
SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

Faculty of Chemical and Food Technology

Reg. No.: FCHPT-5414-44240

Quantum-chemical computing on GPU

Master thesis

2015 Bc. Ján Minárik

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

Faculty of Chemical and Food Technology

Reg. No.: FCHPT-5414-44240

Quantum-chemical computing on GPU

Master thesis

Study programme: Automation and Information Engineering in Chemistry and Food
Industry
Study field number: 2621
Study field: 5.2.14. Automation
Training workplace: Institute of Information Engineering, Automation and Mathematics
Thesis supervisor: Ing. Marián Gall, PhD.
Consultant: Lukáš Bučinský, Radovan Bast

Bratislava 2015 Bc. Ján Minárik

Slovenská technická univerzita v Bratislave
Ústav informatizácie, automatizácie a matematiky

Fakulta chemickej a potravinárskej technológie
Akademický rok: 2014/2015
Evidenčné číslo: FCHPT-5414-44240

ZADANIE DIPLOMOVEJ PRÁCE

Študent: Bc. Ján Minárik
ID študenta: 44240
Študijný program: automatizácia a informatizácia v chémii a potravinárstve
Študijný odbor: 5.2.14. automatizácia
Vedúci práce: Ing. Marián Gall, PhD.
Konzultant: Lukáš Bučinský, Radovan Bast

Názov práce: Kvantovo-chemicke výpočty na GPU

Špecifikácia zadania:

Silná potreba výpočtového výkonu v oblasti vedy vedie k použitiu aj iných prostriedkov ako klasické
využívanie jednojadrových CPU. Viacjadrové CPU, GPU a ďalšie akcelerátory sa používajú ako ko-procesory
pre intenzívne aritmetické dátovo-paralelné výpočtové úkony. V súčasnej dobe existujú dva dominantné API
rozhrania pre výpočty na GPU, CUDA a OpenCL. Cieľom tohto projektu je študovať možnosti týchto rozhraní
API a ich využitie na urýchlenie základných výpočtov v kvantovej chémii na komerčných GPU kartách.

Riešenie zadania práce od: 16. 02. 2015

Dátum odovzdania práce: 24. 05. 2015

L. S.

Bc. Ján Minárik
študent

prof. Ing. Miroslav Fikar, DrSc.
vedúci pracoviska

prof. Ing. Miroslav Fikar, DrSc.
garant študijného programu

I would like to express my gratitude to my supervisor Marián Gall from STU Bratislava, voluntary

consultants Lukáš Bučiský STU Bratislava and Radovan Bast from KTH Stockholm for their help,

understanding and guidance.

In Bratislava 24.5.2015 Bc. Ján Minárik

Abstract

Computational chemistry has a wide range of applications. Most notable are
predictions of real world experiments and estimates of a molecular properties.
Problem of computational chemistry algorithm is that they are computationally
demanding. Large amount of computer memory and processing power is required.
Therefore computational acceleration is a natural choice. In last decade graphic
cards evolved rapidly. Nowadays they are capable of floating-point arithmetics. This
is not beneficial only for game enthusiasts but also for scientific community. While
the former are enjoying near real world video experience the later are developing
algorithms witch can benefit from large amount of single instruction processing
units.
In my thesis I examine utilization of modern programming techniques for scientific
calculation both on CPU and GPU architectures. I focus on GPU computation.
To demonstrate its efficiency I wrote my own code for calculation of the exchange-
correlation energy. The code is used in an experiment on a Neon atom and compared
with pure C++ code and usage of optimized math arithmetics library. In the thesis
is necessary theoretical background from computational chemistry. Followed by
basic concepts of math kernel library and graphic card programming for scientific
computing. The written code is explained in detail. Results from a computational
study are presented and discussed.

Keywords: computational chemistry, parallel computing on GPU, Intel MKL,
CUDA.

Abstrakt

Počítačová chémia má široký rozsah praktických aplikácií. Najznámejšie sú prog-
ramy na predikciu experimentov a odhad vlastností nových molekúl. Problém
algoritmou používaných v počítačovej chémií je ich vysoká výpočtová náročnosť.
Vyžadujú obrovské množstvo počítačovej pamäte a obrovský výpočtový výkon.
Preto sa používajú rôzne techniky zrýchlenia výpočtu. V poslednom desaťročný
nastal obrovský rozmach grafických kariet (GPU). Dnešné GPU dokážu vykonávať
operácie s plávajúcou desatinnou čiarkou. Táto vlastnosť nieje vítaná len vo svete
hráčov počítačových hier, ale aj vo vedeckej komunite. Zatiaľčo prvá skupina sa
teší z takmer realistického herného zážitku, tá druhá z veľkého množstva grafických
procesorov.
V mojej práci skúmam efekty využitia moderných programovích nástrojov na ze-
fektívnenie vedecko-technických výpočtov na CPU aj GPU. Primárne sa venujem
využitiu grafických kariet. Aby som ukázal aké zefektívnenie výpočtu ponúkaju
naprogramoval som výpočet výmenno-korelačnej energie. Tento kód okrem štandart-
ného C++ jazyka využíva vektorizované a optimalizované matematické knižnice.
Takisto obsahuje funckie na výpočty na grafickej karte. Porovnávam jednotlivé me-
tódy na príklade atómu Neónu. V práci sa nachádza potrebný úvod do počítačovej
chémie a zrýchlovania vedecko-technických výpočtoch. Do detailov vysvetlujem
svoj kód a na záver ukazujem zrýchlenie na príklade atómu Neónu.

Klúčové slová: počítačová chémia, parallélne výpočty na GPU, Intel MKL,
CUDA.

Contents

1 Introduction 4

2 Computational Chemistry 6
2.1 Computable qualities . 6

2.1.1 Structure . 6
2.1.2 Potential Energy Surfaces 6
2.1.3 Chemical Properties . 7

2.2 Quantum Mechanics . 7
2.2.1 The Schrödinger’s equation 7
2.2.2 The Hamiltonian operator 8
2.2.3 The variational principle . 9
2.2.4 The Born-Oppenheimer approximation 9
2.2.5 The LCAO basis sets . 10
2.2.6 Hartree-Fock computation 11
2.2.7 Density Functional Theory 12

2.3 Software for computational chemistry 13
2.3.1 Commercial: Crystal . 13
2.3.2 Open-source: XCint . 14

3 Computation acceleration 17
3.1 Intel MKL . 17
3.2 GPU Computing . 18

3.2.1 OpenCL . 19
3.2.2 CUDA . 19

3.3 Computation study . 20

4 Grid Calculation 23
4.1 Compilation . 24
4.2 Input data parsing . 24
4.3 Atomic orbital value calculation . 25
4.4 Calculate electron density . 25

4.4.1 CPU sequential . 26
4.4.2 CPU screening . 26
4.4.3 CPU batch . 27
4.4.4 GPU sequential . 28

4.5 Exchange-Correlation Energy . 28

2

4.6 Print output . 29

5 Conclusion 30

3

Chapter 1

Introduction

Computational chemistry uses computer programs to answer questions from theo-
retical chemistry such as [1]:

1. Which geometrical arrangements are possible stable molecules ?

2. What are their relative energies ?

3. What are their physical and chemical properties ?

4. What is the rate at which one stable molecule can transform into another
one ?

5. What is the time dependence of molecular structures and properties?

6. How do molecules interact ?

if we know initial set of nuclei and electrons. With sufficient hardware and tailored
software the answer may be found. But processing power is not infinite. Algorithms
usually takes long time (i.e. hours to days) to perform and accuracy is limited [1, 2].
Usually more precise algorithm more time it takes to complete. Fast hardware
development in recent years offers new possibilities. To utilize new computer
components old algorithms have to be reprogrammed and adjust. Usually it means
to develop a handy application programming interface (API) first. Therefore with
each new generation of hardware architecture a new programming techniques are
developed.

Graphic processing units (GPU) (i.e. graphic cards) were part of compute hardware
for a long time. But only since 2003 they are capable of floating point arithmetics.
This feature attracts scientists in last decade and questions such as

1. Could GPUs be utilized for scientific computing ?

2. If so, how much effort must be put to rewrite the old computer codes ?

3. Will be that effort worth it ?

4. How much faster would be the computations ?

4

5. What are the limitations ?

are asked. Numerous studies has been done to show improvement gained from
using GPU for scientific computing [12, 13]. Major vendors also provide their
optimized API. Two most dominant are CUDA for NVidias GPUs and OpenCL
mainly used on ATI cards. In the chapter 3 I provide an overview about both APIs.
If a new technology wants to be successful it must be competitive with the old ones.
Same holds in programming. Therefore I provide a quick overview of Math Kernel
Library (MKL) for vectorized and optimized arithmetics used on Intel CPUs (core
processing units) in same chapter.

The thesis is focused on developing a code for a computational study of three
approaches.

1. Pure C++ code.

2. Code using Intel MKL library.

3. CUDA code for GPU.

Then all three codes are compared on a test case atom of a Neon based on
computational time. Whole code with data for the experimental atom can be
downloaded from my Git repository [15] and run on any Linux operating system.
On the repository web page is also the readme file with compilation instructions.
Detailed explanation of the code and used algorithms is provided in the chapter 4.
A description of the computational case study with the result is presented in the
chapter 5.

5

Chapter 2

Computational Chemistry

2.1 Computable qualities
The postulates and theorems of quantum mechanics form the foundation for the
prediction of observable chemical properties. But there is one important question
which needs to be asked first. Which properties can be predicted ? Answer is
simple. If we can measure it, we can predict it. Christopher Cramer in his book [2]
divided molecular properties into three groups: structure, potential energy surfaces
(PES) and chemical properties.

2.1.1 Structure
What is the best structure of a molecule ? To describe any molecule we need only
its chemical formula, i.e. atoms from which it is composed. Because the best means
that the interacting forces are zero at the given initial positions of atoms. It is
a task of a structural optimization. Real world problem is that molecules are in
forms of multiple discrete stereoisomers, tautomers, etc. Therefore great care is
taken when comparing real world experiment and idealized theory.

2.1.2 Potential Energy Surfaces
First step in a simulation of a molecule is to consider not just one structure
for a given chemical formula, but all possibilities. This characterize Potential
Energy Surface (PES) for the given chemical formula based on Born-Oppenheimer
approximation. The PES is a hypersurface defined by the potential energy of a
collection of atoms over all possible atomic arrangements [2]. Thus PES is defined
as a vector X:

X = [x1, y1, z1, . . . , xN , yN , zN] (2.1)

where x, y, z are Cartesian coordinates of atom i. Interesting points on PES are
local minima and saddle points. Former correspond to optimal molecular structures
and later are lowest energy barriers on paths connecting them. They are chemical
concept of transition states. So a complete PES is map of all possible chemical
structure states and all isomerisations paths interconnecting them.

6

Problem with PES is that they are hard to visualize because they involve many
dimensions. Instead slices and projections like in figure 2.1 are used. There is
desired chemical property visualized as function of one, or reduced number of
coordinates. Sometimes structures can be grouped by a common symmetry.

2.1.3 Chemical Properties
In this group belongs single molecule properties as spectral quantities. Predicting
nuclear magnetic resonance (NMR) chemical shifts and coupling constants, electron
paramagnetic resonance (EPR) hyperfine coupling constants, absorption maxima
and i.e. has many practical applications. For statistical reasons usually more
molecules are considered.
It is possible to measure total energy of molecule. It is minimal energy necessary
to separate it into nuclei and electrons. However in experiments focus is more
on particular thermodynamic quantity such as enthalpy or free energy. This is
used either before or after conducting real-world experiment. In former case it
is used in design. In later to tune the experiment. In comparing chemists can
observe many molecular and chemical reaction properties that were hidden during
the experiment.
At last, there are computable properties that do not link directly to real physical
properties. But they have great value in describing molecules. Good examples
include aromaticity and partial atomic charge.

2.2 Quantum Mechanics
To fully understand complexity of computational chemistry one needs to has
fundamental knowledge of quantum mechanics. This chapter provides reader with
elementary methods without going into mathematical details. I refer reader to
[1, 2] for more detail. The interacting gravitational force between two particles in
classical mechanics is [1]:

V(r12) = −Cgrav
m1m2

r12
(2.2)

Where m1,m2 are weights of particles and r12 is distance between particles. But in
case of nucleus-electron interaction the only significant force which holds particles
together is Coulomb interaction:

V(r12) = q1q2

r12
(2.3)

with q1, q2 being charges. Coulomb force 2.3 is 1038 times larger than gravitational
force 2.2.

2.2.1 The Schrödinger’s equation
Because electrons have negligible weight and are moving close to speed of light
(3× 105ms−1) traditional deterministic mechanics must be replaced by quantum
mechanics [1]. With deterministic equations past and future position of particles can

7

Figure 2.1: PES for Mg2O4 energy.

be calculated. Quantum mechanics on the other hand are probabilistic. They predict
probability of particle being in chosen space. Fundamental equation of quantum
mechanics is Schrödinger’s equation. For bounded system time independent form
is used 2.4.

HΨ = EΨ (2.4)
where H is Hamiltonian operator, Ψ is wave-function and E is scalar value of system
energy. Most important is that product of Ψ with it’s complex conjugate pair
(|Ψ∗Ψ|) has units of probabilistic density. Therefore the probability that chemical
system will be found in multidimensional space is equal to integral of |Ψ2| over that
space [2]. Thus there are constrains what can be a wave function. For a bound
particle normalized integral of Ψ must be unite. Probability of finding it somewhere
is one. In addition Ψ must be continuous, single-valued and quadratically integrable
[2].

2.2.2 The Hamiltonian operator
The Hamiltonian operator from equation 2.4 typically represents five contributions
to total energy of a system (molecule or atom). These are kinetic energy of electrons
and nuclei, the attraction of electrons to nuclei, interelectronic and internuclear

8

repulsions. More complicated version of Hamiltonian can include presence of
external electric and magnetic field or relativistic effects [2]. Mathematical form of
Hamiltonian is:

H = −
∑
i

~2

2me
∇2
i −

∑
k

~2

2mk
∇2
k −

∑
i

∑
k
e2Zk
rik

+
∑
i<j

e2

rij
+
∑
k<l

e2ZkZl
rkl

(2.5)

where i, j iterates over electrons, k, l runs over nuclei, ~ is reduced Planck’s constant,
me is mass of electron, mk is mass of nucleus k, ∇2 is Laplacian operator, e is
charge of electron, Z is an atomic number and rij is distance between particles i
and j. Thus Ψ is a function of 3n Cartesian coordinates with n being total number
of particles (electrons and nuclei), i.e. x, y and z coordinate of each particle. In
three-dimensional Cartesian space Laplacian has form of:

∇2
i = ∂2

∂xi
+ ∂2

∂yi
+ ∂2

∂zi
(2.6)

2.2.3 The variational principle
If we have wave-function Ψ we can calculate other atomic observable physical
properties by switching Hamiltonian operator H. Problem is how to calculate
molecular properties. It is clear that molecules are composed of atoms. Therefor
it is possible to assume that an arbitrary function Φ exists which is function of
individual electronic and nuclear coordinates operated upon by the Hamiltonian.
Because set of orthonormal wave-functions Ψi is complete, the function Ω is a
linear combination of Ψs [2].

Φ =
∑
i

ciΨi (2.7)

Because individual Ψi are unknown also coefficients are unknown. But they are
constrained. ∫

Φdr = 1 =
∫ ∑

i

ciΨi

∑
j

cjΨjdr =

=
∑
ij

cicj

∫
ΨiΨjdr =

=
∑
ij

cicjδij

=
∑
ij

cicj

(2.8)

Values of coefficients ci, cj are calculated iteratively. In nature a system is stable
in ground state if it has the lowest energy.

2.2.4 The Born-Oppenheimer approximation
Typically electrons are moving much faster than nuclei because they are about
1800 times lighter and mass appears in denominator in Hamiltonian equation 2.5.

9

Therefore it practical to decouple this two motions and compute electronic energies
for fixed nuclear positions [2]. Formally decoupled Schrödinger’s equation 2.4 is
written as following:

(Hel + VN)Ψel(qi; qk) = EelΨel(qi; qk) (2.9)

where Hel includes only first, third and fourth term of 2.5, VN is nuclear-nuclear
repulsion energy and qi are independent variables with qk being nuclear coordinates
parameters. The term VN is constant for a fixed set of nuclear coordinates. Note
that PES is calculated Eel over all possible nuclear coordinates.

2.2.5 The LCAO basis sets
As mentioned earlier any functions which has certain criteria can be a wave-function.
Two wave-functions are compared based on energy calculated when using them. The
one with lower is more suitable as a wave-function for calculating other properties
by substituting Hamiltonian for another operator. Convenient functions are called
’basis sets’. For system with only one nucleus equation 2.9 can be solved exactly
without guessing of wave-functions. Question is how can we construct a molecular
wave-function ? Same as we in eq.2.7 we can construct it as a linear combination
of known atomic wave-functions:

φ =
N∑
i=1

= aiϕi (2.10)

with basis set of N ϕi function and associated coefficients ai. This is Linear
Combination of Atomic Orbitals (LCAO) approach. Usually these basis sets are
centered on atomic nucleus but it is not a requirement.
There is one question to answer. What is the form of basis set function ϕ ?
Slater-type orbitals (STOs) are describing real hydrogenic orbitals the best. They
converge rapidly with increasing number of functions [2].

ϕ(r, θ, φ,) = NY (θ, φ)rn−1eζr (2.11)

where N is normalization constant, Y (θ, φ) describe spherical harmonics, r is
distance from nucleus, ζ is an exponent. All of these can be found in any quantum
chemistry database. Limitation of using STOs is that there is no analytical solution
for 4 index integral. It needs to be solved numerically which is computationally
extensive operation. Therefore they cannot be used for any significant large molecule.
Improvement was proposed by Boys in 1950. Exponent eζr is changed to eζr2 and
Gaussian-type orbitals (GTOs) are formed. GTO in Cartesian coordinates has
form of:

ϕ(x, y, z) = Nxlxylyzlzeζr
2

(2.12)
where lx, ly, lz are non-negative integer representing type of orbital. For example
p-type of orbital is represented by three vectors of [lx, ly, lz] namely [1, 0, 0], [0, 1, 0]
and [0, 0, 1]. GTOs have an analytical solution but there is a price for that. Near
the nucleus GTO has a zero slope, therefor behavior is poorly represented and
far away from nucleus GTOs converge too rapidly to zero. Also extra d-, f-, g-

10

functions from Cartesian representation may lead to linear dependence in large
basis sets, therefore they are usually dropped. Linear combination of GTOs may
overcome these difficulties [3]. Difference in converge is shown on figure 2.2.
At this point is the fundamental theoretical background covered. In next two
section I describe a two popular computation principles Hartree-Fock theory (H3F)
and Density Functional Theory (DFT).

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

distance from atomic centre [A]

Ψ
(r

)

STO
GTO

Figure 2.2: Difference between STO and GTO functional in molecule of H+
2

2.2.6 Hartree-Fock computation
Many electron system such as a molecule has very complex dynamics which are
hard to compute. A simplification is to use an independent particle model where
motion of an electron is considered to be independent of the dynamics of all other
electrons [1]. This method does not ignore interelectron interactions but use an
approximation instead. Usually it is taken only the most important (strongest)
one or an average into account as in Hartree-Fock (HF) theory. In HF model each
electron is described by an orbital and total wave function is the product of all
orbitals. The best set of orbitals is determined by variational principle (section
2.2.3). Because all other electrons are described by their own orbitals, HF equations
depends on their own solution. Therefore they must be solved iteratively. During
computation Fock matrix is constructed by expanding molecular orbitals into basis
sets. Then a solution is found as a matrix eigenvalue problem. The elements in Fock
matrix are integrals of one and two electron operators multiplied by density matrix.
HF equations can be improved by adding additional determinants to converge to

11

exact solution of Schrödinger’s equations. Or by adding additional approximations
in semi-empirical methods. This is show in figure 2.3.

HΨ = EΨ

Ψ = single determinant

HF equations

Semi-empirical
methods

Convergence to
Exact solution

Additional
approximations

Additional
determinants

Figure 2.3: Improvement of Hartree-Fock method.

Because HF theory is the best single-determinant wave function approach it takes
into account only average electron-electron interactions. Methods that cover electron
correlation require a multi-determinant wave function [1]. Multi-determinant
methods are computationally more extensive but systematically converge to exact
solution of Schrödinger’s equation (eq 2.4).

2.2.7 Density Functional Theory
Density Functional Theory (DFT) is an improvement to HF theory. It was proposed
by Kohn-Sham [4]. The many electron correlation effect is modeled by a physical
property. Because Hamiltonian is depended only on position and atomic number
of nuclei and total number of electrons electron density ρ is natural choice for this
physical quantity [2]. Electron density integrated over all space gives total number
of electrons N. I.e.:

N =
∫
ρ(r)dr (2.13)

This indicates that if we know electron density ρ we can construct Hamiltonian
H, solve Schrödinger’s equation and determine the wave functions and energy
eigenvalues.
Kohn-Sham proposed to start with an fictional system where electrons does not
interact but that have same density as the real system with interacting electrons
[4]. Because density determines position and atomic numbers of the nuclei these
quantities are same for both systems. Next energy functional is divided into several
terms:

E[ρ(r)] = Tni[ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ∆T [ρ(r)] + ∆Vee[ρ(r)] (2.14)

where individual term represent the kinetic energy of the non-interacting electrons,
the nuclear–electron interaction, the classical electron–electron repulsion, the cor-
rection to the kinetic energy deriving from the interacting nature of the electrons,
and all non-classical corrections to the electron–electron repulsion energy. The last

12

two terms are usually merged into Exchange-correlation energy (Exc). The density
ρ is simply sum of all electron orbital functionals:

ρ =
N∑
i=1
〈χi | χi〉 (2.15)

Exc represents not only quantum-mechanics exchange and correlation but also
classical self-interaction energy and kinetic energy difference between real and
fictional non-interacting system. Because this term is the most difficult to compute
modern computational algorithms approximate it by introducing an empirical
parameters εxc based on an experiment. Then Exc is expressed as:

Exc[ρ(r)] =
∫
ρ(r)εxc[(ρr)]dr (2.16)

The energy density εxc is a sum of individual exchange and correlation contributions.
For example Slater exchange energy density is:

εxc[ρ(r)] = −9α
8

(
3
π

)1/3
ρ1/3(r) (2.17)

Whole DFT calculation process is shown of figure 2.4. It is worth noting that
DFT is computationally comparable with HF theory but yields more accurate
results. Main disadvantage is that there is no systematic approach to improve
convergence to exact solution of Schrödinger’s equation.

2.3 Software for computational chemistry
There are many commercial quantum chemistry softwares used in practical applica-
tions and in academical spheres. A nice list with essential informations as license
type, basis set and included methods can be found in [5]. To illustrate features of a
commercial program I choose Crystal. The Crystal was chosen because we have a
license at the university so I was able to examine its features. Because my thesis is
focused on possibilities of computation acceleration in XCint open source package
I describe basic XCint features in this section also.

2.3.1 Commercial: Crystal
Crystal does ab initio calculations in three dimensions (crystals), two dimensions
(slabs) and 1 dimension (polymers). It is developed mainly by teams from University
of Torino (Italy) and Computational Materials Science Group at the Daresbury
Laboratory near Cheshire (England) [6]. Crystal has a rich functionality. Some of
included the are:

1. The single particle potential:

• Hartree-Fock theory, including restricted and unrestricted.
• Density Functional theory for exchange and correlation.

13

• Spin Density Functional theory.

2. Algorithms:

• Parallel processing.
• Self Consistent Field.

3. Structural editing:

• Group symmetry.
• Deformation of crystallographic cell.
• Removal and substitution of atoms.
• Displacement and rotation of atoms.
• Cluster generation from 3D crystal.

4. Properties:

• Electronic charge density maps on 2D or 3D grid.
• X-ray structure atom factors.
• Electron momentum distribution.
• First order density matrix.
• Electrostatic potential, field and field gradients.
• Density functional correlation energy.
• Spontaneous polarization.
• Piezoelectricity.

All these features are useful for theoretical chemists but for someone who is in
development of computational algorithms there is limitation. Whole code is closed
for public. Thus these developers must either code from ground zero or find an
open-source alternative. Also license cost may be high if all features of the Crystal
are not utilized.

2.3.2 Open-source: XCint
XCint is an open-source program that integrates the exchange-correlation (XC)
energy Exc and the elements of XC potential Vxc. Their derivatives in respect to
electric field and geometric perturbations are also computed [7]. Whole project is
developed by Radovan Bast from KTH Stockholm. XCint computes whole batch
of points at a time. Second speed up for computation is usage of BLAS 3 libraries.
More about BLAS is in chapter 3.1. For Exc electron densities are required. They
are computed in two steps.

Xkb =
∑
l

Dklχlb (2.18)

nb =
∑
k

χbkXkb (2.19)

14

Then Exc is computed using XCFun library.

Exc =
∑
b

wbεxc(nb) (2.20)

For the integration grid there are three approaches combined during computation
in XCint.

1. Integration grid according to Becke [8].

2. Radial grid according to Lindh, Malmqvist, and Gagliardi [9].

3. Angular grid generated according to Lebedev and Laikov [10].

Radovan Bast put great effort into easy installation and running of XCint. After
downloaded whole code can be compiled by running a configuration python script
and make command in any Linux environment. There is included an unit test to
test proper installation.

15

Choose basis set(s)

Choose a molecular geometry q(0)

Compute all overlap and
one electron integrals

Guess initial density matrix P(0)

Compute DFT

Construct new density matrix
from ocupied MOs

Difference between new and old
density matrix under tollerance ?

Optimize molecular geometry ?

Output data

Are optimization criteria satisfied ?

Choose a new geometry optimization

Replace P(n-1) with P(n)

No
.

No.

No.

Yes.

Yes.

Yes.

Figure 2.4: DFT calculation.

16

Chapter 3

Computation acceleration

In my thesis I focus on the computation accelerations. First one is usage of an
optimized Basic Linear Algebra Subprogram (BLAS) libraries. Second one is
porting part of code on Graphical Processing Units (GPU). For blas routines I use
Intel’s Math Kernerl Library (MKL). For GPU computing I use NVidia’s CUDA
library. In this chapter I review both approaches. At the end of the chapter is a
computation speed comparison of multiplication of two [N ×N] sized matrices.

3.1 Intel MKL
Intel Math Kernel Library (MKL) is a library of highly vectorized and threaded
math functions for scientific, engineering and financial applications. Thus using
this library greatly increase program performance and development time. The
only strong requirement is Intel processor and installed corresponding libraries for
compiler. More general technical specifications are in table 3.1 The key ares where
MKL library can be used are [11]:

• Linear algebra

• Fast Fourier Transforms

• Vector Math

• Statistics

In my thesis I used Basic Linear Algebra Subprogram (BLAS) functions for vector-
matrix, matrix-matrix multiplication and vector data allocation. It is important to
note, that BLAS routines are organized in three levels. Symbols α, β represents
constants, A,B,C matrices and x,y are used for vectors.

• Level 1: vector manipulation such as dot product, norm and addition in
general form:

y = αx + y (3.1)

17

• Level 2: matrix and vector operations including general multiplication
(GEMV):

y = αAx + βy (3.2)
There is also a solver for equation:

Tx = y (3.3)

• Level 3: newest part of Intel MKL library includes functions for matrix-
matrix operations. As well general matrix-matrix multiplication:

C = αAB + βC (3.4)

Hardware Intel and compatible processors such as: Intel®Xeon,
Intel®Core™or Intel®Atom.

Operating system Windows, Linux, OS X.
Development tools
and environments

Compatible with compilers from vendors that follow
platform standards (e.g. Microsoft, GCC, Intel).

Programming languages natively supports C/C++ and Fortran.
System requirements all commonly used compilers and OS distributions

are supported.

Table 3.1: Technical specifications for Intel MKL library

3.2 GPU Computing
There was always need for strong computational performance in science and
engineering. Todays Graphic Processing Units (GPU) are an valuable option for
multiprocessing. They are one of the first common computational kernels that
run faster than optimized CPU implementations [12]. This new era of parallel
computing would not be possible if there were not developed various APIs that
make applications programming easier. Most notable are:

• OpenCL

• CUDA

• OpenMP

• Thread Building Blocks

• OpenACC
I describe two APIs which are nowdays the most common, OpenCL and CUDA.
The OpenCL is a hardware independent solution developed and maintained mostly
by Khronos group. It is widely used on ATI graphic cards architectures. The CUDA
is developed by NVidia group and is NVidia hardware dependent. In table 3.2 is
comparison of terms used by both groups to describe similar concept [12]. There
are numerous articles about computational performance analysis and comparison
between CUDA and OpenCL algorithms, most notably [12] and [13].

18

NVidia term ATI term
Scalar core Stream core
Streaming multiprocessor (SM) Compute unit (CU)
Shared memory Local data store (LDS)
Warp Wavefront
PTX IL

Table 3.2: Comparison of terms used by ATI and NVIDIA to describe similar
concepts.

3.2.1 OpenCL
Open Computing Language is a framework for writting code that executes on
heterogeneous platforms consisting of host CPU and any attached OpenCL device.
This device mays share memory with host and typically has different instruction
set [13]. OpenCL includes language based on C99 standard for programming the
compute devices and API for control the platform and execute programs on these
devices. The key programming features are functions for enumerating available
target devices (independent of their type), managing data transfer on these devices
and compiling and executing OpenCL programs. Also run-time compilation is
supported. This feature eliminates dependency on target hardware and software
architecture. It is convenient to a programmer because he is not limited for a
specific scenario. Even his code can use devices which are unavailable during
development.
OpenCL guarantees hardware portability, but it is not guaranteed that a particular
kernel will achieve peak performance on every architecture. The term device mean
CPU, GPU or various types of accelerators. In OpenCL there are defined four types
of memory [13]. Large high-latency global which can be accessed from anywhere,
small low-latency read-only constant memory. Shared local memory is accessible
from all PEs on same compute unit and private also known as device registers
are accessible only within the PE. An application can query device to determine
its properties. Therefor available compute units and memory can be used effectively.

3.2.2 CUDA
Compute Unified Device Architecture (CUDA) is a parallel computing programming
model and platform developed and maintained by NVIDIA corporation. Unlike
OpenCL it is designed only for NVIDIA hardware but programming in this language
is simpler. First graphic card build with a CUDA architecture was released in 2006
as GeForce 8800GX [14].
This included several new components designed for GPU computing. Thanks to
this improvements CUDA removed many limitations that prevented GPUs to be
usefull for a general-purpose computing. Most notably unified shader pipeline
that allow each ALU to be managed by a program. Additional ALUs are build
to support IEEE standardized single-precision floating-point arithmetics and use
instruction set build for general computation instead of standard graphics. All

19

execution units on the device are allowed arbitrary read and write access to memory
and software-managed cache shared memory.
For programming the CUDA C language is used [14]. It is the industrial standard
C language with few additional keywords to harness maximum from NVIDIAs
CUDA architecture. It is also the first language developed by GPU company for
general purpose computing on graphic cards. There are also specialized hardware
drivers to utilize CUDA architectures massive computing power. Users are not
required to solve their problem as a computer graphic tast nor they are required to
have a knowledge about OpenGL or DirectX.
An additional drawback of CUDA C is usage of C++ compiler. Therefore valid C,
but invalid C++ code can be fail to compile. There is also no support for exception
handling. While OpenGL has access to registered CUDA memory, it is not possible
the other way.
Main advantages of using CUDA are:

1. Code can be read from any address in memory,

2. Unified memory,

3. Usage of shared memory,

4. Faster downloads and readbacks to and from the GPU,

5. Full support for integer and bitwise operations.

3.3 Computation study
In this section I will show you trends for computational speed for sequential code,
blas code and GPU code. Before getting to the results of the experiment it is impor-
tant to note two facts. First not every procedure can be parallelized. Operations
within an algorithm can be parallelized if and only if they are independent (i.e. they
can be executed in any order). In my thesis I focus on Single Instruction Multiple
Data (SIMD) parallelization technique. One kernel is executed simultaneously on
multiple chunks of data as illustrated on figure 3.2. Second fact is that copying
data from host to device memory takes processing take. While parallelization on
multiple CPUs or GPUs faster whole computation, data transfer on the other hands
slows down. Thus it is important to consider wisely which part of code can be
ported. Often the gain is visible after porting and running the code and in more
complex computations.

20

 OpenCL CUDA

 my_kernel.cu my_kernel.cl

 CUDA Toolkit

 PTX

 binary

 STREAM SDK

 IL

 binary

 Graphic card

Figure 3.1: Compilation steps

__global__ void kernel();

data[0] data[1] data[2]

Figure 3.2: SIMD principle

In the table 5.2 are results from the experiment. All times are average of 10
consequential runs and in miliseconds (ms). There is included also data copying
time in cuda columns. From measured times it is clear that data transfer takes
majority of computation time in CUDA case. Despite that CUDA is still faster than
pure sequential code. The fastest are the fully optimized BLAS3 functions from
the Intel MKL library both on CPU and GPU processors. A matrix multiplication
has complexity of O(N3). If multiple processing units are working parallel it is
reduces by number of units. In case of vectorized routine time reduction is even

21

greater. Therefore usage of these two techniques is of practical significance and
this thesis aims are meaningful.

N sequential blas lvl 3 cuda gpu cuda blas3
100 6 0.07 2 0
200 49 0.27 23 1
400 434 1.45 200 2
600 1584 5.13 665 4
800 4007 11.37 1621 7
1000 6655 21.82 3095 23

Table 3.3: Results of experiment.

22

Chapter 4

Grid Calculation

In this chapter I describe code I wrote for my diploma thesis. Whole code can be
downloaded and run from my Git repository [15]. In following sections I describe
whole computation step-by-step. A pseudocode, a part of code or an example
output is provided if needed. Because I will reference to individual functions I
provide structure of project as it can be downloaded. Functions are in italics.
Important keywords as are marked bold. Folders are CAPITAL. Note that I list
only the most important functions. Whole code was tested on Scientific Linux
6.4 operating system and instruction are provided only for Linux distributions.
Because this project was created for purposes of scientific computing Windows and
OS X distribution are not available.

• INPUT

– NEON-DZ
∗ basis.txt
∗ dmat.txt
∗ grid.txt

– BENZENE-DZ
∗ basis.txt
∗ dmat.txt
∗ grid.txt

• SRC

– atom.h
– atom.cpp
– ccalc.h
– ccalc.cu

∗ void calcDensityCuda(int)
∗ __global__ void calcDens(int pts, int noAOs, double *cd_DM,
double *cd_gVal, double *cd_wght, double *cd_gDns)

23

– grid.h
– grid.cpp

∗ protected: int errorCode
∗ protected: struct atom gridAtom
∗ public: void calcGrid(int, int)
∗ public: void printInfoGrid()
∗ public: void printFullGrid()
∗ protected: double getR(int)
∗ protected: double getValue(int)
∗ protected: void calcDensity()
∗ protected: void calcDensityScr()
∗ protected: void calcDensityBatch(int)

• int main

• makefile

• readme.txt

4.1 Compilation
For sequential code with utilizing Intel®MKL library compilation is done by typing
command make in repository directory. Intel compiler and libraries must be
installed on your Linux system. On university server cluster they are installed but
needs to be loaded by command module load intel/composer_xe_2013. If Intel
MKL libraries are not available user needs to change compiler option in makefile
and set MKL to 0 in grid.cpp file. Cuda version of code can be used by setting
CUDA to 1 and MKL to 0 in grid.cpp file and main.cpp file and running compilation
command provided in readme.txt file.

4.2 Input data parsing
Three data files are provided. The first file basis.txt holding information about the
coefficients and the exponents for the Gaussian basis sets and Cartesian positions
of orbital centers. The second dmat.txt is carrying density matrix. In the third
grid.txt is grid generated according to Beck [8]. There is also an option for radial
grid implemented, but for in the experiment I will use "Becke" grid from text file.
Names for all three files with number of atomic orbitals and contracted functions
are provided at the beginning of the int main() function. Functions from grid.cpp
take care of loading data and initializing variables.

24

4.3 Atomic orbital value calculation
In this step value for every atomic orbital χi is computed according to equation
4.1. With Gaussian being basis function as was mentioned in chapter 2.2.5.

χj =
N∑
i=0

αiexpβiR
2

(4.1)

Coefficients αis and βis are provided from input data files. R2 is squared Cartesian
distance.

R2 = (xa − xp)2 + (ya − yp)2 + (za − zp)2 (4.2)

xa denotes x coordinate for atomic orbital center and xp denotes grid point x
coordinate. This step is performed at each grid point for each atomic orbital.
Pseudocode for algorithm is provided in 1. Whole procedure consists of two private

Algorithm 1 Calculate atomic orbitals.
1: for all grid points do
2: for all atomic orbitals do
3: value := 0.0
4: compute R2

5: for i ≤ nfnc do
6: value += αi ∗ exp(βi ∗R2)
7: end for
8: current el. orbital ← value
9: end for

10: end for

functions which ale called by main calcGrid(int, int) during computation. The
double getR2(int) for calculating R2 and the double getValue(int, double) to
compute value in each step. This step is done sequentially. Because it consist of a
few mathematical operation between a large amount of data parallelization would
not have desired effect. Most of processing time would be spend on data transfer
between cores and host.

4.4 Calculate electron density
This is the most interesting part of the code and thus the part which was mainly
focused in my diploma thesis. In fact it is the bottleneck of whole computation.
In chapter 2.2.7 was mentioned that the physical quantity used for calculation is
electron density. And in equation 2.15 that electron density (E) is calculated from
atomic orbitals χ multiplied by Density Matrix D. Below is rewritten equation
2.15 in more mathematical form with index p denoting a grid point.

Ep = χpDχp (4.3)

Currently there are four methods supported and fifth under development with

25

Algorithm 2 Calculate electron density.
1: N := 0.0
2: for all grid points do
3: E = χDχ
4: N += E
5: end for

expectation to be finished until end of May.

1. CPU sequential

2. CPU screening

3. CPU batch

4. GPU sequential

5. GPU batch is under development.

4.4.1 CPU sequential
The simples way how to calculate product of atomic orbitals and density matrix.
Because matrix D is diagonally symmetric (i.e. D[i][j] = D[j][i] if i 6= j) a
simplification can be used. It greatly reduce computational complexity. Instead of
complexity scaling by O(N3) the factor is only O(N2). In my code it is done by
private function void calcDensity().

Algorithm 3 Sequential computation of ED
1: E := 0.0
2: for k ≤ nao do
3: for l < k do
4: E += 2 ∗ χk ∗D[k][l] ∗ χl
5: end for
6: E += χk ∗D[k][k] ∗ χk
7: end for

4.4.2 CPU screening
In 4.1 is depicted sample output for Neon atom. Data are in order of [x, y, z]
coordinate and [ao1, ao2, · · · , ao15] As you can see many values for atomic orbitals
are zeros, or very small close to zero. Though for smaller systems this may seem
as unimportant, but in larger system computing these zeros is significant waste
of time. Therefor a screening procedure may be used. First only left side of 4.3
is computed and if value is below a threshold instead of computing the rest, zero
is taken as the result. In my code I took advantage of C language’s pointers and
Blas2 (section 3.1) vector-matrix arithmetics from Intel MKL library. Instead of
working with memory directly, I use an pointer array and dereference positions

26

Figure 4.1: Atomic orbital values for Neon

that provide product below threshold. Threshold is defined as global static variable
and is set to 10−12. Algorithm is provided below, pointers are denoted by a ?. For
implementation in code look for function void calcDensityScr().

Algorithm 4 Computation of E with screening
1: E := 0.0
2: χ? ← χ
3: X? ← χD
4: for X?

i do
5: if X?

i < threshold then
6: X?

i = NULL
7: χ?i = NULL
8: end if
9: E ← X? × χ?

10: end for

4.4.3 CPU batch
Why to compute just one point at a time if there is a way to compute whole batch.
If χp vectors are put one below another a matrix is constructed. Then there is a
possibility to utilized matrix-matrix Blas3 routines. Lets denote a batch of n grid

27

points by b and construct a matrix Cb from n consecutive vectors χp.

Cb =


χp
χp+1
χp+2
...

χp+n−1

 (4.4)

Then equation 4.3 is rewritten to:

Eb = Cb ×D · Cb (4.5)

where × denotes classical matrix-matrix product and · denotes vector-wise matrix
product. Whole process is described in algorithm below and implemented in
function void calcDensityBatch(int).

Algorithm 5 Computation of E from batch of points.
1: Eb := zeros[b× nao]
2: Construct Cb
3: Eb ← Cb ×D
4: Eb := Eb · Cb
5: Distribute Eb to Ep.

4.4.4 GPU sequential
Because grid points are computed independently of each other they are natural
choice for parallelization using Single Instruction Multiple Data (SIMD) principle.
This procedure is done in following three steps:

1. Copy required data to GPU memory: Atomic orbital values, density matrix.

2. Compute E using algorithm 3.

3. Copy E to host memory.

Because algorithm 3 has complexity of O(N2) it is obvious that effectives of this
method depends on number of atomic orbitals. Basically speed from using multiple
cores must be greater than time spend on data movement.

4.5 Exchange-Correlation Energy
Exchange correlation energy is computed according to equations 2.16 and 2.17.
Element df is weight of grid point. Because it is a fast computation this step is
done on CPU for all four implemented methods.

28

4.6 Print output
Two functions are provided for user to print information about computation. The
function void printInfoGrid() provides all important information about compu-
tation as status, number of electrons, total computation time, number of atomic
orbitals and number of grid points. If user is interested in detailed information
about electron density on individual grid points he can call function void printFull-
Grid(). But note that there are thousands of points in grid, therefore this output
is quite a long. And example short output is provided in figure 4.2. For developing
purposes there is a compilation option VERBOSITY which prints additional info
about computation.

Figure 4.2: Output from function printInfoGrid()

29

Chapter 5

Conclusion

The computational case study is carried on the Neon atom. It has 6 atomic orbitals
occupied by 10 electrons and 25 contracted functions for GTO basis set. All input
files for Neon are in the input folder of the Git repository [15]. The Becke grid
containing 16496 points is in grid.txt file.
The study is run on a computational cluster of the Slovak University of Technology
in Bratislava with parameters in table 5.1. Measured processing times are in table
5.2.

parameter value
OS Scientific Linux 6.4.
CPU Intel Xeon X5670 2.93 GHz
RAM 48GB
GPU NVIDIA Tesla M2050 448 cuda cores

Table 5.1: Parameters of STU BA computational cluster.

method computational time [ms]
CPU Sequential 8.3
CPU Screening 6.5
CPU Batch 7.2
GPU Sequential 8.0

Table 5.2: Measured processing times.

The results provide an interesting conclusion. Each improved code is faster
than pure sequential one. For molecule of this small size, vectorized and optimized
functions from Math Kernel Library outran each other code by a significant amount
(at least 10%). From the difference between screening and batch technique we
can see that the construction of a matrix (done by reallocation of memory) are a
slow down for a molecule of small size as Neon. The CUDA GPU code has major
slow down cause by copying of data for all grids points. But parallel usage of 448
cores manages successful trade-off in terms of decreased overall computational time.

30

Thus rewriting traditional CPU code to new GPU code is a viable step forward. As
was shown in motivational case at the end of chapter 4 in larger matrices this gain
would be bigger. Therefor in case of a larger molecule utilizing GPUs would be a
great benefit for computational chemists. Another scored points for CUDA will be
with Blas3 code on GPUs which is expected to be finished in future weeks. In the
future we can expect further improvement of graphic processing units and APIs for
their programming. Especially from the NVidia corporation which is putting great
effort to propagate their cards in scientific communities.

31

Resumé

V mojej práci sa venujem využitie grafických kariet (GPU) na kvantovo-chemické
výpočty. Aby som ukázal ich prínos naprogramoval som výpočet výmenno-korelačnej
energie (Exc) v programovacom jazyku C++. Moj program obsahuje štyri rôzne
metódy na výpočet elektrónovej hustoty, ktorá je hlavným parametrom finálneho
výpočtu Exc. Menovite:

1. CPU sekvenčne

2. CPU s využítím screeningu

3. CPU po skupine bodov

4. GPU sekvenčne

Druhá a tretia metóda naviac využíva vektorizované funkcie z Math Kernel Library
od spoločnosti Intel na ich procesory.

Celá práca je štrukturovaná aby čiteľ získlal prehľad o použitých pojmoch a metó-
dach z počítačovej chémie, ktoré sú vysvetlné v kapitole 2. V kapitole 3. sa venujem
MKL knižnici od Intelu a dvom najpoužívanejším rozhraniam na programovanie
grafických kariet CUDA a OpenCL. V tejto kapitole sa nachádza aj zhrnutie výhod
oboch rozhraní.

Kedže pri použiti GPU treba kopírovať všetky potrebné dáta do pamäte karty
dochádza k spomaleniu celého výpočtu. Preto treba zvážiť ktorá čast aplikácie po-
beží mimo hlavnej procesorovej jednotky. Zanalyzoval som jednotlivé časti výpočtu
Exc a preniesol len najkritickejšiu čast na GPU. Záver práce tvorí príklad výpočtu
Exc na atóme Neónu a vyhodnotenie výpočtového času všetkých štyroch metód.
Ukázal som, že aj jednoduché upravenie pôvodného CPU kódu na GPU kód prinesie
zlepšenie v celkovom výpočtovom čase, aj obrovskému množstvu prenesených dát.
V budúcnosti môžeme očákávať len ďalší pokrok vo vývoji metód programovania
GPU a čoraz väčšie množstvo vedeckýćh výpočtov na grafických kartách.

32

Bibliography

[1] Frank Jensen. Introduction to Computational Chemistry. John Wiley & Sons,
Ltd, West Sussex, England, 2007.

[2] Christopher J. Cramer. Essentials of Computational Chemistry. John Wiley
& Sons, Ltd, West Sussex, England, 2004.

[3] Andrew S. Ichimura. Computational chemistry lectures. California Institute of
Technology, California, USA, 2004.

[4] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange
and correlation effects. Physical Review, 140:1133–1138, 1965.

[5] Wikipedia. List of quantum chemistry and solid-state physics soft-
ware. http://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-
state_physics_software, 2015.

[6] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson,
F. Pascale, and B. Civalleri and. Crystal 06 User’s Manual. University of
Torino, Torino, Italy, 2006.

[7] Radovan Bast. XCint documentation. http://xcint.readthedocs.org/en/latest/purpose.html,
2010.

[8] A.D. Becke. A multicenter numerical integration scheme for polyatomic
molecules. The Journal of Chemical Physics, 88, 1988.

[9] Roland Lindh, Per Åke Malmqvist, and Laura Gagliardi. Molecular integrals
by numerical quadrature. i. radial integration. Theoretical Chemistry Accounts,
106:178–187, 2001.

[10] Lebedev and Laikov. A quadrature formula for the sphere of the 131st algebraic
order of accuracy. Russian Academy of Sciences Doklady Mathematics, 59:477–
481, 1999.

[11] Intel Corporation. Intel MKL official website. https://software.intel.com/en-
us/intel-mkl, 2015.

[12] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson,
and Jack Dongarr. From cuda to opencl: Towards a performance-portable
solution for multi-platform gpu programming. Parallel Computing, 38:391–407,
2012.

33

[13] John E. Stone, David Gohara, and Guochun Shi. Opencl: A parallel program-
ming standard for heterogeneous computing systems. Computing in Science
and Engineering, 12:66–72, 2011.

[14] Jason Sanders and Edward Kandrod. CUDA by Example. Addison - Wesley,
Boston, USA, 2011.

[15] Jan Minarik. NeverWhere Git repository.
https://github.com/JanoMinarik/NeverWhere, 2014.

34

	Introduction
	Computational Chemistry
	Computable qualities
	Structure
	Potential Energy Surfaces
	Chemical Properties

	Quantum Mechanics
	The Schrödinger's equation
	The Hamiltonian operator
	The variational principle
	The Born-Oppenheimer approximation
	The LCAO basis sets
	Hartree-Fock computation
	Density Functional Theory

	Software for computational chemistry
	Commercial: Crystal
	Open-source: XCint

	Computation acceleration
	Intel MKL
	GPU Computing
	OpenCL
	CUDA

	Computation study

	Grid Calculation
	Compilation
	Input data parsing
	Atomic orbital value calculation
	Calculate electron density
	CPU sequential
	CPU screening
	CPU batch
	GPU sequential

	Exchange-Correlation Energy
	Print output

	Conclusion

