
Python Code Generation for Explicit MPC in MPT

Bálint Takács, Juraj Števek, Richard Valo and Michal Kvasnica

Abstract— The paper shows how explicit representations of
model predictive control (MPC) feedback laws can be embedded
into Python applications via a new code-generation module of
the Multi-Parametric Toolbox. The advantage of the explicit
approach is that it provides a simple and fast computation of
optimal control inputs without solving optimization problems
on-line. To enable implementation of discontinuous feedback
laws, the paper proposes an extended version of the sequential
search algorithm which resolves possible multiplicities based on
a secondary evaluation of the cost function. Two applications
are considered. The first one is the Flappy Bird game where
we design an MPC-based artificial player to control flapping
of the bird’s wings. The second application considers the
design and implementation of an explicit MPC controller for a
quadrocopter.

I. INTRODUCTION

Model Predictive Control (MPC) is one of the most com-

monly adopted control strategies in the industrial field [14].

It is endorsed due to its natural capability to handle mul-

tidimensional systems, while incorporating state and input

constraints directly into the decision making process [6].

Solution of such an optimization problem yields a sequence

of optimal control inputs over a given prediction horizon. At

the next sampling instant, new state measurements are taken

and the optimization is repeated. There are two factors which

limit the applicability of this approach. The first one is its

inherited computational complexity associated with solving

an optimization problem at each sampling instant. This limits

(and sometimes prohibits) applicability of MPC for control

of systems with a fast dynamics. The second, often over-

looked, limitation is the code complexity. Specifically, MPC

optimization problems are usually solved via iterative active

set methods which require, among other steps, to perform

a series of matrix inversions. Thus additional numerical

libraries are required to implement such controllers.

Both of these limitations can be addressed by the concept

of explicit MPC [2]. Here, parametric programming is used

to pre-calculate the optimal solution to a given MPC problem

in the form of a piecewise-affine (PWA) function. This

function, which serves as an explicit MPC feedback law,

maps state measurements onto optimal control inputs. The

computation of optimal control inputs thus reduces to a mere

function evaluation. The advantage over classical numerical

solutions of MPC problems is thus in the reduction of

the computational effort required to obtain optimal control

inputs, as well as in the simplicity of the implementation

All authors are with the Institute of Information Engineering, Automation,
and Mathematics at the Slovak University of Technology in Bratislava, Slo-
vakia. {balint.takacs, juraj.stevek, richard.valo,
michal.kvasnica}@stuba.sk.

algorithm, which, among other things, is division-free. Hence

neither divisions, nor matrix inversions are required to obtain

the optimal control input. This allows explicit MPC to be

implemented in almost any programming language.

Nowadays, a large portion of the research commu-

nity uses Matlab to formulate MPC-based controllers and

Simulink/Real-Time Workshop to deploy them. However,

recently other languages started to be more appealing for

control purposes. One of them is Python. Several control-

oriented packages already exist for Python. One of them is

CasADi [11], a symbolic framework for numeric optimiza-

tion implementing automatic differentiation in forward and

reverse modes on sparse matrix-valued computational graphs.

The construction of the optimization problem is defined sym-

bolically afterward the appropriate solver is called to solve

the optimization problem. It interfaces several optimization

solvers such as IPOPT [3], SNOPT [8] etc.

However, to the authors’ best knowledge, there is no

simple way how to merge MPC control strategies into

existing Python applications in an easy fashion. In this paper

we describe how the generated explicit solution can be

easily exported to a Python code and merged into existing

applications. The generated code consists of two parts - the

data and the code. The data describes the PWA explicit

solution consisting of critical regions and associated function

expressions. The code then evaluates the PWA feedback

function for the given value of state measurements. Two

versions of the evaluation code are discussed. The first one

is a standard sequential search algorithm, which traverses

through the pieces of the PWA function until the piece which

contains the state is found. Such a simple strategy, however,

requires that the explicit optimizer is a continuous PWA

function. Therefore we also propose an extended version of

the sequential search procedure which produces the correct

output even in the case of discontinuous MPC feedback laws.

In both cases we show that the Python code can be generated

using just couple of lines in Matlab. The proposed code-

generating module [15] for MPT [10] is demonstrated on

two examples.

A. Notation and Definitions

We denote by R, R
n and by R

n×m the real numbers,

n-dimensional real vectors, and n × m dimensional real

matrices, respectively. Furthermore, N denotes the set of non-

negative integers, and N
j
i the set of consecutive integers, i.e.,

N
j
i = {i, . . . , j}, i ≤ j. Given a countable set I, |I| denotes

its cardinality.

Definition 1.1 (Polyhedron): Polyhedron P is a convex

and closed set defined as the intersection of a finite number

2016 European Control Conference
June 29 - July 1, 2016. Aalborg, Denmark

978-1-5090-2590-9 ©2016 EUCA 1328

c of closed affine half-spaces aTi x ≤ bi, ai ∈ R
n, bi ∈ R,

∀i ∈ N
c
1. Polyhedra can be compactly represented by

P = {x ∈ R
n | Ax ≤ b}, (1)

with A ∈ R
c×n, b ∈ R

c.

II. EXPLICIT MODEL PREDICTIVE CONTROL

We consider MPC problems of the form

J⋆(x0) = min ℓN (xN) +

N−1∑

k=0

ℓ(xk, uk), (2a)

s.t. xk+1 = f(xk, uk), ∀k ∈ N
N−1

0 (2b)

uk ∈ U , ∀k ∈ N
N−1

0 (2c)

xk ∈ X , ∀k ∈ N
N−1

0 (2d)

xN ∈ T , (2e)

where xk, uk are the state and input predictions, respectively,

obtained at the k-th step of the prediction horizon N ∈ N.

The objective function is composed of the terminal penalty

function ℓN (·) and the stage cost ℓ(·, ·)

ℓN (xN) = ‖QNxN‖p, (3a)

ℓ(xk, uk) = ‖Qxxk‖p + ‖Quuk‖p, (3b)

where p ∈ {1, 2,∞}.
The state predictions in (2b) are obtained via a state-

update function f(·, ·). In this paper we consider two types

of prediction models. The first case is represented by linear

time-invariant state-update equations of the form

f(x, u) = Ax+Bu. (4)

The second, more general type is represented by piecewise

affine (PWA) functions of the form

f(x, u) =







A1x+B1u+ c1 if [xk

uk
] ∈ P1

...

Apx+Bpu+ cp if [xk

uk
] ∈ Pp

(5)

Here, Pi is a polyhedron in the state-input space in which the

i-th affine dynamics are locally active. Moreover, p denotes

the total number of distinct local dynamics, also called modes

in the literature.

The constraint sets U , X , and T in (2) can be either

convex polyhedra, or non-convex unions therefor. A special

case employed in this paper is when U = {0, 1}nu , which

indicates that the control input is binary.

Regardless of whether the prediction model is linear or

piecewise affine, the analytic solution to (2), i.e., the map

from initial conditions x0 to optimal receding horizon control

inputs u⋆0, can be obtained by parametric programming [4, 1].

The properties of such solutions are summarized next.

Theorem 2.1 ([2]): The optimal solution to (2) is a piece-

wise affine (PWA) function of x0, i.e.,

u⋆0(x0) =







F1x0 + g1 if x0 ∈ R1

...

FMx0 + gM if x0 ∈ RM

(6)

where Ri = {x | Hix ≤ hi} are polyhedral critical regions

and M denotes the total number of such regions. Moreover,

if the objective function in (2a) is composed of (3), then

J⋆(x0) is also a PWA/PWQ function of the form

J⋆(x0) =







xT0 γ1x0 + α1x0 + β1 if x0 ∈ R1

...

xT0 γMx0 + αMx0 + βM if x0 ∈ RM

(7)

�

The parameters Ri, Fi, gi, γi, αi, βi of (6)−(7) can be

obtained using the freely available Multi-Parametric Toolbox

for Matlab [10].

With the explicit form (6) in hand, obtaining the optimal

control action reduces to a simple function evaluation. Such

a way is typically faster compared to solving (2) using

numerical algorithms. Moreover, the evaluation algorithm

for (6) is very simple and allows MPC to be embedded

into existing applications. The details are discussed in the

following section.

III. POINT LOCATION PROBLEM

To find the optimal control action u⋆ associated with the

current state measurements x it is necessary to evaluate the

PWA feedback function in (6). To do so, we first need to

determine which critical region contains x. This problem

is commonly known as the point location problem. Various

algorithms exist to answer this problem. In this paper we

focus on the sequential search algorithm, which has a very

simple implementation. We consider two situations. The first

one covers feedback laws in (6) which are continuous. The

second, extended version, also copes with discontinuous

feedbacks.

It should be noted that more efficient algorithms also exist.

The binary search tree approach of [13] provides the fastest

known procedure to evaluate the function in (6). However,

it relies on a particular search structure, which is difficult

to obtain especially when the number of critical regions is

large. Other authors, such as [9, 16], have proposed that

point location problem can be effectively accelerated by

exploiting adjacency list that is inherently associated with the

polytopic partition of the PWA function. However, a common

drawback of all three referenced approaches is that they can

only be applied to continuous feedback laws in (6).

The standing assumption of this section is that x, the

initial condition of (2), is feasible, i.e., it is contained in

at least one critical region of (6). Should this assumption be

violated, there exists no solution to (2) for this specific initial

condition.

A. Sequential search algorithm for continuous feedback laws

Continuity of (6) implies that for each feasible x there

exists at least one critical region with x ∈ Ri. If there are

multiple such regions (which can happen if x is contained in

the boundary shared among multiple regions), by continuity

of (6) the associated control actions are all equivalent. There-

fore to evaluate u⋆(x) from (6) it suffices to find the first

1329

critical region which contains the state measurements. This is

done by traversing through all critical regions in a sequential

order, stopping once the first region containing x is found.

This behavior is summarized by Algorithm 1. The inclusion

test in Step 3 can be done by verifying whether Hix ≤
hi holds. Note that only additions and multiplications are

required to perform such a check. Similarly, the computation

of u⋆ in Step 4 is also division-free.

Algorithm 1: Sequential search for continuous functions

Data: Feedback laws Fi, gi, critical regions Ri,
number of regions M , state measurement x

Result: Optimal control input

1 for i = 1, . . . ,M do

2 if x ∈ Ri then

3 return u⋆ = Fix+ gi
4 end

5 end

B. Sequential search algorithm for discontinuous feedback

laws

Discontinuity of (6) can occur when the critical regions

overlap , or if the function values at the boundary of two

adjacent critical regions do no coincide (e.g. when the control

input is binary).

In what follows we propose an extended sequential search

procedure for discontinuous functions in (6). The idea is

to first build the index set of regions which contain the

given query point x. Then, in the second stage, a single

index is selected from the set of candidates. The latter stage

will be referred to as resolving of tiebreaks. Technically,

the extended sequential search procedure is captured by

Algorithm 2.

Algorithm 2: Sequential search with tiebreaks

Data: Feedback laws Fi, gi, critical regions Ri,
number of regions M , query point x

Result: Optimal control input

1 I ← ∅
2 for i = 1, . . . ,M do

3 if x ∈ Ri then

4 I ← I ∪ {i}
5 end

6 end

7 Select i⋆ ∈ I
Output: u⋆ = Fi⋆x+ gi⋆

First, Step 1 initializes the set of candidates to an empty

set. Then the algorithm goes through all critical regions in a

sequential order. In Step 3, x ∈ Ri is verified by checking

whether all inequalities in Hix ≤ hi hold (note that the

comparison is between vectors and is interpreted element-

wise). If a matching region is found, its index is added to

the set of candidates in Step 4. Afterwards, a single critical

(a) Flappy bird in action. (b) Highest score achieved by the
MPC controller.

Fig. 1. Screenshots of the Flappy Bird game.

region is then picked in Step 7. We will detail the selection

in the sequel. Finally, with the index i⋆ of the active critical

region, the algorithm returns the optimal control action,

calculated from the i⋆-th rule in (6).

When resolving tiebreaks in Step 7, three situations can

occur:

1) |I| = 0, i.e., the set I is empty;

2) |I| = 1, i.e., the set contains exactly one index;

3) |I| > 1, i.e., there are several candidate critical

regions.

The first situation indicates that problem (2) is infeasible for

a given initial condition. In the second situation, i⋆ = I1, as

we have only one candidate critical region. The last situation

requires identifying the critical region in which the optimal

objective function is minimal. This is done as follows. For

each i ∈ I, compute Ji(x) (7), i.e.,

Ji(x) = xT γix+ αix+ βi (8)

Finally, i⋆ is selected as the index for which Ji(x) is smallest,

i.e.,

i⋆ = argmin
i∈I

Ji(x). (9)

Algorithm 2 with the tiebreak procedure described above

can be easily implemented in any high-level programming

language. We remark that the implementation is division-

free, since only multiplications and additions are required to

compute u⋆. In the following section we show how a Python

version of Alg. 2 can be automatically generated based on

the data in (6)−(7).

IV. CODE GENERATION

In this section we introduce an extension1 of the Multi-
Parametric Toolbox (MPT) which allows the user to auto-
matically generate the Python version of Algorithms 1 and 2.
Our implementation relies on the numpy and math Python
libraries, which are open-source and freely available. From

1The Python code generation module is available since MPT version
3.1.2.

1330

a user point of view, the generation of the Python code is as
simple as calling

opt.toPython(’myctrl’,’primal’,’obj’)

Here, opt is the variable which contains the explicit

representation of the feedback law in (6) and the cost

function, defined either by (7), depending on which type of

objective function was employed in (2a). The variable is an

instance of MPT’s PolyUnion class which is capable of

describing arbitrary functions defined over a union of poly-

hedra. Moreover, ’myctrl’ is the string which contains

the name of the file which should be generated. Note that

the .py suffix will be added automatically to the file name.

Next, ’primal’ means that we want to evaluate the primal

optimizer in (6). Finally, ’obj’ indicates that we want to

resolve the tiebreaks based on the objective function per (9).
Alternatively, calling

opt.toPython(’myctrl’,’primal’,’first-region’)

will generate the Python version of Alg. 1, which uses

the first-region tiebreak, i.e., always picking the first region

which contains the given query point. Note that this setting

can only be used if (6) is a continuous PWA function.

In either case, the toPython method generates a new

file myctrl.py, which contains the code of the sequential

algorithm as well as the data of the functions in (6)−(7). The

code can then be inserted into an arbitrary Python application

and executed. The execution is achieved by calling u =

myctrl(x) in Python, where x is an instance of the

matrix class (provided by the numpy package). The output

u will again be a vector of control inputs, again as an instance

of the matrix class. If no critical region contains given x,

u will be returned as an array of NaN (not a number). Such

an output indicates that the MPC problem (2) is infeasible

for the given initial condition.

In the following section we show how the procedure

can be applied to embed explicit MPC controllers into two

distinct applications. The first one is a popular computer

game where MPC takes the role of an artificial player. The

second application discusses model predictive control of a

quadrocopter.

V. EXAMPLES

A. Flappy Bird

Flappy Bird2 is a computer game in which the player

controls vertical movement of a bird with the goal to avoid

obstacles. The objective of the game is to achieve the highest

score, measured as the number of obstacles the bird has

avoided. The bird is controlled by an ON/OFF actuator,

which corresponds to flapping of the birds wings. The

obstacles are represented by randomly generated pipes which

form a corridor through which the bird must fly. A screenshot

of the game is provided in Figure 1.

In this section we show the design of an artificial player

based on model predictive control. The game runs at a fixed

sampling frequency and employs a switching dynamics of the

2http://flappybird.io

bird with two states: vertical position p and vertical velocity v

(due to the coordinate system employed by the Python game,

positive speeds represent descents while negative ones stand

for the ascending direction). Both are normalized to pixels.

The dynamics itself consists of two modes.

xk+1 = Axk + f,A ∈ {A1, A2}, f ∈ {f1, f2} (10)

The first mode, with A1 = [1 1
0 1] and f1 =

[
0
g

]
corresponds

to the “no flapping” mode in which the bird falls down in

a free fall. Here, x = [p v]T is the state vector, and g = 1
is the normalized constant acceleration due to gravity. This

mode corresponds to a zero control input, i.e., it is active

when u = 0.

The second, “flapping”, mode, with A1 = [1 0
0 0] and

f1 =
[
−h
−h

]
is active when u = 1. Here, h = 9 is a game-

specific constant which says that the bird jumps 9 pixels

upwards if flapping of the wings is activated. Simultaneously,

the vertical speed is reset to −h. As noted above, negative

value means that the bird moves upwards.

The overall switching dynamics of the bird is then given

by

xk+1 =

{

A1xk + f1 if uk = 0

A2xk + f2 if uk = 1.
(11)

Our objective is to devise an MPC-based artificial player

which will decide the optimal value of the binary control

input u ∈ {0, 1} such that the bird avoids obstacles. In

this paper we achieve this by letting the bird’s position

(represented by the first state p) to follow a user-specified

reference pref, which is given as the center point of the gap

between the closest set of obstacles. The corresponding MPC

problem is then stated as

min

N−1∑

k=0

‖pk − pref‖1 (12a)

s.t. xk+1 =

{

A1xk + f1 if uk = 0

A2xk + f2 if uk = 1
(12b)

pk = [1 0]xk, (12c)

uk ∈ {0, 1}, (12d)

where (12d) captures the binary character of control inputs.

As a consequence, problem (12) is a mixed-integer optimiza-

tion problem.
Such an MPC problem can be formulated in the Multi-

Parametric Toolbox as follows. First we create the “no
flapping” mode:

A1=[1 1; 0 1]; B1=[0; 0];

f1=[0; 1]; C = [1 0];

P1=Polyhedron(’ub’, 0.5);

m1=LTISystem(’A’,A1,’B’,B1,’f’,f1,’C’,C)

m1.setDomain(’u’, P1)

Here, line 2 creates the polyhedron which corresponds to
u = 0. In fact, to improve numerical robustness, we define
the region of validity as the set of inputs which are smaller
than 0.5, exploiting the binary property of the control input.
The final line then attaches the region of validity to the local
affine dynamics. The “flapping” mode is created in a similar
fashion:

1331

A2=[1 0; 0 0]; B2=[0; 0];

f2=[-9;-9]; C = [1 0];

P2=Polyhedron(’lb’, 0.5);

m2=LTISystem(’A’,A2,’B’,B2,’f’,f2,’C’,C)

m2.setDomain(’u’, P2)

Finally, the aggregated PWA model in (12b) is created

using the PWASystem constructor which takes a list of the

local modes as its input:

model = PWASystem([m1, m2])

The MPC problem in (12) with prediction horizon N = 5 is
then formulated by

model.u.with(’binary’)

model.y.with(’reference’)

model.y.reference = ’free’

model.y.penalty = OneNormFunction(1)

N = 5

mpc = MPCController(model, N)

Here, in the first line the control inputs are declared as
binary, which automatically adds the uk ∈ {0, 1} constraints.
Subsequently, we enable the state to track a time-varying
reference. Then, the objective function is specified as penal-
ization of the 1-norm. Finally, an object which represents the
MPC control is created with the provided prediction horizon.
The explicit form of the feedback law in (6) is obtained by
calling

empc = mpc.toExplicit()

which invokes a parametric optimization solver which

results in (6) and (7). Since the MPC problem is non-convex

due to the binary constraints in (12d), the feedback law u⋆(x)
in (6) can be discontinuous. With N = 5, the explicit solution

consists of 94 regions in the three dimensional parametric

space (one dimension is for the current position x1(t), the

next is the current velocity x2(t) and the other one for the

time-varying reference pref).
To obtain a Python version of the explicit MPC feedback

law, we have then executed

opt = empc.optimizer;

opt.toPython(’flappympc’,’primal’,’obj’)

which generates the Python version of Alg. 2, which uses

the tiebreak rule based on (7) as discussed in Section III-B.

The point location algorithm was subsequently embedded

to the Python version of Flappy Bird, downloaded from

GitHub3. The game uses features of the Pygame framework4,

which is a set of modules in Python specially designed

for creating games. Pygame is highly portable and runs on

almost every platform and operating system. Furthermore, it

is open source. The game runs at a fixed sampling frequency.

At each step, the main loop checks whether a specific

key on the keyboard was pressed to indicate a flapping

command. Then the loop calculates the new vertical position

of the bird and draws a new graphical frame. Replacing the

human player by the MPC algorithm is very easy. Instead of

checking the key press, one calls the MPC sequential search

3https://github.com/sourabhv/FlappyBirdClone
4http://www.pygame.org

TABLE I

ACHIEVED SCORE IN FLAPPY BIRD

Player Average score Best score

1 16 33

2 14 19

3 9 17

MPC 271 943

algorithm which determines whether wings should be flapped

or not.

In our experiments, the MPC-based artificial player has

achieved the best score of 943 tubes without a collision.

To put this number into perspective, we have asked three

colleagues to compete against MPC by controlling the bird

manually. Their respective scores are reported in Table I,

which also shows the average over 10 trials. As can be

seen, the MPC controller outperforms human players by a

large margin. Note that the MPC setup in (12) possesses no

guarantees of recursive feasibility since only the nearest set

of obstacles is considered via the choice of pref. It is not the

objective of this paper to provide the best possible controller.

Instead, the case study illustrates that MPC can be applied

even to less traditional control setups and leaves space for

further improvements.

B. Ar.Drone Control

In this section we show how to generate and apply

model predictive control for the yaw angle control for the

Ar.Drone2 quadrotor [5] The implementation is provided

by means of the Robot Operating System (ROS) [12]. The

onboard software implements basic control loops based on

the measurements from various sensors, such as accelerome-

ters, ultrasound sensor, barometer, and electronic compass. It

controls the vertical speed ż, yaw speed ψ̇, roll φ and pitch

angle θ based on references it acquires via WiFi. The MPC

objective is to devise these references in an optimal fashion.

Specifically, the control inputs generated by MPC are:

• uż , the control command for velocity in vertical axis;

• uψ̇, the control command for rotation velocity in z axis;

• uφ, the control command for rotation over the x axis;

• uθ, the control command for rotation over the y axis.

All inputs are normalized and constrained by −1 ≤ u ≤ 1.

In this paper we control the yaw angle with respect to

the global frame. The simplified mathematical model of the

Ar.Drone’s rotational dynamic over the z axis was presented

in [7]:

ψ̈ = K1uψ̇ −K2ψ̇, (13)

where ψ̇ represents the linear acceleration over the z axis.

The parameters K1, K2 are model gains that have to be

experimentally identified. The first term K1uψ̇ represents

accelerating force, and K2ψ̇ represents drag force in (13).

Applying the forward Euler discretization to (13), the

discrete time model of the system takes the form
[

ψ̇k+1

ψk+1

]

︸ ︷︷ ︸

xk+1

=

[
1−K2Ts 0

Ts 1

]

︸ ︷︷ ︸

A

[

ψ̇k
ψk

]

︸ ︷︷ ︸

xk

+

[
K1Ts
0

]

︸ ︷︷ ︸

B

uψ̇k

︸︷︷︸

uk

(14)

1332

where Ts is the sampling period. To achieve tracking prop-

erties, the system in (14) was augmented into the form

x̃k+1 =

[
A B

0 I

]

︸ ︷︷ ︸

Ã

x̃k +

[
B

I

]

︸︷︷︸

B̃

∆uk, (15)

where x̃k =
[

ψ̇k ψ uk−1

]T
.

Using the Multi-Parametric Toolbox we have formulated

the following MPC problem, objective of which is to manip-

ulate the rotational velocity such that the yaw angle tracks

a prescribed reference. This is achieved by formulating the

problem as follows:

min
N−1∑

k=0

∆yTk Qyk∆y +∆uTkQu∆uk, (16a)

s.t. x̃k+1 = Ãx̃k + B̃∆uk (16b)

yk =

[
1 0 0
0 1 0

]

x̃k (16c)

∆y = y − yref (16d)

∆uk = uk − uk−1, (16e)

− 0.005 ≤ ∆uk ≤ 0.005, (16f)

− 1 ≤ uk ≤ 1, (16g)

x̃min ≤ x̃k ≤ x̃max (16h)

The model gains are K1 = 92.880, K2 = 3.717, while

the state penalty matrix Qy = [500 0
0 2000] and Qu = 1 were

chosen experimentally. The weights were adjusted to put

emphasis to ψ and slightly restrict ψ̇. The prediction horizon

N = 5 and sampling time Ts = 20ms were used.

The explicit MPC feedback as in (6) was then generated

using parametric solvers contained in MPT. The solution

consisted of 281 regions. The controller was subsequently

exported to Python code using the toPython function and

embedded into the control software represented by the ROS

platform.

The controller was tested in a real-time experiment with

control period ∼ 20ms. The real control period varied from

15 to 27 milliseconds, which introduced additional distur-

bances into the control loop. The variation of the control

period was caused mostly by the varying evaluation time of

the sequential search. A Kalman filter with time-varying gain

matrix was applied for estimating ψ and ψ̇. Results of the

tracking experiment are shown in Figs. 2(a) and 2(b). As can

be seen, the explicit MPC controller rejects disturbances and

achieves the tracking objective by bringing ψ to a harmonic

reference. The small velocity oscillations were caused by air

turbulence and varying control period.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the contribution of

the Scientific Grant Agency of the Slovak Republic under

the grant 1/0403/15, and the financial support of the Slovak

Research and Development Agency under the project APVV

0551-11 and the internal grants of the Slovak University of

Technology in Bratislava for support of young researchers

Time(s)

u
ψ̇

0

0 5 10 15 20 25 30 35

-0.2

0.1

0.2

0.15

0.05

-0.05

-0.15

(a) Control input
Time(s)

ψ
,
ψ
r
e
f

0

0 5

10

10 15

20

20 25 30 35

-20

-10

(b) Controlled yaw angle (green) and
the reference (blue)

Fig. 2. AR Drone example.

and STU Grant scheme for Support of Excellent Teams of

Young Researchers.

REFERENCES

[1] M. Baotić. Optimal Control of Piecewise Affine Systems - a
Multi-parametric Approach. Dr. sc. thesis, ETH, Zurich, 2005.

[2] A. Bemporad, M. Morari, V. Dua, and E. Pistikopoulos. The
explicit linear quadratic regulator for constrained systems.
Automatica, 38(2):3–20, 2002.

[3] L.T. Biegler and V.M. Zavala. Large-scale nonlinear program-
ming using IPOPT: An integrating framework for enterprise-
wide dynamic optimization. Computers and Chemical Engi-
neering, 33(3):575–582, 2009.

[4] F. Borrelli. Constrained Optimal Control of Linear and Hybrid
Systems, volume 50. Springer, July 2003.

[5] P.J. Bristeau, F. Callou, D. Vissière, and N. Petit. The
Navigation and Control technology inside the AR . Drone
micro UAV. In Proceedings of the 18th IFAC World Congress,
2011, volume 18, pages 1477–1484, 2011.

[6] E. Camacho. Predictive control with constraints, volume 39.
Prentice-Hall, 2003.

[7] J. Engel, J. Sturm, and D. Cremers. Camera-based navigation
of a low-cost quadrocopter. In IEEE International Conference
on Intelligent Robots and Systems, pages 2815–2821, 2012.

[8] P.E. Gill, W. Murray, and M.A. Saunders. SNOPT: An SQP
Algorithm for Large-Scale Constrained Optimization. SIAM
Journal on Optimization, 12(4):979–1006, 2002.

[9] M. Herceg, S. Mariethoz, and M. Morari. Evaluation of
piecewise affine control law via graph traversal. In European
Control Conference, pages 3083–3088, 2013.

[10] M. Herceg, M.Kvasnica, C. Jones, and M. Morari. Multi-
Parametric Toolbox 3.0. In Proceedings of the European
Control Conference, pages 502–510, 2013.

[11] A. Joel. A General-Purpose Software Framework for Dynamic
Optimization. Dr. sc. thesis, KU Leuven, 2013.

[12] B.P. Gerkey M. Quigley, K. Conley and J. Faust. ROS: an
open-source Robot Operating System. In Proceedings of ICRA
Workshop on Open Source Software, 2009.

[13] P. Tøndel, T.A. Johansen, and A. Bemporad. Evaluation of
piecewise affine control via binary search tree. Automatica,
39(5):945–950, 2003.

[14] S.J. Qin and T.A. Badgwell. An Overview of Industrial Model
Predictive Control Technology. J. C. Kantor, C. E. Garcia and
B. Carnahan (Eds.) 5th International Conference on Chemical
Process Control, 93(316):232–256, 1997.

[15] B. Takács, J. Holaza, J. Števek, and M. Kvasnica. Export of
explicit model predictive control to python. In Proceedings of
the 20th International Conference on Process Control, pages
78–83, 2015.

[16] Y. Wang, C. Jones, and J. Maciejowski. Efficient point location
via subdivision walking with application to explicit MPC. In
Proc. European Control Conf., pages 447–453, 2007.

1333

