presented in Section 5.5. Material of

this chapter is based on our results published in the accepted paper (Stathopolous et al.

2014).

5.1 Prior and Related work

In this section we give a brief overview of some important prior work in several related

areas.

Interior-point methods. A generic interior-point solver which does not exploit the

problem structure would scale in complexity with cube of the time-horizon (Betts 2001).

If the structure of the underlying problem is exploited, however, the complexity only grows

linearly. In Wang and Boyd (2008) the authors developed a custom interior-point method

that can solve quadratic optimal control problems with box constraints very rapidly by

exploiting problem structure. A similar approach was taken by Rao et al. (2004). For

work detailing efficient primal-dual interior-point methods to solve the quadratic programs

(QPs) that arise in optimal control see for example Åkerblad and Hansson (2004), Hansson

(2000), Hansson and Boyd (1998).

Automatic code generation. Typically creating a custom interior-point solver is a

very labor-expensive exercise. In Mattingley and Boyd (2012) the authors describe the

automatic generation of high speed custom solvers directly from high level descriptions of

the problem. These automatically generated custom solvers are tailored to the problem

at hand, providing dramatic speedups over generic solvers.

Explicit MPC. Explicit model predictive control is a technique for solving quadratic

optimal control problems with polyhedral constrains (Bemporad et al. 2002a, Tøndel et al.

2001), with all data fixed except of the initial state. In this case the solution is a piecewise

5.1. PRIOR AND RELATED WORK 67

affine function of the initial state. The polyhedra that define the regions, and the associ-

ated coefficients in the affine function, can be computed off-line. Solving the problem then

reduces to searching in a lookup table, and then evaluating the affine function (which is

division free). Due to the exponential growth in the number of regions, explicit MPC can

realistically only be applied to system with very modest numbers of states and constraints.

For an extension that can handle larger problems by using partial enumeration see Pan-

nocchia et al. (2006). A more thorough description related to basic properties of explicit

model predictive control, including but not limited to its mathematical description can

be found in chapter 4

Active set methods. Active set methods are a set of techniques for solving QPs that

are closely related to the simplex method for linear programming. They rely on identifying

the set of constraints that are active at the optimum and then solving a simpler problem

using just these constraints. The use of active set methods to solve the QPs that arise in

conrol has been explored by Ferreau et al. (2008a).

Fast gradient methods. Fast gradient methods inspired by Nesterov’s accelerated first

order methods (Nesterov 1983a), have been applied to the optimal control problem (Kögel

and Findeisen 2011, Richter et al. 2009; 2010). These techniques typically require only the

evaluation of a gradient and a projection at each iteration. Thus, they generally require

less computation than, say, interior-point methods, at the expense of high accuracy.

Embedded control. There has been much recent interest in using MPC in an embed-

ded control setting, for example in autonomous or miniature devices. The challenge is

to develop algorithms that can solve convex optimisation problems quickly, robustly and

within the limitations of on-board chip architectures. Many techniques have been inves-

tigated, including interior-point methods, active set methods and others; see e.g. Jerez

et al. (2011), Ling et al. (2008), Longo et al. (2011).

Operator splitting. The technique we employ in this thesis relies on the work done

on monotone operators and operator splitting methods. The history of operator splitting

goes back to the 1950s; ADMM itself was introduced in the mid-1970s by Glowinski

and Marrocco (1975a) and Gabay and Mercier (1976a). It was shown in Gabay (1983)

that ADMM is a special case of splitting technique known as Douglas-Rachford splitting,

and Eckstein and Bertsekas (1992) showed in turn that Douglas-Rachford splitting is a

special case of the proximal point algorithm. For convergence results for operator splitting

algorithms and example applications see Boyd et al. (2011a) and the references therein.

Operator splitting has seen use in many application areas, see, e.g. Annergren et al.

68 CHAPTER 5. OPERATOR SPLITTING METHODS IN CONTROL

(2012), Tøndel and Johansen, Wahlberg et al. (2012). In Lin et al. (2012) the authors use

operator splitting to develop sparse feedback gain matrices for linear-quadratic control

problems.

5.2 Problem Formulation

In this work we focus on systems with linear dynamics, giving rise to convex control

problems. The purpose of this work is to explore a family of first order methods known as

decomposition schemes or operator splitting methods. In the simplest case, the abstract

form of the problem at hand is the minimization of the sum of two convex functions and

can be written as

minimize f(x) + g(Ax) , (5.1)

with variables x ∈ R
n, where f : Rn → (−∞,∞] and g : Rm → (−∞,∞] are proper,

lower semi-continuous (lsc) convex functions and A : R
n → R

m is a linear map. A

splitting method can be applied to the above problem after rewriting it as

minimize f(x) + g(z)

subject to Ax = z ,
(5.2)

by alternatively (or simultaneously) minimizing over f and g. A dual variable update

for the equality constraint ensures that the solutions of problems (5.2) and (5.1) are

identical. Inequality constraints are already present in the formulation in the form of

indicator functions, i.e., a membership function for a set C

δC(x) =

{

0 x ∈ C

∞ otherwise.
(5.3)

Although it is established that splitting methods are quite beneficial when applied

to large-scale problems (Guler 1992), their potential in solving small to medium scale

embedded optimization problems has not been studied so extensively. Our purpose is

to study the behavior of such algorithms as solvers of control-related problems of that

scale. Our effort focuses on identifying special characteristics of these problems and how

they can be exploited by some popular splitting methods. Some of the questions that we

attempt to answer are:

1. It is very common in practice that optimal control problems come with a quadratic

objective, since in this way stability can be proven for regulation or tracking pur-

poses. What is the best way to exploit this smooth term?

2. Given that a control problem has to be solved repeatedly (e.g., MPC), how can

warm-starting affect the speed?

5.2. PROBLEM FORMULATION 69

3. Given the structure of the problem at hand, which algorithms will converge more

quickly?

We narrow the general formulation to our problems of interest which can, without loss

of generality, be written as

minimize (1/2)zT Qz + cT z +
M∑

i=1

li(Tiz + ti)

subject to Az = b ,

(5.4)

with variable z ∈ R
n, where Q ∈ S

n
+, Ti ∈ R

pi×n, c ∈ R
1×n, t ∈ R

1×n, A ∈ R
m×n,

and b ∈ R
1×m Finally, parameter M denotes the number of functions li The following

assumption holds:

Assumption 5.1 The functions li : R
pi → (−∞,∞] are closed, lsc convex functions.

Formulation (5.4) is quite general and can describe a wide range of convex optimisation

problems. The choice of the quadratic part (1/2)zT Qz + cT z and the equality constraints

Az = b being represented in an explicit way is motivated by the standard form that

control problems take.

For lighter notation, we define f(z) :=
{

(1/2)zT Qz + cT z | Az = b
}

. We also

denote the concatenated vectors and matrices associated with the affine term in the li’s as

T = (T1, . . . , TM) and t = (t1, . . . , tM). Using slack variables yi = Tiz + ti, i = 1, . . . , M ,

the Lagrangian for (5.4) is written as

L = f(z) +
M∑

i=1

li(yi) +
M∑

i=1

〈λi,−ti − Tiz + yi〉 , (5.5)

where λi ∈ R
pi are dual variables associated with the equality constraints introduced

above. We can recover the optimum by solving

(λ⋆, z⋆, y⋆) = argmax
λ

argmin
z,y

L(λ, z, y) , (5.6)

where λ = (λ1, . . . , λM) ∈ R
p, y = (y1, . . . , yM) ∈ R

p, p =
∑M

i=1 pi. For solving problem

(5.4) we consider three approaches, namely solving a saddle point problem either on the

Lagrangian, the augmented Lagrangian function or a generic saddle-point formulation

that involves taking the Legendre-Fenchel dual of the functions li(·).
The augmented Lagrangian (Boyd et al. 2011b) for problem (5.4) is defined by

Lρ = f(z) +
M∑

i=1

li(yi) +
M∑

i=1

〈λi,−ti − Tiz + yi〉+
ρ

2

M∑

i=1

‖ − ti − Tiz + yi‖2 , (5.7)

for ρ > 0 and the problem to solve becomes

(λ⋆, z⋆, y⋆) = argmax
λ

min
z,y

Lρ(λ, z, y) . (5.8)

70 CHAPTER 5. OPERATOR SPLITTING METHODS IN CONTROL

Another option is to apply some partial dualization to the Lagrangian formulation,

resulting in a primal-dual equivalent that is easier to solve. Making use of the Legendre-

Fenchel conjugate,

l⋆
i (λi) = sup

z
〈Tiz + ti, λi〉 − li(Tiz + ti) , (5.9)

, where pair of angle brackets in the above mentioned expression for (5.9) stands for dot

product. Functions li(Tiz + ti) can now be expressed as

li(Tiz + ti) = sup
λi

〈Tiz + ti, λi〉 − l⋆
i (λi) . (5.10)

In this way the affine argument of li(·) appears in a bilinear term and l⋆
i (·) becomes a

function of a simple argument. Consequently we can solve the saddle-point formulation

(z⋆, λ⋆, ν⋆) = min
z∈Z

argmax
λ,ν

S(z, λ, ν) , (5.11)

where

S = 〈Tz + t, λ〉+ 〈Az − b, ν〉+ (1/2)zT Qz + cT z −
M∑

i=1

l⋆
i (λi) . (5.12)

Note that the equality constraints Az = b are now treated explicitly by means of the

multiplier ν. It is interesting that for indicator functions of convex cones, the Legendre-

Fenchel dual (Bauschke 2006) is the indicator function of the polar cone, rendering the

evaluation of l⋆
i easy, especially for the standard self-dual cones.

5.3 The Algorithms

The three approaches for solving (5.4), i.e., (5.6), (5.8), and (5.11) originate from Rock-

afellar’s Proximal method of multipliers (Rockafellar 1956). When applying decomposition

to this method, we obtain a unified framework for the three algorithms, known as the

Proximal alternating direction method of multipliers (PADMM) which is written as:

Remark 5.1 Termination criteria for all methods have been derived in the spirit of

(Goldstein et al. 2012; Section 1). We define primal and dual residuals for ADMM

(FADMM) as

rk = −t− Tz + y, sk = −ρT T (yk − yk−1) ,

for AMA (FAMA) the primal residual

rk = −t− Tz + y ,

5.3. THE ALGORITHMS 71

while for CPI and CPII we have accordingly

sk = −
[

T

A

]

(z̄k − zk) +
1
ρ

[

λk+1 − λk

νk+1 − νk

]

rk =
1
τ

(zk+1 − zk) .

Termination holds whenever ‖rk‖2 ≤ ǫ and ‖sk‖2 ≤ ǫ.

Remark 5.2 Besides the parameters defined in the corresponding section related to the

specific algorithm, matrices given in problem 5.4 are required as well. Output of the

underlying algorithms is a one-dimensional array containing the optimiser.

Algorithm 5.3.1 Proximal Alternating Direction Method of Multipliers (PADMM)

REQUIRE: Initialize z0 ∈ R
n, y0

i ∈ R
pi , λ0 ∈ R

pi , and ρ > 0

loop

1: zk+1 = argmin
z

f(z) +
M∑

i=1

〈
λk

i ,−Tiz
〉

+

(ρ/2)
M∑

i=1

‖ − ti − Tiz + yk
i ‖2 + (1/2)‖z − zk‖2

P1

2: yk+1
i = argmin

yi

li(yi) +
〈
λk

i , yi

〉
+ (ρ/2)‖ − ti−

Tiz
k+1 + yi‖2 + (1/2)‖yi − yk

i ‖2
P2i

, i = 1, . . . , M

3: λk+1
i = λk

i + ρ(−ti − Tiz
k+1 + yk+1

i), i = 1, . . . , M

end loop

Algorithm 5.3.1 comes with many names, e.g., Linearized proximal method of multipli-

ers (L-PMM) (Shefi and Teboulle 2014), Split Inexact Uzawa (SIU) (Zhang et al. 2011),

Generalized Alternating Direction Method of Multipliers (GADMM) (Deng and Yin 2012).

The matrices P1, P2i are positive semidefinite and offer some flexibility in preconditioning

the proximal term. The second step of the algorithm is a proximal minimization step and

can be written via the prox operator of a function, defined as

prox ρf (x) := inf
y∈Y

{

f(y) +
1
2ρ
‖y − x‖2

}

. (5.13)

From this scheme we can recover:

• Alternating direction method of multiplier (ADMM) Glowinski and Marrocco (1975b),

Gabay and Mercier (1976b): We set P1 = 0 and P2i = 0. ADMM converges in func-

tion values f(zk) +
∑M

i=1 li(yk
i) → p⋆, in the residual yk − Tzk − t → 0, as well

72 CHAPTER 5. OPERATOR SPLITTING METHODS IN CONTROL

as to the dual optimum λ⋆ for an arbitrarily large stepsize ρ and with no extra

assumptions.

Algorithm 5.3.2 Alternating direction method of multiplier (ADMM)

REQUIRE: Initialize z0 ∈ R
p, λ0 ∈ R

p, and ρ > 0

loop

1: zk+1 = argmin
z

f(z) +
M∑

i=1

〈
λk

i ,−Tiz
〉

+

(ρ/2)
M∑

i=1

‖ − ti − Tiz + yk
i ‖2

2: yk+1
i = prox 1

ρ
li

(
Tiz

k+1 + ti − λk
i /ρ

)
, i = 1, . . . , M

3: λk+1
i = λk

i + ρ(−ti − Tiz
k+1 + yk+1

i), i = 1, . . . , M

end loop

• Alternating minimization algorithm (AMA) (Tseng 1991): The algorithm is a hybrid

scheme, consisting of minimizing the original Lagrangian (5.5) in Step 2, and the

augmented one (5.7) in Step 3 (drop all colored terms in Algorithm 5.3.1). In

this way, the quadratic coupling that comes from the augmented Lagrangian term

in the first step vanishes, allowing for further decomposition if the structure of f

permits to do so. In order to ensure convergence, the stepsize ρ has to be taken as

ǫ ≤ ρ ≤ 4σf

‖T ‖2−ǫ, where ǫ ∈ (0,
2σf

‖T ‖2) and f has to be strongly convex, with convexity

modulus σf . Under these assumptions, convergence of the primal sequence zk → z⋆,

the dual sequence λk → λ⋆ and the residual sequence yk − Tzk − t → 0 can be

proven (Tseng 1991).

Algorithm 5.3.3 Alternating minimization algorithm (AMA)

REQUIRE: Initialize λ0 ∈ R
p, and ρ within permitted range

loop

1: zk+1 = argmin
z

f(z) +
∑M

i=1

〈
λk

i ,−Tiz
〉

2: yk+1
i = prox 1

ρ
li

(
Tiz

k+1 + ti − λk
i /ρ

)
, i = 1, . . . , M

3: λk+1
i = λk

i + ρ(−ti − Tiz
k+1 + yk+1

i), i = 1, . . . , M

end loop

• Chambolle-Pock primal-dual scheme, basic version (CPI) (Chambolle and Pock

2011): Chambolle and Pock’s scheme solves problem (5.11) by means of the alter-

nation procedure (presented in Algorithm 5.3.4) which is seemingly different from

Algorithm 5.3.1.

5.4. ACCELERATED CONVERGENCE 73

Algorithm 5.3.4 Chambolle-Pock I (CPI)

REQUIRE: Initialize λ0 ∈ R
p, ν0 ∈ R

m z0 ∈ R
n. Choose τ, ρ > 0 and τρ‖(T, A)‖2 < 1,

θ ∈ [0, 1].

loop

1: λk+1
i = proxρl⋆

i

(
λk

i + ρ(Tiz̄
k+1 + ti)

)
, i = 1, . . . , M

2: νk+1 = νk + ρ(Az̄k − b)

3: zk+1 = argmin
z∈Z

(1/2)zT Qz + cT z +
M∑

i=1

T T
i

〈
z, λk+1

i

〉
+

〈
z, AT νk+1

〉
+ (1/2τ)‖z − zk‖2

4: z̄k+1 = zk+1 + θ(zk+1 − zk)

end loop

As is proven in Shefi and Teboulle (2014), Algorithm 5.3.4 is equivalent to Algorithm

5.3.1, for the special choices P2i = 0 and P1 = (1/τ)I − ρ
∑M

i=1 T T
i Ti, with θ = 1.

In this way, Algorithm 5.3.4 linearizes the quadratic term that appears in Step 1 of

Algorithm 5.3.1 and hence decouples the minimization problem. Note that AMA

achieves the same decoupling, but in a different way. The cost of simplifying the

optimization problem comes, as in AMA, with restrictions to the stepsizes, since

the condition τρ‖(T, A)‖2 < 1 has to hold.

5.4 Accelerated Convergence

There are various extensions of the three methods we presented that can significantly

improve their performance in practical applications. In general there are two ways to

improve timings:

1. Improving the theoretical convergence rates, which is done by exploiting properties

of the functions in (5.4).

2. Speeding up the computations, which can be done is several ways, e.g., fast numer-

ical linear algebra, preconditioning of the data.

In many cases the two approaches are competing. For example, one can precondition the

problem so that an accelerated variant of a method can be used, but at the same time

some favorable sparsity pattern of the original problem is lost. In our experience, there is

no “golden rule” when it comes to choosing a particular method and applying the various

extensions for speeding it up. The choice of the method should be motivated from the

problem’s structure and vice-versa. In the subsections that follow we aim at providing

74 CHAPTER 5. OPERATOR SPLITTING METHODS IN CONTROL

the reader with a wide overview of several variants of the methods that improve the

convergence rates. Computational speedup is not explored in the current version of the

article due to space limitations.

5.4.1 How to Split

The first question that comes to mind when using a splitting method is how to perform the

splitting. This choice can heavily affect the speed of the algorithm. Choosing a splitting

pattern is equivalent to formulating the two subproblems that have to be solved in the

algorithmic schemes 5.3.2, 5.3.3 or 5.3.4. Consequently, the choice will also restrict the

options for acceleration. A general guideline would be the following:

1. Both subproblems should have a closed form solution if possible; if not, they should

be cheap to solve. The whole purpose of using splitting on (5.4) is to end up with

simpler subproblems.

2. More precisely, the proximal step should be simple to solve. The step constitutes

often of projections onto simple constraint sets, or proximal minimizations with

respect to norms.

3. Expensive operations, like matrix inversions, should be avoided. If there are quan-

tities that do not change during the execution, they should be prefactored.

4. If an accelerated version of an algorithm can be used without heavily altering a

well-structured problem, then it should be used.

ADMM In this case, most of the flexibility comes in Step 2, since Step 3 is either a sim-

ple projection or a proximal minimization operation, provided li is simple. The augmented

Lagrangian term will contribute with a quadratic term of the form (ρ/2)zT
(

∑M
i=1 T T

i Ti

)

z

to the objective, hence even if Q is a diagonal matrix, the resulting quadratic term is most

probably dense. In this sense, one can either minimize the resulting quadratic function

restricted to the subspace Az = b, i.e., solve a KKT system (see O’Donoghue et al.

(2012)), or by eliminating the equality constraint. Note that this is equivalent to taking

a Newton step on a quadratic perturbation of f(z), which explains why this approach

needs relatively few iterations for convergence. The bottleneck is the matrix inversion

that has to be performed at each iteration. If ρ is constant, one can use either a sparse

LDL factorization on the KKT system, or a Cholesky factorization in the second case and

consequently solve by means of forward-backward substitution (Boyd and Vandenberghe

2004a; Appendix C).

5.4. ACCELERATED CONVERGENCE 75

AMA The method is applicable under the assumption that f is strongly convex. On

the other hand, if the assumption holds and f has some structure (e.g., diagonal, block

diagonal), the method should be preferred since the matrix inversion can be very cheap.

In several MPC applications this is not the case though, since, in order to ensure strong

convexity, f becomes a dense quadratic form for the condensed problem. Note that the

spectral radius (Rota and Strang 1960) of T and the minimum eigenvalue of the quadratic

term will affect the choice of the stepsize, many times leading to a very small one.

CPI This method combines properties of the other two, in the sense that the first step is

still decoupled but there is no strong convexity assumption. In order to avoid densification

of the quadratic term, we choose to treat the equality constraints in a Lagrangian fashion

(Step 2), a choice that, along with the stepsizes’ limitations, can render the algorithm slow

to converge in iterations’ number. Keeping Step 3 simple allows for moving some (simple)

constraints directly in the objective (z ∈ Z), if the resulting optimization problem has a

closed form solution. The algorithm is built such that it favors simple computations in

the expense of more iterations.

5.4.2 Improvements in the Convergence Rate

All three schemes have benefited from Nesterov’s optimal relaxation sequence as intro-

duced in Nesterov (1983b). Nesterov’s method is a variant of gradient descent, where,

instead of a gradient descent update {xk} sequence one uses the over-relaxed sequence

{x̂k}:

αk+1 =
(

1 +
√

4(αk)2 + 1
)

/2, (5.14a)

x̂k+1 = xk +
αk − 1
αk+1

(xk − xk−1) (5.14b)

with α0 = 1. Application of the scheme results in an O(1/k2) global rate of convergence

in function values; a rate that is optimal for first order methods. Convergence in terms

of the sequences is trickier to prove. Roughly speaking, when the optimal O(1/k2) rate

in terms of the primal (dual) function values is achieved, the primal (dual) sequences

converge with rate O(1/k) (Chambolle and Pock 2011, Goldstein et al. 2012, Shefi and

Teboulle 2014).

Linear convergence rates have also been proven for ADMM and CP methods under

specific assumptions on the structure of problem (5.4). Due to space limitations we only

present the extensions of the methods that are based on Nesterov’s acceleration or similar

techniques, and we collect all other special cases in a table in the end of the section.

76 CHAPTER 5. OPERATOR SPLITTING METHODS IN CONTROL

ADMM For ADMM, convergence of the sequences {zk}, {yk}, {λk} with rate O(1/
√

k)

is proven in the recent work of Shefi and Teboulle (2014). These rates are global and come

with no further assumptions on the structure of the problem.

A fast version of the method (FADMM), based on Nesterov’s acceleration, was first

presented in Goldstein et al. (2012). The algorithm is presented below.

Algorithm 5.4.1 Fast alternating direction method of multiplier (FADMM)

REQUIRE: Initialize α0 = 1, ŷ0 = y−1 ∈ R
p, λ̂0 = λ−1 ∈ R

p, and ρ > 0

loop

1, 2, 3: Same as in ADMM using the over-relaxed sequences λ̂k and ŷk.

4: if Ek > 01 then

5: Apply Nesterov’s scheme (5.14a) to λk and yk.

6: else

7: αk+1 = 1, ŷk+1 = yk and λ̂k+1 = λk

8: end if

end loop

Nesterov’s optimal relaxation is applied on the sequences {yk} and {λk}. The authors

use an adaptive restarting scheme based on the residuals’ error (O’Donoghue and Candes

2012). Since the accelerated sequences often exhibit an oscillatory behavior and might

over(under)shoot the optimal value, a check is performed, and if the residuals increase in

two subsequent iterations, the acceleration scheme is reset.

FADMM can be shown to have a global O(1/k2) convergence rate in the dual function’s

values under the assumption that f and li are strongly convex and furthermore li are

quadratic. In the absence of these limiting assumptions, we can have an empirically fast

convergence with unproved rate. All details are given in Goldstein et al. (2012). Note

that FADMM can be applied to the same family of problems as ADMM with no extra

assumptions and small additional computational cost.

FAMA The accelerated version of AMA makes use of Nesterov’s acceleration scheme

on the dual sequence {λk} (Goldstein et al. 2012). Under the same stepsize restriction

as in the basic version, convergence of the dual objective value at rate O(1/k2) has been

proven, inspired from the convergence proof of the FISTA algorithm (Beck and Teboulle

2009). Same as with FADMM, FAMA can practically be applied to every problem that

AMA can solve.

CPII For the basic version of CP (CPI), a partial primal-dual gap is shown to shrink

with rate O(1/k) in an ergodic sense for the sequences {zk}, {λk} and {νk}. CP algorithm

5.5. CASE STUDY 77

Algorithm 5.4.2 Fast alternating minimization algorithm (FAMA)

REQUIRE: Initialize α0 = 1, λ̂0 = λ−1 ∈ R
p, and ρ ≤ σf

‖T ‖2

loop

1, 2, 3: Same as in ADMM using the over-relaxed dual sequence λ̂k.

4: Apply Nesterov’s scheme (5.14a) to λk.

end loop

comes with an accelerated variant, under the assumption that f is uniformly convex,

denoted here as the second method of Chambolle and Pock (CPII). The acceleration is

achieved by means of adaptive changes of the primal and dual stepsizes τ and ρ, as well

as of the relaxation parameter θ, which are updated according to the scheme:

θk = 1/
√

1 + 2γτk, τk+1 = θkτk, ρk+1 = ρk/θk ,

where γ ≤ σf , assuming knowledge of the convexity modulus of f . The variant results

in a global O(1/k) convergence rate for the primal sequence {zk}, (Chambolle and Pock

2011; Theorem 2).

Algorithm 5.4.3 Chambolle-Pock II (CPII)

REQUIRE: Initialize λ0 = 0 ∈ R
p, ν0 = 0 ∈ R

m z0 ∈ R
n and ρ0, τ0 > 0,

τ0ρ0‖(T, A)‖2 < 1, θ ∈ [0, 1].

loop

1, 2, 3: Same as in CPI.

4: θk = 1/
√

1 + 2σf τk, τk+1 = θkτk, ρk+1 = ρk/θk

5: Same as Step 5 of CPI.

end loop

In case that Q is diagonal, the extra computational cost that comes from the acceler-

ation is insignificant.

5.5 Case Study

We demonstrate some of the methods presented in the previous sections with an optimal

control problem that involves MPC for tracking of a reference signal. We focus on ex-

plaining how to rewrite our problems so that we maximally exploit the ideas presented in

Section 5.4.

In this example the linearized model of a Boeing 747-200 (B747) is considered (Hartley

et al. 2013). The model has n = 12 states and m = 17 inputs and the aim is tracking

78 CHAPTER 5. OPERATOR SPLITTING METHODS IN CONTROL

of a reference signal r(k) for three of the states. We discretize with sampling period

Ts = 0.2s and consider in total a signal of 115 setpoints. Firstly, a steady state target

calculator computes a pair of setpoints (δxs(k), δus(k)) for the aircraft, according to

a desired reference signal. Subsequently, an MPC controller is tracking the delivered

setpoint. The steady-states are generated by solving a strongly convex dense QP with n+

m = 29 variables and bound constraints on the inputs (Hartley et al. 2013; Section II,B).

The affine term in the objective is a function of r(k), hence the optimization has to be

performed as many times as is the length of the reference signal. The MPC problem is

a simple quadratic one, with Q � 0 and the same bound constraints on the inputs. The

affine term is also time-varying since it is a function of the generated setpoints.

Steady state calculator The problem to solve is

minimize 1
2 θT

s Hsθs − hs(k)T θs

subject to θmin ≤ θs ≤ θmax ,
(5.15)

with variables θs ∈ R
n+m and Hs ≻ 0. Since the objective is strongly convex, we can

use accelerated versions of the methods. To this end, FAMA and CPII are valid options,

however, the dense structure of Hs would require a forward backward substitution at

each iteration, something that can be avoided. We thus take the Cholesky factorization

of Hs, i.e., Hs = LLT , L is lower triangular and invertible and perform a change of basis,

θ̃s = LT θs. Now the problem can be reformulated as

minimize 1
2 θ̃T

s θ̃s − h̃s(k)T θ̃s

subject to Cθ̃s ≤ d ,
(5.16)

with variables θ̃s ∈ R
n+m, h̃s(k) = L−1hs(k). The matrix-vector pair (C, d) describes the

polytopic constraints that are now imposed in the place of the simple bound constraints

that we had in (5.15). This is the price paid for eliminating the dense Hessian in the

objective. By introducing a slack variable y = Cθ̃s − d, y ≤ 0, we can apply FAMA to

the modified problem with f(θ̃s) = 1
2 θ̃T

s θ̃s − h̃s(k)T θ̃s, l(y) = δ−(y), T = C, t = −d. For

the stepsize we choose ρ = 1/λmax(CT C).

As a second option, we use ADMM with the parameters tuned as in Ghadimi et al.

(2013) in the same setting. This version achieves linear convergence rate by means of the

optimal stepsize selection ρ = 1/
√

λmin(CCT)λmax(CCT). In our case C is singular and

so we consider the smallest nonzero eigenvalue.

Accordingly we can use CPII. Problem 5.16 can be written in a saddle point form as

min
θ̃s

max
λ

{
〈
Cθ̃s − d, λ

〉
+

1
2

θ̃T
s θ̃s − h̃s(k)T θ̃s − δ+(λ)

}

,

5.6. SUMMARY 79

so we can use CPII with Z = R
n+m, l⋆

i (λ) = δ+(λ), T, t as defined above. Note that there

are no equality constraints, hence there is no ν-update. We initialize the primal stepsize

τ0 = 100 according to (Chambolle and Pock 2011; Theorem 2).

We solve the problem 115 times with the affine term varying slightly from one iteration

to the other. We terminate based on the residual decrease, with the accuracy threshold

set to 10−3 for FAMA and CPII and 10−4 for ADMM (see Remark 5.1). FAMA needs

495 iterations on average, with average time 0.85 ms per solve, ADMM 194 iterations at

0.56 ms per solve and CPII 1100 iterations at 4.9 ms per solve. The solutions achieved

are quite accurate, with a normed relative error (‖θs − θ⋆
s‖/‖θ⋆

s‖) of ≈ 10−5 for all the

methods, sumed over all 115 instances. The optimal stepsize selection renders ADMM

clearly superior in this case.

Main advantage of the presented methods stem from the fact, that while eMPC con-

trollers are able to compute the corresponding control action in range of micro-seconds

they are limited by the dimension of the given problem. In other words, for systems

with relatively small amount of state variables the aforementioned approach produces

satisfactory results. For more complex problems containing more optimisation variables

or “non-trivial” constraints, one has to find a way to make the problem much simpler.

On the other hand, the presented algorithms do not have any restrictions regarding the

complexity of the underlying problem.

MPC for tracking The MPC problem described in (Hartley et al. 2013; Section II)

can be written in the condensed form

minimize δT
us

δT
us

+ h(k)T δus

subject to Cδus
≤ d ,

(5.17)

with variables δus
∈ R

Nm, after having changed the basis in the same way as before. We

solve the problem for the following scenarios: N = 5, cold start, warm started at the

primal and dual optima of the previous solve. The outputs are reported in Table 5.1.

ADMM behaves significantly better than the other two methods in terms of iterations,

but FAMA is faster overall in timings. With the number of variables increasing, the

cost per iteration starts being more evident when using ADMM. We observe that warm

starting makes a big difference in terms of iteration counts.

5.6 Summary

In this chapter we have introduced a novel method serving to solve wide range of convex

optimisation problems quickly. We have shown that under mild assumptions a control

80 CHAPTER 5. OPERATOR SPLITTING METHODS IN CONTROL

Table 5.1: Efficiency evaluation of the presented algorithms in terms of number iterations

and runtime

ADMM FAMA CPII

N = 5 Av. No. Iters.

Cold\Warm

1362 \548 2279 \778 1544\825

Min.\Max. No. Iters.

Warm

72\1504 83\5947 1\2111

Av. Time Cold \Warm 46.90\19.82 42.74 \14.82 75.16 \40.53

Relative error ‖(x, u) −
(x⋆, u⋆)‖/‖((x⋆, u⋆))‖

1.61× 10−4 1.62× 10−4 1.61× 10−4

related problem, for instance an MPC formulation can be transformed into a convex op-

timisation problem, where the objective function will be given as a sum of a differentiable

and non-differentiable function, where the latter one is represented by an indicator func-

tion of a constraint set. The main advantage of the aforementioned transformation stems

from the ability to solve the modified problem by means of simple operations, known

from linear algebra, mainly multiplications between matrices and vectors. Next, we have

introduced a common computational framework from which we have subsequently derived

three popular splitting methods. After having introduced the basic versions of the under-

lying algorithms, we have derived their accelerated versions, mostly based on Nesterov’s

relaxation sequence. We have concluded the chapter by a non-trivial example of a Boe-

ing 747 aircraft, where have demonstrated the functionality of the presented algorithms

assuming different scenarios and assessed the efficacy of the given framework in terms of

number of iterations and runtimes.

Chapter 6

Conclusions and Contributions of the

Thesis

This work deals with combined topics of modelling and model predictive control of pro-

cesses. We try to introduce several techniques and approaches that make MPC fast and

reliable method usable also for embedded devices. These include (i) a novel approxima-

tion technique for modelling of nonlinear processes, (ii) a new compression technique,

serving for memory efficient representation of eMPC solutions, and (iii) several on-line

algorithms by means of one can solve convex optimisation problems very efficiently.

Approximation of nonlinear process behaviour by piece-wise affine models helps to

solve MPC problems more efficiently. In case of input-output data we proposed to solve a

simple, unconstrained optimization problems. Next, we discussed approximation of single-

variable functions, which then serve as the basic building blocks to perform the task in

higher dimensions, by transforming it into a series of one-dimensional problems. Proce-

dures and algorithms reported in this work are implemented in our AUTOPROX toolbox,

which is freely available for download from http://www.kirp.chtf.stuba.sk/~sw/. The

toolbox provides an easy-to-use interface to derivation of optimal PWA approximations

and is also capable to exporting the resulting models into the HYSDEL language. The

proposed technique is suitable to obtain an approximation of an arbitrary non-linear

function if the analytic form of the underlying function is already given. Furthermore,

obtainment of the parameters of the corresponding PWA function always boils down to

a sequence of approximations of single variable functions, which mathematically can be

expressed as a non-linear programming problem. Next, since the proposed procedure

focuses on static nonlinearities, it can be applied to a right hand side of an arbitrary

system of differential equations as well. On the other hand, in higher dimensions, during

81

http://www.kirp.chtf.stuba.sk/~sw/

82 CHAPTER 6. CONCLUSIONS AND CONTRIBUTIONS OF THE THESIS

the transformation of the original problem into series of simpler ones, one has to introduce

auxiliary functions, which has two main downsides. Firstly, for functions described by

complex formula containing many variables, the analytic form of the final approximation

function can be quite complex. Moreover, due to the already mentioned transformation,

evaluation of the final approximation error can be cumbersome as well, because the propa-

gation of the approximation error in case of multivariable functions is not straightforward

at all. Therefore, in the future, besides improvement of the existing software package, we

would like to focus on finding a more rigorous approach characterising the propagation

of the corresponding approximation error.

In the second part of the work we have proposed to decrease memory requirements for

implementation of explicit MPC solutions by applying three compression-like approaches.

First, mixed-integer programming was used to derive suitable affine transformations which

allow certain regions to be represented using fixed amount of data. Then, de-duplication

was utilised to identify a unique subset of data and converting the regions into index set

representations. Finally, the integer indices were compressed by Huffman encoding. By

means of a large case study we have demonstrated that a significant memory saving can

be achieved. This reduction comes at the price of having to perform additional computa-

tion on-the-fly, amount of which was quantified for each level. Efficiency of de-duplication

and compression increases with growing problem dimension, which is due to the fact that

regions become more complex. The proposed methodology is suitable to reduce the mem-

ory footprint of an arbitrary explicit MPC solution, even in the case of a discontinuous

solution. Furthermore, it can be applied on top of other complexity reduction schemes,

and many times the memory footprint can be reduced by a factor of 50. On the down-

side, this reduction comes at the price in a form of an increased on-line computation

during the decompression phase. Unfortunately, efficacy of our proposed compression

algorithm heavily depends on the geometric structure of the underlying explicit MPC

solution. Nonetheless, the biggest drawback stems from the property of explicit MPC

itself, since this approach is mainly applicable for small-scale systems, and the prediction

model has to be either a linear or a hybrid one, in a form of a PWA or MLD model.

Therefore, one possible future direction regarding this drawback should be a development

of methods ensuring control laws in a closed form for non-linear systems too. However,

the "curse of dimensionality" remains a severe disadvantage of this methodology. One

way to overcome this problem is to apply the recently becoming popular combinatorial

approach, which, however, has its own drawbacks too. Another option could be usage of

fast on-line algorithms, briefly summarised in the next section.

The final part deals with operator splitting methods which under some assumptions

allow to convert the original convex optimisation problem into a sequence of single oper-

83

ations, more specifically operations between vectors and matrices. We described a couple

of algorithms, and their accelerated versions. We concluded the chapter with an exam-

ple, where we showed the applicability of the aforementioned algorithms. The described

numerical framework is capable to solve wide range of convex optimisation problems

within mili- and microseconds, depending on the complexity of the given problem. The

algorithms are mainly composed of elementary operations performed on matrices and vec-

tors, hence they are easily implementable in mid-level languages, like C, or in embedded

systems with specific hardware architecture. Nonetheless, for small-scale systems these

methods can not compete with explicit model predictive control, where obtainment of

the respective control action reduces to a mere function evaluation. Furthermore, in this

framework we always assume linear models and in case of MLD or PWA models, one

has to apply some non-convex splitting methods, where are still a lot of open questions

currently under active research. Bottom line, the presented algorithms are more universal

compared to explicit MPC in terms of scalability, but the main bottleneck in this setup is

the requirement of a linear dynamics. In the future we would like to focus on non-convex

problems, extending the range of applicability of operator splitting methods. Moreover,

since the presented algorithms are both applicable on small- and large scale systems, we

are planning to investigate efficacy of these methods on distributed systems containing a

huge number of optimisation variables.

Bibliography

C. S. Adjiman, I. P. Androulakis, Maranas C. D., and C. A. Floudas. A global optimisation

method, α bb for process design. Computers and Chemical Engineering, 20:419–424,

1996a. 14

C. S. Adjiman, I. P. Androulakis, C. D. Maranas, and C. A. Floudas. A global optimization

method, αBB for process design. Computers and Chemical Engineering, 20:419–424,

1996b. 23

M. Åkerblad and A. Hansson. Efficient solution of second order cone program for model

predictive control. International Journal of Control, 77(1):55–77, January 2004. 66

M. Annergren, A. Hansson, and B. Wahlberg. An ADMM algorithm for solving ℓ1 regu-

larized MPC, 2012. Manuscript. 67

K. J. Arrow, L. Hurwicz, and H. Uzawa. Studies in linear and non-linear programming.

Stanford University Press, 1958. 3

M. Baotic, F. Borrelli, A. Bemporad, and M. Morari. Efficient On-Line Computation

of Constrained Optimal Control. SIAM Journal on Control and Optimization, 47(5):

2470–2489, September 2008. 51

Heinz H. Bauschke. Symbolic computation of fenchel conjugates. ACM SIGSAM Bulletin,

2006. 70

Heinz H Bauschke and Patrick L. Combettes. Convex analysis and monotone operator

theory in Hilbert spaces. Springer Science+ Business Media, 2011. 4

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM J. Imaging Sci., 2009. 76

85

86 BIBLIOGRAPHY

A. Bemporad and C. Filippi. Suboptimal explicit RHC via approximate multiparametric

quadratic programming. Journal of Optimization Theory and Applications, 117(1):

9–38, April 2003. 50

A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and con-

straints. Automatica, 35(3):407–427, March 1999a. 19

A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and con-

straints. Automatica, 35(3):407–427, March 1999b. 17, 19

A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit linear quadratic

regulator for constrained systems. In Proc. American Contr. Conf., 2000a. 2

A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The Explicit Linear Quadratic

Regulator for Constrained Systems. Technical Report AUT99-16, Automatic Control

Laboratory, ETH Zurich, October 2000b. 2

A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos. The explicit linear quadratic

regulator for constrained systems. Automatica, 38(1):3–20, January 2002a. 66

A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The explicit linear quadratic

regulator for constrained systems. Automatica, 38(1):3–20, January 2002b. 47, 48

Alberto Bemporad and Manfred Morari. Control of systems integrating logic, dynamics,

and constraints. Automatica, 35(3):407–427, March 1999c. ISSN 00051098. 32, 33

J. T. Betts. Practical Methods for Optimal Control using Nonlinear Programming. SIAM,

2001. 66

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and

statistical learning via the alternating di rection method of multipliers. Foundations

and Trends in Machine Learning, 3(1):1–122, 2011a. 67

S.P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

2004a. 74

Stephen Boyd and Lieven Vandenberghe. Approximation and Fitting. Cambridge Uni-

versity Press, fourth edit edition, 2004b. 32, 33

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed

optimization and statistical learning via the alternating direction method of multipliers.

Found. Trends Mach. Learn., 2011b. 3, 69

BIBLIOGRAPHY 87

B. Chachuat, A. B. Singer, and P. I. Barton. Global methods for dynamic optimization

and mixed-integer dynamic optimization. Ind. Eng. Chem. Res., 45(25):8373–8392,

2006. 23

A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with

applications to imaging. Journal of Mathematical Imaging and Vision, 2011. 72, 75,

77, 79

F. J. Christophersen. Optimal Control and Analysis for Constrained Piecewise Affine

Systems. PhD thesis, ETH Zurich, Switzerland, August 2006. 9, 11

Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal

processing. In Fixed-point algorithms for inverse problems in science and engineering,

pages 185–212. Springer New York, 2011. 4

S. Dasgupta, Ch. Papadimitriou, and U. Vazirani. Algorithms. McGraw-Hill Sci-

ence/Engineering/Math, 1 edition, September 2006. ISBN 0073523402. 57, 58

B. De Schutter. The extended linear complementarity problem and linear complementary-

slackness systems. In Proceedings of the European Control Conference 1999 (ECC’99),

Karlsruhe, Germany, August–September 1999. Paper 1006-3 / CM-9.3. 17

B De Schutter and B. De Moor. The extended linear complementarity problem. Mathe-

matical Programming, 1995. 20

B De Schutter and B. De Moor. Optimal traffic light control for a single intersection.

European Journal of Control, 4:260–276, 1998. 20

B. De Schutter and T. Van den Boom. On model predictive control for max-min-plus-

scaling discrete event systems. Automatica, 37(7):1049–1056, 2001. 17

B De Schutter and T. van den Boom. Model predictive control for max-plus-linear discrete

event systems. Automatica, 37:1049–1056, 2001. 20

Wei Deng and Wotao Yin. On the global and linear convergence of the generalized

alternating direction method of multipliers. Rice CAAM technical report TR12-14,

2012. 71

Alexander Domahidi, Aldo U. Zgraggen, Melanie Nicole Zeilinger, Manfred Morari, and

Colin Neil Jones. Efficient interior point methods for multistage problems arising in

receding horizon control. In CDC, 2012. 3

J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems

in two and three space variables. Comp. Math. Appl., 1956. 3

88 BIBLIOGRAPHY

J. Eckstein and D. Bertsekas. On the Douglas—-Rachford splitting method and the prox-

imal point algorithm for maximal monotone operators. Mathematical Programming, 55:

293–318, 1992. 67

J.E. Esser. Primal Dual Algorithms for Convex Models and Applications

to Image Restoration, Registration and Nonlocal Inpainting. 2010. URL

http://books.google.ch/books?id=EVkHcgAACAAJ. 4

H. Ferreau, H. Bock, and M. Diehl. An online active set strategy to overcome the limita-

tions of explicit MPC. International Journal of Robust and Nonlinear Control, 18(8):

816–830, 2008a. 67

H. J. Ferreau, H. G. Bock, and M. Diehl. An online active set strategy to overcome the

limitations of explicit MPC. International Journal of Robust and Nonlinear Control,

2008b. 3

D. Gabay. Applications of the method of multipliers to variational inequalities. In

M. Fortin and R. Glowinski, editors, Augmented Lagrangian Methods: Applications

to the Solution of Boundary-Value Problems. North-Holland: Amsterdam, 1983. 67

D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational prob-

lems via finite element approximations. Computers and Mathematics with Applications,

2:17–40, 1976a. 67

D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational

problems via finite-element approximations. Comp. Math. Appl., 1976b. 3, 71

T. Geyer, F.D. Torrisi, and M. Morari. Optimal complexity reduction of polyhedral

piecewise affine systems. Automatica, 44(7):1728–1740, July 2008. 50

Euhanna Ghadimi, André Teixeira, Iman Shames, and Mikael Johansson. Optimal param-

eter selection for the alternating direction method of multipliers (ADMM): quadratic

problems. arXiv preprint arXiv:1306.2454, 2013. 78

R. Glowinski and A. Marrocco. Sur l’approximation, par elements finis d’ordre un, et

la resolution, par penalisation-dualité, d’une classe de problems de Dirichlet non lin-

eares. Revue Française d’Automatique, Informatique, et Recherche Opérationelle, 9:

41–76, 1975a. 67

R. Glowinski and A. Marrocco. A Modification of the Arrow-Hurwicz Method for Search

of Saddle Points. 1975b. 3, 71

T. Goldstein, B. O’Donoghue, and S. Setzer. Fast Alternating Direction Optimization

Methods. arXiv.org, 2012. 70, 75, 76

http://books.google.ch/books?id=EVkHcgAACAAJ

BIBLIOGRAPHY 89

P. Grieder, Z. Wan, M. Kothare, and M. Morari. Two level model predictive control for

the maximum control invariant set. In American Control Conference, Boston, Mas-

sachusetts, June 2004. 50

B. Grünbaum. Convex Polytopes. Springer-Verlag, second edition, 2000. 9

O. Guler. Applications of splitting algorithm to decomposition in convex programming

and variational inequalities. SIAM Journal on Optimization, 1992. 68

A. Hansson. A primal-dual interior-point method for robust optimal control of linear

discrete-time systems. IEEE Transactions on Automatic Control, 45(9):1639–1655,

2000. 66

A. Hansson and S. Boyd. Robust optimal control of linear discrete-time systems using

primal-dual interior-point methods. In Proceedings of the American Control Conference,

volume 1, pages 183–187, 1998. 66

E.N. Hartley, J.L. Jerez, A. Suardi, Jan M. Maciejowski, E.C. Kerrigan, and G. Constan-

tinides. Predictive Control using an FPGA with Application to Aircraft Control. IEEE

Transactions on Control Systems Technology, 2013. 77, 78, 79

W. P. M. Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid dynamical

models. Automatica, 37(7):1085–1091, 2001. 1, 17, 20

Wilhelmus Petrus Maria Hubertina Heemels. Linear Complementarity Systems: A Study

in Hybrid Dynamics. PhD thesis, Technische Universiteit Eindhoven, 1999. 19

W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. Linear complementarity systems.

SIAM Journal on Applied Mathematics, 60(4):1234–1269, 2000. 17

R.M. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and

Applications, 1969. 3

Peter Hudzovič. Optimalizácia. Slovak University of Technology, 1 edition, 2004. 13

ILOG, Inc. CPLEX User Manual. Gentilly Cedex, France, 2003.

http://www.ilog.fr/products/cplex/. 34, 52

J. Jerez, E. Kerrigan, and G. Constantinides. A condensed and sparse QP formulation

for predictive control. In CDC-ECE, pages 5217–5222, 2011. 67

T.A. Johansen and A. Grancharova. Approximate explicit constrained linear model pre-

dictive control via orthogonal search tree. IEEE Trans. on Automatic Control, 48:

810–815, May 2003. 50

http://www.ilog.fr/products/cplex/

90 BIBLIOGRAPHY

C.N. Jones and M. Morari. Approximate Explicit MPC using Bilevel Optimization. In

European Control Conference, Budapest, Hungary, August 2009. 50

N. Karmakar. A new polynomial-time algorithm for linear programming. Combinatorica,

4:373–395, 1984. 13

V. Klee and G. J. Minty. How Good is the Simplex Algorithm. Academic Press, 2004. 13

Donald E. Knuth. Dynamic huffman coding. J. Algorithms, 6(2):163–180, 1985. 3, 60

M. Kögel and R. Findeisen. Fast predictive control of linear, time-invariant systems using

an algorithm based on the fast gradient method and augmented lagrange multipliers. In

Proceedings of the 2011 IEEE International Conference on Control Applications, pages

780–785, September 2011. 67

K.Tone. An active-set strategy in an interior point method for linear programming. pages

345–360, 1993. 13

M. Kvasnica. Real-Time Model Predictive Control via Multi-Parametric Programming:

Theory and Tools. VDM Verlag, Saarbruecken, January 2009. 51

M. Kvasnica and M. Fikar. Performance-lossless complexity reduction in explicit mpc. In

Proceedings of the 49th IEEE Conference on Decision and Control 2010, pages 5270–

5275, 2010. 50

M. Kvasnica, P. Grieder, M. Baotic, and M. Morari. Multi-Parametric Toolbox

(MPT). In Hybrid Systems: Computation and Control, pages 448–462, March 2004.

http://control.ee.ethz.ch/~mpt. 59

M. Kvasnica, F. J. Christophersen, M. Herceg, and M. Fikar. Polynomial approx-

imation of closed-form MPC for piecewise affine systems. In Proceedings of the

17th IFAC World Congress, pages 3877–3882, Seoul, Korea, July 6-11 2008. URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=709. 50

M. Kvasnica, A. Szűcs, and M. Fikar. Optimization-based automatic derivation of hybrid

approximations. In VOCAL 2010, Program and Abstracts, pages 55–55, 2010. URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1051. 17

M. Kvasnica, J. Löfberg, and M. Fikar. Stabilizing polynomial approximation of explicit

MPC. Automatica, 47(10):2292–2297, 2011a. 50

M. Kvasnica, I. Rauová, and M. Fikar. Simplification of explicit MPC feedback laws via

separation functions. In Proceedings of the 18th IFAC World Congress, pages 5383–

5388, Milano, Italy, aug 2011b. 50

http://control.ee.ethz.ch/~mpt
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=709
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1051

BIBLIOGRAPHY 91

M. Kvasnica, A. Szűcs, and M. Fikar. Automatic derivation of optimal piecewise

affine approximations of nonlinear systems. In Preprints of the 18th IFAC World

Congress Milano (Italy) August 28 - September 2, 2011, pages 8675–8680, 2011c. URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1166. 17, 32

F. Lin, M. Fardad, and M. Jovanovic. Design of optimal sparse feedback gains via the

alternating direction method of multipliers. In Proceedings of the 2012, pages 4765–

4770, June 2012. 68

K. Ling, B. Wu, and J. Maciejowski. Embedded model predictive control (MPC) using

a FPGA. In Proceedings of the 17th IFAC World Congress, pages 15250–15255, July

2008. 67

J. Löfberg. YALMIP, 2004. Available from http://users.isy.liu.se/johanl/yalmip/.

34

S. Longo, E. Kerrigan, K. Ling, and G. Constantinides. Parallel move blocking model

predictive control. In CDC-ECE, pages 1239–1244, 2011. 67

Christopher M. Maes. A regularised active-set method for sparse convex quadratic pro-

gramming. PhD thesis, Institute for computational and mathematical engineering,

2010. 13

A. Makhorin. GLPK - GNU Linear Programming Kit, 2001.

http://www.gnu.org/directory/libs/glpk.html. 52

Jacob Mattingley and Stephen Boyd. CVXGEN: a code generator for embedded convex

optimization. Optimization and Engineering, 2012. 3, 66

M. Morari, M. Baotic, and F. Borrelli. Hybrid Systems Modeling and Control. European

Journal of Control, 9(2-3):177–189, 2003. 1

Katta G. Murty. A new practically efficient interior point method for quadratic program-

ming. 2006. 13

Y. Nesterov. A method of solving a convex programming problem with convergence rate

O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983a. 67

Yu. Nesterov. A method for solving the convex programming problem with convergence

rate O(1/k2). Dokl. Akad. Nouk SSSR, 1983b. 75

B. O’Donoghue and E.J. Candes. Adaptive Restart for Accelerated Gradient Schemes.

arXiv.org, 2012. URL http://arxiv.org/abs/1204.3982v1. 76

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1166
http://users.isy.liu.se/johanl/yalmip/
http://www.gnu.org/directory/libs/glpk.html
http://arxiv.org/abs/1204.3982v1

92 BIBLIOGRAPHY

B. O’Donoghue, G. Stathopoulos, and S. Boyd. A splitting method for optimal control.

IEEE Transactions on Control Systems Technology, 2012. 74

G. Pannocchia, J. Rawlings, and S. Wright. Fast, large-scale model predictive control by

partial enumeration. Automatica, 43(5):852–860, May 2006. 67

I. Papamichail and C. S. Adjiman. Global optimization of dynamic systems. Computers

and Chemical Engineering, 28:403–415, 2004. 23

C. Rao, S. Wright, and J. Rawlings. Application of interior point methods to model predic-

tive control. Journal of optimization theory and applications, 99(3):723–757, November

2004. 66

S. Richter, C. Jones, and M. Morari. Real-time input-constrained MPC using fast gradient

methods. In Proceedings of the 48th IEEE Conference on Decision and Control, pages

7387 –7393, December 2009. 67

S. Richter, S. Marièthoz, and M. Morari. High-speed online MPC based on a fast gradient

method applied to power converter control. In Proceedings of the 2010 American Control

Conference, pages 4737 –4743, July 2010. 67

R.T. Rockafellar. Augmented lagrangians and applications of the proximal point algo-

rithm in convex programming. Mathematics of operations research, 1956. 70

J. A. Rossiter and P. Grieder. Using interpolation to improve efficiency of multiparametric

predictive control. Automatica, 41:637–643, 2005. 50

G. Rota and G Strang. A note on the joint spectral radius. Indag. Math, 1960. 75

S. Sahni. Computationally related problems. SIAM Journal on Computing, 3(4):262–279,

1974. 13

F. Scibilia, S. Olaru, and M. Hovd. Approximate explicit linear MPC via delaunay tes-

sellation. In Proceedings of the 10th European Control Conference, Budapest, Hungary,

2009. 50

Ron Shefi and Marc Teboulle. Rate of Convergence Analysis of Decomposition Methods

Based on the Proximal Method of Multipliers for Convex Minimization. SIAM Journal

on Optimization, 2014. 71, 73, 75, 76

J. Snoeyink. Point Location. In J. E. Goodman and J. O’Rouke, editors, Handbook of

Discrete and Computational Geometry, chapter 30, pages 558–574. CRC Press, Boca

Raton, New York, 1997. 49

BIBLIOGRAPHY 93

R. M. Soland. An algorithm for separable non convex programming problems ii: Non-

convex constraints. Management Science, 17:759–773, 1971. 14

E. D. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE Trans. on

Automatic Control, 26(2):346–358, April 1981. 17, 18

G. Stathopolous, A. Szűcs, and N. C. Pu, Y. Jones. Splitting methods in control. In

Proceedings of ECC, France, Strasbourg, 2014. 66

G. Stathopoulos, A. Szűcs, Y. Pu, and C Jones. Splitting methods

in control. In European control conference to appear, 2014. URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1484.

J. Števek, A. Szűcs, M. Kvasnica, Š. Kozák, and M. Fikar. Smart technique for

identifying hybrid systems. In Anikó Szakál, editor, Proceedings of IEEE 10th Ju-

bilee International Symposium on Applied Machine Intelligence and Informatics, vol-

ume 10, pages 383–388. Óbuda University, Hungary, IEEE, 26-28, January 2012. URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1259. 34

S. Summers, C.N. Jones, J. Lygeros, and M. Morari. A multiscale approximation scheme

for explicit model predictive control with stability, feasibility, and performance guaran-

tees. In IEEE Conference on Decision and Control, Shanghai, China, December 2009.

50

Yu-Ru Syau. A note on convex functions. International J. Math, 22:525–534, 1998. 11

A. Szűcs, M. Kvasnica, and M. Fikar. Matlab toolbox for automatic approximation of

nonlinear functions. In M. Fikar and M. Kvasnica, editors, Proceedings of the 18th

International Conference on Process Control, pages 119–124, Tatranská Lomnica, Slo-

vakia, June 14-17, 2011 2011a. Slovak University of Technology in Bratislava. URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1138. 17

A. Szűcs, M. Kvasnica, and M. Fikar. A memory-efficient repre-

sentation of explicit mpc solutions. In Proceedings of the 50th

CDC and ECC, pages 1916–1921, Orlando, Florida, 2011b. URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1210. 48

A. Szűcs, M. Kvasnica, and M. Fikar. Optimal piecewise affine approximations of non-

linear functions obtained from measurements. In 4th IFAC Conference on Analysis

and Design of Hybrid Systems, Eindhoven, Netherlands, pages 160–165, 2012. URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1306.

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1484
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1259
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1138
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1210
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1306

P. Tøndel, T. Johansen, and A. Bemporad. An algorithm for multi-parametric quadratic

programming and explicit MPC solutions. In IEEE Conference on Decision and Con-

trol, pages 1199–1204, 2001. 66

P. Tøndel and Johansen.

P. Tøndel, T. A. Johansen, and A. Bemporad. Evaluation of Piecewise Affine Control via

Binary Search Tree. Automatica, 39(5):945–950, May 2003. 51

P. Tseng. Applications of splitting algorithm to decomposition in convex programming

and variational inequalities. SIAM J. Control Optim., 1991. 72

A. Ulbig, S. Olaru, D. Dumur, and P. Boucher. Explicit solutions for nonlinear model

predictive control: A linear mapping approach. In S. G. Tzafestas and P. J. Antsaklis,

editors, Proc. of of the European Control Conference 2007, pages 3295–3302, 2007. 50

E. Ullmann. A Matlab toolbox for C-code generation for first order methods. Master’s

thesis, ETH Zurich, 2011. 3

G. Valencia-Palomo and J.A. Rossiter. Using Laguerre functions to improve efficiency of

multi-parametric predictive control. In Proceedings of the American Control Confer-

ence, pages 4731–4736, Baltimore, USA, 2010. 50

B. Wahlberg, S. Boyd, M. Annergren, and Y. Wang. An admm algorithm for a class of

total variation regularized estimation problems. In To appear, Proceedings 16th IFAC

Symposium on System Identification, July 2012. 68

Y. Wang and S. Boyd. Fast model predictive control using online optimization. In

Proceedings IFAC World Congress, pages 6974–6997, July 2008. 66

Eric W. Weisstein. The web’s most extensive mathematics resource. 2010. 9

Ch. Wen, X. Ma, and B. E. Ydstie. Analytical expression of explicit MPC solution via

lattice piecewise-affine function. Automatica, 45(4):910 – 917, 2009. ISSN 0005-1098.

doi: DOI:10.1016/j.automatica.2008.11.023. 51

H.P. Williams. Model Building in Mathematical Programming. John Wiley & Sons, Third

Edition, 1993. 18, 19, 25, 33

X. Zhang, M. Burger, and S. Osher. A Unified Primal-Dual Algorithm Framework Based

on Bregman Iteration. Journal of Scientific Computing, 2011. 71

94

List of Publications

M. Kvasnica, A. Szűcs, M. Fikar, J. Drgoňa Explicit MPC of LPV Systems in the

Controllable Canonical Form In Proceedings of European Control Conference URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1427

M. Kvasnica, R. Gondhalekar, A. Szűcs, M. Fikar Stabiliz-

ing Refinement of Low-Complexity MPC Controllers Preprints of

4th IFAC Nonlinear Model Predictive Control Conference URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1332

A. Szűcs, M. Kvasnica and M. Fikar. Data Compression Techniques

for Complexity Reduction in Explicit MPC. Selected Topics In Mod-

eling and Control - University of Technology Press Bratislava, URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1205.

J. Števek A. Szűcs, M. Kvasnica, Š Kozák and M. Fikar. Smart technique

for identifying hybrid systems. Proceedings of IEEE 10th Jubilee International

Symposium on Applied Machine Intelligence and Informatics 2012, IEEE URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1259.

A. Szűcs, M. Kvasnica and M. Fikar. MATLAB Toolbox for Automatic Approximation of

Nonlinear Functions, Proceedings of the 18th International Conference on Process Con-

trol, Slovak University of Technology in Bratislava 2011, Tatranska Lomnica, Slovakia

URL http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1138.

A. Szűcs, M. Kvasnica and M. Fikar. A Memory-Efficient Representation of Explicit

MPC Solutions In Proceedings of the 50th CDC and ECC 2011, Orlando, Florida URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1210.

95

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1427
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1332
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1205
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1259
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1138
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1210

M. Kvasnica, A. Szűcs and M. Fikar. Automated Piecewise Affine Ap-

proximation of Nonlinear Systems 2011, Selected Topics on Constrained and

Nonlinear Control. Preprints, STU Bratislava - NTNU Trondheim URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1063.

M. Kvasnica, A. Szűcs and M. Fikar. Automatic Derivation of Op-

timal Piecewise Affine Approximations of Nonlinear Systems, Preprints

of the 18th IFAC World Congress Milano (Italy) 2011, URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1166.

M. Paulovič, M. Kvasnica, A. Szűcs and M. Fikar. Safety Verification of Rule-Based

Controllers, Proceedings of the 18th International Conference on Process Control, URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1137.

M. Kvasnica, A. Szűcs and M. Fikar. Optimization-Based Automatic Derivation of

Hybrid Approximations 2011, Program and Abstracts, VOCAL, Veszprém, Hungary

URL http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1051.

96

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1063
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1166
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1137
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1051

Curriculum Vitae

Meno a priezvisko: Alexander Szűcs

Trvalý pobyt: Ibrányiho 1242/15, Kráľovský Chlmec 077 01, Slovensko

Phone: +421 915 864 631

Email: alexander.szucs@stuba.sk

Web: http://www.kirp.chtf.stuba.sk/~szucs

Dátum narodenia: 22.12.1985

Štátna príslušnosť: Slovensko

Vzdelanie

• 2010 – súčasnosť: Ph.D štúdium, študijný program: Riadenie procesov

• 2008 – 2010: inžinierské štúdium, študijný program: Automatizácia a informatizácia

v chémii a potravinárstve, Fakulta chemickej a potravinárskej technológie, Slovenská

technická univerzita v Bratislave

• 2005 – 2008: Bakalárske štúdium, študijný program: Automatizácia, informatizácia

a manažment v chémii a potravinárstve, Fakulta chemickej a potravinárskej tech-

nológie, Slovenská technická univerzita v Bratislave

Pracovné skúsenosti

• 9.2010 – súčasnosť: interný doktorand FCHPT STU v Bratislave, Slovensko

• 10.2012 – 5.2014: vedecko-výskumný pracovník na EPFL Lausanne, Švajčiarsko

97

http://www.kirp.chtf.stuba.sk/~szucs

Výskumná činnosť

• Prediktívne riadenie

• Hybridné systémy

• Softvérové balíky pre riadenie

Počítačové zručnosti

• programovacie jazyky C/C++

• skriptovacie jazyky: Bash, Perl

• web technológie: HTML, XHTML, XML, DTD, XML SCHEMA, XPATH, XSLT

• operačné systémy: Linux – Ubuntu, Mandriva, Windows XP, 7, Mac OS X

• verzovacie systémy: git, mercurial

• textové editory: Vim, Openoffice, MS Office, Pages, LATEX, Emacs

• rôzne: Matlab/Simulink

Jazykové znalosti

• slovenčina, maďarčina – materinské jazyky

• angličtina, čeština – plynule

• francúzština, nemčina – pokročilý

98

Resumé

Prekladaná dizertačná práca sa zaoberá s kombinovanou tematikou modelovania a pre-

diktívneho riadenia procesov. Práca sa skladá z troch, vzájomne sa prelínajúcich oblastí,

ktoré sú nasledovné:

• nová aproximačná metóda, slúžiaca na opis dynamických vlastností nelineárnych

procesov

• trojvrstvová komprimačná technika, pomocou ktorej dokážeme radikálne znížiť pa-

mäťové nároky explicitných prediktívnych regulátorov

• množina on-line algoritmov, ktoré dokážu efektívne riešiť širokú škálu optimalizač-

ných problémov

Matematické modely reálnych zariadení hrajú veľmi dôležitú úlohu vo viacerých ob-

lastiach spojených s procesným riadením. Najväčšou výzvou je nájsť matematický model,

ktorý je dostatočne presný a zároveň nie príliš zložitý. Pochopiteľne, najpresnejšie si-

mulačné výsledky sú dosiahnuteľné pomocou nelineárnych modelov, avšak teória návrhu

riadenia, založená na báze už spomenutých modelov nie je rozpracovaná v dostatočnej

miere. Najbežnejším spôsobom zjednodušenia je rozvoj do Taylorovho radu, ktorý umož-

ňuje tvorbu linearizovaného modelu v okolí jedného operačného bodu. Modely získané

touto procedúrou dokážu exaktne opísať dynamické vlastností pôvodného nelineárneho

modelu v okolí zvoleného operačného bodu, ale ich presnosť klesá so vzrastajúcou vzdia-

lenosťou od vybraného linearizačného bodu. Najracionálnejším riešením je použiť viacero

aproximačných bodov, takto vytvárajúc rôzny počet lokálnych modelov. Matematicky

môže byť táto idea reprezentovaná pomocou hybridných systémov. Hybridné modely do-

kážu prepojiť spojitú dynamiku s logickými premennými a na základe pravdivostnej hod-

noty binárnych premenných máme možnosť si vybrať príslušný lokálny model. V prvej

časti tejto práce sme si predstavili novú aproximačnú techniku, pomocou ktorej hľadanie

99

parametrov výslednej aproximovanej funkcie dokážeme naformulovať ako optimalizačný

problém. Ukázali sme, že za istých podmienok pôvodný, dosť často zložitý problém do-

kážeme pretransformovať na sekvenciu jednorozmerných aproximačných problémov. Vy-

užitím základného, jednorozmerného stavebného kameňa, našu metódu sme rozšírili na

dvojrozmerné funkcie. Navyše sme ukázali, že pomocou vhodných substitúcií, dokážeme

pretransformovať ľubovolnú neseparovateľnú funkciu do separovateľnej podoby. Pri naj-

triviálnejšom scenári sme predpokladali existenciu analytického tvaru nelineárnej aproxi-

movanej funkcie, na druhej strane pri absencii nelineárneho výrazu sme navrhovali ap-

likovať dvojkrokovú procedúru na získanie aproximačnej funkcie zo vstupno-výstupných

dát, kde v prvej fáze sme sa snažili nájsť koeficienty aproximačnej funkcie. Keď sme už

mali k dispozícii analytický tvar aproximovanej funkcie, aplikovaním našej procedúry sme

ľahko získali finálnu aproximáciu. Predstavená aproximačná procedúra je zabalená do

kompaktného softvérového balíka, ktorý zároveň umožňuje export parametrov optimálnej

PWA aproximácie do jazyka HYSDEL.

V druhej polovici 20.storočia prediktívne riadenie sa stalo veľmi populárnou riadia-

cou stratégiou, hlavne kvôli jeho vlastnosti efektívne sa zaobchádzať s ohraničeniami.

Hlavná idea tohoto prístupu spočíva v riešení optimalizačného problému v každej perióde

vzorkovania, takto získajúc sekvenciu optimálnych akčných zásahov. Z tejto sekvencie

sa vyextrahuje prvý iba člen a aplikuje sa do reálneho zariadenia. Táto metodológia sa

veľmi často označuje ako riadenie s pohyblivým horizontom. Riešením optimalizačného

problému v každom kroku dokážeme tlačiť stavové veličiny do nuly alebo sledovať ne-

jakú referenčnú trajektóriu. Takýto on-line prístup je veľmi efektívny v prípade systémov

s pomalou dynamikou, na druhej strane, jeho implementácia je ťažkopádna pre rýchle

mechatronické procesy. Našťastie, na začiatku 21. storočia bolo ukázané, že namiesto

riešenia optimalizačnej metódy on-line, optimálne riešenie sa dá predpočítať pre všetky

možné počiatočné podmienky off-line, čo sa označuje ako explicitné prediktívne riadenie.

Takto získané riešenie sa dá uložiť vo forme vyhľadávacej tabuľky, ktorá obsahuje samotné

zákony riadenia a k nim prislúchajúce regióny. Výhody sú dvojaké. Všetky zákony riadenia

sú affinnou funkciou stavovej veličiny, čo znamená, že získanie príslušného zákona riadenia

sa redukuje na nájdenie konkrétneho regiónu a následnú evaluáciu k nemu prislúchajúcej

affinnej funkcie. Druhú výhodu predstavuje fakt, že riešenie sa dá získať pomocou multi-

parametrického programovania. Explicitné MPC stále predstavuje veľmi atraktívny smer,

avšak disponuje aj s veľkým nedostatkom. Táto metóda je predovšetkým aplikovateľná

pre systémy s menším počtom stavov. Ďalej, nedokáže sa adaptovať pre riadenie systémov

s časovo premenlivými parametrami, pretože parametre takéhoto regulátora sú rátané pre

zafixovaných parametroch. Obrovskú výzvu predstavuje aj implementácia takejto riadia-

cej stratégie na výpočtových platformách s obmedzeným množstvom pamäte.

100

Preto, v druhej časti tejto práce sme navrhovali efektívnu komprimačnú techniku, slú-

žiacu na zníženie pamäťových nárokov explicitných prediktívnych regulátorov. Prvá vrstva

nájde podmnožinu regiónov, pomocou ktorých sa dajú bez problémov zrekonštruovať tie

zvyšné. Ukázali sme, že problém hľadania bázických regiónov sa dá naformulovať ako

problém celočíselného programovania. Druhá vrstva sa môže aplikovať na dáta pochádza-

júce z tej prvej alebo nezávisle. V tomto prípade, pamäť sa šetrí identifikáciou pozitívnych

a negatívnych duplicít v príslušnej polpriestorovej reprezentácii polytopických regiónov.

Nájdené duplicity sú reprezentované ako prosté smerníky na množinu unikátnych dát.

Na poslednej vrstve, smerníky získané z druhej vrstvy sa zakódujú pomocou Huffma-

novho kódovania. Smerníky, reprezentované pomocou celých čísiel sú asociované bitovými

vzormi, a to v závislosti od frekvencie ich výskytu. Hlavnými výhodami tejto metódy sú,

že je aplikovateľná na ľubovoľné explicitné riešenie a v niektorých prípadoch pamäťový

otlačok sa môže redukovať až 50-násobne. Ne druhej strane, efektívnosť metódy je vysoko

závislá na geometrickej štruktúre daného riešenia. Navyše, pri riešení príslušného opti-

malizačného problému vždy sa uvažuje lineárny alebo hybridný predikčný model. Preto,

v budúcnosti by sme sa chceli zameriavať na hľadanie riešení zákonov riadenia v uzavretej

forme uvažovaním nelineárnych predikčných modelov. Avšak hlavný nedostatok, týkajúci

sa škálovateľnosti explicitného prediktívneho riadenia ostáva naďalej veľkým problémom,

ktorý by sa dalo možno odstrániť aplikovaním rýchlych on-line algoritmov.

Metóda alternatívnych smerov upútala veľkú pozornosť v predovšetkým v oblastiach

spracovania signálov, strojového učenia, kde ľudia potrebujú riešiť optimalizačné prob-

lémy s veľkým počtom premenných a nediferencovateľnou účelovou funkciou. Navyše

bolo ukázané, že aj MPC formulácie môžu byť pretransformované do podoby konvex-

ných optimalizačných metód, obsahujúcich diferencovateľnú a nediferencovateľnú časť vo

forme indikátorovej funkcie, takto umožňujúc implementáciu metód alternatívnych sme-

rov. Práve to prepojenie medzi prediktívnym riadením a konvexnou optimalizáciou nás

viedlo k takzvaným operátorovým metódam, pomocou ktorých pri splnení istých predpo-

kladov dokážeme prekonvertovať pôvodný konvexný optimalizačný problém na sekvenciu

jednoduchých operácií známych z lineárnej algebry. V tretej časti práce sme opisovali sadu

on-line algoritmov, slúžiacich na riešenie širokej škály konvexných optimalizačných algo-

ritmov. Ukázali sme, ako sa dajú odvodiť už spomenuté algoritmy z jednotnej štruktúry,

charakterizujúcej spoločné črty každého algoritmu. Najprv sme charakterizovali základné

algoritmy a následne ich akcelerované verzie. Ako to už bolo spomenuté, prezentované al-

goritmy obsahujú jednoduché operácie vykonaných pomocou matíc alebo vektorov, preto

sú jednoducho implementovateľné napríklad v programovacom jazyku C alebo v zabudo-

vaných systémoch so špeciálnou hardvérovou architektúrou. Musí sa však skonštatovať, že

pre dynamické systémy s menším počtom stavov odprezentované algoritmy nemôžu kon-

101

kurovať explicitnému prediktívnemu riadeniu, kde získanie akčných zásahov sa redukuje

na jednoduchú evaluáciu affinnej funkcie. Veľkou reštrikciou týchto algoritmov ďalej je

v tom, že uvažuje sa iba lineárna dynamika. V prípade hybridných predikčných modelov

by sme museli siahať po niektorej z metód nekonvexnej operátorových metód, ktoré sú

stále predmetom aktívneho výskumu.

102

	1 Introduction
	I MATHEMATICAL BACKGROUND
	2 Convex Sets and Functions
	2.1 Sets
	2.2 Functions
	2.3 Constrained Optimisation
	2.3.1 Linear Programming
	2.3.2 Quadratic Programming
	2.3.3 Mixed-Integer Linear Programming
	2.3.4 Mixed-Integer Quadratic Programming

	II HYBRID SYSTEMS
	3 Modeling of Hybrid Systems
	3.1 Introduction to Hybrid Systems
	3.1.1 Piecewise Affine Systems
	3.1.2 Mixed Logical Dynamical Systems
	3.1.3 Linear Complementarity Systems
	3.1.4 Extended Linear Complementarity Systems
	3.1.5 Max-Min-Plus-Scaling Models

	3.2 Problem Statement
	3.3 Optimal PWA Approximation
	3.3.1 Functions in One Variable
	3.3.2 Multivariable Separable Functions
	3.3.3 Multivariable Nonseparable Functions

	3.4 Approximation of Nonlinear Functions from Data
	3.4.1 Problem Definition
	3.4.2 Function Fitting
	3.4.3 Complete Scheme

	3.5 Software Implementation
	3.6 Command-Line Interface
	3.7 Graphical User Interface (GUI)
	3.8 Case Study
	3.9 Summary

	III Complexity Reduction in Explicit Model Predictive Control
	4 Explicit Model Predictive Control
	4.1 Properties of Explicit Model Predictive Control
	4.2 Problem Definition
	4.3 Overview of Methods for Complexity Reduction in Explicit Model Predictive Control
	4.4 Main Results
	4.4.1 Complexity Reduction via Affine Transformations
	4.4.2 Data De-Duplication
	4.4.3 Compression of Index Set Representations

	4.5 Efficiency Evaluation
	4.6 Summary

	IV Fast Model Predictive Control
	5 Operator Splitting Methods in Control
	5.1 Prior and Related work
	5.2 Problem Formulation
	5.3 The Algorithms
	5.4 Accelerated Convergence
	5.4.1 How to Split
	5.4.2 Improvements in the Convergence Rate

	5.5 Case Study
	5.6 Summary

	6 Conclusions and Contributions of the Thesis
	Bibliography
	List of Publications
	Curriculum Vitae
	Resumé

