
A Robotic Traffic Simulator for Teaching of

Advanced Control Methods

Martin Kalúz ∗ Juraj Holaza ∗ Filip Janeček ∗

Slavomı́r Blažek ∗ Michal Kvasnica ∗

∗ Institute of Information Engineering, Automation and Mathematics
STU in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
(e-mail: {martin.kaluz,juraj.holaza,michal.kvasnica}@stuba.sk)

Abstract: This paper presents a development and educational application of robotic traffic
simulator. Setup presented in his work consists of ten laboratory-scale vehicles designed for
simulations of various traffic situations as well as the evaluation of advanced control scenarios.
These can be the control of traffic fluency, such as congestion movement, vehicle group
acceleration, breaking, obstacle avoidance and other situations known from everyday traffic.
Further, the paper describes the technical realization of simulator from both, the hardware
and software point of view. Moreover, the applicability of solution is discussed over the various
situations, which can be solved in educational as well as the scientific matter. The educational
value of developed traffic simulator is demonstrated on the case study, where an optimal control
strategy using the Model Predictive Control was designed and evaluated by a master’s degree
student.

Keywords: Traffic, Robotics, Simulator, Control Education, Optimal Control, MPC

1. INTRODUCTION

The problems of traffic regulation are one of the most
discussed topics in recent years, not only at the public
forum, but also in the scientific circles. As the result
of vehicle number growth and non-sufficient changes in
the road infrastructures the undesired traffic situations
become an everyday problem in all major cities. These
often result in collisions, traffic jams, and overall slowdown
of traffic flow which also result into the increased fuel
consumption and exceeded production of gas emissions. To
reduce the risk of such situations, car manufacturers equip
their vehicles with information and control systems. The
purpose of these systems is to help drivers to effectively
solve the traffic situations.

One of the current topics addressed by many research
teams in the world is the problem of computer-based traffic
fluency control. Frequently used approach is the control of
each vehicle as the autonomous system with the respect
to the environment and other traffic participants. Another
approach considers the control of a set of vehicles as one
distributed system. In this scenario the upper-level control
system is able to actively communicate with each vehicle,
collect the operational data from it, and provide it with
the information how to behave.

Various control design approaches are used to control
traffic congestions movement, such as adaptive control
(Kesting et al., 2008), genetic algorithm (Dezani et al.,
2012), model predictive control (MPC) (Zegeye et al.,
2009), etc. MPC is an advanced control method, based on
computations of optimal control inputs using the informa-
tion about system’s model and measurement or estimation

of its states. The MPC performs the prediction of system’s
behavior and therefore it allows control system to react to
the future situations in advance. In literature, a numerous
works are specifically aiming on the application of MPC to
traffic congestion control (Deo et al., 2009). An interesting
applications on the simulator of vehicle queues have been
conducted at Czech Technical University in Prague, where
several methods of distributed control of traffic have been
applied (Šebek and Hurák, 2011; Martinec et al., 2012).

One of the main problems along with the development
of control methods is their evaluation in practice. This
fact does not apply only for scientific environment, but
also for education institutions. This apply even more when
the topic is the control of transportation vehicles, which
are not only expensive and difficult to acquire in higher
numbers, but also difficult to deploy into practical experi-
ments. The majority of available works use the mathemat-
ical models of traffic congestions and the applications are
mainly in the form of computer-based simulations (Mather
and Hsieh, 2012). This trend is obvious, mostly due to
the application requirements, since the execution of such
experiments in real traffic would be very expensive. Due
to these reasons, one of the most applied approaches is the
use of small-scale laboratory models of vehicles (Marcolino
and Chaimowicz, 2009). This brings an advantage of cost
reduction in both, the development phase and operation.

At the Institute of Information Engineering, Automation
and Mathematics (IAM), we have developed such a labo-
ratory scale traffic simulator, which is intended for both,
the research applications as well as the education purposes
and students’ projects.

Preprints of the 11th IFAC Symposium on Advances in
Control Education, Bratislava, Slovakia, June 1-3, 2016

FrParallel E1.6

Copyright © 2016 IFAC 338

2. ROBOTIC VEHICLES

Robotic vehicles (Fig. 1) have been developed on the
low cost platform Arduino Yún 1 which consists of two
separate computing units, communication peripherals and
electric signal interface. Arduino Yún contains a micro-
computer with Atheros processor and lightweight Linux
distribution OpenWrt, which is supplemented by various
peripherals such as Ethernet, WiFi, MicroSD card slot
and USB interface. Second computing unit is an 8-bit
microcontroller Atmel ATMega32u4 that manages the sig-
nal interface of development board. The communication
between processing units is ensured by UART TTL serial
link. The robotic vehicle itself acts as an extension shield
for Arduino board. In this work a Shield Bot development
electronic platform was used 2 . This platform consists of
a car-shape electronic board, equipped with two indepen-
dent DC-motor-driven wheels, motor control electronics,
battery, five surface reflection sensors for line tracking,
extension ports for sensors, and has been additionally
equipped with ultrasonic distance sensor.

Fig. 1. Robotic vehicles

3. SOFTWARE AND COMMUNICATION

The whole vehicle control system is separated into three
main parts: the low-level program in microcontroller (writ-
ten in C Language) that serves the sensors, actuators and
basic control of vehicle’s motion; the upper-level program
running in OpenWrt of Arduino Yún (written in Python)
that represents back-end communication service for front-
end software; and open front-end that can be any software
that allows HTTP-based communication (e.g. standard
Web page, MATLAB, etc). The principles of communi-
cation with MATLAB environment is shown in Fig. 2.

The communication scheme is very simple and it uses the
JavaScript Object Notation (JSON) as data structure. The
program or application that is intended to control the ve-
hicle can use two type of communication methods. First is
based on standard HTTP POST requests which opens the
connection only for one pair of request-response at a time,
and second uses the WebSocket, which is a full-duplex
TCP-based protocol. WebSocket opens the communication
channel and keeps it open until it is terminated by protocol
instruction. This allows communication to be faster, since
the connection does not need to be established every time
the data is transferred. This method is also less demanding
on the amount of supplementary data (headers, cookies)
transferred in each message. The communication services
in vehicles are designed to provide on-demand response to
control software (e.g. MATLAB).

1 https://www.arduino.cc/en/Main/ArduinoBoardYun
2 http://www.seeedstudio.com/wiki/Shield_Bot_V1.1

MATLAB
WebSocket

(JSON)

Line pos.

Distance

Environment

Sensors Wheels

affects

Serial link (JSON)

Signal interf.

OpenWrt (Python)

ATMega32u4

Control software

WebSocket service

senses

Fig. 2. The communication scheme of a single robotic
vehicle using MATLAB.

Each vehicle provides three methods of connection to
control software. These are:

• WebSocket server - In this method a control software
(MATLAB, Web browser, Python, etc.) adopts a role
of client and can establish one connection per vehi-
cle using their WebSocket services published on the
network. In this case the vehicles act as the servers,
and communication with each vehicle is handled sep-
arately.

• WebSocket client - In this case the vehicles act as
the clients in the communication setup. Every client
establishes a WebSocket connection with a message
broker, which is a Python-based service running on
a separate computer. The message broker provides
another WebSocket service for control software. This
allows the client, which is in this case the control
software itself, to simultaneously communicate with
several vehicles at once.

• HTTP server - Provides a similar principle of commu-
nication as first method. The main difference is that
it does not use the switching protocol, but separate
requests instead.

4. VARIOUS CONTROL SCENARIOS

The laboratory scale traffic simulator consists of 10 real
robotic vehicles, white flat surface with roads made of
glossy black tape and obstacle objects, computer equipped
with control software (e.g. MATLAB), wireless network to
which the vehicles and computer connect, and computer
vision system for recognition of vehicles’ position, which
however is still in the development phase. Using this
setup a various control situations can be tested. The main
control scenarios cover the following situations:

a) Control of the movement of heterogeneous congestions
and distance between vehicles. This also include the
problems of congestion acceleration and breaking as a
whole.

b) Control of sudden congestion breaking in the case of
unavoidable obstacle, e.g. a crash site blocking the
highway.

c) Control of traffic at crossroads, where different rights
of way apply.

d) Line merging in congestions.
e) Single and multiple obstacle avoidance.

Copyright © 2016 IFAC 339

f) Different tasks of automatic parking.

In developed simulator setup mostly the situations a, b
and e can be evaluated. This is due to the lack of sensing
capabilities that current system has. Currently the vehicles
can sense only small amount environmental information,
namely the position of guide line and distance of object
strictly in the front of the vehicle. However, in the future
work, the use of marker-based computer vision system for
exact position detection is planned, and therefore it will
be possible to apply all mentioned situations in laboratory
environment. This vision system is being developed using
the ArUco (Garrido-Jurado et al., 2014), an open-source
OpenCV-based C++ library.

5. LEARNING OBJECTIVES

The robotic traffic simulator has found its versatile use
in several courses such as the Diploma project, Semestral
project, Model Predictive Control and Control of Embedded
Systems, and it provides a wide spectrum of problems that
students can solve. These are for example:

• Mathematical modeling of cars – Here students learn
basic principles of modeling of physical systems
(cars). The derivation of model is a prerequisite for
later controller resign.

• Identification of unknown parameters of cars – The
more complex models of cars contain the parameters
that describe the dynamics of motors, steering ca-
pability, speed drop off based on battery level, etc.
All of these parameters must be acquired from the
experimental identification.

• Design of simple control loops – To become familiar
with the robotic vehicles, students firstly start to work
on simple control loops such as PID control for line
following or distance control of two vehicles.

• Upper-level control design At this level, students are
encouraged to design more advanced control schemes,
where knowledge of observer design or model predic-
tive control is applied.

6. USAGE OF THE TRAFFIC SIMULATOR

In the education and research at IAM, the experimenters
are using mostly two software solutions developed at our
institute to control the simulator. First is the MATLAB
application programming interface (API) specifically de-
signed for the traffic simulator. This API is mostly in-
tended for the researchers and students with the higher
skills in programming. The second control software is
Node-RED 3 , a universal JavaScript-based platform that
allows simple program composition using the node-based
visual editor.

In the courses focused on automatic control the students
use the simulator mostly via the MATLAB API, since they
are familiar with this computational environment. The us-
age is very simple and requires them only to connect their
computers to the simulator’s network, where robotic vehi-
cles connect automatically after they are powered on. The
design of a particular experiment (track shape, number of
vehicles, control objective) depends on the current topic

3 http://nodered.org/

being taught in lesson. It can be e.g. the constrained con-
trol of vehicle distances, speed, etc. Students design their
own algorithms MATLAB based on the knowledge control
method and simple mathematical model of vehicles, and
use the API to directly incorporate the simulator’s inputs
and outputs to their program. Since the simulator is a
set of real objects, they can observe the behavior of the
control system more realistically than just using the pure
computer simulation.

6.1 Control via MATLAB

The MATLAB-based API for robotic vehicle control pro-
vides the class called RoboBug which ensures connection
and configuration of robots, as well as the methods for data
acquisition and command issuing. The use of class is very
simple and intuitive. To create an object that represents
an instance of robot, the following command is executed.

v eh i c l e 0 1 = RoboBug (’ 192 . 168 . 0 . 201 ’) ;

The class constructor accepts only one argument that
represents the IP address of robot within the local network.
After the instance of vehicle is created the connection
command can be issued.

v eh i c l e 0 1 . connect () ;

This command invokes the WebSocket connection between
the MATLAB and robot. Since the WebSocket standard
is not natively supported by MATLAB yet, the RoboBug

class requites two additional dependencies to be installed.
These are Java-based classes matwebsocks and wsclient,
which can be obtained and installed via toolbox manager
tbxmanager 4 .

After the connection is established successfully, the robot
can be directly controlled and monitored using the follow-
ing commands.

% enable automatic line following

v eh i c l e 0 1 . setAuto (1) ;

% define speed of the vehicle

v eh i c l e 0 1 . setSpeed (1 0 0) ;

% define steering via motor power distribution

v eh i c l e 0 1 . setDrvFact (0 . 5) ;

% define stop distance [cm]

v eh i c l e 0 1 . se tStopDist (2 . 5) ;

% get reading from distance sensor [cm]

d i s t an c e = ve h i c l e 0 1 . ge tDistance () ;

% get array of reflection sensor readings

s en so r s = v eh i c l e 0 1 . g e tS en so r s () ;

% trigger immediate stop

v eh i c l e 0 1 . stop () ;

% disconnect from robot

v eh i c l e 0 1 . close () ;

The RoboBug class has been also extended by a Simulink
library. This allows students to quickly and effectively
design their own control schemes without directly using
the API or writing their own code.

6.2 Control via Node-RED and SmartNodes Library

Another effective control design environment developed
at IAM is the extensional library for Node-RED, which
is primarily intended for creating the solutions for the

4 http://www.tbxmanager.com/

Copyright © 2016 IFAC 340

Internet of Things. This framework allows its users to
create the algorithms in visual schematic environment
similar to Simulink. Since the Node-RED is not directly
designed to work with control algorithms, we have de-
veloped the SmartNodes, a library of nodes that allow
to incorporate many of commonly used controllers and
supplementary features into the existing environment. The
SmartNodes provide a set of signal routing nodes with vec-
tor data structure similar to that used by MATLAB and
definition of various representations of dynamical systems
and controllers such as:

• standard PID,
• polynomial controller,
• continuous-time transfer function,
• discrete-time transfer function,
• state-space system,
• state feedback controller,
• sequential search table for explicit MPC.

Additionally, some other nodes have been created for
easy implementation of custom control algorithms. These
are e.g. nodes for user interface controls such as switch
button and slider, and universal representation of used-
defined function written in JavaScript. The user-defined
function allows the user to incorporate any functionality
that is not directly provided by SmartNodes. To extend
the communication features, a WebSocket service has been
implemented as well.

In standard functionality the Node-RED is designed to
perform one execution of designed scheme at a time. This
functionality has been extended in order to achieve the
cyclic time-based program execution that is required for
evaluation of time-based control algorithms. One of the
main benefits of SmartNodes is the capability to compile
the visual scheme into standalone executable JavaScript
application for web browsers. In this principle, user-defined
algorithm can be exported from Node-RED and loaded
into any device equipped with JavaScript execution envi-
ronment (e.g. Web browser).

7. CASE STUDY

In this study we show how to control traffic fluency as one
centralized system. We consider traffic system represented
by n cars that are tracking the single-lined rounded road
with diameter of 90cm. Here, the first car of the convoy
denotes the leader that has constant speed and is chased
by the other n−1 cars, which are denoted as followers. The
control objective is to manipulate speed of cars (followers)
such that they will preserve pre-defined safety distance
from each other. To achieve this goal we propose to derive
a mathematical model for system of n cars, which will be
subsequently used as a prediction model in MPC strategy.
The efficiency of the designed control algorithm will be
demonstrated for the system of two cars as well as for the
system of four cars. It is worth to mention that majority of
the proposed results are derived by the student and form
an important part in his bachelor thesis.

7.1 Model

Accurate mathematical model plays a vital role in MPC
policy. This is due to the fact that the algorithm oper-

ates over it and pre-calculates future states and outputs,
respectively.Therefore the model directly influences the
optimized control inputs and thus the control quality.
In our case, mathematical model of the aforementioned
system can be intuitively derived by using basic knowledge
of physics. This allows students not only to exploit heir
skills from different subjects, but also to better understand
the principles of the system dynamics.

To design a mathematical model of the centralized system
we need to incorporate two types of dynamics. The first
one is the line tracking. Here each car, based on signals
from five reflective sensors, have to weight the power input
between two motors such that it stays on the road. The
second one is dedicated to the relationship between the
measured distance from the car ahead (obtained from
ultrasonic sensors) and the power added to motors. For
brevity we consider that the algorithm, which allows cars
to autonomously track the road, to be already embedded
in each car.

The associated mathematical model of the centralized
system can be defined as

v̇0(t) = 0, (1a)

ḋi(t) = vi−1(t)− vi(t), (1b)

where i ∈ {1, 2, . . . , n − 1}, v̇0(t) is the derivative of the

leader’s speed , ḋi(t) denotes derivative of the follower’s
distance (gap between it and the car in front of it) , vi(t)
and vi−1(t) represents the speed of the i-th follower and
the speed of the car ahead, respectively.

By converting (1) into discrete-time domain (e.g. via the
Euler method) one obtains

v0(t+ 1)− v0(t)

Ts
= 0, (2a)

di(t+ 1)− di(t)

Ts
= vi−1(t)− vi(t), (2b)

where terms v0(t+ 1) and di(t+ 1) denote leader’s speed
and i-th follower’s distance at the next sample period Ts.
Finally, the general model of the centralized system can
be defined as a steady state model

x(t+ 1) = Ax(t) +Bu(t), (3a)

y(t) = Cx(t), (3b)

with matrices

x(t) =











v0(t)
d1(t)
d2(t)
...

dn−1(t)











, u(t) =











u1(t)
u2(t)
u3(t)

...
un−1(t)











, y(t) =











d1(t)
d2(t)
d3(t)
...

dn−1(t)











,

A =











1 0 0 . . . 0
Ts 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1











, B =











0 0 0 . . . 0 0
−Ts 0 0 . . . 0 0
Ts −Ts 0 . . . 0 0
...

. . .
...

0 0 0 . . . T s −Ts











,

C =











0 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
..
.

. . .
..
.

0 0 0 . . . 1











,

Copyright © 2016 IFAC 341

where x(t) ∈ R
n is the vector of states, u(t) ∈ R

n−1

is vector of control inputs and y(t) ∈ R
n−1 is vector of

outputs. Recalling that n represents the number of cars.

Note that the state space model (3) can be extended
by the line tracking dynamics. This will, however, lead
to additional five binary states (from the reflecting sen-
sors) and one control input (weighting coefficient of the
motor power) per car. This would result in the total of
x̃(t) ∈ R

n × {0, 1}5n states, ũ(t) ∈ R
2n−1 control inputs

and ỹ(t) ∈ R
n−1 outputs. Hence, such augmented model

is more complex and thus harder to obtain. Moreover,
as a prediction model in MPC, it leads to mixed-integer
programming what might cause implementation issues as
the sampling period has to be increased due to the en-
hanced computation time. The bottom line is, the simpler
model (3) is much easier to devise and thus it is more
suitable for education purposes.

7.2 Model Predictive Control

In this study we consider MPC optimization problem of
the form

min
u0,...,uN−1

N−1
∑

k=0

(||Qy (yk − yref) ||
2
2 + ||Qu (uk) ||

2
2+

||Qdu (∆uk) ||
2
2 + ||Qs (sk) ||

2
2),

(4a)

s.t. xk+1 = Axk +Buk, (4b)

yk = Cxk, (4c)

x0 = x(t) (4d)

∆uk = uk − uk−1, (4e)

umin ≤ uk ≤ umax, (4f)

ymin − sk ≤ yk ≤ ymax + sk, (4g)

sk ≥ 0, (4h)

where constraints (4b)−(4h) are enforced for k ∈ {1, . . . , N−
1}. In the objective function (4a) N denotes the prediction
horizon, Qy, Qu, Qdu and Qs are the weighting matrices
and term e.g. ||Qu (uk) ||

2
2 = uTQuu represents the squared

Euclidean norm. Next x(t) is the state measurement, xk is
the vector of predicted states, yk is the vector of predicted
outputs, uk is the vector of optimized control inputs and
A, B and C are the state-space matrices defined in (3).
Note that the notation distinguish between the real-time
values x(t) and their predictions xk at the k-th step. Fur-
thermore, ∆uk is the difference between two subsequent
control inputs (4e), sk are slack variables and umin, umax,
ymin and ymax are input and output boundaries.

The optimization problem defined as in (4) is chosen to
illustrate the basic advantages of MPC strategy that are
prohibitive in other conventional control approaches such
as PID or LQR. The basic MPC formulation, which is
denoted by constraints (4b)−(4d) and first two terms in
the objective function (4a), basically represents to the
LQR policy with finite prediction horizon. By adding hard
constraints (4f) we force the optimization problem (4)
to operate only with, e.g. physically applicable, control
inputs inside of the restricted boundaries umin and umax.
Another advanced feature of MPC embedded in (4) is
the delta u formulation represented by (4e) and the third
term in the objective function (4a), which provides offset-
free tracking, however only if the mathematical model
matches the controlled plant (system of cars). Finally, the

output constraints (4g) restrict distances between each car.
We need to keep in mind that this shrinks the domain
of the MPC policy. Therefore if a larger disturbance
of the measured outputs occurs, what is quite common
with ultrasonic sensors, the optimization problem become
infeasible and no control input would be sent to cars.
This limitation can be easily handled by adding slack
variables (4h) that are heavily penalized in the objective
function. Note that input constraints (4f) omits slacks.
This is due to the fact that, in our study, the upper and
the lower boundaries umin and umax represent physical
limitations that can not by exceeded.

The student objective in this project is to devise the
MPC optimization problem (4) in MATLAB/Simulink
environment. The most fundamental approach is to ex-
ploit basic MATLAB functions in computationally effi-
cient manner. This can be, however, quite time consuming
and thus we allow one to employ advanced toolboxes like
YALMIP (Löfberg, 2004) or MPT3 (Herceg et al., 2013)
that allows students to formulate optimization problems
(as in (4)) by means of several simple commands. The
algorithmic burden is therefore mitigated and students
can more focus on control performance or enhancing the
MPC formulation by additional advanced approaches such
as trajectory preview or move-blocking. Moreover, via the
reduced math and algorithmic requirements, MPC policy
becomes accessible also for wider range of students (e.g. in
their bachelor studies).

7.3 Experimental results

Here we illustrate experimental results of student ongoing
project, where two case studies are elaborated. The first
setup considers only two cars, one follower that is placed
right behind the leader, which speed remains constant. The
control objective is to manipulate speed of the follower
such that distance from the leader tracks the specified
reference. This scenario serves as a preparation for a
distributed control scheme, where such control has to be
embedded into each car on the road to ensure autonomous
control. The second approach focuses to control system of
four cars, composed of one leader and three followers, as
one centralized control scheme. Here we employ external
computation hardware to communicate with all cars on the
road. Its objective is to acquire data of distances between
all cars and based on this information compute optimal
speed of cars to achieve safe and fluent traffic control.

To proceed, we have constructed mathematical models
as in (3) for n = 2 and n = 4, respectively. The
sampling time was set to Ts = 0.1. Subsequently, the
MPC policy as in (4) was devised for both approaches
with parameters N = 30, v0 = 70, weighting matrices
Qy = 750, Qu = 1, Qdu = 1, Qs = 104, input constraints
umin = 0, umax = 127, and output constraints ymin = 5,
ymax = 15. The experiment was performed for 600 of
sampling periods, what corresponds to the duration of 60
seconds. The reference yref ∈ {8, 12} was changing after
each 200 sampling instances. Measured data are reported
in Fig. 3 for the first scenario and in Fig. 4 for the second
one.

In both scenarios the MPC policy reports good tracking
property, while respecting input limitations. On the other

Copyright © 2016 IFAC 342

0 10 20 30 40 50 60
4

6

8

10

12

14

16

di
st

an
ce

 [c
m

]

0 10 20 30 40 50 60
0

50

100

time [s]

po
w

er
 []

Reference Leader Follower1

Fig. 3. Control performance of the two car system. The
blue line represents output and input profiles of the
follower, red dashed line is the distance reference,
magenta dashed line corresponds to the constant
speed of the leader and black dashed lines are output
and input boundaries.

0 10 20 30 40 50 60
4

6

8

10

12

14

16

di
st

an
ce

 [c
m

]

0 10 20 30 40 50 60
0

50

100

time [s]

po
w

er
 []

Reference Leader Follower1 Follower2 Follower3

Fig. 4. Centralized system of four cars. The blue, green
and brown lines represent output and input profiles
of a corresponding follower. Red dashed line denotes
the reference separation gap between individual vehi-
cles. The magenta dashed line is the leader’s speed.
Finally, black dashed lines represent output and input
constraints, respectively.

hand, as can be seen in output profiles, the soft bound-
aries are violated. These overlaps are, however, mitigated
due to the large penalization on slack variables. Another
interesting observation can be made in input profiles of
Fig. 4 where one can see that the optimal response to
the reference step is instantaneous acceleration of all three
followers at the same time and not one by one as it is
common in the real traffic.

8. CONCLUSIONS AND FUTURE WORK

In this paper we have shown an importance of practical
experimentation in the control education using the real

laboratory equipment. Students are provided with the
traffic simulator, where they can apply their theoretical
knowledge in the range begging with simple logical and
time-continuous controllers up to advanced optimal con-
trol methods such as the MPC. As the case study has
shown, the simulator can be operated by student-designed
MPC controllers even with a very simple formulation that
is taught in the basics of the course Model Predictive
Control. Moreover, the developed traffic simulator provides
wide capabilities for future students’ works in standard
courses focused in automatic control as well as their indi-
vidual projects and thesis works.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the contribution of
the Scientific Grant Agency of the Slovak Republic under
the grant 1/0403/15. The first author acknowledges the
financial support by an internal STU grant 1379. The
second author acknowledges the financial support by an
internal STU grant 1605.

REFERENCES

Deo, P., De Schutter, B., and Hegyi, A. (2009). Model Predictive
Control for Multi-Class Traffic Flows. In 12th IFAC Symposium
on Control in Transportation Systems (2009), 25–30. doi:10.3182/
20090902-3-US-2007.00005.

Dezani, H., Gomes, L., Damiani, F., and Marranghello, N. (2012).
Controlling traffic jams on urban roads modeled in coloured petri
net using genetic algorithm. In IECON 2012 - 38th Annual
Conference on IEEE Industrial Electronics Society, 3043–3048.
doi:10.1109/IECON.2012.6389412.

Garrido-Jurado, S., Muñoz Salinas, R., Madrid-Cuevas, F., and
Maŕın-Jiménez, M. (2014). Automatic generation and detection
of highly reliable fiducial markers under occlusion. Pattern
Recognition, 47(6), 2280 – 2292. doi:http://dx.doi.org/10.1016/
j.patcog.2014.01.005.

Herceg, M., Kvasnica, M., Jones, C., and Morari, M. (2013). Multi-
Parametric Toolbox 3.0. In Proc. of the European Control
Conference, 502–510. Zürich, Switzerland. http://control.ee.

ethz.ch/~mpt.
Kesting, A., Treiber, M., Schnhof, M., and Helbing, D. (2008).

Adaptive cruise control design for active congestion avoidance.
Transportation Research Part C: Emerging Technologies, 16(6),
668 – 683. doi:http://dx.doi.org/10.1016/j.trc.2007.12.004.

Löfberg, J. (2004). YALMIP : A Toolbox for Modeling and Optimiza-
tion in MATLAB. In Proc. of the CACSD Conference. Taipei, Tai-
wan. Available from http://users.isy.liu.se/johanl/yalmip/.

Marcolino, L. and Chaimowicz, L. (2009). Traffic control for a swarm
of robots: Avoiding target congestion. In Intelligent Robots and
Systems, 2009. IROS 2009. IEEE/RSJ International Conference
on, 1955–1961. doi:10.1109/IROS.2009.5354407.

Martinec, D., Šebek, M., and Hurák, Z. (2012). Vehicular platooning
experiments with racing slot cars. In Control Applications (CCA),
2012 IEEE International Conference on, 166–171. doi:10.1109/
CCA.2012.6402709.

Mather, T. and Hsieh, M. (2012). Ensemble modeling and control
for congestion management in automated warehouses. In Automa-
tion Science and Engineering (CASE), 2012 IEEE International
Conference on, 390–395. doi:10.1109/CoASE.2012.6386498.

Šebek, M. and Hurák, Z. (2011). 2-D Polynomial Approach to
Control of Leader Following Vehicular Platoons. In 18th World
Congress of the International Federation of Automatic Control
(IFAC). Milano, Italy.

Zegeye, S., De Schutter, B., Hellendoorn, H., and Breunesse, E.
(2009). Reduction of travel times and traffic emissions using model
predictive control. In American Control Conference, 2009. ACC
’09., 5392–5397. doi:10.1109/ACC.2009.5159942.

Copyright © 2016 IFAC 343

