
Design and Verification of Low-Complexity Explicit MPC Controllers in

MPT3 (Extended version)

Michal Kvasnica, Juraj Holaza, Bálint Takács, and Deepak Ingole

Abstract— This paper reviews the Multi-Parametric Toolbox
3, a new version of the easy-to-use software tool for design, ver-
ification, and implementation of optimization-based controllers.
Specifically, we introduce advanced building blocks which allow
to synthesize and analyze explicit representations of model pre-
dictive controllers of low real-time implementation complexity.
These building blocks include, but are not limited to, integration
of functions over polytopes, computational geometry operations,
as well as procedures to analyze invariance and closed-loop
stability. We show how to combine these building blocks as to
create sophisticated algorithms which lead to well-performing,
yet simple controllers which adhere to prescribed requirements.
This paper is an extended version of our ECC’15 submission
of the same title.

I. INTRODUCTION

Since the seminal work of [4], the concept of explicit

model predictive control (MPC) has garnered significant pop-

ularity among theoreticians and practitioners of MPC alike.

Applications of explicit MPC range from power electronics,

through control of mechanical and automotive systems, up

to control of autonomous vehicles, see [12] for an overview.

The popularity of the framework is due to the fact that it

allows to implement MPC in real time using low computa-

tional resources. This is achieved by pre-computing, off-line,

the analytic solution to a given optimal control problem. For

a large class of MPC setups, it can be shown [6] that the

analytic (also called the explicit) solution takes the form of a

piecewise affine (PWA) feedback law which consists of a set

of critical regions and associated local affine feedback laws.

Obtaining the optimal control action for a particular value

of the state measurements then reduces to a mere function

evaluation, which is typically faster and simpler compared

to solving the optimal control problem numerically.

Explicit MPC solutions provide three main advantages.

First, evaluation of the PWA feedback law is division-

free, i.e., only additions and multiplications are required to

obtain the optimal control action. This significantly simplifies

implementation of MPC controllers in safety-critical appli-

cations. Second, the implementation of the PWA evaluation

All authors are with the Slovak university of Technology in Bratislava,
Slovakia, Slovak University of Technology in Bratislava, Slovakia,
{michal.kvasnica, juraj.holaza, balint.takacs,
deepak.ingole}@stuba.sk. The authors gratefully acknowledge the
financial contribution of the Scientific Grant Agency of the Slovak Republic
under grant 1/0403/15 and the contribution of the Slovak Research and De-
velopment Agency under the project APVV 0551-11. The research leading
to these results has received funding from the People Programme (Marie
Curie Actions) of the European Unions Seventh Framework Programme
(FP7/2007-2013) under REA grant agreement no 607957 (TEMPO).

This report is an extended version of our ECC’15 paper of the same title.

procedure is very simple and does not exceed 20 lines of C-

code. This reduces the cost of certification. Finally, having

the analytical solution allows to rigorously analyze properties

of the closed-loop system, such as closed-loop stability or

recursive feasibility for a whole range of initial conditions.

The main limitation which restrict applicability of explicit

MPC in real-world scenarios is the complexity of such solu-

tions. We distinguish two types of complexity. The runtime

complexity relates to the off-line computational time required

to construct the solution. Although synthesis of explicit MPC

feedback laws was (and probably still is) believed to be

restricted to problems of small state dimensionality (typically

with less than 8 states), recent results [10, 7] suggest that

this limitation can be alleviated at least for short prediction

horizons.

However, even if the explicit solution can be constructed

off-line, it is often prohibitively large to be used for real

time control, especially when control hardware with limited

storage is considered. To decrease the memory footprint to

a desired level, it is therefore often necessary to simplify

a given explicit MPC controller. Although a plethora of

methods for achieving such a task has been proposed in the

past 15 years (see, e.g., [14, 15] and references therein), few

authors have gone as far as making software implementations

of their respective methods publicly available for others to

make use of.

The objective of this paper is to plug this hole and share

with the public the software implementation of routines

which enable synthesis, analysis and reduction of complexity

of explicit MPC feedback laws. Specifically, we show how

the Multi-Parametric Toolbox1 version 3 (MPT3) can be used

to set up MPC problems, calculate explicit MPC feedback

laws, decrease their complexity, and analyze closed-loop

systems. The proposed paper supplements our previous con-

tribution [11] in which the toolbox was introduced in general

terms. In the current paper we provide a much more detailed

look into the internals of MPT3 and introduce advanced

modeling principles which allow even complex MPC setups

to be created with ease. We also provide a peek behind the

curtains and expose to the reader basic building blocks which

can be combined to create sophisticated algorithms.

The paper is composed of three main parts. First, Sec-

tion II provides a detailed description of modeling principles

and shows how MPC optimal control problems are set up in

MPT3. Then we introduce methods which serve to reduce

complexity of explicit MPC solutions in Section III where

1Freely available from http://control.ee.ethz.ch/∼mpt

we also discuss MPT3’s computational geometry features

required to implement such algorithms. Finally, Section IV

discusses how the toolbox can be used to verify closed-loop

stability and invariance as to attest that the controller exhibits

desired safety properties.

II. MPC DESIGN

MPC-based control synthesis in MPT3 is based on the

following finite-time optimal control problem:

min ℓN (xN) +
N−1∑

k=0

ℓx(xk) + ℓy(yk) + ℓu(uk) (1a)

s.t. xk+1 = f(xk, uk), k = 0, . . . , N − 1, (1b)

yk = g(xk, uk), k = 0, . . . , N − 1, (1c)

xk ∈ X , k = 0, . . . , N − 1, (1d)

yk ∈ Y, k = 0, . . . , N − 1, (1e)

uk ∈ U , k = 0, . . . , N − 1, (1f)

xN ∈ T , (1g)

where xk, yk, uk denote, respectively, predictions of system’s

states, outputs, and inputs over a finite prediction horizon N .

The cost function employs a terminal state penalty ℓN (·), and

stage penalties ℓx(·) for states, ℓy(·) for outputs, and ℓu(·) for

inputs. Particular types of the penalty functions are discussed

in Section II-C. The predictions are based on time-invariant

state-update equation f(·, ·) and an output equation g(·, ·),
as described in Section II-A. The toolbox also allows to

specify piecewise affine (PWA) and mixed logical-dynamical

(MLD) [3] dynamics. The reader is referred to [11] for

details. Moreover, X , U , and Y are the constraint sets for

states, inputs, and outputs, respectively. Finally, T is the

terminal set. Available constraints are described in detail in

Section II-B.

A. Linear Time-Invariant (LTI) Dynamics

Here we assume that the state-update and output equations

are both linear in the form

x(t+∆) = Ax(t) +Bu(t), (2a)

y(t) = Cx(t) +Du(t), (2b)

where ∆ is the sampling time. Such LTI systems are defined

using the LTISystem constructor, whose general form is

sys = LTISystem(’A’, A, ’B’, B, ’C’, C,

’D’, D, ’Ts’, Ts)

where A, B, C, D are matrices of compatible dimensions, and

Ts specifies the required sampling period. It is worth noting

that the constructor also allows to omit the output equation,

which is achieved by

sys = LTISystem(’A’,A,’B’,B,’Ts’,Ts)

Autonomous LTI systems can be defined as well by omitting

the ’B’ parameter:

sys = LTISystem(’A’, A, ’Ts’, Ts)

We note that if the sampling time is not provided Ts=1 is

assumed. Finally, MPT3 also allows to define state-update

and output equations with constant terms, i.e., x(t + ∆) =
Ax(t) + Bu(t) + f and y(t) = Cx(t) +Du(t) + g. As an

example, consider an autonomous affine system x(t+∆) =
Ax(t) + f . This system can be defined by

sys=LTISystem(’A’, A, ’f’, f, ’Ts’, Ts)

Once the LTI system is specified, its properties can be

accessed using the “dot” syntax, e.g. sys.A returns the A

matrix in (2a).

B. Constraints

MPT3 allows to specify various types of constraints for

states, inputs, and outputs in (1), regardless of the type of

state-update and output equations. The basic type of con-

straints is represented by lower/upper bounds on correspond-

ing signals. This is achieved by setting the sys.x.min and

sys.x.max properties (or sys.u.min, sys.u.max for

inputs and sys.y.min, sys.y.max for outputs).

In addition, MPT3 provides an easy-to-use way to define

additional constraints by a mechanism that we call “filters”.

Filters are user-defined properties of system’s signals (states,

inputs, outputs) that have to be enabled on a per-demand

basis. To add a filter to a system’s signal, the user calls

sys.signal.with(’filter_name’)

and removes it by

sys.signal.without(’filter_name’)

Here sys.signal is either sys.x for states, sys.u for

inputs and sys.y for outputs.

MPT3 provides following filters to specify additional

constraints:

1) Slew-rate constraints of the form

∆min ≤ uk+1 − uk ≤ ∆max, (3)

are specified by

sys.u.with(’deltaMin’)

sys.u.with(’deltaMax’)

sys.u.deltaMin = dmin

sys.u.deltaMax = dmax

Slew-rate constraints can also be enabled for states

(sys.x) and outputs (sys.y).

2) Soft min/max constraints

xmin − sx ≤ xk ≤ xmax + sx (4)

use slack variables sx ≥ 0 to allow for violation of the

hard constraints:

sys.x.with(’softMin’)

The filter exposes two user-defined properties. First,

sys.x.softMin.maximalViolation specifies

the maximal allowed value of the constraint vio-

lation. The default value is 1000. To prevent the

MPC controller from violating the constraints un-

less necessary, value of the slack variables need to

be penalized by including qssx into the cost func-

tion (1a). The value of the penalty qs can be specified

by sys.x.softMin.penalty, which defaults to

1 · 104 (cf. Section II-C for more information about

penalties). Input and output constraints can be softened

in a similar way.

3) Polyhedral set constraints Hyk ≤ h are defined using

the setConstraint filter:

sys.y.with(’setConstraint’)

sys.y.setConstraint=Polyhedron(H,h)

4) Terminal set constraints T = {xN | HxN ≤ h} in (1g)

are enabled via the terminalSet filter:

sys.x.with(’terminalSet’)

sys.x.terminalSet=Polyhedron(H,h)

Unlike previous filters, the terminal set can only be

enabled for state variables.

5) Blocking constraints ui = ui+1 = · · · = uj are

commonly used in MPC to decrease the number of de-

gree of freedom and thus to reduce the computational

complexity. In the traditional setup, the first Nc control

moves are free, while uNc
= uNc+1 = · · · = uN−1

are fixed. This behavior can be achieved by the block

filter:

sys.u.with(’block’)

sys.u.block.from = Nc

sys.u.block.to = N

Filters enabled for a particular signal can be listed by

the sys.signal.listFilters() method. Moreover,

presence of a particular filter can be programatically checked

by the sys.signal.hasFilter(’name’) method.

C. Cost Function

The cost function in (1a) is composed of the termi-

nal penalty ℓN (·) and the stage penalties ℓx(·), ℓu(·),
ℓy(·). The stage penalties are specified by setting the

sys.signal.penalty attribute. Its value depends on the

type of the function which penalizes the respective signal.

MPT3 supports three types of penalty functions:

1) Quadratic penalties of the form xT
kQxk are specified

by

sys.x.penalty = QuadFunction(Q)

where the penalty matrix Q must be positive semidefi-

nite for states and outputs (via sys.y.penalty) and

positive definite for inputs (sys.u.penalty).

2) One-norm penalties ‖Qxk‖1 are defined by

sys.x.penalty = OneNormFunction(Q)

where ‖z‖1 =
∑

|z|i.
3) Infinity-norm penalties ‖Qxk‖∞, enabled by

sys.x.penalty = InfNormFunction(Q)

with ‖z‖∞ = max |z|i.

The terminal penalty ℓN (·) is not added by default. To

enable it, the user has to activate the corresponding filter

manually:

sys.x.with(’terminalPenalty’)

sys.x.terminalPenalty = QuadFunction(QN)

where one can also use OneNormFunction and

InfNormFunction as terminal penalties. Moreover, we

note that MPT3 seamlessly handles cost functions composed

of different cost functions, e.g. quadratic penalization of

states but 1-norm penalization of inputs.

In addition to the basic terminal and stage penalties, MPT3

also allows to penalize the increments of system’s signals.

E.g. to obtain a smooth control profile, one can penalize the

control increments ∆uk = uk − uk−1 by ‖Qd∆uk‖ via

sys.u.with(’deltaPenalty’)

sys.u.deltaPenalty=OneNormFunction(Qd)

Penalization of increments of system’s states and outputs is

also supported.

Note that, by default, the MPC setup in MPT3 considers

that the origin is the regulation objective. However, track-

ing of non-zero trajectories can also be enabled via the

reference filter:

sys.y.with(’reference’)

sys.y.reference = value

Here, value can either be a vector of constant reference

values, or the string ’free’ which denotes an a-priori un-

known, possibly time-varying reference signal. Once tracking

is enabled, the terminal and stage penalty functions penalize

‖Q(zk − zref)‖ where zk is a general placeholder for the

states, inputs and outputs.

D. Controller Design

Once the prediction model along with all constraints is

specified, the MPC controller is created by

ctrl = MPCController(sys, N)

where sys is the prediction model and N denotes the value

of the prediction horizon in (1). The object ctrl represents

an implicit MPC controller in which the values of the optimal

control inputs, i.e., u⋆
0, . . . , u

⋆
N−1 are calculated by solv-

ing (1) for a particular initial condition x0 using numerical

optimization. Depending on the type of the prediction model,

the cost function and the constraints, such a problem can

either be a convex quadratic (QP) or linear (LP) problem for

linear prediction models, or a mixed-integer LP or QP for

PWA and MLD models.

The calculation of the optimal control inputs is performed

by calling

u0 = ctrl.evaluate(x0)

which returns only the feedback control action, i.e., the first

term of the sequence {u⋆
0, . . . , u

⋆
N−1}. The longer syntax

[u0, feas, open] = ctrl.evaluate(x0)

also returns the true/false feasibility flag feas and the

structure open which denotes information of the open-

loop optimal solution. Specifically, open.cost contains

the value of (1a) at the optimum, open.U is the whole

open-loop optimal sequence of control inputs, and open.X,

open.Y are the open-loop optimal predicted state and output

trajectories, respectively.

If the MPC controller was designed to track time-varying

reference trajectories (cf. Section II-C), the value of the

reference can be provided as follows:

u0 = ctrl.evaluate(x0,’x.reference’,xr)

Similarly, to provide the value of u−1 to achieve slew-rate

constraints per (3), one would call

u0 = ctrl.evaluate(x0,’u.previous’,up)

It is worth noting that the controller objective is “live”, i.e., it

reacts immediately to changes of the underlying prediction

model and/or its constraints. As an example, the user can

update constraints and/or penalty matrices via

ctrl.model.x.min = new_value

ctrl.model.u.penalty = QuadFunction(R)

The explicit representation of the MPC controller (1) is

constructed by

expc = ctrl.toExplicit()

where ctrl is the implicit MPC controller defined previ-

ously. Here MPT3 will employ parametric programming to

calculate the parameters of the explicit PWA feedback law

given by

U⋆
N = Fix0 + gi if x0 ∈ Pi, (5)

where Pi = {x | Hix ≤ hi}, i = 1, . . . , R are the polyhedral

critical regions of the state space, R is the total number of

regions, and Fi, gi are parameters of the local affine functions

that represent the open-loop optimal control sequence. Once

the explicit representation is calculated, the explicit controller

can be operated using the same methods as shown above.

For example, u = exp.evaluate(x0) will provide the

value of the feedback control action by searching for which

region Pi contains x0 and then evaluating the corresponding

affine representation of the feedback law.

The user can query properties of explicit MPC controllers

as follows:

• The number of critical regions is available in expc.nr.

• The union of critical regions is stored in

expc.partition and can be plotted via

expc.partition.plot().

• The feasible set can be obtained by

expc.partition.Domain.

• The PWA feedback law (5) is in expc.feedback and

can be plotted by expc.feedback.fplot().

• The PWA/PWQ cost function can be accessed via

expc.cost and plotted by expc.cost.fplot().

MPT3 allows to export explicit MPC controller to ANSI-C

code by

expc.optimizer.toC(’primal’, ’filename’)

in which case a C-version of the sequential search procedure

in (5) will be created. The exported code can then be linked

with custom application and/or be used in Simulink.

Since constructing the explicit representation of an MPC

controller is a time-consuming operation, we suggest the

following workflow. First, the prediction model along with

constraints and parameters of the cost functions are set up.

Then an implicit MPC controller object is created by the

MPCController command, which takes little time. This

controller is then used to verify whether the MPC setup

meets user’s expectations e.g. by performing closed-loop

simulations, adjusting the MPC setup if necessary. Only

when the MPC setup is deemed appropriate, the user converts

the implicit controller to an explicit one.

III. LOW-COMPLEXITY EXPLICIT MPC

The well-know technical limitations which impedes ap-

plications of explicit MPC in real time are its on-line

computational and memory requirements, both of which are

directly proportional to the number of critical regions in (5).

Therefore if the explicit MPC controller is to be applied on

hardware platforms which have limited computational and

storage capabilities, it is important to reduce the number of

critical regions to a desired value.

MPT3 provides various means to achieve this goal. Two

classes of methods are available to reduce complexity. The

first one decreases the number of regions while preserving

optimality of the simplified feedback, while the second

category reduces complexity by inducing suboptimality.

Throughout this section we will illustrate capabilities of

individual methods on the following example. The system’s

dynamics is

x+ =

[
1 1
0 1

]
x+

[
1
0.5

]
, (6)

which represents a double integrator sampled at 1 second.

The system is subject to constraints
[
−5
−5

]
≤ x ≤ [55] and

−1 ≤ u ≤ 1. The cost function to be minimized in (1a) is

given by xT
NQNxn+

∑N

k=0
xT
kQxxk+uT

kQuuk with QN =
5I , Qx = I , Qu = 1, N = 5, and T = {xN | − 1 ≤ xN ≤
1}. Such a problem is set up using

sys = LTISystem(’A’, [1 1; 0 1], ...

’B’, [1; 0.5])

sys.x.min = [-5; -5], sys.x.max = [5, 5]

sys.u.min = -1, sys.u.max = 1

sys.x.penalty = QuadFunction(eye(2))

sys.u.penalty = QuadFunction(1)

sys.x.with(’terminalPenalty’)

sys.x.terminalPenalty=QuadFunction(5*eye(2))

sys.x.with(’terminalSet’)

sys.x.terminalSet = ...

Polyhedron(’lb’,[-1;-1], ’ub’, [1;1])

N = 5

and the explicit MPC controller in (5) is constructed by

expc = MPCController(sys,N).toExplicit()

For the settings above, the controller consists of 29 critical

regions in the two-dimensional state space, which are plotted

in Fig. 1(a) by expc.partition.plot().

(a) 29 regions of the optimal controller. (b) 23 regions after ORM.

(c) 13 regions after clipping. (d) 13 regions after separation (only
the unsaturated regions are plotted).

(e) 5 regions after fitting. (f) 20 regions in the minimum-time
setup.

Fig. 1. Results of complexity reduction for the double integrator example
in Section III.

A. Complexity Reduction without Inducing Suboptimality

MPT3 implementes following complexity reduction

schemes which do not induce loss of optimality:

1) The optimal region merging method (ORM) of [8].

2) Clipping-based complexity reduction of [13].

3) Separation-based scheme of [14].

In all three methods a given explicit MPC controller is

simplified by reducing the number of its critical regions.

The ORM method is based on merging together critical

regions which share the same expression of the feedback

law (i.e., identical expressions of Fi, gi in (5)), and whose

union is convex. This is achieved by using the simplify()

gateway method as follows:

simple = expc.simplify(’orm’)

which returns a new explicit controller object simple which

behaves in the same way as the input object expc, i.e.,

it can be analyzed and/or exported to C-code using the

methods described in Section II-D. The ORM method is

applicable to arbitrary explicit MPC feedback laws regardless

of their properties, e.g., continuity of the feedback is not

required. Thus this method allows to simplify explicit MPC

controllers designed for PWA and MLD prediction models

as well. For the double-integrator setup, the ORM method

decreases the number of critical regions from 29 to 23, as

can be seen in Fig. 1(b), which was generated by invoking

simple.partition.plot().

The clipping-based method exploits continuity of the

explicit MPC feedback law (which is guaranteed if the

prediction model is linear) to remove critical regions in

which the control action is saturated at umin or at umax. The

space covered by such “saturated” regions is then replaced

by extensions of the unsaturated critical regions, followed by

applying a clipping filter. This complexity reduction scheme

is available2 via

simple = expc.simplify(’clipping’)

The application of the clipping-based method to the double

integrator example led to 13 regions, which are shown in

Fig. 1(c).

Finally, the separation-based scheme again exploits satura-

tion properties of continuous explicit MPC feedbacks. Unlike

clipping, however, saturated regions are removed altogether

without replacement and only the unsaturated critical regions

are kept. Then a separation function is devised to uniquely

determine the value of the optimal control input for initial

conditions which are not contained in the retained part of

the explicit solution. The simplification is invoked by

simple = expc.simplify(’separation’)

which first analyzes saturation status of individual regions

and then devises an appropriate separator. The 13 saturated

regions for the double integrator example are depicted in

Fig. 1(d).

In most practical cases, both the clipping method and

the separation method yield the same result, i.e., they

achieve the same level of complexity reduction. However,

the clipping-based method is usually computationally less

intense. In pathological cases the separation method yields

higher reduction of complexity at the expense of more off-

line computational effort.

We remind that all three aforementioned methods yield

simplified explicit controllers which maintain the optimality

of the original complex controller.

B. Complexity Reduction with Suboptimality

One way to reduce the number of critical regions of a

given explicit MPC controller is to replace the optimal (but

complex) feedback law fopt(x) by a simpler PWA function

faprx(x) while minimizing the suboptimality represented by
∫

X

‖fopt(x)− faprx(x)‖dx. (7)

MPT3 solves this problem by implementing a two-step “fit-

ting” procedure suggested in [16]. First, a simpler partition

consisting of a fewer critical regions is designed by solving

2Note that functionality is implemented in a separate module, which can
be installed by tbxmanager install mpt3lowcom

an MPC problem (1) for a shorter value of the prediction

horizon. Subsequently, we optimize the parameters Fi, gi
of the simpler feedback in (5) as to minimize suboptimality

represented by the integrated squared error in (7). Such a

complexity reduction scheme is available via

simple = expc.simplify(’fitting’)

To assess the loss of optimality, one can compare the average

and worst-case decrease of performance of a simplified

controller versus an optimal one by

[a, w] = expc.comparePerformance(simple)

which returns the average loss of optimality in a and the

worst-case drop in w in percentage units. Note that the

method supports implicitly defined MPC controllers as well.

For the double integrator example, the fitting-based scheme

allows to decrease the complexity from 27 to just 5 regions,

which are shown in Fig. 1(e). The simplified controller

exhibits 2.7% average and 11.0% worst-case suboptimality

versus the optimal controller.

The second option to reduce complexity is to employ

a simpler cost function in (1a). Specifically, as suggested

in [9] we can reduce complexity if instead of (1a) we

solve a minimum-time problem where the objective is to

minimize the arrival time to a certain terminal set. Although

the synthesis of such controllers is quite involved, both

theoretically as well as computationally, it is available to

users via

simple = EMinTimeController(sys)

Applying this method to the double integrator setup results

in an explicit MPC controller composed of 20 critical regions

depicted in Fig. 1(f). Its average suboptimality is 4.4% and

the worst-case drop of performance is 18.0% versus the

original complex optimal controller.

C. Behind the Scenes

The purpose of this section is to enlighten the lesser

known functions of MPT3 with respect to computational

geometry. Specifically, we discuss basic building blocks

which, when assembled together, implement the complexity

reduction techniques described above.

The basic functionality required by the ORM method is

the recognition of convexity of an union of polyhedra [2].

Specifically, given polytopes Pi = {x | Hix ≤ hi}, i =
1, . . . ,m, the task is to determine whether their union Pu =
∪iPi is convex or not. In MPT3 this can be achieved using

the isConvex method:

P1 = Polyhedron(H1, h1)

P2 = Polyhedron(H2, h2)

convex = isConvex(PolyUnion([P1, P2]))

More technically, the answer is obtained by realizing that Pu

is convex if and only if convh(Pu)\Pu = ∅ where convh(·)
is the convex hull operator and “\” represents the set differ-

ence. The convex hull Ph of polytopes Pi can be obtained by

first enumerating the vertices of the polytopes, say, V(Pi),

followed by removing redundant vertices and converting the

resulting set back to the half-space representation. Thus the

funcitonality of the isConvex method can be replicated by

V = [P1.V; P2.V] % vertex enumeration

Ph = Polyhedron(V) % convex hull

diff = Ph \ [P1, P2] % set difference

convex = diff.isEmptySet() % comparison

The clipping- and saturation-based complexity reduction

schemes rely on identification of critical regions of the PWA

feedback law in which the control action is saturated. MPT3

automates such an identification procedure by means of the

findSaturated method:

expc.optimizer.findSaturated(’primal’)

which returns a structure which contains information about

the saturated and unsaturated regions. Note that the method

analyzes the investigated PWA function and automatically

determines the saturation limits without user’s involvement.

In addition, MPT3 provides methods for devising a linear

separation of nonconvex sets given as unions of polytopes. In

particular, let S1 = ∪iPi, Ss = ∪jQj with Pi, Qj polytopes.

The objective is to find the separator p(x) := αx + β such

that p(x) > 0 for all x ∈ S1 and p(x) < 0 for all x ∈ S2.

The search for the separator’s parameters α and β can be

done via the separate method:

S1 = PolyUnion([P1, ..., Pn])

S2 = PolyUnion([Q1, ..., Qm])

p = SeparationController.separate(S1,S2)

In the fitting-based approach of Section III-B the main

technical difficulty is represented by integration of functions

over polytopes in generic n-dimensional Euclidean space.

Specifically, let f(x) be a homogeneous polynomial of

degree d in n variables x ∈ R
n. Then the integral of f

over a unit simplex ∆ is given by [1]:

∫
∆

f(y)dy = γ
∑

1≤i1≤···≤id≤n+1

∑
ǫ∈{±1}d

ǫ1 · · · ǫdf(
∑

d

k=1
ǫksik)

(8)

where

γ =
vol(∆)

2dd!
(
d+n

d

) , (9)

and vol(∆) is the volume of the simplex. Thus to integrate

f(x) over a polytope P , following steps are needed:

1) Homogenization of f(x).
2) Tessellation of P into simplices ∆1, . . . ,∆m. This is

achieved by D = P.triangulate().

3) Computation of volumes of each ∆i by vol =

D(i).volume().

4) Enumeration of vertices of individual simplicies via Vi

= D(i).V.

5) Evaluation of the integral from (8).

MPT3 automates this procedure for integration of linear

and quadratic functions via the integrate method, which

automatically splits such functions into homogeneous com-

ponents. As an example, consider3 P = {x |
[
−1
−2

]
≤ x ≤

[34]} and f(x) = xT [1 0.1
0.1 2]x+ [1 0]x− 3.5. The integral

of f over P is obtained by

P = Polyhedron(’lb’, [-1; -2], ...

’ub’, [3; 4])

f = QuadFunction([1 0.1; 0.1 2], ...

[1 0], -3.5)

P.addFunction(f, ’fx’)

int = P.integrate(’fx’)

which results in
∫
P
f(x)dx = 192.8.

IV. VERIFICATION AND ANALYSIS

The purpose of the verification and analysis modules in

MPT3 is to verify whether a closed-loop system, composed

of a discrete-time dynamical system and an MPC controller,

exhibits certain safety properties. In particular, the toolbox

provides methods to verify closed-loop stability by devising

Lyapunov certificates, and to assess invariance by means of

reachability analysis.

The analysis in MPT3 is based on investigation of the

closed-loop system

x+ = f̃(x, κ(x)), (10)

where f̃(·, ·) is the state-update function of the system (which

can be different from the prediction model f(·, ·) employed

in (1b)), and κ(x) is an MPC feedback law with κ(x) =
[I, 0, . . . , 0]U⋆

N where U⋆
N = [u⋆

0, . . . , u
⋆
N−1] is the open-

loop optimal sequence obtained either by solving (1) numer-

ically (for implicit MPC controllers) or by evaluating (5) for

explicit MPC feedbacks. The closed-loop dynamics of the

form (10) is specified in MPT3 using the ClosedLoop

class. As an example, we will aim at verifying whether

the MPC controller designed in Section III for the nominal

prediction model (6) provides desired closed-loop properties

even when connected to a different system with

x+ =

[
1 1
0 0.9

]
x+

[
1
0.5

]
. (11)

The closed-loop dynamics is then created by

sys2 = LTISystem(’A’, [1 1; 0 0.9], ...

’B’, [1; 0.5])

loop = ClosedLoop(expc, sys2)

Such a closed-loop system can then be analyzed e.g. by

performing simulations. To streamline the process, MPT3

introduces the simulate method which performs such a

closed-loop simulation over a desired number of time steps:

data = loop.simulate(x0, Nsim)

where x0 is the initial state of the simulation, Nsim is the

number of simulation steps, and the data output contains

the closed-loop profiles of states, inputs, and outputs re-

spectively in data.X, data.U, and data.Y. Moreover,

3The toolbox naturally supports integration over generic polytopes, not
just over hyperboxes.

data.cost contains the value of the cost function (1a) for

each simulation step. Note that the controller (provided as

the first input to the ClosedLoop constructor) can be both

an implicit as well as an explicit controller (cf. Section II-D).

A more rigorous way to verify closed-loop stability for all

feasible initial conditions is to devise a Lyapunov function

V which satisfies V (0) = 0, V (x) > 0 for all x 6= 0,

and V (x+) ≤ γV (x) for some γ ∈ [0, 1) and all x for

which the MPC problem (1) is feasible. MPT3 implements

the methods of [5] to synthesize piecewise quadratic (PWQ)

and piecewise affine (PWA) Lyapunov functions provided

the system’s dynamics in (10) is linear or piecewise affine,

and the explicit representation of the MPC feedback law is

available. In such a case the closed-loop system (10) becomes

a PWA system of the form

x+ = Ãix+ c̃i if x ∈ Pi. (12)

Such a PWA representation of the closed-loop system can

be obtained by

pwa = loop.toSystem()

which automatically links critical regions of the controller

with regions of the controlled PWA system (if the system is

linear, the regions of (12) coincide with critical regions of

the controller). The Lyapunov function for the autonomous

PWA system of the form (12) is then computed by

lyap = pwa.lyapunov(type)

where type=’pwq’ or type=’pwa’ depending on the

class of the desired Lyapunov function. For the double inte-

grator example from Section III, a PWQ Lyapunov function

was found, which certifies that the MPC controlled designed

for (6) stabilizes (11). Such an approach can be also used to

verify closed-loop stability when a suboptimal controller, e.g.

one constructed per Section III-B, is employed. Specifically,

by running

pwa = ClosedLoop(simple, sys).toSystem()

lyap = pwa.lyapunov(’pwq’)

we were able to verify that both the fitting controller as well

as the minimum-time strategy described previously provide

closed-loop stability.

MPT3 also provides functionality to verify invariance

of a given closed-loop system and to perform reachability

analysis. Invariance of an autonomous PWA system (12)

(which includes autonomous LTI systems as a special case)

can be assessed by

answer = pwa.isInvariant()

which returns true if for each x0 the dynamics of (12) is

such that xk ∈ ∪iPi for all k ≥ 0; and false otherwise.

If the answer is negative, MPT3 can calculate the invariant

subset of (12) via

pwa_inv = pwa.invariantSet()

which generates new regions Pi in (12) for which the

invariance property holds ad infinitum.

Computation of invariant sets in MPT3 is in fact more

general since it covers construction of maximal control

invariant sets as well. Specifically, for a dynamical system

xk+1 = f(xk, uk) subject to constraints x ∈ X and u ∈ U
the maximal control invariant set C∞ ⊆ X is

C∞ = {x0 | ∃uk ∈ U s.t. f(xk, uk) ∈ X ∀k ≥ 0}. (13)

If the system’s dynamics is linear of piecewise affine, the

maximal control invariant set is constructed by

Cinf = sys.invariantSet()

What appears simple to the user is in fact an involved

algorithm which is internally implemented by performing

backwards reachability analysis. Specifically, let Pre(S) =
{x | ∃u ∈ U s.t. f(x, u) ∈ S} be the one-step controllable

set to the set S . The existence operator can be eliminated by

projecting the polyhedron R = {(x, u) | u ∈ U , f(x, u) ∈
S} onto the x-space. Then C∞ is obtained by running the

recursion Sk+1 = Pre(Sk) ∩ Sk, initialized by S0 = X
until convergence, detected when Sk+1 = Sk. In MPT3, each

individual pre-set can be obtained by

S(k+1) = sys.reachableSet(’X’, S(k), ...

’direction’, ’backward’)

which automates the process of projecting R onto the x-

space and intersecting the new set Sk+1 with Sk.

One case where maximal invariant sets are used frequently

is when the so-called LQR set OLQR needs to be constructed

as the set where the LQR controller does not activate any

constraints. Specifically, OLQR is the maximal positive invari-

ant set for the autonomous system xk+1 = (A+BKLQR)xk

with xk ∈ X , uk ∈ U for all k ≥ 0. For a given linear

system xk+1 = Axk + Buk modeled per Section II-A, the

set OLQR is constructed by

OLQR = sys.LQRSet()

What MPT3 does internally is to first compute the LQR

gain KLQR, then form the closed-loop system composed of

the linear system and the LQR controller, and then call the

invariantSet method for such a closed-loop system.

MPT3 also computes forward reachable sets for au-

tonomous systems of the form x+ = f(x) and for systems

with control inputs given by x+ = f(x, u) where the state-

update equation is either linear or piecewise affine. The set of

states reachable by the system in one time step starting from

some initial set S is given by F(S) = {f(x) | x ∈ S} for the

autonomous dynamics, or F(S) = {f(x, u) | x ∈ S, u ∈ U}
for non-autonomous systems. In MPT3, this is achieved by

F = sys.reachableSet(’X’, S, ...

’direction’, ’forward’)

Depending on the level of granularity the user wants to

operate with, basis reachability tasks can be performed by

applying direct and inverse affine transformations of polyhe-

dra. Specifically, len S be a polyhedron in Rn, A ∈ R
m×n,

and c ∈ R
m. Then A◦S+c = {Ax+c | x ∈ S} denotes the

(direct) affine transformation of the set S by the affine map

(A, c), and S ◦ A + c = {x | (Ax + c) ∈ S} is the inverse

affine transform. If A and c would represent matrices of an

autonomous affine system x+ = Ax + c, then the direct

transform yields forwards reachable sets, while the inverse

transform coincides with backwards reachability. MPT3 im-

plements affine transformations via the “*” operator, i.e.,

direct = A*S+c

inverse = S*A+c

Note that if the dimension of A satisfies m ≤ n, then the

affine transformation eliminates variables by projecting S
onto the space spanned by A. If m > n, then A◦S represents

lifting of the set S . If m = n (with rank(A) = n), then the

set S is rotated and/or scaled. This is how how reachability

and invariance operations are implemented in MPT3 on the

basic level.

REFERENCES

[1] V. Baldoni, N. Berline, J. A. De Loera, M. Köppe, and
M. Vergne. How to integrate a polynomial over a simplex.
Mathematics of Computation, 80(273):297, 2010.

[2] A. Bemporad, K. Fukuda, and F. D. Torrisi. Convexity Recog-
nition of the Union of Polyhedra. Computational Geometry,
18:141–154, 2001.

[3] A. Bemporad and M. Morari. Control of systems integrating
logic, dynamics, and constraints. Automatica, 35(3):407–427,
March 1999.

[4] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos.
The explicit linear quadratic regulator for constrained systems.
Automatica, 38(1):3–20, January 2002.

[5] P. Biswas, P. Grieder, J. Löfberg, and M. Morari. A Survey on
Stability Analysis of Discrete-Time Piecewise Affine Systems.
In IFAC World Congress, Prague, Czech Republic, 2005.

[6] F. Borrelli. Constrained Optimal Control of Linear and Hybrid
Systems, volume 290. Springer-Verlag, 2003.

[7] Ch. Feller and T.A. Johansen. Explicit MPC of higher-order
linear processes via combinatorial multi-parametric quadratic
programming. In Control Conference (ECC), 2013 European,
pages 536–541. IEEE, 2013.

[8] T. Geyer, F.D. Torrisi, and M. Morari. Optimal complexity
reduction of polyhedral piecewise affine systems. Automatica,
44(7):1728–1740, July 2008.

[9] P. Grieder, M. Kvasnica, M. Baotic, and M. Morari. Stabiliz-
ing low complexity feedback control of constrained piecewise
affine systems. Automatica, 41, issue 10:1683–1694, October
2005.

[10] A. Gupta, S. Bhartiya, and P. Nataraj. A novel approach
to multiparametric quadratic programming. Automatica,
47(9):2112–2117, 2011.

[11] M. Herceg, M. Kvasnica, C. Jones, and M. Morari. Multi-
parametric toolbox 3.0. In 2013 European Control Confer-
ence, pages 502–510, 2013.

[12] M. Kvasnica. Real-Time Model Predictive Control via Multi-
Parametric Programming: Theory and Tools. VDM Verlag,
Saarbruecken, January 2009.

[13] M. Kvasnica and M. Fikar. Clipping-Based Complexity
Reduction in Explicit MPC. IEEE Trans. Automatic Control,
57(7):1878–1883, July 2012.

[14] M. Kvasnica, J. Hledı́k, I. Rauová, and M. Fikar. Complexity
reduction of explicit model predictive control via separation.
Automatica, 49(6):1776–1781, 2013.

[15] M. Rubagotti, S. Trimboli, D. Bernardini, and A. Bemporad.
Stability and invariance analysis of approximate explicit MPC
based on PWA Lyapunov functions. In Proc. IFAC World
Congress, Milan, Italy, pages 5712–5717, 2011.

[16] B. Takács, J. Holaza, M. Kvasnica, and S. Di Cairano.
Nearly-optimal simple explicit mpc regulators with recursive
feasibility guarantees. In IEEE Conference on Decision and
Control, pages 7089–7094, 2013.

