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Abstract

This work deals with synthesis and implementation of model predictive control

(MPC). More concretely, we focus our attention on explicit model predictive con-

trol. The advantage of explicit model predictive control over implicit one is its

lower implementation requirements. Even though in the offline phase a difficult

parametric programming problem must be solved to obtain the feedback law, in

the online phase the evaluation of the control law boils down to a mere function

evaluation. The main limitation of this approach, however, is its memory demand.

Especially for systems with a large number of states and/or for MPC problems with

a long prediction horizon the complexity of the explicit feedback law grows quickly.

As a consequence, the controller is not implementable if its memory requirements

exceed the hardware’s threshold. For this reason, we propose two complexity reduc-

tion techniques to decrease the final memory footprint of explicit model predictive

controllers.

To allow for a seamless transition from an MPC design environment (such

as Matlab) to hardware implementation, in this thesis we furthermore propose

a code generation technique. Its purpose is to generate a self-contained implemen-

tation of the explicit MPC algorithm in two programming languages – Python and

JavaScript. The code generation module is designed in such a way that the gener-

ated code can be seamlessly embedded into target control applications written in

these languages.

Last, but not least, in this thesis we showcast the design and implementation

of model predictive control to two real-life processes. The first one aims at control-

ling the temperature of the plating solution of a hard chromium plating process.

The second application shows the control of a fast electromechanical system which

manipulates objects by a magnetic field. The common denominator of these two

plants is their underlying nonlinear behavior.

Keywords: Explicit Model Predictive Control, Memory and Complexity

Reduction, Code Generation, Model Predictive Control Implementation



Abstrakt

Táto práca sa zaoberá syntézou a implementáciou predikt́ıvneho riadenia (MPC).

Konkrétne, zamerali sme sa na explicitné predikt́ıvne riadenie. Výhodou explic-

itného predikt́ıvneho riadenia oproti implicitnému sú jeho nižšie implementačné

požiadavky. Napriek tomu, že v predimplementačnej fáze sa muśı vyriešit’ náročný

parametrický program na źıskanie zákona riadenia, v samotnej implementačnej fáze

pozostáva vyhodnotenie regulátora iba z vyhodnotenia funkcie. Hlavným limitu-

júcim faktorom tejto metódy je však práve jeho pamät’ová náročnost’. Zložitost’

explicitného zákona riadenia rastie raṕıdne rýchlo pre systémy s vel’kým počtom

stavových premmenných a s dlhým predikčným horizontom. Dôsledkom toho je reg-

ulátor neimplementovatel’ný, pretože jeho pamät’ová náročnost’ prevyšuje možnosti

hardvéru. Z tohto dôvodu sme navrhli dva rozličné postupy, ktoré zńıžia finálne

pamät’ové zat’aženie explicitného predikt́ıvneho regulátora.

Aby bolo možné zabezpečit’ hladký prechod od návrhu MPC v programovom

prostred́ı (ako je Matlab) až po finálnu hardvérovú implementáciu, v tejto práci sme

d’alej navrhli techniku generovania kódu. Jej ciel’om je vytvorenie sebestačného ex-

plicitného MPC algoritmu v dvoch programovaćıch jazykoch – Python a JavaScript.

Modul generovania kódu je navrhnutý takým spôsobom, aby generovaný kód mohol

byt’ bez problémov vnorený do ciel’ových aplikácíı naṕısaných v týchto jazykoch.

V neposlednom rade, v tejto práci uvedieme návrh a implementáciu predik-

t́ıvneho riadenia na dvoch reálnych aplikáciách. Prvá z nich je zameraná na riadenie

teploty roztoku chrómu v galvanizačnom procese. Druhá aplikácia predstavuje ri-

adenie rýchleho elektromechanického systému, ktorý ovláda objekty cez magnetické

pole. Spoločným menovatel’om týchto dvoch procesov je ich nelineárne správanie

sa.

Kl’účové slová: explicitné predikt́ıvne riadenie, redukcia zložitosti, gen-

erovanie algoritmov, implementácia predikt́ıvneho riadenia
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Chapter 1
Introduction

“ Progress is man’s ability to complicate simplicity. ”

Thor Heyerdahl

Control theory has its origins both in mathematics and in engineering. It deals

with influencing the behavior of dynamical systems around us. The main idea is

to influence the system based on the information from measurements. The goal

is to create an automated way of doing so, so-called controller, which takes care

of the process control instead of humans. The purpose of the controller is to

maintain some specific conditions, e.g. constant temperature in the chemical reactor

or constant speed in case of cars. At the beginning, only simple approaches were

used, such as rule-based controllers or PIDs. In the second half of the last century,

more complex methods were introduced. One of these methods is Model Predictive

Control (MPC). This control approach makes it possible to use the mathematical

model of the real process to predict its future behavior. The information about

the prediction is used to construct such a control policy which fulfills the given

requirements. In order to obtain the values of the control actions, which are optimal

related to some criteria, an optimization problem must be solved. Due to the lack

of the computation power, this kind of control approach could only be implemented

for processes with slow dynamics. After the time computers started to offer higher

computation power which allowed aiming even systems with faster dynamics. The

big changes came when Explicit Model Predictive Control was introduced. The

19



20 CHAPTER 1. INTRODUCTION

big benefit of this approach lies in its easy and cheap implementation since only

operations such matrix multiplication and addition are required. There is no need

for additional numerical solvers which makes the implementation simpler. Since in

the evaluation phase there is no such operation as a division the validation of the

final algorithm is also easier and faster. The Explicit Model Predictive Control is

obtained by solving an optimization problem by parametric programming and the

controller can be stored as a look-up table. The look-up table encodes a piecewise

affine (PWA) function of the parameters and is defined over polytopic regions. This

precomputed form of the optimization problem became desired in the industry.

1.1 Motivation

To implement explicit MPC, the parametric solution to the optimization problem

must be saved in the memory of the target implementation hardware. The solu-

tion is defined over polytopic critical regions, which are given by a set of linear

inequalities. The main limitation of the successful implementation is the method’s

memory demand. By increasing the value of the prediction horizon also the number

of the critical regions increases. In order to reduce the memory demand, complex-

ity reduction methods are investigated. Here, the goal is to reduce the number

of critical regions. This could be done by using various approximation methods.

The approximation simplifies the parametric solution but it also deteriorates the

control quality. Therefore, there must be a compromise between the performance

of the controller and its memory demand. After the final memory demand of the

implementable controller fulfills the implementation requirements a so-called point

location algorithm must be created to extract the optimal solution of the optimiza-

tion problem from the precomputed lookup table. In order to make this step as

easy as possible, the code generation module should be created to export the point

location algorithm with the necessary information to the given programming lan-

guage. The goal is to create such an interface which is user friendly, the generated

code is self contained and could be easily merged with existing applications.

1.2 Goals of the Thesis

This dissertation thesis aims at the synthesis and implementation of Model Predic-

tive Control techniques. The main objectives can be summarized as follows:
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• Complexity and memory reduction by approximation techniques.

Complexity reduction in explicit MPC is a crucial part of this work. In gen-

eral, the goal is to develop such reduction techniques that are able to decrease

the memory demand to the given implementation burden. In order to achieve

a higher memory reduction approximation techniques used to be considered.

However these methods could efficiently reduce the memory demand, the

control performance also deteriorates. Therefore, the goal is to find a good

compromise between the memory consumption and the controller’s perfor-

mance.

The contributions of this thesis with respect to complexity reduction are

based on the following publications which I have co-authored:

– Takács, B. – Holaza, J. – Kvasnica, M. : NLP-based Derivation of

Bounded Convex PWA Functions: Application to Complexity Reduc-

tion in Explicit MPC. In Veszprém Optimization Conference: Advanced

Algorithms, Veszprém, Hungary, pp. 95–95, 2012.

– Holaza, J. – Takács, B. – Kvasnica, M. : Complexity Reduction in

Explicit MPC via Bounded PWA Approximations of the Cost Func-

tion. In Selected Topics in Modelling and Control, Editors: Mikleš, J.,

Veselý, V., Slovak University of Technology Press, vol. 8, pp. 27–32,

2012.

– Takács, B. – Holaza, J. – Kvasnica, M. – Di Cairano, S. : Nearly-Optimal

Simple Explicit MPC Regulators with Recursive Feasibility Guarantees.

In IEEE Conference on Decision and Control, Florence, Italy, pp. 7089–

7094, 2013.

– Holaza, J. – Takács, B. – Kvasnica, M. : Synthesis of Simple Explicit

MPC Optimizers by Function Approximation. In Proceedings of the 19th

International Conference on Process Control, Štrbské Pleso, Slovakia,

pp. 377–382, 2013.

– Holaza, J. – Takács, B. – Kvasnica, M. : Simple Explicit MPC Con-

trollers Based on Approximation of the Feedback Law. In ACROSS

Workshop on Cooperative Systems, Zagreb, Croatia, pp. 48–49, 2014.

– Holaza, J. – Takács, B. – Kvasnica, M. – Di Cairano, S.: Nearly optimal

simple explicit MPC controllers with stability and feasibility guarantees.
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In Optimal Control Applications and Methods, vol.6, 2015.

• Code generation tool to export the parametric solution.

Here the goal is to bring explicit MPC closer to a wider community. In

particular, we show how explicit MPC controllers can be exported to Python

and JavaScript. To do so, we propose a new module in Multi-Parametric

Toolbox, which exports the parametric solution to the chosen programming

language. The export procedure should take care about that the generated

file will contain all the necessary mathematical operation together with the

information about the parametric solution. The correctness of the solution

and the merging with existing application is validated on three test cases.

Two of them cover Python - one applies explicit MPC to control of a computer

game and the second one uses it for control of a quadcopter. With respect to

JavaScript, we investigate the case of controlling, optimally, the temperature

inside a building. Here, the explicit MPC controller runs in a web browser.

The results for code generation as reported in this thesis are based on the

following publications:

– Takács, B. – Holaza, J. – Števek, J. – Kvasnica, M. : Export of Ex-

plicit Model Predictive Control to Python. In Proceedings of the 20th

International Conference on Process Control, Štrbské Pleso, Slovakia,

pp. 78–83, 2015.

– Takács, B. – Števek, J. – Valo, R. – Kvasnica, M. : Python Code Gen-

eration for Explicit MPC in MPT. In European Control Conference,

Aalborg, Denmark, 2016.

• Implementation of MPC on non-linear processes

Although we always try to simplify the optimal control problem, in some cases

too many simplifications lead to non-accurate models and lesser performance.

Therefore, non-linear models are used, which can lead to a better description

of the real process. The goal of this part of the thesis is to design and to

implement various MPC-based control methods on two real-life processes that

exhibit nonlinear behavior. The first process in which we are interested in is a

hard chromium plating process, where the task is to control the temperature

of the plating solution. The second process deals with the position control of
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an object by changing the magnetic field around it. The results in this part

of the thesis are, as of now, unpublished.

1.3 Overview of the Thesis

This thesis is aimed to decrease the computation demand of the model predictive

control technique. The thesis is divided into 2 main parts. Part I discusses the the-

oretical background and concepts of model predictive control. Part II then reports

our contributions. Here, after a concise overview of the contributions in Chapter 4,

we first discuss two complexity reduction techniques in Chapter 5. Here the ob-

jective is to decrease the memory demand of explicit MPC solutions by reducing

the number of regions over which the feedback law is defined. Two approaches are

presented. One is based on approximating the optimal value function in such a way

that a simpler controller can be recovered while preserving stability properties. The

second method directly approximates the (complex) explicit MPC feedback law to

find its simpler replacement. Outcomes of both approaches are documented on

illustrative examples.

Chapter 6 then introduces the code generation framework for Python and

JavaScript. The chapter introduces the framework from the users’ perspective

and discusses technical aspects of the automatically generated code. Three case

studies are presented to illustrate the benefits of the proposed framework. The

first one shows how to use explicit MPC to control a computer game in Python.

In the second application, explicit MPC is synthesized and applied to control a

quadcopter. Finally, the third application illustrates how a web-based version of

explicit MPC, implemented in JavaScript, can be used to control the temperature

in a building.

Finally, Chapter 7 reports the application of MPC to two real-life processes

which exhibit nonlinear behavior. The first one deals with temperature control of

a planting solution inside a hard chromium electroplating process. Three distinct

MPC setups are considered. One is based on the full non-linear model of the plant

and serves as a performance benchmark. Then, two setups based on linear models

are considered. In the first one, the linear model is updated at each sampling in-

stant via linearization around the current plant’s conditions. The second approach

uses one fixed linearization. The performance of all three approaches is verified

via simulations. The second case study investigates the control of a magnetic ma-
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nipulator which modifies the magnetic field as to move a metallic ball to desired

locations. Here, besides the plant dynamics being nonlinear, the second difficulty

is a high sampling frequency. To cope with these aspects we propose a two-layer

MPC structure.



Part I

Theoretical basis
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Chapter 2
Convex Optimization

Convex optimization finds its place in many today practical applications such pro-

cess control, signal processing, data analysis, etc. It is a subfield of general op-

timization, which devotes attention to the problem of minimization of a convex

function over convex set as defined in (2.1) (Boyd and Vandenberghe, 2004). In

the following an equivalent but slightly different notation will be used for opti-

mization problem (2.2). The reason why convex optimization is generally preferred

over non-convex one is that any optimum of the convex problem is also a global

optimum. This property makes convex problems easier to solve compared to their

non-convex counterparts. Over the years, several effective methods, algorithms,

and toolboxes (Gurobi Optimization (2015), GLPK (2012), ApS (2015)) have been

developed to solve even large-scale convex optimization problems. An another ad-

vantage of convex optimization problems is that many engineering problems can be

formulated in such a form, for instance, minimization of energy consumption of the

given process or imposition of safety limits. Every optimization problem consists

of two parts: the objective function (2.2a) and the constraints (2.2b).

f(x⋆) = min{f(x) | x ∈ X} (2.1)

f(x⋆) = min
x

f(x) (2.2a)

s.t. x ∈ X (2.2b)

27
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For an optimization problem to be convex, the objective function must be a

convex function and the constraints must have a form of a convex set. Properties

of convex functions and convex sets are therefore reviewed in the sequel.

2.1 Convex Functions

A function f is a real-valued function, which maps the n-dimensional space of R
n

into a scalar space R. Based on the level of convexity we can distinguish two kinds

of convex functions: non-strictly convex function and strictly convex functions.

Non-strictly convex function could be defined as follows

∀x 6= y ∈ Z,∀t ∈ [0, 1] : f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (2.3)

A typical example of a non-strictly convex functions, which are very often used

in optimization as a form objective function, are linear and affine functions. The

line segment connecting two arbitrary points x, y from the domain Z of function f ,

is lying exactly on the value function f and not above it. The mentioned linear and

affine functions are not only non-strictly convex functions but have the properties

of non-strictly concave functions as well. The graphical representation of non-strict

convex function could be seen in Fig. 2.1(b).

A strictly convex function could be defined in the following way

∀x, y ∈ Z,∀t ∈ (0, 1) : f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y). (2.4)

For each point x, y from the domain Z of function f is strictly above the value

function f . Graphical representation of a strict convex quadratic function depicted

in Fig. 2.1(a).

In case the condition (2.3) or (2.4) not holds for the whole investigated domain

of the function f than the given function is not convex. As it is evident from

the Fig. 2.1(c), the non-convex function could feature multiple local minima, which

complicates the search for the global optimum. Therefore in the sequel only convex

functions are considered.

Norms

Norms are a special class of convex functions that are often used in optimal control

problems. Every norm assigns a strictly positive distance to each vector except
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f(x)

f(y)

x y

(a) Strictly convex function

f(x)

f(y)

x y

(b) Non-strictly convex func-

tion

f(x)

f(y)

x y

(c) Non-convex function

Figure 2.1: Types of functions

the null vector. There exist several norms which express the distance in a different

way. The general form of an arbitrary norm is defined as follows:

x = [x⊤
1 , x⊤

2 , ..., x⊤
n ]⊤ (2.5)

||x||p = (
∑

i

|xi|
p)1/p (2.6)

Each norm has to fulfill the following conditions:

1. triangle inequality (2.7)

2. zero vector (2.8)

All the norms satisfy the triangle inequality conditions, which states that the sum

of two normed vectors is higher or at least equal than the norm of a sum of two

vectors.

||x + y||p ≤ ||x||p + ||y||p (2.7)

Furthermore, the norm can return 0 value only if the argument of the norm x is a

zero vector, in other cases, the norm operation returns strictly positive values.

||x||p > 0, if x 6= 0 (2.8)

The general form of the p norm was defined in (2.5), by changing the parameter

p we can get special types of norms. In this section three different kinds of norms

will be introduced, namely the Manhattan norm, Euclidean norm, and maximum

norm.
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In case of Manhattan norm the parameter p is set to value 1. In this case, we

can modify (2.5) to the following form (2.9). The Manhattan or 1-norm is a sum

of absolute values of the vector x.

||x||1 = (
∑

i

|xi|) (2.9)

The other well-known norm often used in optimal control is the Euclidean norm

(2.10). We obtain the definition of this norm if we substitute for parameter p value

2.

||x||2 =

√∑

i

|xi| (2.10)

Especially the square of the Euclidean norm is used often in optimization tasks.

The third mostly used norm in optimal control is the maximum norm. This

kind of norm is used when the minimization of the possible worst case scenario is

required.

||x||∞ = max
i

|xi| (2.11)

x

y

(a) Manhattan (1) norm

x

y

(b) Euclidian (2) norm

x

y

(c) Maximum (∞) norm

Figure 2.2: Norms

All the above-mentioned norms lead to absolute value in the scalar case.
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2.2 Convex Sets

As it was mentioned previously, in the case of the convex optimization we are

interested in the feasible sets which are convex. Generally, a convex set could be

defined as a part of the space Rn, for which the whole connecting line segment

for each chosen pair of points must be within the given set. Which means the set

S ⊆ R
n is convex if and only if for any pair of x ∈ S and y ∈ S holds

λx + (1 − λ)y ∈ S, ∀λ ∈ [0, 1]. (2.12)

The condition presented in (2.12) does not hold for non-convex sets. The following

convex sets are the most commonly used

• half-space

• hyperplane

• ellipsoid

• hyper-cube, hyper-rectangle

• polytope

• polyhedron

Very often in process control the sets are defined by half-spaces. In that case the

set S ⊆ R
n will be linear in x, which in optimal control leads to linear constraints.

In case of using hyper-planes, the defined set will be of the following form

S = {x | a⊤x ≤ b}, (2.13)

where a ∈ R
n is the normal vector of the half-space and b ∈ R is a constant part.

In case of using set defined by hyperplanes S ⊆ Rn, the set could be described by

S = {x | a⊤x = b}, (2.14)

where, similarly as in the previous case, a ∈ R
n is the normal vector of the hyper-

plane and b ∈ R is a constant part.

These two types of convex sets often arise in the context of model predictive

control where they describe minimal/maximal bounds on predicted quantities (in

the case of half-spaces), or equality constraints (in the case of hyperplanes).

The intersection of a final number of half-spaces defines polytopes or polyhedra,

which are reviewed next.
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x

y

(a) Convex set

x

y

(b) Non-convex set

Figure 2.3: Sets

Polyhedra and Polytopes

A polyhedron P in the n-dimensional Euclidean space is defined as the intersection

of finitely many half-spaces of the form (2.13). Specifically, consider m half-spaces

a⊤
i x ≤ bi with ai ∈ R

n and bi ∈ R for i = 1, . . . ,m. Then the set

P = {x | a⊤
1 x ≤ b1, . . . , a

⊤
mx ≤ bm}, (2.15)

is called a closed polyhedron. If all of the inequalities in (2.15) are strict, i.e.

P = {x | a⊤
1 x < b1, . . . , a

⊤
mx < bm}, (2.16)

then such a polyhedron is called open. If some of the inequalities are strict and

some non-strict, such a polyhedron is neither open nor closed.

If the polyhedron contains a ray, then it is called to be unbounded. The poly-

hedron, which is bounded, therefore it can not contain any rays, is polytope. Poly-

hedra and polytopes are convex sets. Moreover, closed polytopes are so-called

compact sets, because they are closed and bounded. Every polytope admits two

representations, which are reviewed next.

Half-space and Vertex Representation of Polytopes

Polytope can be defined by two different ways. One representation, often called the

half-space representation (or just H-representation for short) defines a polytope as
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the intersection of a finite number of half-spaces, i.e.,

P = {x | Ax ≤ b}, (2.17)

with A ∈ R
m×n and b ∈ R

m.

Another option is to represent a polytope as the convex hull of its vertices

v1, . . . , vp with vi ∈ R
n for i = 1, . . . , p:

P =
{

x
∣∣∣ x =

p∑

i=1

λivi, 0 ≤ λi ≤ 1,

p∑

i=1

λi = 1
}

. (2.18)

Such a representation is called the vertex representation, or the V-representation

for short.

It should be noted that the half-space representation could be transformed to

the vertex representation and vice versa. The H-to-V translation is called the vertex

enumeration, while the opposite direction is called convex hull. Both operations

are expensive since their runtime complexity is exponential in the worst case.

Minimial Representation of Polytopes

Minimal representation of a polytope means that removing of any halfspace or

vertex would change its form. If removed part has not an effect on the form

of the polytope then these constraints are called redundant. The elimination of

redundant constraints has not any effect on the actual form of the polytope, but can

fasten up the computation of optimization problem, since fewer constraints must be

considered. The complexity of finding the minimal representation depends on the

number of halfspaces or vertices because each halfspace/vertex must be checked.

The checking cost is one Linear Program for each halfspace/vertex. The procedure

for detecting redundant half-space of a polytope in the H-representation is reported
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as Algorithm 2.1.

Data: Half-spaces a⊤
i x ≤ bi, i = 1, . . . nh of a polytope.

for i = 1, . . . , nh do1

Let J = max a⊤
i x s.t. a⊤

j x ≤ bj , ∀j ∈ {1, . . . , nh} \ i;2

if J < bi then3

halfspace a⊤
i x ≤ bi is redundant4

else5

halfspace a⊤
i x ≤ bi is not redundant6

end7

end8

Algorithm 2.1: Detection of redundant half-spaces.

The detection of redundant vertices in the V-representation is presented in

Algorithm 2.2.

Data: Vertices v1, . . . , vnv
of a polytope.

for i = 1, . . . , nv do1

Solve the following linear programming problem:2

find λ3

s.t. vi =
∑

j 6=i λjvj ,4

0 ≤ λj ≤ 1,5

∑
j 6=i λj = 1.6

if feasible then7

vertex vi is redundant8

else9

vertex vi is not redundant10

end11

end12

Algorithm 2.2: Detection of redundant vertices

The result of Algorithm 2.1 is a minimal H-representation of the given polytope,

while the outcome of Algorithm 2.2 is the minimal V-representation of the given

polytope. Both algorithms come useful in case implementing EMPC in real hard-

ware. In worst case each critical region consists of that many halfspaces how many

constraints the MPC formulation has. Therefore, it is crucial from the implemen-

tation point of view to dispose of all the not necessary halfspaces or vertices.
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2.3 Chebyshev’s Ball

Chebyshev’s ball is the largest hyperball inscribed to a polytope. Its properties can

be used e.g. to detect whether a particular polytope is fully dimensional or not.

If a polytope is not fully dimensional, we call it lower dimensional. An example

of a lower-dimensional polytope in R
2 is a line segment. If no ball inscribed to

a particular polytope could be found, such a polytope is an empty set. Each

Chebyshev’s ball is characterized by its center point xc and its radius r. These two

parameters can be found by solving the following linear programming problem:

max
r,xc

r (2.19a)

s.t. a⊤
i xc + ||ai||2r ≤ bi, i = 1, . . . ,m, (2.19b)

where m denotes the number of half-spaces which define the polytope. Note that

problem (2.19) is always feasible even if the polytope is an empty set. In such a

case a negative radius r is obtained. If r = 0 is the optimal solution to (2.19), the

polytope is lower dimensional. Otherwise, if r > 0, the polytope is fully dimen-

sional. In such a case the center point needs not to be unique, for example in the

case of hyper-rectangle we can have multiple equally large inscribed circles.

2.4 Linear Programming

Linear programming (LP) is a special type of convex optimization problems with

linear objective function and linear constraints (Boyd and Vandenberghe, 2004). A

general formulation of an LP is given by

min
x

c⊤x (2.20a)

s.t. Ax ≤ b, (2.20b)

Cx = d. (2.20c)

Here, x ∈ R
n is the vector of optimization variables. The fitness of a particular

choice of x is evaluated by the linear objective function (2.20a) with c ∈ R
n.

The optimal solution must satisfy equality and inequality constraints in (2.20b)

and (2.20c) with A ∈ R
mi×n, b ∈ R

mi , C ∈ R
me×n, d ∈ R

me . A graphical

interpretation of a linear programming problem is provided in Fig. 2.4(a).
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(a) Linear Programming (b) Quadratic Programming

Figure 2.4: Linear and Quadratic Programming

The constraints determine the part of the search space where the problem is

feasible. In general, this feasible set is a polyhedron. The number of equality

constraints in (2.20b), i.e., me must be lower than the dimension of the problem.

Otherwise, if me = n, the solution is uniquely determined by the equalities (pro-

vided the row rank of C is equal to me). If me > n (more specifically, when the

row rank of C is larger than n), then the problem is infeasible.

The goal of linear programming is to find the point in the feasible set where

the objective function acquires the smallest possible value. Linear programs have a

special property that their optimal solutions always lie on the vertex of the feasible

set (which is a polyhedron). Even if the problem features multiple global optima,

there always exists one on the vertex.

Besides the standard LP form in (2.20), another form is frequently used as well:

min
x

e⊤x (2.21a)

s.t. Fx = g, (2.21b)

x ≥ 0. (2.21c)

It is always possible to convert the standard form (2.20) into (2.21) and vice verse.

The conversion from (2.20) into (2.21) is described next.

First, since (2.21) only assumes non-negative values of the decision variables,
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we need to rewrite x as the difference of two non-negative quantities, i.e.,

x = x+ − x−, (2.22)

with x+ ≥ 0 and x− ≥ 0. Subsequently, all inequality constraints in (2.20b) need to

be converted into equalities. This can be achieved by introducing a non-negative

vector of slack variables, i.e., s ≥ 0, which translate Ax ≤ b into Ax + s = b.

Putting it all together we obtain

min c⊤(x+ − x−) (2.23a)

s.t. A(x+ − x−) + s = b, (2.23b)

C(x+ − x−) = d, (2.23c)

0 ≤ x+, 0 ≤ x−, 0 ≤ s (2.23d)

By introducing the new optimization variable y = [x+, x−, s]⊤ we can rewrite (2.23)

to

min [c⊤ − c⊤ 0⊤]y (2.24a)

s.t.

[
A −A I

C −C 0

]
y =

[
b

d

]
, (2.24b)

0 ≤ y. (2.24c)

Then the standard LP form (2.21) is recovered with

e = [c⊤ − c⊤ 0⊤]⊤, (2.25a)

F =

[
A −A I

C −C 0

]
, (2.25b)

g =

[
b

d

]
. (2.25c)

A feasible optimal solution to the given linear programming problem does not

always exist. If the constraints in (2.20) are inconsistent it means the feasible do-

main of the given linear program is an empty set, in this case, the linear program is

infeasible. If the domain or feasible set of the given linear program is not bounded

in the direction of the gradient of objective function then there no optimal solution

could be found. Linear programming problems could be solved by various algo-

rithm. The less intelligent to solve it is to determine the vertices of the feasible
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set, defined by constraints. After in each vertex to calculate the value of the ob-

jective function and to choose the minimum value. This approach is not usable

if the dimension of the optimization problem is high, because just even to obtain

the vertices of the feasible set is so-called vertex enumeration problem, which is

not a straightforward operation. Another method which can be used to solve LP

is so-called simplex method presented by George Dantzig. This method uses as a

starting point one of the vertices and tries to find the path to the optimal vertex,

without exploring all the vertices. In general, the LP problem could be defined as

min
x

c⊤x (2.26a)

s.t. Ax ≤ b (2.26b)

this formulation should be transformed into

max
z

c⊤z (2.27a)

s.t. Az ≤ b, (2.27b)

z ≥ 0. (2.27c)

It can be converted in three steps

• Ax ≤ b ⇒ Ax + Is = b, s ≥ 0 The inequality condition is transformed into

equality constraints by introducing new nonnegative slack variables s.

• x = x+ − x− Since the formulation in (2.27) assumes only nonnegative num-

bers, the negative numbers are obtained as a difference of two non negative

numbers, therefore two new optimization variables must be introduced x+

and x−.

• minx c⊤x ⇒ maxx −c⊤x The minimization must be converted into maxi-

mization problem.
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By assuming these 3 steps (2.26) could be transformed into:

max
x+,x−,s

[
−c⊤ c⊤ 0

]



x+

x−

s


 (2.28a)

s.t.
[
A −A I

]



x+

x−

s


 = b, (2.28b)

[
1 1 1

]



x+

x−

s


 ≥ 0 (2.28c)

If the optimization problem is in 2.28 the so-called simplex tableaux is created and

by pivot operations, which are elementary row operations the maximum value of

the objective function is achieved. The iterative procedure is well documented in

(Dantzig and Thapa, 2003).

2.5 Quadratic programming

We speak about quadratic programming if the objective function is quadratic sub-

ject to linear inequality and linear equality constraints:

min
1

2
x⊤Hx + c⊤x (2.29a)

s.t. Ax ≤ b, (2.29b)

Cx = d (2.29c)

For the problem to be convex, the objective function must be convex, which is the

case when H º 0, i.e., when the matrix H is positive semi-definite.

Quadratic programming is used when the distance or energy consumption must

be minimized. In QP the optimal value does not have to lie on the vertex or edge

of the polytope. The optimum can also be situated in the interior of the polytope.

The solution of the QP is always unique, unlike in case the of LP. The optimization

problem can in some applications be defined as LP with a quadratic part with

relatively small weight in order to obtain the unique solution. QP can be solved

by using the KKT conditions applying the active set method, which is covered in

the next section.
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2.6 Karush-Kuhn-Tucker conditions

In convex optimization, the Karush-Kuhn-Tucker (KKT) conditions are necessary

and sufficient conditions for a solution LP/QP be optimal. The famous KKT con-

ditions were named after Harold W. Kuhn and Albert W. Tucker, who published

the optimality conditions in 1951, but later it was discovered that the conditions

were introduced by William Karush in 1939 in his unpublished master’s thesis. The

KKT conditions could be divided into 4 parts: stationarity condition (2.31a), pri-

mal feasibility (2.31b, 2.31c), dual feasibility (2.31d) and complementary slackness

(2.31e). The KKT conditions for optimization (2.30) are defined in (2.31). They

play an important role in convex optimization, because it is possible to solve the

system of KKT conditions analytically, and the solution is then also the solution

for the given optimization problem. The KKT conditions are used to construct

the parametric solution, this will be discussed in the section on Multiparametric

programming.

min f(z) (2.30a)

s.t. gi(z) ≤ 0, ∀i = 1, . . . ,m (2.30b)

hj(z) = 0, ∀j = 1, . . . , p (2.30c)

z ∈ Z (2.30d)

▽f(z⋆) +

m∑

i=1

λi ▽ gi(z
⋆) +

p∑

j=1

µj ▽ hj(z
⋆) = 0 (2.31a)

gi(z
⋆) ≤ 0, ∀i = 1, . . . ,m (2.31b)

hj(z
⋆) = 0, ∀j = 1, . . . , p (2.31c)

λi
⋆ ≥ 0, ∀i = 1, . . . ,m (2.31d)

λi
⋆gi(z

⋆) = 0,∀i = 1, . . . ,m (2.31e)

In the optimal point z⋆ the value of the Lagrangian is equal to the original

problem since the equality constraints in optimal point are fulfilled as presented in

(2.31c) and also inequality constraints do not change the value of the Lagrangian

since (2.31e) holds. This problem is difficult to solve analytically as there is a

nonlinear relation between λi and gi(z) as presented in (2.31e). This system could
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be solved by so-called active set method, when the constraints are divided into the

set of active and the remaining set of inactive constraints.

Optimization problem in (2.30) could be solved by applying the KKT method

presented in (2.31). This method explores a different combination of active con-

straints. The downside of this method is that a large number of combination must

be explored. In case of solving QP with the pure KKT method a possible number

of constraints we need to consider

NAC =

n∑

i=0

(
m

i

)
=

n∑

i=0

m!

i!(m − i)!
, (2.32)

where NAC represents the number of possible active set combinations, m stands for

the number of the constraints, variable n represents the number of optimization

variables. In the worst case, we need to explore NAC number of combination, which

even for small systems is high number. For example, if we have only 5 optimization

variables and for each variable we have 2 constraints the total amount of possible

active constraints are 219 combinations. There also exists the clever way how to

find the right combination of active set and not to explore all the combination. The

name of this approach is an active set method. There exists several algorithms that

use builtin heuristics to obtain good guess of the set of active constraints (Ferreau

et al., 2014).

2.7 Mixed Integer Programming

Even if Mixed Integer Programming (MIP) does not belong to the family of convex

optimization, it is frequently used to solve optimal control problems. This special

class of non-linear programming allows for engineers to formulate problems, where

not only continuous variables are considered. In general two types of MIP problems

are considered. If the objective function is linear, we speak about Mixed Integer

Linear Programming (2.33), while if the objective function contains a quadratic

part Mixed Integer Quadratic Programming (2.34) must be solved.

min
x,δ

c⊤x + d⊤δ (2.33a)

s.t. Axx + Aδδ ≤ b, (2.33b)

Cxx + Cδδ = d, (2.33c)
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where variable x ∈ R
n and c ∈ R

n, while δ ∈ R
q and d ∈ R

q. By assuming m

inequality constraints the dimensions of the matrices are Ax ∈ R
n×m, Aδ ∈ R

q×m

and b ∈ R
m, while by considering p equality constraints the matrices have the

following dimensions Cx ∈ R
n×p, Cδ ∈ R

q×p and d ∈ R
p.

min
x,λ

x⊤H1x + x⊤H2δ + δ⊤H3δ + d⊤δ (2.34a)

s.t. Axx + Aδδ ≤ b, (2.34b)

Cxx + Cδδ = d, (2.34c)

where matrices in the constraints by assuming m inequality and p equality con-

straints have the same dimension as in the case of (2.33). The weighting matrices

have the following dimensions: H1 ∈ R
n×n, H2 ∈ R

n×q and H3 ∈ R
q×q. The

property of convexity in the case of (2.33) and (2.34) is lost due to the presence

of integer variables δ, which is the only difference in MIP’s structure comparing to

classical LP or QP problems. These problems could be solved by enumerating all

possible combination of binary variables δ, and for each fixed combination solve a

classical LP or QP in order to obtain the optimal value x⋆. Even if this seems to be

a straightforward way of solving MIPs the number of combinations grows exponen-

tially by the number of δ. Therefore, more advanced methods were developed to

solve MIPs, such branch-and-bound or branch-and-cut (Ric, 2005), where the goal

is to eliminate candidates, which will not contain the optimal solution. There exist

several commercial solvers such Gurobi (Gurobi Optimization, 2015) or CPLEX

(ILOG, 2003), which are able to solve MIP problems in an efficient way.

2.8 Nonlinear Programming

In some cases, there is no chance to formulate the optimization problem as a convex

optimization problem. The sub-field of mathematical optimization dealing with

such problems is so-called nonlinear optimization. Problems of such a type are

solved by using nonlinear programming. The general formulation of nonlinear

programming is presented in (2.35).

min
x

f(x) (2.35a)

s.t. g(x) ≤ 0, (2.35b)

h(x) = 0, (2.35c)
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where f , h and g are nonlinear functions and potentially are non-convex. This could

be solved by using the KKT conditions but in the case of non-convex optimization

problems even the solution of the KKT conditions are only necessary conditions for

the existence of optimum. This means that we can found the solution, which fulfills

all the conditions, but the solution might be only a local optimum. This problem

could be solved by so-called sequential quadratic programming. This method solves

the QP approximation instead of (2.35) iteratively. After in each iteration, the

solution is improved. By using the second order Taylor’s expansion the function

f(x) could be locally approximated by

f(x) ≈ f(xs) + ∇f(xs)(x − xs) + 1/2(x − xs)⊤∇2f(xs)(x − xs). (2.36)

Since the goal is to solve (2.35) by QP iteratively also functions g(x) and h(x) must

be linear. In order to obtain linear constraints, the first order Taylor’s expansion

is used around the given linearization point.

g(x) ≈ g(xs) + ∇g(xs)(x − xs) (2.37a)

h(x) ≈ h(xs) + ∇h(xs)(x − xs) (2.37b)

Thus QP, which is the local approximation of (2.35) at the point xs is of the

following form

min
x

f(xs) + ∇f(xs)(x − xs) +
1

2
(x − xs)⊤∇2f(xs)(x − xs) (2.38a)

s.t. g(xs) + ∇g(xs)(x − xs) ≤ 0, (2.38b)

h(xs) + ∇h(xs)(x − xs) = 0. (2.38c)

Since the objective function in (2.38) is quadratic and also the constraints are

linear, it could be solved as QP. In each iteration, the quadratic approximation of

(2.35) is created in point x⋆, where x⋆ is the solution of (2.38). The procedure of

iterations is terminated if the solution of two consecutive steps fulfills the stopping

criteria. This is in general defined as p norm of the differences between the solution,

||xk − xk−1||p ≤ ǫ. Variable ǫ represent the value of toleration. In some cases, it

may happen that the hessian ∇2f(xs) of the local quadratic approximation will no

longer be positive definite. By adding the scaled identity matrix to the hessian we
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can achieve that the approximated function will be always convex.

min
x

f(xs) + ∇f(xs)(x − xs) +
1

2
(x − xs)⊤(γI + ∇2f(xs))(x − xs) (2.39a)

s.t. g(xs) + ∇g(xs)(x − xs) ≤ 0, (2.39b)

h(xs) + ∇h(xs)(x − xs) = 0, (2.39c)

where variable γ represents the scaling parameter and I stands for the identity ma-

trix. By this scaling even if the approximation of (2.35) would lead to non-convex

(concave) function, by adjusting the hessian at least a linear function approxima-

tion could be achieved.

2.9 Multiparametric Programming

In this section, we will discuss the idea of multiparametric programming (Gal and

Nedoma, 1972; Willner, 1967), which is based on obtaining an explicit representa-

tion of MPC feedback law for a full scale of initial conditions (parameters). This

is achieved by solving a given optimization problem off-line for all possible initial

conditions. The resulting analytical solution will be encoded as a piecewise affine

(PWA) function defined over the polytopic partition, composed of a series of critical

regions (Borrelli, 2003).

The main task of multiparametric programming is to construct critical regions

by using necessary and sufficient conditions of optimality. Over each region, the

control law and the objective function is defined as a function of actual states. Let

us consider the following multiparametric program:

J⋆(x) = min
U

J(U, x) (2.40a)

s.t. GU ≤ w + Ex, (2.40b)

with J⋆(x) as an optimal value of an objective function J(U, x), U is a vector of

optimization variables, x is a vector of parameters. Further, let us denote matrices

G ∈ R
m×s, w ∈ R

m, E ∈ R
m×n, where m represents the number of rows in

constraints, s dimension of optimization variables, and n dimension of parameters.

During obtaining a critical region the constraints are divided into two parts. In

each region different constraints are active (A) or inactive (NA), respectively. Let

I := {1, . . . ,m} be a set of m constraints in (2.40a), which can be split into active
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constraints A and inactive constraints NA. A and NA are sub-sets of the set I,

where A ∪ NA = I. Therefor let us denote GA, wA, EA, GNA, wNA and ENA

The constraint is said to be active when

GjU = wj + Ejx (2.41)

and inactive when

GjU < wj + Ejx (2.42)

The critical region is defined by

RA := {x ∈ K | I(x) = A} (2.43)

where K is part of parameters space in R
n in which we are interested in exploring,

and I(x) = A is interpreted as imposing as active constraints indexed by the index

set A.

Depending on the type of the objective function J(U, x), we distinguish between

two types of multiparametric problems. If J(U, x) is a linear function, then the

problem in (2.40a) is called a multiparametric linear program (mp-LP). If J(U, x)

is a convex quadratic function, then (2.40a) is referred to as a multiparametric

quadratic program (mp-QP). The construction of the explicit solutions to such

problems is described next.

Multiparametric Linear Programming

Consider a multiparametric programming problem (2.40a) with a linear objective

function of the form c⊤U , i.e.,

J⋆(x) = min
U

c⊤U (2.44a)

s.t. GU ≤ w + Ex. (2.44b)

Our goal is to construct the optimizer U⋆(x) = arg minU c⊤U and the value func-

tion J⋆(x) both as functions of the parameters x. These functions will be defined

over a polytopic partition ∪iRi, i = 1, . . . , k where Ri are polyhedral critical regions

and k denotes the total number of critical regions.

Since the above mention problem is convex, the Karush-Kuhn-Tucker (KKT)

conditions (Boyd and Vandenberghe, 2004) are necessary and sufficient conditions
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for U⋆ to be a global minimizer of (2.44). The Lagrangian of the problem (2.44) is

defined as

L(U, x, λ) = c⊤U + λ⊤(GU − w − Ex). (2.45)

Then the four KKT conditions are given by

∂L(U, x, λ)

∂U
= c + G⊤λ = 0, (2.46a)

GU ≤ w + Ex, (2.46b)

0 ≤ λ, (2.46c)

λi(GiU − wi − Eix) = 0. (2.46d)

Here, (2.46a) is the stationarity condition, (2.46b) is the primal feasibility condi-

tion, (2.46c) represents dual feasibility, and (2.46d) is the complementary slackness

condition. Furthermore, let us split 2.46b into active

GAU − EAx = wA (2.47)

and inactive

GNAU − ENAx < wNA (2.48)

parts. The optimizer U⋆(x) can be derived from (2.46b) as

U⋆(x) = G−1
A (EAx + wA) (2.49)

Subsequently by substituting (2.49) into (2.44a) we obtain optimal value function

as a function of parameter in a form of

J⋆(x) = c⊤G−1
A (EAx + wA) (2.50)

Finally, the critical region is defined as a union of all inequalities in (2.46). Since

(2.46c) do not contribute any restriction to parameter we have that critical region

can be obtained from (2.48) and (2.49) as:

RA = {x | (GNAG−1
A EA − ENA)x < wNA − GNAG−1

A wNA}. (2.51)

Clearly, the set in (2.51) describes an open polyhedron in the parametric space.

For practical purposes, one can consider the closure of a critical region, which is

obtained from (2.51) by replacing strict inequalities by non-strict ones.
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Multiparametric Quadratic Programming

An another case of multiparametric programming is when the objective function is

quadratic subject to linear constraints:

J(x) = min
U

1

2
U⊤HU + x⊤FU (2.52a)

s.t. GU ≤ w + Ex, (2.52b)

with H = H⊤ ≻ 0. Our goal is similarly as in multiparametric linear programming

to construct an optimizer U⋆ = arg minU
1
2U⊤HU + x⊤FU , value function J⋆(x)

and subsequently critical regions Ri.

Hence the problem defined in (2.52) is convex, the KKT conditions provide

necessary and sufficient conditions for U⋆ to be a global minimizer. The Lagrangian

equation of problem defined in (2.52) is expressed by:

L(U, x, λ) =
1

2
U⊤HU + x⊤FU + λ⊤(GU − w − Ex), (2.53)

for which the KKT conditions are given by

∂L(U, x, λ)

∂U
= HU + F⊤x + G⊤λ = 0, (2.54a)

GU ≤ w + Ex, (2.54b)

0 ≤ λ, (2.54c)

λi(GiU − wi − Eix) = 0, (2.54d)

where (2.54a) represents a stationarity condition, (2.54b) is the primal feasibility,

(2.54c) is the dual feasibility and (2.54d) is the complementary slackness condition.

Similarly as in (2.46) the equation (2.54b) is divided into the active

GAU − EAx = wA, (2.55)

and the inactive

GNAU − ENAx < wNA, (2.56)

constraints. The optimizer as a function of parameter U⋆(x) can be derived from

(2.54a) as

U⋆(x) = −H−1(F⊤x + G⊤λ). (2.57)
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Since λ is the part of (2.57) it must be expressed as a function of the parameter

to obtain optimizer only as a function of the parameter. The dual variable as a

function of parameter is obtained by substituting (2.57) into (2.55):

λ = (−GAH−1G⊤)−1(−GAH−1F⊤ − EA)︸ ︷︷ ︸
γ

x(t)−(GAH−1G⊤)−1wA︸ ︷︷ ︸
δ

(2.58)

afterward λ is then substituted into (2.57) to yield

U⋆(x) = −H−1(F⊤x + G⊤(γx + δ)) = −H−1(F⊤ + G⊤)︸ ︷︷ ︸
α

x−H−1G⊤δ︸ ︷︷ ︸
β

. (2.59)

Subsequently by substituing (2.59) into (2.52a) the optimal expression of value

function is obtained:

J⋆(x) =
1

2
(αx + β)⊤H(αx + β) + x(t)⊤F (αx + β). (2.60)

Finally, we need to determine the critical region where (2.59) and (2.60) are valid.

The region is calculated as an intersection of primal and dual feasible sets, where

the region of primal feasibility is defined as

Pp = {x ∈ K | (GNAα − ENA)x < wNA − GNAb}, (2.61)

and the region of dual feasibility by

Pd = {x ∈ K | γx(t) ≤ β}. (2.62)

The final critical region is then given as the intersection of Pp and Pd, i.e.,

R = {x | x ∈ Pp ∩ Pd}. (2.63)

since Pp and also Pd are polytopic sets, the result of the intersection between them

R is also polytopic set.

2.10 Properties of Multiparametric Programming

We obtain three expressions by solving the given optimization problem by paramet-

ric programming. The first is the feasible set X , which is a domain of parameter x,

where exists a feasible solution. Furthermore, the feasible set is a union of critical

regions. Over these regions, the optimal solution and the objective functions are
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defined The optimal solution z⋆(x), which is a function linear function of parameter

x is a PWA function defined over critical regions (2.64).

z⋆(x) = Fix + gi, if x ∈ Ri, (2.64)

where Ri is the i-th critical region, while Fi and gi are the local gain and affine

part. The objective function is also defined over critical regions J⋆(x) as function

of parameter x. The properties of the objective function depends on what kind of

multiparametric program was solved. In case mp-LP and mp-MILP the objective

function is a PWA function and is of the following form:

J⋆(x) = c⊤i x + di, if x ∈ Ri, (2.65)

while in case of mp-QP and mp-MIQP it is a PWQ given as

J⋆(x) = x⊤Hx + c⊤i x + di, if x ∈ Ri. (2.66)

In case mp-LP (2.65) or mp-QP (2.66) functions are continuous and convex. In case

of mp-MILP (2.65) or mp-MIQP (2.66) the functions are possibly discontinuous and

non-convex.

2.11 Summary

This chapter’s aim was to present the fundamentals of convex optimization. The

reasons why we are interested in convex optimization problems are that, if there

exists a solution for a convex optimization problem then this solution represents

the global optimum. However in the case of non-convex optimization, the result

of the optimization problem could end in one of its local optima. The main con-

vex optimization classes were introduced. In the next chapters, the theoretical

fundamentals presented in this chapter will be used. The described optimization

classes, such LP, QP, MILP, and MIQP are mainly used in MPC formulations.

Furthermore, the construction of EMPC and its property was also discussed. The

algorithms to extract the value of the optimal solution for the given initial param-

eter from the parametric solution will be discussed in the next chapter.





Chapter 3
Model Predictive Control

Due to its ability to handle system’s limitations, MPC is a very popular control

strategy nowadays that had to go through a long evolution. The beginning could

be dated back to the work of Kalman (1960). In the ’60s of the last century, he was

working on a controller with an aim to compute an optimal input by quadratic pe-

nalization on a linear model based infinite horizon of states and inputs. Today, this

method is known as linear quadratic regulation (LQR) (Kwakernaak and Sivan,

1972a). Between industrial technologists, LQR was not really popular. Main rea-

sons were the absence of system’s constraints in its formulation. Also nonlinear

dynamic and large time delays caused problems as well. In the early ’80s, so-called

Dynamic Matrix Control (DMC) (Freedman and Bhatia, 1985) started to be used in

the chemical and petrochemical fields. There was a huge demand for this approach

because of its possibility to compute optimal control actions wherewith consider-

able amount of money could be saved. In the petrochemical field where products

were measured in kilo or megatons, only a small improvement could lead to giant

savings. The main reason for using this kind of control approach in chemical and

petrochemical field was the fact that even if the strategy was computationally de-

manding, the system dynamics was slow enough. MPC computed the optimal input

based on optimization that had to be performed in less time than the sampling time

of the system. At that time, the stability was not theoretically determined (Mayne

et al., 2000). The first version of MPC did not stabilize the process automatically.

However, a long prediction horizon and stable systems were chosen to improve this

51
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kind of control approach. Generally, the optimization problem is predefined and

only the actual state values are necessary to obtain. Since MPC is a state based

control approach it needs information of all states. In case that not all states are

measurable, it requires an observer or estimator. In the beginning of this century

a new approach was introduced, so-called Explicit Model Predictive Control (Be-

mporad et al., 2002). This method brought MPC to control fast mechanical and

electrical systems. With all the benefits of MPC control technique, the Explicit

MPC could be implemented in weaker hardware since the optimization problem

was solved by using parametric programming in the offline phase, while in the

online phase only function evaluation was required.

3.1 Model Predictive Control Formulation

Model predictive control problems can be formulated as optimization problems that

consist of the following components:

• the objective function,

• constraints in form of equalities,

• constraints in form of inequalities,

• initial conditions.

The objective function usually penalizes the deviation of the plant’s states

from prescribed references or accounts for minimization of consumed energy (Ma-

ciejowski, 2002). Typically the mathematical model enters the optimization prob-

lem as equality constraints. Limits on predicted states, outputs, and inputs are

converted to the inequality constraints. The initial condition supplies the opti-

mization problem with the state measurements. If all constraints are linear, then

they form a convex set. Moreover, if the objective function is also convex, the MPC

problem can be solved as a convex optimization problem. If the objective function

is quadratic, then the problem can be solved as a quadratic program. This is the

case when squared 2-norms are used to penalize various quantities in the objective

function. If the function employs 1- or ∞-norms, the problem can be solved as a

linear programming problem. The purpose of this chapter is to provide an overview

of mathematical formulations of MPC problems typically used. However, first we
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review main advantages as well as limitations of MPC when compared to classical

control approaches.

3.2 Comparison of MPC to Other Approaches

The model predictive control approach is used when systems constraints must be

considering and the performance must be as good as possible. The classic control

designs compared to MPC have several weaknesses. Widely used PID controllers

have easy structure and few parameters which could be changed by operators in

order to improve the controller’s performance. In the case of bigger systems when

multiple inputs and multiple outputs (MIMO) are considered then decoupling is

us, which is not trivial. Moreover, PID controllers do not provide optimal control

inputs. The input limitation can be saturated mechanically, but this can cause

in some cases destabilization of systems. More advanced control approach is Lin-

ear Quadratic Regulator (LQR) which provides optimality (Kwakernaak and Sivan

(1972b). LQR solves an optimization problem of minimization the state and inputs

over infinity prediction horizon subject to a linear constraint which is the linear

model of the system. LQR cannot handle other constraints, but it is applicable to

MIMO systems without using any decoupling. However, MPC can handle MIMO

systems and can incorporate several constraints in the form of equalities and in-

equalities. Although MPC uses only finite prediction horizon the benefits come

from constraints satisfaction which makes it interesting (Maciejowski, 2002; Mayne

et al., 2000).

There are two possible ways how to implement the result of the optimization

which arises from MPC problem. The result is a sequence of optimal control inputs.

The length of the sequence depends on the size of the control prediction horizon.

3.3 Open-Loop Implementation

If the whole sequence is applied to the system, the next measurement/estimation

is done only after applying the last part of the computed control sequence. Then

the optimization problem is solved again. At first, it looks like a good way to

implement MPC, but if something unexpected happens between two measurements

then controller does not know how to handle it since it has not any information

about this event. The above mentioned approach can easily be demonstrated by
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1  2  3  4  5  6  7  8  9

(a) Open loop

1  2  3  4  5  6  7  8  9

(b) Closed loop

Figure 3.1: Implementation types

driving a car. We require from the cars leader staying on the road and does not

violate any highway code. Now the prediction horizon can be specified as the

distance ahead of a car which can be seen. The driver could open eyes just for the

moment, evaluate the situation and immediately close them. He could open eyes

again after passing the given part of the road. If an unexpected object appears,

like another car or child, while drivers eyes are closed collision cannot be prevented.

This is a so-called open-loop implementation of the calculated control sequence.

3.4 Closed-Loop Implementation

In the case of the closed loop approach, the whole calculated control sequence is not

implemented to the process, but only the first element. After a new measurement

is performed, the optimization is repeated.

3.5 MPC as an Optimization Problem

In MPC the information about the model of the controlled system is used to predict

its responses to a particular choice of the control inputs (Jerez et al., 2010). Then

optimization is employed to find the best control inputs that provide an optimal

operation of the plant. In the sequel, we will assume that the controlled system

can sufficiently well be modeled by a linear time-invariant system in the discrete

time domain of the form

x+ = Ax + Bu, (3.1)

where x ∈ R
n is the vector of states, u ∈ R

m is the vector of control inputs, and

x+ denotes the successor state at the next sampling instant. The system in (3.1)
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is assumed to operate subject to constraints

x ∈ X , u ∈ U , (3.2)

where X ⊆ R
n and U ⊆ R

m are polyhedra. More specifically, we assume

X = {x | Hx ≤ K}, (3.3a)

U = {u | Lu ≤ M}, (3.3b)

where (3.3a) and (3.3b) are the half-space representations of constraints on state

and input variables.

Then the MPC optimization problem can be stated as

min
u0,...,uN−1

ℓN(xN ) +

N−1∑

k=0

ℓ(xk, uk) (3.4a)

s.t. xk+1 = Axk + Buk, (3.4b)

x0 = x(t), (3.4c)

xk ∈ X , (3.4d)

uk ∈ U . (3.4e)

xN ∈ T . (3.4f)

where ℓ(., .) represents the stage cost while ℓN is a terminal penalty with terminal

constraint T . In the sequel we will consider the specific case when the objective

function is a quadratic function. For the sake of simplicity of the notation, we will

not consider terminal constraints and terminal cost. In this case, the MPC is of

the following form:

min
u0,...,uN−1

N−1∑

k=0

x⊤
k Qxk + u⊤

k Ruk (3.5a)

s.t. xk+1 = Axk + Buk, (3.5b)

x0 = x(t), (3.5c)

xk ∈ X , (3.5d)

uk ∈ U . (3.5e)

where xk and uk represent the state and input variables at the k-th step of the

prediction window, respectively. The predictions are obtained using the LTI pre-

diction model defined in (3.5b), and initialized by the current state measurements
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in (3.5c). Each predicted state and input variables has to fulfill restrictions due to

constraints (3.5d) and (3.5e). Note that constraints (3.5b), (3.5d) and (3.5e) need

to be imposed for each k = 0, . . . , N − 1. The purpose of the objective function

in (3.5a) is to penalize the deviation of predicted states and inputs from the origin.

Weighting matrices Q = Q⊤ º 0 and R = R⊤ ≻ 0 are tuning parameters to adjust

the controllers performance.

The optimal control problem defined in (3.5) can be transformed into a quadratic

program (Rossiter and Kouvaritakis, 2004; Scokaert and Rawlings, 1998). New

variables are introduced in order to generalize the MPC problem.

X =




x0

...

xN−1


 , Q̃ =




Q · · · 0
...

. . .
...

0 · · · Q


 , R̃ =




R · · · 0
...

. . .
...

0 · · · R


 (3.6a)

U =




u0

...

uN−1


 , H̃ =




H · · · 0
...

. . .
...

0 · · · H


 , L̃ =




L · · · 0
...

. . .
...

0 · · · L


 (3.6b)

M̃ =




M
...

M


 , K̃ =




K
...

K


 , Ẽ =




I

0
...

0




, (3.6c)

(3.6d)

where matrices X and U represent the sequence of state and input variables, while

matrices Q̃, R̃, H̃ and L̃ stand for the Kronecker product between the identity ma-

trix and the given weighting matrices or left-hand side constraint matrices. Vectors

M̃ and K̃ are the augmented vector to constrain the predicted state and input vari-

ables.

Ã =




0 · · · · · · · · · 0

A 0
. . .

. . .
...

0 A
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 A 0




, B̃ =




0 · · · · · · · · · 0

B 0
. . .

. . .
...

0 B
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 B 0




(3.7a)
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Ã and B̃ represent the evolution of the dynamics of the system. This formulation is

so called sparse formulation where the nonzero elements of the matrices are located

on the diagonal.

min X⊤Q̃X + U⊤R̃U (3.8a)

s.t. X = ÃX + B̃U + Ẽx(t), (3.8b)

H̃X ≤ K̃, (3.8c)

L̃U ≤ M̃. (3.8d)

By introducing a new optimization variable Z = [X⊤ U⊤]⊤, optimization prob-

lem in (3.8) could be transformed into the standard QP form:

min Z⊤

[
Q̃ 0

0 R̃

]
Z (3.9a)

s.t. [I − Ã − B]Z = Ẽx(t), (3.9b)
[
H̃ 0

0 L̃

]
Z ≤

[
K̃

M̃

]
. (3.9c)

The formulation in (3.9) is also called a sparse MPC formulation with equality

constraints. It is possible to eliminate the equality constraints by exploiting the LTI

prediction equation in (3.1). Specifically, let us rewrite (3.1) into xk+1 = Axk+Buk.

Then the first three predictions of the states are given by

x1 = Ax0 + Bu0 (3.10a)

x2 = Ax1 + Bu1 = A(Ax0 + Bu0) + Bu1 = A2x0 + ABu0 + Bu1 (3.10b)

x3 = Ax2 + Bu2 = A(A2x0 + ABu0 + Bu1) + Bu2 =

A3x0 + A2Bu0 + ABu1 + Bu2

(3.10c)

As can be observed from (3.10), each predicted state is only a function of the initial

condition x0 and of the vector of predicted control inputs. We can generalize this

procedure to give a compact representation of the k-th predicted state as

xk = Akx0 +

k−1∑

i=0

Ak−i−1Bui. (3.11)

By defining X = [x⊤
0 , x⊤

1 , . . . , x⊤
N−1]

⊤ and U = [u⊤
0 , . . . , u⊤

N−1]
⊤, we can compactly
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rewrite the prediction equation as

X = Ãx(t) + B̃U, (3.12)

which, more specifically, takes the following form:




x0

x1

x2

...

xN−1




︸ ︷︷ ︸
X

=




I

A

A2

...

AN−1




︸ ︷︷ ︸
Ã

x(t) +




0 0 · · · · · · 0

B 0 · · · · · · 0

AB B 0 · · · 0
...

. . .
. . .

. . .
...

AN−2B AN−3B · · · B 0




︸ ︷︷ ︸
B̃




u0

u1

u2

...

uN−1




︸ ︷︷ ︸
U

. (3.13a)

By exploiting (3.13) the MPC problem could be formulated as

min (Ãx(t)) + B̃U)⊤Q̃(Ãx(t) + B̃U) + U⊤R̃U (3.14a)

s.t. H̃(Ãx(t) + B̃U) ≤ K̃, (3.14b)

L̃U ≤ M̃, (3.14c)

which, after expansion, leads to

min U⊤(B̃⊤Q̃B̃ + R̃)U + 2x(t)⊤Ã⊤Q̃B̃U (3.15a)

s.t. H̃B̃U ≤ (K̃ − H̃Ãx(t)), (3.15b)

L̃U ≤ M̃. (3.15c)

By introducing new variables

H = B̃⊤Q̃B̃ + R̃, (3.16a)

F = 2Ã⊤Q̃B̃, (3.16b)

G =

[
H̃B̃

L̃

]
, w =

[
K̃

M̃

]
, E =

[
H̃Ã

0

]
(3.16c)

we obtain the final form of the so-called dense matrix formulation of MPC:

min U⊤HU + x(t)⊤FU (3.17a)

s.t. GU ≤ w + Ex(t), (3.17b)

where variable U represents the vector optimized variables and x(t) the parameter.

This form of the MPC problem is pre-constructed and the only unknown informa-

tion is the value of parameter x(t), which is usually obtained by measurement.
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3.5.1 Tracking

The objective function in (3.4a) forces the control inputs to converge the system to-

wards the origin, while all the constraints are respected. However often in practice,

a non-zero reference is required. Such a formulation is generally called a tracking

MPC setup. The goal is to track state reference xref. In this case, the MPC is of

the form

min
N−1∑

k=0

(||Qx(xk − xref)||p + ||Quuk||p) (3.18a)

s.t. xk+1 = Axt + Buk, (3.18b)

x0 = x(t), (3.18c)

xk ∈ X , (3.18d)

uk ∈ U . (3.18e)

Alternatively, this problem can be reformulated in order to ensure that the outputs

of the system will track certain output reference yref. Here, we assume that the

output equation is linear, i.e.,

y = Cx + Du, (3.19)

with y ∈ R
q denoting the vector of system’s outputs, which can be constrained

by y ∈ Y where Y ⊆ R
q is a polyhedron. The corresponding MPC problem then

becomes

min

N−1∑

k=0

(||Qy(yk − yref)||p + ||Quuk||p) (3.20a)

s.t. xk+1 = Axk + Buk, (3.20b)

yk = Cxk + Duk, (3.20c)

x0 = x(t), (3.20d)

xk ∈ X , (3.20e)

uk ∈ U , (3.20f)

yk ∈ Y. (3.20g)

Note that this formulation is not able to eliminate the steady-state offset. This

fact is caused by the minimization of inputs in the objective function. The objective
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function tries to push inputs to zero. By this action states/outputs never could

reach reference, just getting as close as it is possible. If offset-free tracking is

required the optimization problem must be reformulated. The first method is called

steady-state approach. Here, we minimize the difference between the predicted

inputs and the corresponding steady-state values. The steady-state input uss, along

with the corresponding steady-state value of the state vector can be calculated from

xss = Axss + Buss, (3.21a)

yref = Cxss + Dss. (3.21b)

To solve for xss and uss from (3.21), we can rewrite the two equations into the

compact matrix form
[
I − A −B

C D

][
xss

uss

]
=

[
0

yref

]
, (3.22)

from which xss and yss can be computed relatively easily, while we consider that

the matrix in the left-hand-side is invertible.

Then the offset-free tracking MPC problem is given by

min

N−1∑

k=0

(||Qy(yk − yref)||p + ||Qu(uk − uss)||p), (3.23a)

s.t. xk+1 = Axk + Buk, (3.23b)

yk = Cxk + Duk, (3.23c)

x0 = x(t), (3.23d)

xk ∈ X , (3.23e)

uk ∈ U , (3.23f)

yk ∈ Y. (3.23g)

Another possibility to eliminate the tracking offset is to employ the so-called ∆u

formulation. Here, instead of minimizing the control inputs directly, we optimize

over their increments, i.e.,

∆uk = uk − uk−1. (3.24)

The objective function then becomes

min

N−1∑

k=0

(||Qy(yk − yref)||p + ||Q∆u∆uk||p). (3.25)
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Moreover, the constraints need to be modified such that they are a function of the

increments. This can be achieved by defining an auxiliary dynamical system

[
xk+1

uk

]

︸ ︷︷ ︸
˜xk+

=

[
A B

0 I

]

︸ ︷︷ ︸
Ã

[
xk

uk−1

]

︸ ︷︷ ︸
x̃k

+

[
B

I

]

︸︷︷︸
B̃

∆uk︸︷︷︸
ũk

, (3.26a)

yk =
[
C D

]

︸ ︷︷ ︸
C̃

[
xk

uk−1

]
+ D︸︷︷︸

D̃

∆uk. (3.26b)

Then the complete MPC tracking problem becomes

min

N−1∑

k=0

(||Qy(yk − yref)||p + ||Q∆u∆uk||p), (3.27a)

s.t. x̃k+1 = Ãx̃k + B̃∆uk, (3.27b)

yk = C̃x̃k + D̃∆uk, (3.27c)

x̃t =

[
x(t)

u(t − 1)

]
, (3.27d)

H̃∆ux̃k ≤ ˜K∆u H̃y ỹk ≤ K̃y, (3.27e)

where

xt ∈ X = Hxxt+k ≤ Kx, (3.28a)

ut ∈ U = Huut+k ≤ Ku, (3.28b)
[
Hx 0

0 Hu

]

︸ ︷︷ ︸
H̃∆u

˜xt+k ≤

[
Kx

Ku

]

︸ ︷︷ ︸
K̃∆u

. (3.28c)

Practical applications usually have slew rate limits, which means they are not able

to make big changes in control action. For example, the valve cannot be fully open

at one time and the next step totally closed. This kind of approach can radically

decrease the lifetime of the equipment. Therefore ∆u formulation can be changed

by adding one additional constraint, which bounds the changes between control

actions:

∆umin ≤ ∆u ≤ ∆umax, (3.29)
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where ∆umin is a minimal decrease in the value of the control variable, subsequently

∆umax represents the maximal increase in the value of the control variable in one

control step.

3.5.2 Move Blocking

The complexity of MPC problems grows proportionally with the value of the pre-

diction horizon. This complexity can be decreased in two ways. One option is

to decrease the value of the prediction horizon. However, doing so has a negative

impact on the performance of the MPC strategy. An alternative way is to split

the prediction horizon into two parts (Maciejowski, 2002). The first part, called

the control horizon (Nc) specifies the number of optimized control inputs. Then

in the remainder of the prediction window, from steps Nc to N , one assumes that

the control inputs are fixed to the last computed value. This allows to reduce the

number of optimization variables. Needless to say, if Nc is too short compared to

N , one can expect such a controller to exhibit a large amount of suboptimality.

The corresponding mathematic formulation of the move blocking MPC formulation

is given by

min

Nc−1∑

k=0

(‖Qxk‖p + ‖Quuk‖p) +
N−1∑

k=Nc

‖Qxk‖p (3.30a)

s.t. xk+1 = Axk + Buk, (3.30b)

x0 = x(t), (3.30c)

xk ∈ X , (3.30d)

uk ∈ U , (3.30e)

uNc+k = uNc−1, (3.30f)

where the last constraint represents the blocking condition.

3.5.3 Soft Constraints

Sometimes MPC formulation can lead to infeasibility. This is usually caused by

so-called hard constraints. These kind of constraints must be satisfied at all time.

In the industry, it can represent safety boundary for pressure or maximum opening

of valve cant be more than 100 %. There exist another type of constraints which

can cause that the MPC problem will be always feasible. This kind of approach is
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used when a small violation is allowed. Hard constraints can be softened by adding

non-negative slack variables. However, these slack variables need to be penalized

in the objective function as to discourage MPC from violating the constraints too

often. The corresponding mathematical formulation of the MPC problem is given

as

min
N−1∑

k=0

(‖Qyyk‖p + ‖Quuk‖p + Qs,ySy,k + Qs,uSu,k (3.31a)

s.t. xk+1 = Axk + Buk, (3.31b)

yk = Cxk + Duk, (3.31c)

x0 = x(t), (3.31d)

umin − su,k ≤ uk ≤ umax + su,k, (3.31e)

ymin − sy,k ≤ yk ≤ ymax + sy,k, (3.31f)

su,k ≥ 0, (3.31g)

sy,k ≥ 0, (3.31h)

where su,k and sy,k are the slack variables which soften the constraints on the k-th

predicted input and output, respectively.

3.6 Explicit Model Predictive Control

Even though several efficient solvers exist to solve the MPC problem quickly at each

sampling time, the runtime of the optimization can still be prohibitive when target-

ing implementation of MPC to systems with fast dynamics. Moreover, these solvers

are usually applicable only on expensive hardware, which is not so common in the

industry. Hence, the industry requires hardware which will permanently work for

long years in the unfavorable environment, like dusty, acidic or moist environment.

Due to these reasons, programmable logic controllers (PLCs) are predominant in

the industrial setup. This type of implementation hardware typically provides only

small computational power and a limited amount of memory. To implement MPC

on PLCs is therefore challenging. One way to accomplish this task is to employ

explicit pre-compute the optimal solution to a given MPC optimization problem for

all possible values of the initial condition (Bemporad et al., 2002). Subsequently,

the pre-computed solution is stored in the simple hardware and is used to identify

optimal control inputs on-line for a particular value of the initial condition. It can
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be shown that for a rich class of MPC problems, specifically for those which can

be formulated as linear or quadratic problems, such a pre-computed solution takes

a form of a piecewise affine function. The identification of optimal control inputs

thus boils down to a mere function evaluation. Such a task can be done quickly

even with limited computational resources. This approach often called the explicit

MPC approach (Kvasnica (2011)), is elaborated next. Specifically, we show how

to obtain the analytical representation of the piecewise affine optimizer and review

its properties.

The construction of the explicit controller is a complex procedure. In practical

application we are interested in parameters only in a given polytopic set K:

K = {x | Tx ≤ V }. (3.32)

At the beginning one LP with equations (2.44a, 2.44b) is solved for x(t) = x0

and x0 ∈ K. Afterward the indices of active and inactive constraints are deter-

mined. Subsequently, the objective function (2.50) and input (2.49) are calculated

as functions of parameter x0. The critical region where the above mentioned affine

properties are valid is computed by (2.51). Since the explicit solution usually con-

sists of more than one region, this procedure must be carried out repeatedly. This

procedure is given in Algorithm 3.1. The algorithm does not only construct the

polytopic critical regions, but also constructs the PWA control law and also the

PWA/PWQ objective function defined over those critical regions. With such an

information in hand, everything is ready for the implementation phase.

3.7 Point Location Algorithms

The parametric solution of the optimization problem presented in (2.40a) is in the

form of PWA function defined over polytopic regions. The way of obtaining the

optimal value of the optimization problem as a function of the parameter is called

a point location problem. In the following section, three different point location

algorithms will be presented. Namely, the sequential search, extended search via

objective function and binary search tree will be discussed. Other methods include

works of Nguyen et al. (2015) if the objective function is linear; Herceg et al. (2013b)

and Wang et al. (2007) exploited adjacency list that is inherently associated with

the polytopic partition of the PWA function. However, a common drawback of the

referenced approaches is that they can only be applied to continuous feedback laws.
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Data: mp-LP / mp-QP formulation per (2.44) or (2.52)

Result: Multiparametric solution

initialization: x0 ∈ K, Q = {x0};1

while Q 6= {} do2

x0 = Q13

Q = Q \ Q14

Solve LP equations (2.44a, 2.44b) or equations (2.52a, 2.52b) for x = x05

Obtain the optimizer U⋆ from (2.49)/(2.59)6

Obtain the value function J⋆ from (2.50) /(2.60)7

Obtain the critical region R from (2.51)/(2.63)8

Find a point on each edge of the critical region9

Make small step in the direction of normal vector of edge to obtain10

points xnew

if xnew ∈ K ∧ xnew 6∈ ∪iRi then11

Q = Q∪ xnew12

end13

end14

Algorithm 3.1: mp-LP / mp-QP algorithm
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3.7.1 Sequential Search

The sequential search is the easiest of the point location algorithms. Each critical

region is defined in the form of linear inequalities (3.33).

Ri = {x | Hix ≤ hi} (3.33)

If the optimization problem has a solution then there is at least one critical region

Ri which contains the parameter x. The goal is to find the index of the region i,

where the point x is located. If the PWA control law is a continuous function the

values of the optimal control action even on the edges of the critical regions are

identical. Therefore, it is enough to find the first critical region, which contains the

parameter x. In the worst case, the point location algorithm needs to go through

all of the M critical regions. After finding the critical region there is no need to

continue in searching and the point location algorithm can be terminated.

Data: Feedback laws Fi, gi, critical regions Ri, number of regions M , state

measurement x

Result: Optimal control input

for i = 1, . . . ,M do1

if x ∈ Ri then2

return u⋆ = Fix + gi3

end4

end5

Algorithm 3.2: Sequential search for continuous functions

The procedure of sequential search is described in Algorithm 3.2 where Fi rep-

resents the affine part of the control law. In general, it can be stored as a matrix

or a two-dimensional array. Variable gi stands for the affine part of the control

law and it can be stored as a vector or one-dimensional array. Critical region Ri

represents the i-th critical region. It can be represented as an abstract class as

it is implemented in the Multi-Parametic Toolbox or as a combination of matrix

and vector, respectively: one two-dimensional array for the left-hand side of the

halfspaces and one one-dimensional array for the right-hand side of the halfspaces

(3.33). Variable M represents the number of critical regions. x represents the

parameter of the optimization problem. In the context of MPC it contains infor-

mation about the state variables. It is a vector or one-dimensional array. The
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result of the Algorithm 3.2 is the optimal control input, which is the solution of the

general MPC problem defined in (3.4). This has a form of the vector type variable

or one-dimensional array.

3.7.2 Extended Sequential Search

The point location algorithm defined in the previous section should be used only

for a parametric solution with continuous control law. Generally, after applying

some of the complexity reduction techniques on the parametric solution the final

approximated control law does not need to have a property of continuity. This

means on the edges/boundaries of the neighboring critical regions the values of the

calculated control actions are not identical. The another way when discontinuity

occurs is when the critical regions overlap. This may happen with hybrid prediction

models (Camacho et al., 2009). The lack of continuity may also happen when the

system has inputs with binary characteristics. In the practical application due to

some noises, it can lead to mechanical stresses, which can influence the control

performance and also shortens the life span of the systems actuators. The way how

such a discontinuity of the PWA control law could be tackled is presented in this

section. The idea of solving such a problem lies in finding the indices of all regions

which contain the parameter x. Based on the set of indices the objective function

is evaluated and the index with the least calculated value is used to obtain the

optimal control action. The procedure of the extended sequential search is defined

in Algorithm 3.3, where variables Fi, gi, M and Ri has the same structure as in

Algorithm 3.2. The only added variable is presented by I, which is an extendable

array like variable.

At the beginning, the set of admissible indices I is set to empty. After each

iteration, the next critical region is checked. If the parameter x fulfills conditions

Hix ≤ hi then the index i is added to the set I. In the penultimate step, the index

is chosen by defined criteria i⋆. The algorithm returns optimal control action, based

on an affine function defined over the i⋆ critical region.

Based on the cardinality of set I 3 different scenarios may occur:

1. |I| = 0, i.e., the set I is empty;

2. |I| = 1, i.e., the set contains exactly one index;

3. |I| > 1, i.e., there are several candidate critical regions.
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Data: Feedback laws Fi, gi, critical regions Ri, number of regions M , query

point x

Result: Optimal control input

I ← ∅1

for i = 1, . . . ,M do2

if x ∈ Ri then3

I ← I ∪ {i}4

end5

end6

Select i⋆ ∈ I7

Output: u⋆ = Fi⋆x + gi⋆

Algorithm 3.3: Sequential search with tiebreaks

In the first case when the cardinality of the set I is empty, it means no fea-

sible solution was found during the investigation of the critical regions. In this

case generally, a NaN (Not a Number) string value is returned which indicates

the optimization problem for the given parameter x is not located in the feasible

domain.

If the cardinality of set I is 1, it means only one region contains the given

investigated parameter x. This happens when parameter x is located in the strict

interior of the critical region.

If there are more than one critical region that contains the parameter then x

is situated at the boundaries of two neighboring critical regions. Since the value

of optimal control action in each region could be different an optimal objective

function’s values is used to choose the index of the correct region. Based on the

form of the objective function of the optimization problem the cost function of the

parametric solution could be of the form

Ji(x) = αix + βi (3.34)

in the case of PWA function and

Ji(x) = x⊤γix + αix + βi (3.35)

in case of PWQ function. The right index i is then selected by evaluating the PWA

or PWQ function, but only over regions with indices being in set I. Afterward,
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the index which corresponds to the minimum value is used to calculate to optimal

control action. The index i⋆ representing the minimal value is presented in (3.36)

i⋆ = arg mini∈I Ji(x). (3.36)

Both of the point location methods could be relatively easily implemented in

low-level and even in high-level programming languages. The procedures presented

in Algorithm 3.2 and Algorithm 3.3 are division free, which means the procedure of

validation is also easier since there is no need to investigate division by zero. The

only required operations in the presented algorithms to obtain the optimal control

input are matrix multiplication and addition.

3.7.3 Binary Search Tree

Binary search tree is a fundamentally different approach to the previously presented

point location algorithms. In the case of Algorithm 3.2 we need to go through

every critical region and in Algorithm 3.3 every time all critical regions must be

investigated. The idea of binary search tree presented in Tøndel et al. (2003)

is to split the set critical regions based on their geometric properties into smaller

groups. The investigated groups are chosen based on simple comparable conditions.

If the binary search tree is symmetrical the number of critical regions compared to

the required operations are exponentially higher. For example, if the parametric

solution consists of 8 regions and the binary search tree is symmetrical only 3

comparison operations are required to obtain the right index of the region. In this

case, the minimal number of steps could be computed as follows

2k ≥ M, (3.37)

where M represents the number of regions and k is the number of required compar-

ison operations. The graphical representation of the structure of the binary search

tree is depicted in Fig.3.2(a) and in Fig.3.2(b).

In the case of binary search tree the following properties used to be considered:

1. size of the tree (number of all nodes)

2. roots (number of logical connection between nodes)

3. number of leaves (last nodes, doesn’t contain logical test)
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(a) Structure. (b) Solution.

Figure 3.2: Binary search tree.

Data: Binary tree T , control laws Fi, gi defined over regions Ri, state

measurement x(t)

Result: Optimal control input

i = 11

while True do2

if T (i)x(t) ≤ 0 then3

i ← T (i, left)4

end5

else6

i ← T (i, right)7

end8

if i < 0 then9

i⋆ ← abs(i)10

u⋆(t) ← Fi⋆x(t) + gi⋆11

break12

end13

end14

Output: u⋆(t) = Fi⋆x(t) + gi⋆

Algorithm 3.4: Binary search tree
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4. depth (number of levels)

The number of leaves represents the individual critical regions, while the nodes

contain information for the logical test. Each subtree has all the properties of binary

search trees. The most interesting information is the depth, which is the indication

how many logical tests must be performed in the worst case in order to obtain the

optimal control action. Each logical test in the best case allows to skip the half

of the remaining unchecked regions. Therefore, this method is the most effective

evaluation of the parametric solution. The algorithm of evaluation of binary search

tree is presented in Algorithm 3.4 where T (i) represents the information for the

logical tests saved in the nodes of the binary search tree, and it could be saved as

matrix type variable or two-dimensional array. If variable i is set to the negative

value, it means the iteration reaches the leaf of the tree and the control action

u⋆ could be calculated by the evaluating the local affine function. However, the

online computation is much more computationally demanding as in the case of

sequential search methods. The construction of the tree, in case the number of

regions is relatively high and/or the dimension of the investigated parametric space

is also higher, is computationally more demanding. Since the construction of the

tree similarly as a computation of the parametric solution is done in the offline

phase, the binary search tree method in the online phase does not suffer from any

disadvantages. Therefore, it is popular and desired method.

All of the above algorithms mentioned are suitable for control of a chosen ap-

plication or process. In the following chapter the goal is to introduce the details

of implementation of the above mentioned point location methods in different pro-

gramming languages in order to control nontrivial processes.

3.8 Summary

This chapter briefly described the MPC control technique. It has many advantages

and thanks to its natural capability to handle systems constraints became a widely

adopted control approach in the academic field and industry. The appropriately

defined objective function purpose is to minimize the necessary cost of the inputs

to the systems. However the computational cost of the control action by MPC

technique is the main drawback, EMPC could bring this advanced approach to

the low-cost hardware. Since during the evaluation of EMPC does not require
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complicated operations, such matrix inversion the implementation is relatively easy.

The way of extracting the optimal control action for different initial parameters is

so called point location problem. Three different point location approaches were

also introduced. Each of them has different computation demand. The user should

choose from the mentioned methods based on the parametric solution. In case the

number of regions is small and the control law is continuous the sequential search

method is preferred is preferred. If the control law is not a continuous function the

extended sequential search may be a good choice. In case the number of regions is

high it is worth to consider binary search tree.
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Chapter 4
Overview of Contributions

This part of this thesis introduces our novel theoretical and practical results. The-

oretical novelties are summarized in Chapter 5. Here, two schemes for reducing

the complexity of explicit MPC controllers are presented. The first approach re-

ported in Section 5.1 reduces the complexity in two steps. First, the optimal PWA

value function is approximated by a different PWA function in such a way that

the new value function preserves guarantees of closed-loop stability and is simpler

compared to the original one. The simpler approximation is found by solving a

nonlinear optimization problem which originates from Karush-Kuhn-Tucker opti-

mality conditions. Once solved, the solution then encodes a simpler PWA value

function from which the (simple) feedback law can be recovered using triangulation.

This results in a simple PWA feedback law which, when applied in a closed loop,

provides guarantees of recursive constraint satisfaction and closed-loop stability.

The second complexity reduction approach, summarized in Section 5.2, finds a

simple PWA feedback law by directly approximating the original (complex) explicit

MPC controller. The idea here is first to synthesize a simpler polytopic partition

over which the new controller will be defined. This is done by solving a simpler

MPC problem with a smaller value of the prediction horizon. To guarantee that

the new problem covers all feasible states, we employ control invariant sets as

state constraints. To find the local controllers associated with each region, we

solve a convex function approximation problem. To do so, we rely on triangulation

of the original regions into simplices, followed by employing a well-known function

75
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approximation technique. By approximating the original feedback law in an optimal

fashion we are able to reduce the amount of suboptimality. Results of such a

procedure are demonstrated on an illustrative example.

Subsequently, in Chapter 6 we present our new code generation framework

which serves to automatically generate executable code for explicit MPC feedback

strategies. We cover two scenarios. In the first one described in Section 6.1 we

show how to export explicit MPC into Python. The main idea here is to extend

the scope of explicit MPC beyond Matlab. We show how the code is generated

from the users’ perspective and describe in detail its function. The merging of

the exported code with the target Python-based application is illustrated in two

real-life case studies. The first one, reported in Section 6.1.1, shows the application

of Python-based explicit MPC to control a popular computer game. In this section

we guide the reader through all steps, starting from the modeling of the game,

through the construction of a suitable MPC controller up to its implementation

to the game. Results reported in the section show that MPC-based players are

superior to their human counterparts. The second application in Section 6.1.2 then

demonstrates explicit MPC design and implementation for a quadcopter. Experi-

mental results are provided to demonstrate the approach. Export of explicit MPC

to the JavaScript language is then covered by Section 6.2. Here, the objective is to

allow explicit MPC to run inside a web browser and to utilize the computational

power of computers and hand-held devices such as phones or tablets. The section

explains the generated code and shows how it can be used. Applicability of the ap-

proach is then demonstrated on a simulation case study which involves the control

of a temperature inside a building with the explicit MPC controller running inside

a web browser.

Finally, Chapter 7 presents two real-life case studies. The first one, presented

in Section 7.1, deals with MPC design and implementation for a hard chromium

plating process. Due to the underlying nonlinear nature of the plant, we investigate

three different MPC setups. The first one is based on the full nonlinear model of the

plant and serves as a performance benchmark. Needless to say, implementation of

MPC in such a case requires solving non-convex nonlinear optimization problems,

which is a time-consuming task. Therefore, two alternatives are investigated. One,

called linearized MPC, employs a linear approximation of the nonlinearities which

is updated at each sampling instant given the current plant’s conditions. However,

because the prediction model is constantly updated, this prohibits the use of explicit
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MPC which requires a fixed prediction model. Therefore the second approach

employs a fixed linearization to design the controller. The performance of all three

setups is compared together with the required implementation effort. The second

case study in Section 7.2 investigates a magnetic manipulator system. Here, the

task is to control currents injected into coins which in turn create a shaped magnetic

field that moves a metallic ball. The objective is to control the currents in an

optimal fashion such that the ball follows a prescribed reference. To cope with

nonlinearities we split the control design task into two parts. One uses a linear

model of the motion to design the required forces on the ball. The second part

then uses an inverse model of the nonlinearity to compute currents for individual

coils such that they create a required force field.





Chapter 5
Complexity Reduction in Explicit

MPC

Explicit model predictive control (EMPC) becomes a preferred control strategy

when there is a need to implement MPC on a hardware with limited capabilities

or for systems with fast dynamics. The main advantage of EMPC is the fact the

optimization is shifted offline. At this stage, the optimization problem is solved by

parametric programming as it was introduced in Section 2.9. The solution is of the

form of a piecewise affine (PWA) function defined over polytopic regions. Then,

in the online phase, there is no need to perform numerical optimization. Instead,

optimal control actions are obtained by evaluating the PWA function for current

state measurements. This evaluation is done by solving the point location problem,

as described in Section 3.7. This method requires only simple matrix operations

such as summation and multiplications, and therefore EMPC is suitable also for

hardware with limited computational resources.

The main limitation of EMPC, however, lies in its complexity, most usually

expressed in term of the number of regions over which the PWA feedback law is

defined. For large prediction horizons and/or for systems with a large number of

states the complexity can quickly become prohibitive from a hardware point of

view. Therefore, it is of imminent importance to synthesize simple explicit MPC

controllers with a reasonably low number of regions. In this chapter, we present

two techniques for finding simple explicit MPC feedback laws.
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Technically speaking, we aim at solving the following problem: we are given a

(complex) explicit MPC controller whose number of regions exceeds storage lim-

its. The task is to replace this complex controller by a simpler one, defined over

a smaller number of regions. Moreover, we require the simpler feedback law to

exhibit certain desired properties, such as closed-loop stability, recursive constraint

satisfaction, and a mitigated suboptimality.

In the sequel, we present two ways of solving this problem. In Section 5.1 we first

approximate the optimal value function as to find a new one of lower complexity.

Since the approximated function is bounded from above and from below by the

optimal cost, it maintains closed-loop stability and recursive constraint satisfaction.

Subsequently, the (simple) feedback law is recovered from the approximated cost

function via triangulation. The second approach presented in Section 5.2 directly

approximates the original (complex) feedback law by a simpler PWA function. The

approximation is done in such a way that the amount of suboptimality, represented

as the integrated squared error between the original feedback and its approximation,

is minimized.

5.1 Bounded PWA Approximation of the Cost Func-

tion

In this section, a complexity reduction technique will be introduced which uses

bounded PWA approximation of the cost function. This result was published in

(Holaza et al., 2012). The result of this approximation technique is a simpler cost

function which is bounded from below and above and this simpler function is defined

over a smaller number of critical regions. It is possible to recover the feedback law

from the new cost function in the form of PWA function defined over polytopic

regions by triangulation and interpolation (Jones et al., 2007). One nonlinear

programming problem (NLP) needs to be solved to obtain the coefficients of the

approximated cost function. The presented method is suitable only for objective

functions which are piecewise affine.

Let us consider an MPC problem with the following setup:
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J⋆(x0) = min
u0,...,uN−1

N−1∑

k=0

‖Qxxk‖p + ‖Quuk‖p (5.1a)

s.t. xk+1 = Axk + Buk, (5.1b)

xk ∈ X , (5.1c)

uk ∈ U , (5.1d)

xN ∈ T , (5.1e)

with p = 1 (cf. (2.9)) or p = ∞ (cf. (2.11)). We also consider polytopic state

constraints X , input constraints U and a polytopic terminal set T . Control problem

defined in (5.1) can be easily transformed into a mp-LP problem of the form (2.44)

and solved parametrically using an mp-LP algorithm as shown in Section 2.9. The

parametric solution to (5.1) then yields a piecewise affine optimizer u⋆
0(x0), i.e.,

u⋆(x) :=





F1x + g1 if x ∈ R1

...

FRx + gR if x ∈ RR,

(5.2)

along with a PWA representation of the optimal cost function J⋆(x0) with

J⋆(x) :=





c⊤1 x + d1 if x ∈ R1

...

c⊤Rx + dR if x ∈ RR.

(5.3)

Here, Ri, i = 1, . . . , R are the underlying polytopic regions of these two functions

with R denoting the number of regions. If the penalty matrices Qx and Qu, along

with the terminal set T are designed in a proper way, the cost function in (5.3) is

a Lyapunov function.

The goal is to find an another PWA continuous function J̃(x) which is defined

over Q regions with Q < R. We also require J̃(x) to be a Lyapunov function. This

property can be obtained if J̃(x) is bounded from below by J⋆(x) and from above

by J⋆(x) + ℓ(x, u) where ℓ(x, u) = ‖Qxx‖p + ‖Quu‖p is the stage cost. Formally,

we require that

J⋆(x) ≤ J̃(x) ≤ J⋆(x) + ℓ(x, u). (5.4)

If J̃(x) satisfying (5.4) can be found, the associated simple feedback law ũ(x)

can be recovered using triangulation and interpolation.
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Our objective is hence to find J̃(x) which is bounded as in (5.4) for all states

x. To simplify the exposition, we define the lower bound J⋆(x) as

Jlow(x) = c⊤i x + di if x ∈ Ri, i = 1, . . . , R, (5.5)

and the upper bound, i.e., J⋆(x) + ℓ(x, u), by

Jup(x) = c⊤i x + di if x ∈ Ri, i = 1, . . . , R. (5.6)

We aim at finding the function

J̃(x) = max
i

{α⊤
i x + βi}, (5.7)

i.e., to find the parameters αi and βi, i = 1, . . . , Q, such that J̃(x) of (5.7) satis-

fies (5.4) for all x from the domain of J⋆(x).

Bounding a PWA function from above, i.e., to get J̃(x) ≤ Jup(x) is easy once

we know the vertices of regions Ri over which Jup(x) is defined. In particular,

denote by Vi the vertices of Ri for i = 1, . . . , R. Then J̃(x) from (5.7) is upper

bounded by Jup(x) if and only if

max
k

{α⊤
k vj + βk} ≤ c⊤i vj + di,∀vj ∈ Vi. (5.8)

To get rid of the maximum in (5.8), we enforce the constraints to hold for all

k = 1, . . . , Q:

α⊤
k vj + βk ≤ c⊤i vj + di,∀vj ∈ Vi,∀k,∀i. (5.9)

This is a set of linear constraints in αi and βi since the vertices vj are considered

to be constants.

Bounding J̃(x) from below by J⋆(x) is less straightforward. Even when x is

restricted to be contained in Ri, the problem is to guarantee that

c⊤i vj + di ≤ J̃(x),∀x ∈ Ri (5.10)

holds. Rewriting (5.10) gives

J̃(x) − c⊤i vj − di ≥ 0,∀x ∈ Ri. (5.11)

Then the relation in (5.11) holds if and only if

z⋆ = min
x∈Ri

(J̃(x) − c⊤i vj − di) (5.12)
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satisfies

z⋆ ≥ 0. (5.13)

By introducing a new scalar variable ǫ ∈ R it is possible to rewrite J̃(x) in the

following way

J̃(x) = min{ǫ | ǫ ≥ α⊤
k x + βk,∀k}. (5.14)

Then we cast (5.12) as

z⋆ = min{ǫ − c⊤i x − di | ǫ ≥ α⊤
k x + βk, Aix ≤ bi,∀k}, (5.15)

where Ai and bi are the matrices/vectors of the half-space representation of region

Ri as in Ri = {x | Aix ≤ bi}.

The set of constraints defined in (5.15) are nonlinear in unknown variables αk,

βk, ǫ and x. The optimization problem in (5.15) can be rewritten by using the

Karush-Kuhn-Tucker conditions as

α⊤
k x⋆ + βk − ǫ⋆ ≤ 0, (5.16a)

Aix
⋆ ≤ bi, (5.16b)

λ⋆
k ≥ 0, (5.16c)

µ⋆ ≥ 0, (5.16d)

(α⊤
k x⋆ + βk)⊤λ⋆

k = 0, (5.16e)

(Aix
⋆ − bi)

⊤µ⋆ = 0, (5.16f)

1 −
N∑

k=1

λ⋆
k = 0, (5.16g)

−ci +

Q∑

k=1

(α⊤
k λ⋆

k) + A⊤
i µ⋆ = 0. (5.16h)

Here, (5.16h) represents the derivation of the Lagrangian, (5.16a) and (5.16b) ex-

press the primal feasibility conditions and (5.16c) together with (5.16d) the dual fea-

sibility conditions. The complementary slackness condition is presented in (5.16e)

and (5.16f). Note that constraints (5.16) are nonlinear in the decision variables ǫ,

λ, µ, x, α and β.

Let ǫ⋆ and x⋆ be the feasible solution to (5.16). By representing z⋆ = ǫ⋆ −

c⊤i x⋆ − di, we can rewrite (5.11) using (5.13) as

ǫ⋆ − c⊤i x⋆ − di ≥ 0. (5.17)
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Relations (5.16) together with (5.13) therefore encode the lower bounding prob-

lem J⋆(x) ≤ J̃(x) for all x in the domain of J⋆(x). If, moreover, (5.9) is also con-

sidered, then a feasible solution to the joint problem yields the parameters αk, βk,

k = 1, . . . , Q of an approximate cost function J̃(x) that satisfies (5.4). The final

problem is in the form

α⊤
k vj + βk ≤ c⊤i vj + di, ∀vj ∈ Vi, k = 1, . . . , N, (5.18a)

ǫ⋆
i − c⊤i x⋆

i − di ≥ 0, (5.18b)

α⊤
k x⋆

i + βk − ǫ⋆
i ≤ 0, k = 1, . . . , N, (5.18c)

Aix
⋆
i ≤ bi, (5.18d)

λ⋆
i,k ≥ 0, k = 1, . . . , N, (5.18e)

µ⋆ ≥ 0, (5.18f)

(α⊤
k x⋆

i + βk)⊤λ⋆
i,k = 0, k = 1, . . . , N, (5.18g)

(Aix
⋆
i − bi)

⊤µ⋆ = 0, (5.18h)

1 −
∑N

k=1 λ⋆
i,k = 0, (5.18i)

−ci +
∑N

k=1(α
⊤
k λ⋆

i,k) + A⊤
i µ⋆

i = 0, (5.18j)

which is a nonlinear programming problem.

Once a feasible solution αk, βk, k = 1, . . . , Q is found for some fixed value of

Q, the simple feedback law ũ(x) can be recovered from J̃(x) using triangulation

and interpolation (Jones et al., 2007). To recover it, we need to obtain the vertices

of the new critical regions Vi, where index i distinguishes between the individual

regions. We calculate the optimal control action in each vertex Vij
by evaluating

the original optimal control law Uopt
Vi

. The parameters such as the slope and the

affine part of the new control law are calculated as

[
αaprxi

βaprxi

]
= Uopt

Vi

[
Vi

1

]−1

, (5.19)

where αaprxi
and βaprxi

represent the coefficients of local slope and affine part in

the i-th region of the approximated control law.

In the sequel the procedure is illustrated on example.
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5.1.1 Example

Let us consider a system with unstable with the following dynamics

xk+1 = 1.1xk + uk. (5.20)

We have designed MPC control problem for this system and considered constraints

on states and input variable of the form

−1 ≤ u ≤ 1, (5.21a)

−5 ≤ x ≤ 5, (5.21b)

the length of the prediction horizon N = 5, with weightings Qx = 1 and Qu = 1

and Manhattan-norm p = 1. This kind optimal control problem can be solved as

mp-LP, since the objective function is linear and all the constraints are linear as

well. The result of this optimization problem is a PWA function of the objective

function and the control law is defined over 10 regions. The optimal cost function

and the optimal control law are depicted in Fig. 5.1.
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J(
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(a) Optimal cost function J∗(x)
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−0.5

0

0.5

1

x

u(
x)

(b) Optimal control law u⋆(x)

Figure 5.1: Original EMPC controller.

The safe area, which is bounded below by the original objective function and

from above by the objective function shifted by the value of stage cost is depicted

in Fig 5.2(a), while the simplified one is shown in Fig. 5.2(b).

Both, the original control law and the approximated control law are depicted

in Fig. 5.4(a).

The controllers were also compared in simulations. The result, which represents

the different evolution of the controlled system is depicted in Fig. 5.4(b). For the
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(b) Approximation

Figure 5.2: Approximation procedure for unstable system.
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Figure 5.3: Approximated control law.

chosen initial point x0 = −5 both of the investigated controllers were able to

regulate the system, however the approximated controller is slower.

Table 5.1 summarizes a difference between the original and the approximated

controller. In this particular case the achieved memory reduction was 60%. How-

ever the approximated controller has worse performance, is still provides constraint

satisfaction and able to move the system to the desired origin.

5.1.2 Conclusions

In this section, a complexity reduction method was introduced. The proposed

method uses the properties of the objective function. This method is applicable
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(a) Control laws
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(b) Simulation results

Figure 5.4: Comparison of unstable system control laws: (a) the optimal (blue line)

and the suboptimal (red line) control laws; (b) the optimal (blue line)

and the suboptimal (red line) system responses. The regulation time

is shown by dashed lines with corresponding colors.

Properties u∗(x) ũ(x)

Number of regions 10 4

Memory footprint (Regions) 80 32

Memory footprint (Control law) (bytes) 80 32

Memory footprint (Total) (bytes) 160 64

Computation time (10−5 s) 7.9 3.8

Table 5.1: Memory and runtime for the unstable system

only if the objective function is convex and PWA affine function. In order to achieve

memory reduction, the new objective function must be created over a smaller num-

ber of polytopic regions. Their number is the main memory consumer in case of

EMPC. Therefore, our goal is to reduce them. The new objective function is cre-

ated by using the proposed approximation technique. The goal of approximation

was formulated as NLP problem since there is a product in optimized variables.

The result of the optimization contains the values of individual slope and affine

part of the new PWA objective function. After the approximation procedure, the

control law is recovered. The main limitation of this approach is its computation

demand in higher state space. Since the number of optimized variables increases
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with the dimension of the state space dimension, the approach is suitable only for

smaller systems.

5.2 Nearly-Optimal Simple Explicit MPC

The results described in this section are one of the outcomes of the joint work with

Juraj Holaza from our Institute. This section is devoted to complexity reduction

method which is suitable also for higher dimensions of the state space. We present

a procedure that finds a simple PWA feedback law by directly approximating the

original (complex) explicit MPC controller. The key idea here is first to synthesize

a simpler polytopic partition over which the new controller will be defined. This

is done by solving a simpler MPC problem with a smaller value of the prediction

horizon. To guarantee that the new problem covers all feasible states, we employ

control invariant sets as state constraints. To find the local controllers associated

with each region, we solve a convex function approximation problem. To do so, we

rely on triangulation of the original regions into simplices, followed by employing

a well-known function approximation technique. By approximating the original

feedback law in an optimal fashion we are able to reduce the amount of subopti-

mality. Results of such a procedure are demonstrated on an illustrative example.

The results presented in this section are based on our work published in Takács

et al. (2013).

5.2.1 Problem Statement

We aim to control linear discrete-time systems in the state-space form

xk+1 = Axk + Buk, (5.22)

with x ∈ R
n, u ∈ R

m. The system in (5.22) is subject to state and input constraints

xk ∈ X , uk ∈ U , (5.23)

where X ⊂ R
n, U ⊂ R

m are polytopes that contain the origin in their respective

interiors.

For the given model in (5.22) and constraints in (5.23), we formulate optimiza-
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tion problem of MPC as follows

µ = arg min

N−1∑

k=0

ℓ(xk, uk) (5.24a)

s.t. xk+1 = Axk + Buk, (5.24b)

uk ∈ U , (5.24c)

x0 ∈ C∞, x1 ∈ C∞, (5.24d)

x0 = x(t), (5.24e)

where uk, xk are predictions of the control inputs and states, respectively, at the

time step t + k. Next, Qu and Qx are weighting matrices, Ndenotes prediction

horizon and C∞ is a maximal control invariant set. Maximal control invariant set

C∞ can be defined as a set of all initial conditions x0 ∈ X from which there exists

at least one control input u ∈ U such that, for all future time steps, states of (5.23)

are contained inside of this set xk+1 ∈ C∞, i.e. can by formulated as

C∞ = {x0 ∈ X | ∀k ∈ N : ∃uk ∈ U s.t.xk+1 = Axk + Buk ∈ X},

and computed iteratively. By solving optimization problem in (5.24) via parametric

programming, we obtain explicit solution µ : R
n → R

m in a form of

µ = Fjx + gj if x ∈ Rj , j = 1, . . . ,M, (5.25)

which is a PWA function defined over M regions, with local affine gains Fj ∈ R
m×n

and gj ∈ R
m. In sequel we define the problem, which illustration can be found in

Fig. 5.5.

Consider that we are given an explicit MPC feedback law as in (5.1). We aim

to devise a new explicit controller µ̃ : R
n → R

m defined as

µ̃(x) = F̃ix + g̃i if x ∈ R̃i, i = 1, . . . , M̃ , (5.26)

with F̃i ∈ R
m×n, gi ∈ R

m and M̃ < M such that following statements hold:

R1: for each x ∈ dom(µ) the approximated controller provides recursive con-

straints satisfaction, on both input and state constraints, which means for all

the future time instances the system remains in within the state constraints.

∀t ∈ N we have that µ̃(x(t)) ∈ U and Ax(t) + Bµ̃(x(t)) ∈ X ;
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x
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µ(x)

µ̃(x)

R1 R2 R3 R4 R5 R6 R7

R̃1 R̃2 R̃3

Figure 5.5: The function µ(·), shown in black, is given. The task is to synthesize

the function µ̃(·), shown in red, which is less complex (here it is defined

just over 3 regions instead of 7 for µ(·)) and minimizes the integrated

square error (5.27).

R2: µ̃(·) is constructed such the integrated squared error between PWA functions

µ(·) and µ̃(·), the domain of µ(·), Ω, is minimized:

min

∫

Ω

‖µ(x) − µ̃(x)‖2
2 dx, (5.27)

where dx represents the Lebesgue measure of Ω, see Baldoni et al. (2010).

Such an approximated control law µ̃(·) does not have an a-priori guarantee of

closed-loop stability, but it can be a-posteriori certified by constructing a suitable

Lyapunov function, see e.g. Ferrari-Trecate et al. (2002). Moreover, in order to ren-

der the origin an equilibrium of system (5.22), the requirements should be extended

by the constraint µ̃(0) = 0.

5.2.2 Memory Reduction Technique

We approach to solve the problem in Section 5.2.1 via two steps. In the first step we

will construct a new (less complex) polytopic partition, which will be subsequently

used in the second step, where we find new local gains of µ̃(·) above each region

R̃i.
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Polytopic Partition

Here, we aim to devise a new partition of polytopes ∪iR̃i, such that M̃ < M and the

domain of the original controller and the new one are identical, i.e., ∪iR̃i = ∪jRj

with i = 1, . . . ,M and j = 1, . . . , M̃ .

We suggest to obtain ∪iR̃i by solving (5.24) again but with a shorter prediction

horizon. Thanks to the maximal control invariant in (5.24d) the feasible sets in

different prediction horizon length are identical, the difference is in the number M̃

of regions R̃i.

We note that the parametric solution of (5.24), with a shorter prediction hori-

zon, already yields a simpler explicit feedback law, which satisfies requirement R1.

However, since condition R2 is not guaranteed, i.e. degradation of performance

is not minimized, thus we remove this controller and preserve only its polytopic

partition.

Function Fitting

In what follows, we show how to optimize new affine gains of µ̃, such that both con-

ditions R1 and R2 hold. We propose to address this goal by following optimization

problem:

min
eFi,egi

∫

eRi

‖µ(x) − µ̃(x)‖2
2 dx (5.28a)

s.t. ∀x ∈ R̃i :





F̃ix + g̃i ∈ U ,

Ax + B(F̃ix + g̃i) ∈ C∞,
(5.28b)

where the objective function (5.28a) imposes condition R1, the first constraint

in (5.28b) ensures recursive satisfaction of inputs and states constraints, i.e. con-

dition R2. There are, however, two main obstacles, which prohibit application of

the optimization problem in (5.28).The first issue represents the integral over a

polyhedron R̃i in (5.28a) over which µ(x) may be still a PWA function. And the

second issue is that constraints in (5.28b) have to hold ∀x ∈ R̃i, thus for infinite

number of points.

To tackle the first issue, we propose to reformulate (5.28a) into the following

form

min
eFi,egi

∑

j∈Ji

∫

Qi,j

‖(Fjx − gj) − (F̃ix + g̃i)‖
2
2 dx, (5.29)
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where Qi,j denotes intersections between region R̃i and Rj , e.i.

Qi,j = R̃i ∩Rj ,∀j ∈ {1, . . . ,M}. (5.30)

Next, to obtain an analytic expression for the integral, we use the result of (Lasserre

and Avrachenkov, 2001), extended by (Baldoni et al., 2010), where authors have

proposed an integration formula of a homogeneous polynomial f of degree d in n

variables as
Z

∆

f(y)dy = γ
X

1≤i1≤···≤id≤n+1

X

ǫ∈{±1}d

ǫ1 · · · ǫdf(
Pd

k=1
ǫksik

), (5.31)

where s1, . . . , sn+1 are the vertices of an n-dimensional simplex ∆ and

γ =
vol(∆)

2dd!
(
d+n

d

) , (5.32)

with vol(∆) denoting the volume of the simplex. Note that formula in (5.31)

can not be directly used in (5.28) as polyhedral intersections in (5.30) are not

necessary simplices. We approach this problem by dividing each intersections Qi,j

into simplices ∆i,j,1, . . . ,∆i,j,K with int(∆i,j,k1
) ∩ int(∆i,j,k2

) = ∅ for all k1 6= k2,

and ∪k∆i,j,k = Qi,j . Then we can rewrite (5.29) as a sum of the integrals evaluated

over each simplex:

min
eFi,egi

∑

j∈Ji

K∑

k=1

∫

∆i,j,k

‖(Fjx − gj) − (F̃ix + g̃i)‖
2
2 dx, (5.33)

where K is the number of simplices tessellating Qi,j . Next, integral error in (5.29)

is not homogeneous function. To see this, expand f(x) := ‖(Fjx+gj)−(F̃ix+ g̃i)‖
2
2

to f(x) := xT Qx + rT x + q with

Q = FT
j Fj − 2FjF̃i + F̃T

i F̃i, (5.34a)

r = 2(FT
j g̃i + F̃T

i g̃i − F̃T
i gj − FT

j g̃i), (5.34b)

q = gT
j gj − 2gT

j g̃i + g̃T
i g̃i. (5.34c)

Now, we can see that f(x) is a quadratic function with optimized variables F̃i and

g̃i. Let us now split f(x) into its monomials as follows:
∫

∆

f(x) =

∫

∆

fquad(x) +

∫

∆

flin(x) +

∫

∆

fconst, (5.35)

where fquad(x) := xT Qx, flin := rT x and fconst := q. Moreover, integrand dx is

neglected for simplicity. Now, as f(x) in (5.35) represents a set of homogeneous
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polynomials of degree 2, 1 and 0, respectively, which are defined over simplices ∆,

we can use the analytic formula in (5.31) to integrate error in (5.33).

Now, we will aim to tackle the second problem, where we need to ensure that

constraints in (5.28b) hold ∀x ∈ R̃i. Since both sets U = {u |Huu ≤ hu} and

C∞ = {x |Hcx ≤ hc} are assumed to be polytopes, they can be represented as a

set of linear inequalities with substitution u = F̃ix + g̃i as follows

∀x ∈ R̃i : f(x) ≤ 0, (5.36)

with

f(x) :=

[
HuF̃i

Hc(A + BF̃i)

]
x +

[
Hug̃i − hu

Hcg̃i − hc

]
. (5.37)

By denoting Vi = {vi,1, . . . , vi,nv,i
}, vi,j ∈ R

n to be a set of all vertices of R̃i, we

have that (5.36) holds if f(vi,j) ≤ 0 is satisfied for all vertices.

The final form of the optimization problem could be expressed as

min
eFi,egi

∑

j∈Ji

K∑

k=1

∫

∆i,j,k

‖(Fjx − gj) − (F̃ix + g̃i)‖
2
2 dx, (5.38a)

s.t. ∀vi,ℓ ∈ vert(R̃i) :





F̃ivi,ℓ + g̃i ∈ U ,

Avi,ℓ + B(F̃ivi,ℓ + g̃i) ∈ C∞,
(5.38b)

where vert(R̃i) enumerates all vertices of the corresponding polytope.

5.2.3 Illustrative Example

The above described method will be demonstrated on a second order, discrete-time,

linear time-invariant system. The dynamics of the system could be expressed as

x(t + 1) =

[
0.9539 −0.3440

−0.4833 −0.5325

]
x(t) +

[
−0.4817

−0.5918

]
u(t), (5.39)

This system has also state −10 ≤ xi(t) ≤ 10, ∀i ∈ {1, 2} and input −0.5 ≤ u(t) ≤

0.5 and input constraint. The values of weighting matrices for the complex explicit

controller are Qx = I2×2, Qu = 2 and the length of the prediction horizon is

N = 20. Its explicit representation was defined over M = 127 critical regions

and it is depicted in Fig. 5.6(a). Several different prediction horizons were used to

construct the new domain ∪iR̃i. Especially N = {1, 2, 3, 4} values were considered,
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Figure 5.6: Regions of the complex controller µ(·) and of the approximate feedback

µ̃(·)

Table 5.2: Complexity and suboptimality comparison for the example.

N # of regions Subopt. simple Subopt. approximated

1 3 60.8% 25.1%

2 5 32.9% 18.0%

3 11 11.4% 8.3%

4 17 6.9% 1.7%

while the number of corresponding regions were M̃ = {3, 5, 11, 17}. The new

regions for prediction horizon N = 2 are presented in Fig. 5.6(b). After that

another explicit controllers were constructed with the same prediction horizon for

comparison purposes. A closed-loop simulations for 10000 was performed with

equidistantly spaced initial conditions from the domain of µ(·). In each simulation

we have evaluated the performance criterion Jsim =
∑Nsim

i=1 xT
i Qxxi + uT

i Quui for

Nsim = 100. The results are reported in Table 5.2.

The performance of the controller constructed via approximation is better com-

pared to the simple controller assuming the same prediction horizon. It is important

to mention that the performance of the approximated controller compared to the

simple controller is higher, it’s memory demand remains the same. Therefore this

approach biggest benefit is the chance to increase the performance of the controller

while the requirements remain the same.
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5.2.4 Conclusions

In this section a complexity reduction technique was introduced. The memory

demand of the parametric solution can be reduced in 2 steps. In the first step a

new partition is created by solving an optimization problem, which comes from

MPC problem formulation with a shorter prediction horizon. It is mandatory that

the domain of the EMPC controllers with longer and shorter horizon to be the

same. The approximation is performed over the parametric solution with fewer

critical regions. The result of the approximation is the new control law, which is

defined over a smaller number of critical regions. Moreover, the performance should

be better than that of EMPC controllers with smaller prediction horizon. Thus, a

significant memory reduction can be achieved even in the higher dimensional state

space.

5.3 Summary

In this part of the work two complexity reduction techniques were presented. The

first introduced method is applicable only for problems which could be solved as

mp-LP. Since the form of the objective function is a PWA function the presented

approximation method can be implemented. Another function is created by shift-

ing PWA objective function by the value of stage cost. The created tube is located

between the original PWA objective function and the shifted one. If it is possi-

ble to find an another PWA function, which is situated in this tube then a new

control law can be created by triangulation and interpolation. The goal is to find

such a function, which is defined over a smaller number of polytopic regions as the

original parametric solution. We look for the slopes and affine parts of this PWA

function. The problem can be formulated and solved as NLP. Since the computa-

tional complexity is high, this method is applicable mainly for lower dimensional

problems.

The second introduced method uses the information about the function of con-

trol law. The idea is to create an approximated control law, but over less amount

of regions. This approach could be divided into two procedures. In the first pro-

cedure the original MPC problem is solved and subsequently the same MPC with

lower prediction horizon as well. It is important to incorporate the maximal control

invariant set to the MPC constraints. This ensures that the feasible domain will
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be always the same. Approximation of the control law is performed over the less

complex domain. This is achieved by dividing the polytopic critical regions into

simplices and by approximating the control law over the simplices. The approxi-

mation error is calculated as a sum of integrals over the simplices. The goal is find

the local gain and affine part. This problem can be formulated as QP. The new

approximated controller has better performance than the original simple control

law, while its memory demand is lower than the complex controller’s one.

We have shown that in both cases significant memory can be saved by applying

the discussed approaches. This added value could bring advanced control technique

such MPC even to low-cost hardware. However by using approximation techniques

the memory demand is reduced, the user should realize that there is always trade-off

between the memory demand and the performance of the controller.



Chapter 6
Code Generation for Explicit MPC

Explicit model predictive control (EMPC) as presented in Section 3.6 allows to

implement MPC as a feedback policy just by evaluating the parametric solution

to a given MPC optimization problem. This evaluation is performed by solving a

point location problem using one of the algorithms reported in Section 3.7. The

purpose of this chapter is to show how, for a particular EMPC solution, these

algorithms can be automatically generated in the form of an executable code with

little to no user effort.

Specifically, we present a new code generation module for the Multi-Parametric

Toolbox (MPT) (Herceg et al., 2013a), which is a Matlab-based tool for setting

up, solving, and analyzing EMPC controllers. Previously, MPT was only able to

export EMPC solutions either to a pure Matlab code or to the ANSI-C language.

However, nowadays we see a big expansion of other programming languages being

used to create control-oriented applications. Therefore, the new code generation

module allows to export EMPC controllers to the Python and JavaScript languages.

These languages were selected for multiple reasons. They are freely available,

have a large and vital community, offer all the necessary mathematical routines to

facilitate the EMPC implementation, and are progressive. However, only a small

subset of the adopters of these languages are control engineers. Therefore, the

aim of the proposed code generation framework is to give to the hand of a large

community a tool for embedding high-quality control algorithms, represented by

EMPC, into their applications in an easy-to-understand fashion.

97
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This chapter is composed of two parts. First, in Section 6.1 we present the

Python code generation framework. We guide the reader through all the steps that

are necessary to synthesize an EMPC solution in the MPT toolbox and to generate

the corresponding Python code that evaluates the EMPC solution. The procedure

is illustrated on two real-life examples. The first one, described in Section 6.1.1, is

a popular computer game where we show how to design and implement an MPC-

based player. The second application in Section 6.1.2 deals with the control of a

quadcopter. The JavaScript-based code generation is then introduced in Section 6.2

and illustrated on a simulation case study involving the control of a temperature

inside a building.

6.1 Export to Python

In this section we present a new Python-based code generation module for the

MPT toolbox. The module generates a self-contained implementation of various

point-location algorithms that are used to evaluate a given EMPC solution for a

known initial condition. Specifically, the module can generate Python versions of

following point-location algorithms:

1. the sequential search algorithm for continuous feedback laws, cf. Section 3.7.1,

2. the extended sequential search procedure for discontinuous feedback laws, cf.

Section 3.7.2,

3. the binary tree algorithm from Section 3.7.3.

The input to the code-generation framework is a Matlab object of the MPT

toolbox that encodes the explicit representation of the PWA feedback law u⋆(x)

given by

u⋆(x) = Fix + gi if x ∈ Ri, (6.1)

and the PWA or PWQ value function J⋆(x), i.e., either

J⋆(x) = αix + βi if x ∈ Ri (6.2)

in the case of a PWA value function or

J⋆(x) = x⊤γix + αix + βi if x ∈ Ri (6.3)
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in the case of a PWQ value function. In all cases, Ri = {x | Aix ≤ bi} are the

polytopic regions of these functions.

Once these functions are computed using parametric programming and aggre-

gated into a single object, the Python version of the sequential point-location al-

gorithm of Section 3.7.1 can be obtained by a single line of code:

toPython(solution, ’myctrl’, ’primal’, ’first-region’, library)

Here, solution is a Matlab variable which denotes the MPT object that contains

the functions u⋆(x) and J⋆(x). Details on how to construct this object will be

presented in Sections 6.1.1 and 6.1.2. Moreover, ’myctrl’ is a string which de-

notes the name of the file which should be generated. The suffix ’.py’ will be

added automatically. In this example, the generated code will therefore be written

into ’myctrl.py’. Next, ’primal’ means that we want to export the primal op-

timizer, i.e., the feedback law u⋆(x). Note that the module can export evaluation

code for arbitrary PWA/PWQ functions besides the feedback law (e.g., the dual

optimizer). The ’first-region’ string means that we want to use the sequential

point-location algorithm as described in Section 3.7.1 that is stopped once the first

region containing the given initial condition is found. We remind the reader that

for this algorithm to work, the exported function must be continuous. Finally, the

library can either be library=’numpy’ or library=’numpy-free’. In the former

case, the point-location algorithm will utilize the freely available numpy library to

perform all necessary matrix/vector operations. In the latter case, the exported

code does not depend on any external libraries and is therefore self-contained.

An example of the automatically generated code for library=’numpy’ is shown

next:

from numpy import *

import math

def empc(x):

xh=matrix([[0],[0],[0],[-1]],dtype=object)

for i in range(0,len(x)):

xh[i]=x[i]

nx=3;nz=5;nu=1;num_regions=233;

H=matrix([[-0.3881,0.8137,-0.4324,-0.0008],...])

ni=matrix([[1],[9],[16],...])

fF=matrix([[0.0051,0.0999],...])
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fg=matrix([[0.0005],...])

for i in range(0,num_regions):

if (H[ni[i]-1:ni[i+1]-1,:]*xh<=1e-08).all():

z=fF[i*nz:(i+1)*nz,:]*x+fg[i*nz:(i+1)*nz]

return z[0:nu]

if i==num_regions-1:

z=matrix([[float(’NaN’)]])

return z

The code defines a Python function empc that takes one input argument - the

initial condition x for which we want to evaluate the primal optimizer, i.e., to obtain

u⋆(x). Inside, the function defines the aggregated half-space representation of the

critical regions in the variable H. Specifically, we have that

Ri = {x | Aix ≤ bi} (6.4)

is rewritten as

Ri = {x | Aix − bi ≤ 0}, (6.5)

which can then be aggregated as

Ri = {x | [Ai bi]︸ ︷︷ ︸
Hi

[
x

−1

]

︸ ︷︷ ︸
x̃

≤ 0}. (6.6)

The extended vector x̃ is denoted by xh in the code. After defining the half-spaces

of the individual regions in the variable H, the number of half-space of each region

in ni, and the parameters of local affine feedback laws in tF and tg, the code then

iterates over all regions sequentially and checks whether x ∈ Ri. If the condition is

satisfied, u⋆ is computed by u⋆ = Fix + gi and the search is aborted. If no regions

containing x is found, NaN is returned to indicate infeasibility.

If library=’numpy-free’ is used, the generated code no longer depends on

the numpy library. Instead, the code contains two additional functions, called mult

and add, which implement matrix/vector multiplication and addition, respectively.

The idea here is for the code to be completely self-contained and not to depend on

any external libraries. An example of the automatically generated code is provided

next.

def mult(X,Y):
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result = [[sum(a*b for a,b in zip(X_row,Y_col)) for Y_col

in zip(*Y)] for X_row in X]

return result

def add(X,Y):

result = [[X[i][j] + Y[i][j] for j in range(len(X[0]))]

for i in range(len(X))]

return result

def empc(x):

xh = list(x)

xh.append([-1])

nx=3;nz=5;nu=1;num_regions=233;

H=[[-0.3881,0.8137,-0.4324,-0.0008],...]

ni=[[1],[9],[16],...]

fF=[[0.0051,0.0999],...]

fg=[[0.0005],...]

for i in range(0,num_regions):

if max(mult(H[ni[i]-1:ni[i+1]-1],xh))[0]<=1e-08:

z=add(mult(fF[i*nz:(i+1)*nz],x),fg[i*nz:(i+1)*nz])

return z[0:nu]

if i==num_regions-1:

z=[[float(’NaN’)]]

return z

The price to be paid when using the library-free option is a deteriorated compu-

tational speed. Specifically, the numpy library offers advanced and fast algorithms

to perform matrix/vector multiplications while our library-free version only uses a

simplistic approach to the problem.

The extended sequential algorithm described in Section 3.7.2 can be automati-

cally generated as follows:

toPython(solution, ’myctrl’, ’primal’, ’obj’, library)

The only difference to the preceding case is that the fourth input argument was

changed from ’first-region’ to ’obj’. Here the ’obj’ string refers to the cost

function J⋆(x) being used as a criterion to resolve conflicts if multiple regions Ri

contain the initial condition x. This can easily happen e.g. when the feedback law

is discontinuous. In such a case the value of the cost function for all these colliding



102 CHAPTER 6. CODE GENERATION FOR EXPLICIT MPC

regions are evaluated and the region with the lowest value of the cost is used to

compute the optimal control action. The automatically generated code for this

type of implementation algorithm looks as follows:

tH=matrix([[1.7156,0.3652,3.7800],...]);

tF=matrix([[0.0051,0.0999],...]);

tg=matrix([[0.0005],...]);

tb=array([]);

for i in range(0,num_regions):

if (H[ni[i]-1:ni[i+1]-1,:]*xh<=1e-08).all():

tv=tF[i,:]*x+tg[i];

tv=tv+x.T*tH[i*nx:(i+1)*nx,:]*x;

tb=insert(tb,shape(tb),i);

tb=insert(tb,shape(tb),squeeze(asarray(tv)));

num_reg=shape(tb);num_reg=num_reg[0]/2;

tb=tb.reshape(num_reg,2);

if tb.sum()!=0:

i=int(tb[tb[:,1].argmin(),0]);

z=fF[i*nz:(i+1)*nz,:]*x+fg[i*nz:(i+1)*nz];

return z[0:nu]

else:

z=matrix([[float(’NaN’)]])

return z

Here, the variables tH, tF, and tg are the quadratic, linear and, constant parameters

of the (in this case PWQ) value functions. The for cycle together with the if

condition are used to check whether parameter x is a part of the given region. If

there is such a region, then the value of the objective function is saved into variable

tv, while the index of the region is saved into tb. If the list tb is empty there

is no feasible solution for the given initial point x. If there are more elements in

list tb the values of the objective functions are compared, and the index i with

the minimum value is chosen. The index is used to compute the optimal control

action from the local affine law.

The last option is to generate the Python code of the binary tree point location

algorithm as described in Section 3.7.3. This is achieved by calling

toPythonTree(tree, ’mytree’, ’primal’, ’library’)
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where tree is an MPT variable which contains the pre-compute binary tree, ’mytree’

is the name of the exported file with the ’.py’ suffix being added automatically,

and ’primal’ is the name of the function we wish to export. In this case ’primal’

refers to the primal optimizer, i.e., to the feedback law u⋆(x). The exported code

that the following form:

from numpy import *

import math

def empctree(x):

xh=matrix([[0],[0],[-1]],dtype=object)

for i in range(0,len(x)):

xh[i]=x[i]

T=matrix([[0.2080,0.9781,-0.1899,2,55],...])

fF=matrix([[0.0051,0.0999],...]);

fg=matrix([[0.0005],...]);

i=0;nz=5;nx=2;nu=1;z=matrix([[float(’NaN’)]]);

while True:

h=T[i,0:3]*xh

if h<=0:

i=T[i,3]

else:

i=T[i,4]

if i<0:

i=-i

i=i-1

z=fF[i*nz:(i+1)*nz,:]*x + fg[i*nz:(i+1)*nz]

return z[0:nu]

elif i==0:

return z

i=i-1

Here, the variable T contains information about the values of the logical tests in

each node of the binary search tree. In the while loop logical tests are performed

and based on the result this test h the index i of the next node is obtained. If the

value of index i is a negative value it means that the algorithm achieved the leave

of the tree. In this case the local control action could be implemented.
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To embed the automatically generated codes into the target Python application

all that needs to be done is first to include the code via

import empc

or

import empctree

in the case of the binary tree, followed by calling the corresponding function, i.e.

u = empc(x)

in the case of the sequential search procedure, or

u = empctree(x)

for the binary tree.

In the following two sections the code generation procedure is illustrated on two

examples. The first one, described in Section 6.1.1, is a popular computer game

where we show how to design and implement an MPC-based player. The second

application in Section 6.1.2 is concerned with the control of a quadcopter.

6.1.1 Flappy Bird

Flappy Bird is a popular computer game, where the player’s goal is to control the

altitude of the bird while try to keep away from the obstacles. The obstacles are

graphically presented as pipes, while there is a gap between the upper and the lower

pipe. The height of the pipes are generated randomly, and there is no information

about the future values of the pipes height. The number of successfully passed

pipes are the indicators of the score. The screenshots of the investigated game is

provided in Figure 6.1(a). The game is running in fixed sampling frequency.

Modeling

The goal was to create a controller, which can replace a human player. At first, the

mathematical model of the dynamics was proposed, which was defined by a simple

affine difference equation presented in (6.7).

xk+1 = xk + buk − f, (6.7)
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(a) Flappy bird in action. (b) Highest score.

Figure 6.1: Screenshots of the Flappy Bird game.

State variable xk stands for the actual altitude of the bird, while xk+1 is the altitude

in the next step. The input of the system represented by variable uk is considered

to have binary values. Specially, uk can acquire two different values

uk ∈ {0, 1}. (6.8)

The constants b and f were extracted from the game. The value of the affine part of

dynamics in (6.7) was set to f = −9, which means the bird is permanently falling

in each step with the same value. In order to compensate the falling the value

of variable b was set to 18. This means if the control is not activated the bird’s

altitude decreases by 9 pixels, while if the control is activated the height increases

by 9 pixels. In order to create as simple MPC as possible instead of obstacle

avoidance reference tracking technique was implemented. Such an implementation

does not require to use time varying constraints, while the time varying reference

was calculated as a middle point of the gap located between the lower and the

upper pipe.
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MPC Design

After the construction of the mathematical model the designed optimal control

problem is of the following form

min

N−1∑

k=0

‖xk − xref‖1, (6.9a)

s.t. xk+1 = xk + buk − f, (6.9b)

uk ∈ {0, 1}, (6.9c)

x0 = x(t). (6.9d)

Since the constraints of MPC presented in (6.9) are not convex due to binary

character of the input variable (6.9c), it cannot be solved as a convex optimization

problem. Fortunately this non-convexity has a special form and the optimal con-

trol problem defined in (6.9) can be formulated as a mixed-integer programming

problem, which is easier to solve than a general non-convex optimization problem.

This optimal control problem can easily be implemented by using only a few lines

of code in Matlab by using the features of MPT

model = LTISystem(’A’, 1, ’B’, 18, ’f’, -9)

model.u.with(’binary’)

model.x.with(’reference’)

model.x.reference = ’free’

model.x.penalty = OneNormFunction(1)

N = 4

mpc = MPCController(model, N)

The function LTISystem in the first line is a built-in function of the Multi-

Parametric Toolbox and it creates an instance of the object LTISystem that de-

scribes the affine system (6.9). After the instance in created additional properties

can be set up. At first the binary nature of the input variable is defined, with

the second line. After the next line changes the objective function in order to

activate the reference tracking mode, and since the reference during the control

is not constant it can be set by the following line the free. This means that it

can be changed in every control step. In the model definition the final step is to

set the weighting matrices of the objective function. In this particular case we

use 1-norm for penalizing the distance of state variable from the desired setpoint.
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After the all necessary information about the model are set and the prediction

horizon is defined a built-in MPCController function is called to create an instance

which contains information about the optimal control problem defined in (6.9).

This function transforms the defined optimal control problem into an optimization

problem in such a form, which is feasible for solvers. In this case the MPC problem

can be solved by online solvers by calling mpc.evaluate(x) command. In order

to receive explicit MPC, the optimization problem arise from (6.9) needs to be

solved parametrically. This procedure requires numerous mathematical operations

which especially in higher dimensions are not straightforward. The way of obtain-

ing explicit form of MPC was presented in Section 2.9.Thanks to Multi-Parametric

Toolbox this not straightforward procedure can be performed by evaluating one

single line of code

empc = mpc.toExplicit()

This convenient way of defining the MPC problem and subsequent user friendly

way of constructing the parametric solution is one of the biggest advantages of

Multi-Parametric Toolbox. The next step of creating the binary search tree from

explicit representation is done similarly by evaluating a single line in Matlab

tree = BinTreePolyUnion(empc.optimizer)

where variable tree contains all the information necessary for the proper evalua-

tion. The code generation module works on the similar manner.

Code Generation and Implementation

In order to obtain the point location algorithm based on binary search tree the

export function must be executed

toPythonTree(tree, ’flappympctree’, ’primal’)

By this command a new file flappympctree.py is created in the actual folder which

contains the generated algorithm and data. The merging of the generated code

into the application was extremely easy. Basically it works on the plug-and-play

principle. The only thing what was changed is just the condition, which checked if

the human player pressed the button

if event.type == KEYDOWN
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Figure 6.2: Flappy: Binary input.

was replaced by a function evaluation

if flappympctree([[altitude],[reference]]) == 1

This means the merging of the code with the actual application could be done only

by changing the function. The parametric solution is depicted in Fig. 6.2 , where

Fig. 6.2(a) represents the critical regions and Fig. 6.2(b) the control law defined

over the critical regions.

This controller was then run several times and the reached scores are summa-

rized in Table 6.1. As can be seen from the table, the MPC-based artificial player

significantly outperforms the performance of human-based players by one order of

magnitude. This demonstrates viability of the proposed approach.

Summary

The goal of this section was to introduce the code export module in action. We

wanted to show how could be MPC implemented in a non typical application like

a computer game. We presented a way how to defined the mathematical model of

the bird’s dynamics. In this particular case the binary search tree point location

method was used. The generated code was inserted into the application and sub-

sequently it was evaluated by a single line of code. The final phase was the test of

the designed controller. 3 human players were asked to try to control the height of

the bird. They had a possibility to try it several times. Table 6.1 summarizes the

average and the highest scores achieved by the human players and also the MPC

based artificial controller.
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Table 6.1: Achieved score in Flappy Bird

Players Average score Best score

Human no. 1 16 33

Human no. 2 14 19

Human no. 3 9 17

MPC 182 473

As it can be seen the artificial controller reached incomparably higher scores

than the human players. This is due to the advantage of better reaction time. The

goal in this application was not to design the best possible controller as in general

used to be the goal, but the way of introducing a user friendly method how to

merge an advanced control technique with an arbitrary application in Python.

6.1.2 Quadrocopter

The results described in this section are one of the outcomes of the joint work

with Juraj Števek from our Institute. In the previous section the EMPC control

technique was implemented on the computer game. Since the computer game was

running in the fixed frequency, which means each operation were performed in

the given order regardless of their computation time, we did not have to care too

much about the computation time. In this section we aimed an another type of

application, where the fast evaluation of EMPC comes to be useful. The system

on which we wanted to demonstrate the further applicability of the presented code

generation module is an Ar.Drone2 quadrotor (Bristeau et al., 2011), which is

depicted in Fig 6.3. In order to demonstrate the applicability of the code generation

module the control of the yaw angle will be presented in sequel.

AR.Drone2 is a commercial quadrotor platform that is freely available in nu-

merous retail stores. The quadrotor is fitted with four propellers driven by four

brushless motors. The supply is provided by Lithium-Polymer battery (1000-1500

mAh). The quadrotor is also equipped with rich set of sensors: 3-axis gyroscope,

accelerometers, ultrasound altimeter, electronic compass, pressure sensor, QVGA

downward camera (320x240, 60fps). Additionally the drone has a front 720p HD

93◦ wide-angle camera with 640x480 resolution at 30fps. Information from these

sensors is used in the on-board embedded control. The on-board system ensures
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Figure 6.3: The AR.Drone2 and its coordinate systems. The arrows of the rotation

angles correspond to positive values.

gravity compensation and stabilization of the drone. Some details about technology

inside the AR.Drone2 are given by Bristeau et al. (2011). The normalized control

command for the on-board system is

u = (uφ, uθ, uψ̇, uż)
⊤ ∈ [−1, 1]4 (6.10)

where uφ is the reference for roll φ, uθ is the reference for pitch θ, uψ̇ is the reference

for yaw rate ψ̇ and uż is the reference for vertical speed ż.

The on-board software runs three control loops. The innermost control loop

(Angular Rate Control Loop – ARCL) drives rotational speed of propellers by a

reference (proportional control). The second loop (Attitude Control Loop – ACL)

with PI control maintains required attitude angles (given by the user or zero in

a hovering state). The output of this loop serves as the reference for ARCL. The

outermost loop (Hovering Control Loop – HCL) regulates the drone to the hovering

state.

The communication with AR.Drone2 is provided by WiFi. After powered on,

the AR.Drone2 becomes a wifi hotspot and an external client may connect to

it. The communication is realized over three channels. The first channel (UDP

5554) serves for sending drone’s data from sensors and the current state estimate

(Navdata). Through the second channel (UDP 5555), the video stream from one of
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two cameras is processed. The client’s commands (e.g. takeoff, land, desired roll,

pitch, yaw speed and vertical speed) are transferred through the command channel

(UDP 5556). The AR.Drone2 is controlled using a device with a mobile operation

system (Android, iOS, Windows Phone) equipped by FreeFlight application, see

e.g. ardrone2.parrot.com/support-android. The application offers to control

the drone manually or to use a navigation with a GPS module extension. The

application shows the video stream from the front camera (or the bottom camera)

in the real time in such a way the user has a view from drone’s perspective. Robot

Operating System (ROS) (M. Quigley and Faust, 2009) was used as an interface to

control and communicate with the drone. It was developed at Stanford Artificial

Intelligence Laboratory and it is a collection of numerous frameworks for creating

a robot control software. ROS offers Python interface to implement different user

defined algorithms to control the drone. For the data exchange a built in message

package is used. The message is a special type of data structure, which stores data.

Modeling

Raffo et al. (2010) presented a standard approach to describe the quadrotor’s dy-

namics. It is based on Newton-Euler and Euler-Lagrange equations. The resulting

model comprises a set of nonlinear and unstable differential equations. The vec-

tor of angular speeds (ω1, ω2, ω3, ω4)
⊤ of four propellers is the input of such model.

Bresciani (2008) proposed a simple (quadratic) transformation of propellers’ speeds

that lead to an input vector that consists of four basic movements (throttle, roll,

pitch, yaw). Parameters of such model are quadrotor’s mass, gravitational accel-

eration, inertias, friction constants etc. The identification of these parameters is

provided by a series of identification experiments presented by Bresciani (2008);

Qianying (2014).

In the case of AR.Drone2, the input vector (6.10) consists of references for roll,

pitch, yaw rate and vertical speed. The on-board control software drives these

variables to the reference values. Since the details of this control are unknown, it

is considered as a part of the system. We consider the state vector

~x = (x, y, z, ẋ, ẏ, ż, φ, θ, ψ, ψ̇)⊤ ∈ R
10 (6.11)

where (x, y, z)⊤ is the position of the quadrotor (in m) and (ẋ, ẏ, ż)⊤ the velocity

(in m/s), both in the world frame. Next, (φ, θ, ψ)⊤ is the attitude (in rad). Finally,

ardrone2.parrot.com/support-android
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ψ̇ is the angular velocity around the zw axis (in rad/s). We consider the state space

model of the form

~̇x = ~f(~x, ~u) + ~w

~z = ~h(~x) + ~v
(6.12)

where ~f and ~h are differentiable nonlinear functions and ~w and ~v represent multi-

variate Gaussian noise.

Here we adopt the idea introduced by Engel et al. (2012). We approximate the

horizontal acceleration vector (ẍ, ÿ)⊤ by a nonlinear transformation of the attitude

vector. The transformation results from the following idea.

The acceleration in the horizontal direction is roughly proportional to the hor-

izontal force acting on the quadrotor

(
ẍ

ÿ

)
∼ ~facc − ~fdrag (6.13)

where ~facc denotes an accelerating force and ~fdrag denotes an aerodynamic drag

force. The drag force is related to the velocity in the horizontal direction and ~facc

relates to the tilt angle (the projection of zb-axis onto the horizontal plane).

ẍ = K1(sin ψ sin φ cos θ − cos ψ sin θ) − K2ẋ (6.14)

ÿ = K3(− cos ψ sinφ cos θ − sin ψ sin θ) − K4ẏ (6.15)

Under a condition of a near-hover flight, it is possible to model and identify

the forward, lateral, yaw, and altitude dynamics as four independent sub-systems.

Engel et al. (2012) and Krajńık et al. (2011) model the AR.Drone’s internal control

and dynamics as four independent linear systems

φ̇ = K5uφ − K6φ, (6.16)

θ̇ = K7uθ − K8θ, (6.17)

ψ̈ = K9uψ̇ − K10ψ̇, (6.18)

z̈ = K11uż − K12ż. (6.19)

V120 tracks the quadrotor in user’s defined world frame. The direct observation

is given by

h(~x) = (x, y, z, φ, θ, ψ)⊤. (6.20)
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Identification of yaw and height dynamics are simpler problems compared to

horizontal dynamics. In this case, we look for parameters of an unstable second

order system. We may use basic procedures of the MATLAB’s System identification

toolbox (Ljung, 2011) to find the unknown parameters or we may proceed in the

same way like in the two previous dynamics.

The corresponding NLS optimization problem for the yaw dynamic is of the

form:

min
K̄

QLS =
N∑

i=1

(ψ̇i −
˜̇
ψi)

2 + (ψi − ψ̃i)
2

s.t. : K̄min ≤ K̄ ≤ K̄max,

dψ

dt
= ψ̇

d2ψ

dt2
= K9uψ̇ − K10ψ̇, (6.21)

0 =
(
ψ(t0) ψ̇(t0)

)⊤

,

uψ̇ = Π(t), t ∈ [t0, tf ],

where K̄ = (K9,K10)
⊤, K̄min and K̄max denote the lower and upper bound for the

parameter vector, respectively. N is the number of measurements.

The NLS optimization problem for the altitude dynamic is of the form:

min
K̄

QLS =

N∑

i=1

(żi − ˜̇zi)
2 + (zi − z̃i)

2

s.t. : K̄min ≤ K̄ ≤ K̄max,

dz

dt
= ż

d2ψ

dt2
= K11uż − K12ż, (6.22)

0 =
(
z(t0) ż(t0)

)⊤

,

uż = Π(t), t ∈ [t0, tf ].

where K̄ = (K11,K12)
⊤, K̄min and K̄max denote the lower and upper bound for

the parameter vector, respectively. N is the number of measurements.

The onboard software implements basic control loops based on the measure-

ments from various sensors, such as accelerometers, ultrasound sensor, barometer,
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Figure 6.4: The result of the yaw dynamics identification experiment. Blue – mea-

surements, Red – model.
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and electronic compass. It controls the vertical speed ż, yaw speed ψ̇, roll φ and

pitch angle θ based on references it acquires via WiFi. The MPC objective is

to devise these references in an optimal fashion. Specifically, the control inputs

generated by MPC are:

• uż, the control command for velocity in vertical axis;

• uψ̇, the control command for rotation velocity in z axis;

• uφ, the control command for rotation over the x axis;

• uθ, the control command for rotation over the y axis.

All inputs are normalized and constrained by −1 ≤ u ≤ 1.

In this section we control the yaw angle with respect to the global frame. The

simplified mathematical model of the Ar.Drone’s rotational dynamic over the z-axis

was presented in Engel et al. (2012):

ψ̈ = K9uψ̇ − K10ψ̇, (6.23)

where ψ̇ represents the linear acceleration over the z-axis. The parameters K9, K10

are model gains that have to be experimentally identified. The first term K9uψ̇

represents accelerating force, and K10ψ̇ represents drag force in (6.23).

Applying the forward Euler discretization to (6.23), the discrete time model of

the system takes the form

[
ψ̇k+1

ψk+1

]

︸ ︷︷ ︸
xk+1

=

[
1 − K10Ts 0

Ts 1

]

︸ ︷︷ ︸
A

[
ψ̇k

ψk

]

︸ ︷︷ ︸
xk

+

[
K9Ts

0

]

︸ ︷︷ ︸
B

uψ̇k︸︷︷︸
uk

(6.24)

where Ts is the sampling period. To achieve tracking properties, the system in

Table 6.2: Estimated parameters and deviations.

Parameters Values ± std Units

K9 27.21 ±11.46 s−1

K10 10.45 ±5.17 rad s−1
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(6.24) was augmented into the form

x̃k+1 =

[
A B

0 I

]

︸ ︷︷ ︸
Ã

x̃k +

[
B

I

]

︸︷︷︸
B̃

∆uk, (6.25)

where x̃k =
[
ψ̇k ψ uk−1

]⊤
.

Control

Using the Multi-Parametric Toolbox we have formulated the following MPC prob-

lem, the objective of which is to manipulate the rotational velocity such that the

yaw angle tracks a prescribed reference. This is achieved by formulating the prob-

lem as follows:

min

N−1∑

k=0

∆y⊤
k Qyk

∆y + ∆u⊤
k Qu∆uk, (6.26a)

s.t. x̃k+1 = Ãx̃k + B̃∆uk, (6.26b)

yk =

[
1 0 0

0 1 0

]
x̃k, (6.26c)

∆y = y − yref, (6.26d)

∆uk = uk − uk−1, (6.26e)

− 0.005 ≤ ∆uk ≤ 0.005, (6.26f)

− 1 ≤ uk ≤ 1, (6.26g)

x̃min ≤ x̃k ≤ x̃max, (6.26h)

x0 = x(t). (6.26i)

The model gains are K9 = 27.21, K10 = 10.45, while the state penalty matrix

Qy = [ 500 0
0 2000 ] and Qu = 1 were chosen experimentally. The weights were adjusted

to put emphasis to ψ and slightly restrict ψ̇. The prediction horizon N = 5 and

sampling time Ts = 20 ms were used.

The explicit MPC feedback was then generated using parametric solvers con-

tained in Multi-Parametric Toolbox. The solution consisted of 281 regions. The

controller was subsequently exported to Python code using the toPython function

and embedded into the control software represented by the ROS platform.
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Figure 6.5: Controlled yaw angle (green) and the corresponding reference (blue).

The controller was tested in a real-time experiment with control period ∼ 20 ms.

The real control period varied from 15 to 27 milliseconds, which introduced addi-

tional disturbances into the control loop.

The MPC problem was defined by using the features of Multi-Parametric Tool-

box in the same way as it was presented in the previous application. The paramet-

ric solution was subsequently exported to Python by the toPython function and

embedded into control interface in ROS platform.

The variation of the control period was caused mostly by the varying evaluation

time of the sequential search. Results of the tracking experiment are shown in

Figs. 6.6 and 6.5. We have chosen not a single reference point, but a curve as can

be seen in Fig.6.5. This represents the horizontal turning. As can be seen, the

explicit MPC controller rejects disturbances and achieves the tracking objective by

bringing ψ to a harmonic reference. The small velocity oscillations were caused by

air turbulence and varying control period.



118 CHAPTER 6. CODE GENERATION FOR EXPLICIT MPC

Time(s)

u
ψ̇

0

0 5 10 15 20 25 30 35

-0.2

0.1

0.2

0.15

0.05

-0.05

-0.15

Figure 6.6: Control input for the Ar.Drone example.

6.1.3 Summary

In this section a the advantage of the new code generation module in Multi-

Parametric Toolbox was primarily introduced. The presented module allows to

the final user of the toolbox to extract EMPC controllers into Python. The gener-

ated file also contains the point location algorithm. Furthermore, such a generated

code is directly implementable into different applications. In this section two dif-

ferent applications were introduced. The first one is a popular computer game,

where the goal was to control altitude with MPC, while in the second application

we aimed to control the yaw angle of the quadrocopter. In both cases the MPC

control technique was successfully implemented.

6.2 Export to JavaScript

In the recent days JavaScript became a popular programming language. It can be

used as front-end and even as a back-end tool. However it is a scripting language,

it also allows to use the features of object oriented programming. The main reason

of using JavaScript is that it allows to complete procedures or requests in the user’s
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browser without sending messages back and forth to the server. Doing something

directly in the browser can be much faster than sending a message to the server

and getting a reply. It is almost always a noticeable time lag, and can take many

seconds. Generally JavaScript is used to create interactions and dynamic effects,

but it could be used as a part of application outside web pages. It becomes so

powerful language that even computer games, visualization or 3D rendering could

be developed in JavaScript. The reason of choosing this language is its unique

possibility to easily merge with web based applications. JavaScript is used by

every company, which has a website. There exist several frameworks, such as

• JSON - easier-to-use alternative to XML for storing and exchanging data

• AngularJS - extends HTML with new attributes (Ryanair, iTunes Connect,

PayPal Checkout, ...)

• jQuery - simpler event handling

and many more, which allows fast and convenient algorithm prototyping. Our goal

was to use the web based environment as a communication tool for control applica-

tion. Therefore we proposed to create a module for an export of the point location

methods into JavaScript programming language. With this act we can bring ad-

vanced control techniques such MPC to the web based environment. We believe

that there is a need for simple code export, which brings the power of the para-

metric optimization into web based environment. Since JavaScript could be used

for both front-end and back-end development, the possibilities for implementation

seem to be endless. The generated code should be fully self-contained, which means

there is no need for external libraries. The generated function should contain all

the necessary matrix operation and it should work on plug-and-play system, where

the user just needs to attach the generated file with ’.js’ extension to it’s ap-

plication. The principle of code generation of JavaScript has similar features as

was presented in code generation to Python. The only difference is in the name of

the built in function, toJavaScript, for the code export. The function generates

two different files, one JavaScript file which includes the information about the

parametric solution, the point location algorithm and the necessary functions for

matrix operations. There are also free libraries that allow to use matrix operations,

but those libraries code could be measured in megabytes. Therefore we created our

own functions and only those are exported together with the parametric solution.
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The second file is a pure HTML file, where the user can manually test the exported

controller. To our best knowledge, there has not been any simple way to merge

MPC control strategies into existing JavaScript applications in an easy fashion.

To demonstrate the benefit of the export procedure to JavaScript a temperature

control for a single zone building application will be introduced in sequel.

In Matlab the export procedure could be performed by evaluating the following

line:

toJavaScript(solution, ’buildingmpc’,’primal’,’algorithm’)

Where variables solution, ’primal’ and ’algorithm’ has the same options and

properties like it was presented in Section 6.1. Furthermore ’buildingmpc’ is the

name of the generated function. If this string based variable does not contain the

.js extension it is added automatically.

The exported file id of the following form: the created file contains the exported

sequential search approach, presented in Section 3.7.1 with the information about

the parametric solution.

function buildingmpc(x){

var nx=7;

var nz=5;

var nu=1;

var H=[[-0.27105,0.96257,3.5677,...],...];

var ni=[[1],...];

var fF=[[5.5511e-17,...],...];

var fg=[[0],...];

x = trans(x);

var xh = x.slice();

xh.push([-1]);

var z = [];

var num_regions = 35;

for (var i = 0; i < num_regions; i++) {

if(mulM(subst(H,ni[i]-1,ni[i+1]-1,0,nx+1),xh).

every(isGreaterZero)){

z = addM(mulM(subst(fF,i*nz,(i+1)*nz,0,nx),x),

subst(fg,i*nz,(i+1)*nz,0,1));

break
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}

}

where variable nx stands for state, nz represent the number of optimized variables,

while nu stands for the number of inputs. Variables H, ni, fF and fg are array type

variables and contain information about the parametric solution. The exported

code contains sequential search algorithm. The used functions in the algorithm

performs the following operations:

• mulM - matrix multiplication

• addM - matrix addition

• subst - selects the given part of the array

• isGreaterZero - element wise comparison of the array

• trans - transposition

All the mentioned functions are also the part of the generated function. In case

the user is interested in the extended sequential search, presented in Section 3.7.2,

it can be exported by executing the following command:

opt.toJavaScript(’buildingmpc’,’primal’,’obj’)

The exported function is saved in buildingmpc.js and is of the following form:

function buildingmpc(x){

var nx=7;

var nz=5;

var nu=1;

var H=[[-0.27105,0.96257,3.5677,...],...];

var ni=[[1],...];

var fF=[[5.5511e-17,...],...];

var fg=[[0],...];

var tH=[[2.2734,0.98655,...],...];

var tF=[[1.0313,1.0519,...],...];

var tg=[[0.48411],...];

x = trans(x);

var xh = x.slice();
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xh.push([-1]);

var tb = [];

var z = 0;

var k = 0;

var num_regions = 35;

for (i=0;i < num_regions; i++){

if (mulM(subst(H,ni[i]-1,ni[i+1]-1,0,

nx+1),xh).every(isGreaterZero)){

z = addM(mulM(subst(tF,i,i+1,0,nx),x),subst(tg,i,i+1,0,1));

z = addM(z,mulM(mulM(trans(x),

subst(tH,i*nx,(i+1)*nx,0,nx)),x));

tb[k] = [];

tb[k][0] = i;

tb[k][1] = z;

k++;}

}

if (tb.length==0)

{return nu2nan(nu)}

else{

i = tb[index(subst(tb,0,tb.length,1,2))][0];

z=addM(mulM(subst(fF,i*nz,(i+1)*nz,0,nx),x),

subst(fg,i*nz,(i+1)*nz,0,1));

return subst(z,0,nu,0,1)}

}

The functions used in this function are same that we described in the previous

code sample. The result of both generated functions is the optimal control action,

which is the same for the same initial parameter x (3.4c) regardless on what kind

of point location algorithm is used to extract it from the parametric solution. The

initial parameter x enters to the point generated file u = buildingmpc(x) as an

one dimensional array, while the sequence of control actions u, which is returned

by function buildingmpc(x) is a one dimensional array.
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6.2.1 Building Temperature Control

This part presents the results of an actual cooperation with Ján Drgoňa and Martin

Kalúz from our Institute. Temperature control in the last years became a topic of

common interest since high amount of energy is used to create sufficient conditions

in the buildings. This high amount of energy is consumed by heating, ventilation

and cooling the air. In order to save energy two things can be done. Better thermal

isolation could be installed on the building in order to reduce its energy consump-

tion. This is time consuming and requires big financial investments. On the other

hand more advanced control methods should be used to control the thermal comfort

in the building. In the literature there exist several ways how to deal with the de-

sign of advanced control approaches. Results of successful implementation of MPC

by assuming weather forecast were introduced in Oldewurtel et al. (2012). Another

approach which uses stochastic MPC formulation is discussed in Ma et al. (2012).

The combination of the weather forecast and stochastic MPC is demonstrated in

Oldewurtel et al. (2010). Experimental results on a real building control are de-

scribed in Široký et al. (2011). Results presented in Klaučo et al. (2014) introduce

the implementation of MPC-like feedback policy by using machine learning tools.

Another paper (Klaučo and Kvasnica, 2014) describes how to implement EMPC

with so-called PMV index. This index considers not only temperature, but it can

also combine more factors such as humidity, ventilation in order to describe the

person’s thermal comfort. In general, the goal is to create such a controller which

maximizes the thermal comfort while there is an emphasis on energy consumption

minimization.

As an application to demonstrate the advantage of code generation to JavaScript

a thermal control of a single zone building was considered. In this set up we as-

sumed that the exported EMPC controller is located in the mobile phone, while

the communication with the simulation model which represents the behavior of the

building is performed by WebSocket. This protocol provides full-duplex communi-

cation channel.

The proposed control loop is depicted in Fig. 6.7.

In this case study we did not have a chance to control a real building, but the

simulation of the building model that runs in the hardware-in-the-loop fashion.

The building runs on the Arduino YÚN micro-controller 6.8 and it is implemented

in a form of discrete differential equations. The model is evaluated in real time, but
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WebSocket

Measurements

Heating/Cooling

Building Optimization

Disturbance

Figure 6.7: Control loop.
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Figure 6.8: Arduino YÚN.

time is fasten up in order to shorten the simulation time. Arduino YÚN has two

different computing environments. The first is an 8-bit AVR microprocessor, where

the building’s model is running. This communicates via serial port with another

integrated ARM computer with a light Linux distribution for embedded systems

OpenWrt-Yun.

Both of them are located on one motherboard. On this system a Python based

software is running, which ensures two tasks:

• handling a communication with the client

On the client side the EMPC is running. It uses HTTP protocol for a full

duplex WebSocket communication.

• data transmission

This ensures the communication between the control application and the low

level AVR microcontroller.

In our simulation setup the simulation data was stored on the Micro-SD card,

and after the end of the simulation the data could be downloaded and studied

after the experiment. The actual values of the mathematical model, which are

located in the Arduino YÚN were sent by the communication link to the web

based application, where based on the received information the EMPC controller

is evaluated. Subsequently, the optimal control action is sent back to the Arduino

YÚN, where the control action is implemented to the mathematical model.

The thermodynamical behavior of the single zone building can be compactly

represented by a linear time-invariant state-space model in the discrete time domain



126 CHAPTER 6. CODE GENERATION FOR EXPLICIT MPC

Figure 6.9: Representation of state variables.

as follows

xk+1 = Axk + Buk + Edk, (6.27a)

yk = Cxk. (6.27b)

The A ∈ R
4×4, B ∈ R

4×1, E ∈ R
4×3 are the state-update matrices, whose values

were extracted from MATLAB toolbox ISE (van Schijndel, 2005):

A = 10−3 ·




−0.020 0 0 0.020

0 −0.020 0.001 0.020

0 0.001 −0.056 0

1.234 2.987 0 −4.548




,

B = 10−3 ·




0

0

0

0.003




, E = 10−3 ·




0 0 0

0 0 0

0.055 0 0

0.327 0.003 0.001




.

The physical meanings of the used variables are depicted in Table 6.3.

The idea was to control the temperature of the building by using explicit MPC

and WebSocket communication. In this part we focus on the design of the EMPC
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Table 6.3: Description of the variables.

Notation Units Description

x1 [◦C] floor temperature

x2 [◦C] internal facade temperature

x3 [◦C] external facade temperature

x4 [◦C] internal room temperature

u [W ] heat flow

d1 [◦C] external temperature

d2 [W ] heat generated by the occupancy

d3 [W ] solar radiation

Figure 6.10: Representation of disturbance variables.
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controller. The designed MPC problem which assumes model in (6.27) is of the

following form

min

N−1∑

k=0

Qu2
k + Ssk (6.28a)

s.t. xk+1 = Axk + Buk + Edk, (6.28b)

uk ∈ U , (6.28c)

xk ∈ X , (6.28d)

sk ∈ S, (6.28e)

Tref − ǫ − sk ≤ Cxk, (6.28f)

Tref + ǫ + sk ≥ Cxk, (6.28g)

x0 = x(t), (6.28h)

where xk represents the vector of state variables, uk stand for the input vari-

able while sk represents the slack variable. The slack variable could acquire only

non-negative values. Since the reference is not defined in the objective function,

this formulation of MPC does not have tracking properties. There the goal is to

maintain the indoor temperature in the specified range around the reference. The

width of the zone could be changed by manipulating with the value of ǫ. In case

of decreasing it’s value, the formulation is more restrictive, while in the other case

the controller has bigger freedom. In the objective function the heating and the

cooling cost are minimized and the value of the slack variable is penalized. Since

weighting matrix value S = 100000 and Q = 1 the controller’s goal is to maintain

the temperature in the defined zone and to minimize the energy consumption. The

prediction horizon was set to N = 5. The definition of MPC problem could be

constructed in the same way as it was demonstrated in the previous sections. The

parametric solution consisted of 190 critical regions in the 8-dimensional parametric

space. The only difference is the exporting function’s name. The code generation

could be performed by evaluating

toJavaScript( empc, ’building’, ’primal’, ’first-region’);

where empc represents the parametric solution, while ’building’ represents the

string which is a user defined name of the generated file. In this case building.js

and building.html are created. The html file’s purpose is to check if the controller
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returns the valid answers. The JavaScript file could be imported to arbitrary html

file by a single line of code.

<script src="building.js" type="text/javascript"></script>

Together with the point location algorithm 144 KB was used to store the EMPC

controller to the exported file building.js.

In the simulation scenario the reference temperature was set to 21 ◦C and while

ǫ = 0.5 ◦C was considered. This means the temperature can be within the interval

from 20.5 ◦C to 21.5 ◦C. The simulation time was set to 1 year, while unpredictable

disturbances were considered. The evolution of the indoor temperature is depicted

in Fig. 6.11 and the and the manipulated variable is presented in Fig. 6.12. The

influence of the disturbance variables, the external temperature, the solar radi-

ation and heat generated by occupancy are depicted in Fig. 6.13, Fig. 6.14 and

Fig. 6.15. It can be seen that the designed MPC control fulfills its work and the

indoor temperature mainly remains in the desired area. However, there are several

small violations of the tube constraints that were caused by the external distur-

bances, but the control performance is still acceptable. Table 6.4 summarizes the

control performance of the designed MPC controller. As we can see, MPC violates

the state constraints for the indoor temperature several times. The reason was

that the controller goal was to minimize the energy consumption, and therefore

the temperature was as close to the constraints as possible. Due to the external

disturbances, the MPC controller was not able to fulfill state constraints all the

time. In order to stay in the predefined control interval the values of the slack

variables were minimized.

Table 6.4: Control performance.

Heating cost 12795.73 kWh

Cooling cost 62.12 kWh

Total cost 12857.85 kWh

% of constraints satisfaction 99.71 %

Summary

In this section of the work we demonstrated code generation module which can

export a parametric solution of the given optimization problem together with a



130 CHAPTER 6. CODE GENERATION FOR EXPLICIT MPC

0 5 10 15 20 25 30
20

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22
Indoor temperature

Time [days]

T
em

pe
ra

tu
e 

[o C
]

 

 

temperature
reference

Figure 6.11: Evolution of the indoor temperature.
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Figure 6.12: Heating and cooling.
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Figure 6.13: External temperature.
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Figure 6.14: Solar radiation.
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Figure 6.15: Heat generated by occupancy.

point location algorithm into JavaScript. The presented module can bring advanced

control techniques like MPC into the web based environment. To propagate the

power of the module, we introduced an application for thermal comfort control of

the single zone building. The MPC algorithm was running on the separate device

while the communication was performed by WebSocket control technique.

6.3 Summary

In this part of the work we have proposed a tool which manages an export of

the parametric solution. We have shown how could be the parametric solution

of the given optimization problem exported into two different programming lan-

guages such a Python and JavaScript. The reason of choosing these programming

languages is the fact there have not existed an easy implementation of advanced

control technique such as MPC in a convenient matter. Both languages offer inter-

esting possibilities, while development of applications is convenient. It was shown

that the merging of the exported controller with an actual application could be
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done in a plug-and-play principle. In the case of both languages the imported con-

trollers could be easily evaluated by only calling one single line of code. All the

necessary operations which are required to extract the optimal control action for

the particular value of the parameters are also defined in the exported function.





Chapter 7
Case Studies

This chapter deals with implementation of MPC policy into two non-linear systems,

namely electroplating process and magnetic manipulation. In the first case the goal

is to control the temperature of the plating solution subject to process input and

output constraints. The task for the magnetic manipulator is to control the position

of the ball in two-dimensional space. The magnetic field influencing the position

of the ball is generated by the series of coils. The coils are located below the ball

and the magnetic field can be changed by using different currents. We show that

a well performing MPC policy design is not an easy task as both aforementioned

processes have non-linear dynamics.

7.1 Electroplating Process

The results described in this chapter are one of the outcomes of the joint work with

Surasit Tanthadiloke and Paisan Kittisupakorn from the Chulalongkorn University

in Bangkok, Thailand.

Electroplating is a process that uses electric current to reduce dissolved metal

cations so that they form a coherent metal coating on an electrode. Electroplating

is primarily used to change the surface properties of objects by creating a thin new

surface, which provides better corrosion protection.

The process consists of three components, the cathode, the anode, and the

electrolyte solution. The cathode represents the object to be treated. The anode is

135
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made of metal to be plated and the electrolyte contains dissolved metal salts and

some other ions. The free ions ensure the flow of the electricity. Both anode and

cathode are dipped into the solution. The power supply sends the direct current

to the anode, which starts to dissolve metal ions in the electrolyte. The dissolved

metal on the cathode creates a new surface. The thickness of the new surface can

be adjusted by changing the operation time or by changing the applied current.

Electroplating can change the physical, chemical, and mechanical properties of the

workpiece.

The aim is to control the temperature of the plating solution to a specific value.

For this purpose, three different MPC setups are presented and compared. The

goal is to find an acceptable comparison between the complexity of the optimization

problem and the performance of the controller. Components of the electroplating

process are illustrated in Fig. 7.1.

The cooling tower together with the reservoir tank cools down the water’s tem-

perature. The power supply ensures the right value of the electric current, while the

plating bath contains the anodes, workpiece as a cathode and the plating solution.

During the operational time of the electroplating process, a certain temperature

of the plating solution must be maintained. A high temperature can cause sur-

face burning. The unwanted burning area must additionally be polished, which

increases production costs. However, if the temperature is too low the thickness of

the new surface will not be sufficient. In the following section, the control meth-

ods will be presented from the most difficult to the easiest formulation, from the

computation point of view.

7.1.1 Mathematical model

The mathematical model was constructed by Surasit Tanthadiloke using mass and

energy balances (Tanthadiloke et al., 2013). In order to obtain a valid mathematical

model of the hard chromium plating process, a real data of conventional operating

conditions and parameters were collected from the Siam Hard Chrome Co., which

is a company in Thailand dealing with hard chromium plating. The nonlinear
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Figure 7.1: Electroplating process.

behavior of the electroplating process is defined as follows

dTp

dt
=

IV − UoAht(∆Tlm) − Qloss

ρpCppVp
, (7.1a)

dTwo

dt
=

UoAht(∆Tlm) + Fw(Twi − Two)

ρwCpwLtubeAo
, (7.1b)

∆Tlm =
(Tp − Twi) − (Tp − Two)

ln
(Tp−Twi)
(Tp−Two)

, (7.1c)

Uo =
1

Ao

Aih
+ Ao ln(do/di)

2πKLtube
+ 1

h

, (7.1d)

Qloss = αQloss
AsurT

βQloss
p , (7.1e)

where the first state of the system is the temperature of the plating solution Tp,

the second state is the temperature of the outlet cooling water from the plating

bath Two and the control input is the inlet flow of the cooling water to the plating

bath Fw. We are interested in maintaining the output of the process Tp at the

desired reference. Just to simplify the differential equations (7.1a) and (7.1b), the

expression for the logarithmic mean temperature difference Tlm in (7.1c) and the

overall heat transfer coefficient Uo in (7.1d) were separated. Variable Qloss in (7.1e)
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represents the heat loss from the plating bath. The nonlinear behavior is caused

by the logarithmic mean temperature difference (7.1c) and also by heat loss (7.1e).

The parameters used in (7.1) are listed in Table 7.1.

Table 7.1: Process variables and parameters.

Parameters Units Values

Electric current (I) A 3500

Voltage (V ) V 5.5

Outer diameter of heat exchanger tube (do) m 0.0254

Inner diameter of heat exchanger tube (di) m 0.0224

Outside surface area for heat transfer (Ao) m2 5.067 × 10−4

Inside surface area for heat transfer (Ai) m2 3.942x10−4

Heat transfer area of heat exchanger (Aht) m2 1.489

Heat exchanger length (Ltube) m 18.66

Overall heat transfer coefficient (Uo) kW/m2 ◦C 0.58484

Density (ρ) kg/m3

- Plating solution (ρp) 1174.4

- Cooling water (ρw) 992.25

Specific heat capacity of plating solution (Cp) kJ/kg.◦C

- Plating solution (Cpp) 4.9172

- Cooling water (Cpw) 4.181

Electroplating bath volume (Vp) m3 11.35

Electroplating bath temperature (Tp)
◦C -

Temperature of the out water stream (Two)
◦C -

Flow of the out water stream (Fw) m3s-1 -

Heat loss from a plating bath (Qloss) KJ/s -

Coefficient of heat loss (αQloss
) - 1.96 × 10−5

Coefficient of heat loss (βQloss
) - 2.8806

The process (7.1) is subjected to physical limitations on the flow of the cooling

water

1 × 10−4 m3s−1 ≤ Fw ≤ 2 × 10−3 m3s−1, (7.2)
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as well as limitations on both temperatures Tp and Two as

30.0 ◦C ≤ Tp ≤ 70.0 ◦C, (7.3a)

26.5 ◦C ≤ Two ≤ 95.0 ◦C. (7.3b)

Furthermore, we assume that the cooling unit is able to cool down the recycled

water’s temperature to Twi = 26.5 ◦C. During the electroplating procedure anodes

and the object, which should be treated, are connected to the power supply. The

value of the voltage and the electric current are chosen based on the material of the

object and the desired thickness of the new surface. During the electroplating pro-

cedure, due to the supplied electricity, the plating solution’s temperature starts to

increase. The temperature in the plating bath is crucial for the successful electro-

plating. In case when the temperature is over the desired value the flow of cooling

inlet water is increased. Furthermore the water had to circulate consistently, which

means even if the temperature of the plating solution is lower than the desired the

minimal water flow remains. The objective is to maintain the temperature of the

plating solution at the desired 50 ◦C (Zitko et al., 2010). Our goal is to design

such a MPC controller, which is able to maintain the temperature in the plating

bath, while there will not large overshoots in the flow of the cooling water and the

physical limitation of the system will be satisfied.

Three different MPC setups will be presented in sequel. In each of them, we

use the same form of the objective function, where we penalize the tracking error

of the controlled output and the increment of the control input. The reference

temperature was set to 50 ◦C and the simulation time was set to 5100 seconds,

which is a real process time received from the industry. The initial temperature of

the plating solution was set to 47 ◦C, while the temperature of cooling water on the

outlet was set to 30 ◦C. In the simulations, plant model mismatch was considered,

by changing parameters Uo and Qloss by ±10% compared to their nominal values.

The prediction horizon in each cases was set to N = 5 and with sampling period

Ts = 15s.

7.1.2 Nonlinear MPC

In the first presented MPC setup we consider quadratic penalization on the dif-

ference between the current and desired temperature of the plating solution and

also the value of the increment of the control action is penalized by a quadratic
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function. The weighting matrices Q and R are scalars since only one output and

one input is considered. First we formulate a non-linear MPC problem as

min
u0,...,uN−1

N−1∑

k=0

Q(yk − yref)
2 + R∆u2

k (7.4a)

s.t. x1
k+1 = x1

k + Ts
IV − UoAht(∆Tlm) − Qloss

ρpCppVp
, (7.4b)

x2
k+1 = x2

k + Ts
UoAht(∆Tlm) + Fw(Twi − x2

k)

ρwCpwLtubeAo
, (7.4c)

∆Tlm =
(x1

k − Twi) − (x1
k − x2

k)

ln
(x1

k
−Twi)

(x1
k
−x2

k
)

, (7.4d)

Uo =
1

Ao

Aih
+ Ao ln(do/di)

2πKLtube
+ 1

h

, (7.4e)

Qloss = αQloss
Asurx

1
βQloss

k , (7.4f)

yk = Cxk, (7.4g)

xmin ≤ xk ≤ xmax, (7.4h)

umin ≤ uk ≤ umax, (7.4i)

∆uk = uk − uk−1, (7.4j)

x0 = x(t), (7.4k)

u−1 = u(t − 1), (7.4l)

where constraints (7.4b)-(7.4j) are enforced for all k = 0, . . . , N − 1. Constraint

(7.4b) and (7.4c) represent the discretized model of (7.1), where we assumed x1 =

Tp and x2 = Two. We used forward Euler’s discretization scheme. The objective

function is quadratic and the constraints are not linear, therefore control problem

defined in 7.5 must be solved by a non-linear numerical solver. The optimization

problem was solved in Matlab (MATLAB, 2010) by using a built in fmincon solver.

We used a built-in interior-point algorithm to solve (7.4). The values of penalty

matrices are Q = 1 and R = 100. Those values were chosen experimentally.

We choose integral squared error for performance index Its value for this setup is

ISE = 3.5566 × 104. The evolution of the system is depicted in Fig 7.2(a) and

Fig 7.2(b). Since we had a nonlinear optimization problem a non-linear numerical

solver was used, which is almost impossible to implement in hardware with limited

computation resources. As it can be seen in Fig. 7.2(a) the controller was able to

move the system and maintain the desired temperature. However the evolution of
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Figure 7.2: Evolution of the process controlled by (7.4)

the temperature of the plating solution seems to be a slow procedure, we need to

realize that the volume of the plating bath is Vp = 11.35 m3 and also a specific

heat capacity of the plating solution is high Cpp = 4.9172 kJ/kg.◦C. This is the

reason of the high regulation time, which is around 20 minutes. Also the control

action presented in Fig. 7.2(b) fulfilled the saturation. The small oscillation of the

control action was caused by model mismatch.

7.1.3 Linearized MPC

Our second approach used a simplified formulation of the process that was linearized

around the actual state in every sampling time. This gives rise to a time-variant

model with matrices A(t), B(t) and f(t).

Thanks to this additional linearization the MPC problem could be formulated
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as QP and solved more effectively.

min
u0,...,uN−1

N−1∑

k=0

Q(yk − yref)
2 + R∆u2

k (7.5a)

s.t. xk+1 = A(t)xk + B(t)uk + f(t), (7.5b)

yk = Cxk, (7.5c)

xmin ≤ xk ≤ xmax, (7.5d)

umin ≤ uk ≤ umax, (7.5e)

∆uk = uk − uk−1, (7.5f)

x0 = x(t), (7.5g)

u−1 = u(t − 1). (7.5h)

We used Gurobi optimization solver to solve the given QP. Using Yalmip Tool-

box (Löfberg, 2004) the persistent linearization could be easily implemented, since

the parameter varying optimization problem can be defined by the built in optimizer

function. This allows us to update the time varying parameters, A(t), B(t) and

f(t), of the mathematical model defined in (7.5b) in each simulation step. The

values of the weighting matrices in the simulation were set to Q = 2.5 and R = 90.

The value of the ISE is 3.5640 × 104, and the process progress is presented in

Fig 7.3(a) and Fig 7.3(b). As can be seen, the evolution of the temperature of the

plating solution is similar to the previous setup. Since the mathematical model

used for simulation has time varying parameters Uo and Qloss, there will be always

mismatch between the model for simulation and the model used for prediction

purposes.

In this example we showed that, for such a system with slow dynamics even the

persistently linearized model is suitable to achieve control goals.

7.1.4 Linear MPC

After realizing that, by decreasing the computational complexity we are still able to

create a simpler controller with an acceptable performance, we wanted to explore

further simplification possibilities. In order to obtain computationally the cheapest

possible controller only one linearized model was used. This means, we eliminate

the linearization scheme, which was presented in the previous section. We linearized
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Figure 7.3: Evolution of the process controlled by (7.5)

the system in it’s stable equilibrium (7.6),

T s
p = 50.0009 ◦C (7.6a)

T s
wo = 34.2110 ◦C (7.6b)

F s
w = 5.2607 × 10−4 m3s−1 (7.6c)

and we obtained variables A, B and f . The whole optimization problem could be

precomputed by parametric programming, which means there is no need for exter-

nal solvers, just a mere function evaluation is required to obtain the solution. This

approach has the lowest online computation demand and fastest online evaluation

time.

min
u0,...,uN−1

N−1∑

k=0

Q(yk − yref)
2 + R∆u2

k (7.7a)

s.t. xk+1 = Axk + Buk + f, (7.7b)

yk = Cxk, (7.7c)

xmin ≤ xk ≤ xmax, (7.7d)

umin ≤ uk ≤ umax, (7.7e)

∆uk = uk − uk−1, (7.7f)

x0 = x(t), (7.7g)

u−1 = u(t − 1). (7.7h)
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Figure 7.4: Evolution of the process controlled by (7.7)

Since the system has slow dynamics this control design was also sufficient from

the point of constraint violation and control performance. The values of the weight-

ing matrices are Q = 1 and R = 10 while ISE = 3.5566×104. The temperature and

control variable evolution are depicted in in Fig 7.4(a) and Fig 7.4(b). As can be

seen even this simple MPC setup was able to control and maintain the temperature

to the desired 50◦C. The results showed that even the MPC based on one linear

model is suitable for this system after appropriate tuning.

7.1.5 Summary

In this section the hard chromium electroplating process was presented. The pa-

rameters of the process are values received from the industry. Three MPC setups

were presented. Each of the three designed MPC control techniques has different

performance and computation requirements. The first discussed method most ac-

curately describes the behavior of the systems, but since the model is non-linear a

non-linear optimization problem must be solved in order to obtain the optimal val-

ues of the control action. The next presented method uses persistent linearization,

where the computational requirements are lower since only convex QP problem

need to be solved, but also an additional linerization scheme was added in order to

update the matrices of the linear model. The third presented method considered

a linear model, which was linearized in the steady state operation conditions. All

the described approaches were able to control the system without violating the
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Table 7.2: Control performance comparison.

Method Non-linear Linearized Linear

Fmincon [s] 0.290565 - -

Gurobi [s] - 0.009075 -

Linearization [s] - 0.002716 -

Point Location [s] - - 0.001981

Total time [s] 0.290565 0.011791 0.001981

ISE [-] 3.5566 × 104 3.5640 × 104 3.6009 × 104

constraints and the differences in the chosen performance index were minor. Since

the system has slow dynamics it is enough to use linear MPC, which has the low-

est computational requirements. Table 7.2 summarizes the results of the proposed

MPC setups. The last MPC setup is also implementable on a PLC like devices

since there is no need for external numerical solvers.

In this section, we considered only one batch operation. In the future, it would

be interesting to consider multiple batches, where the thickness of the requested sur-

face on the treated material will not be identical. In order to change the thickness

of the surface, the value of the electric current are voltage should be changed. In

this case, the controller should incorporate with another parameters, which would

be the value of the electric current and the voltage. Moreover, since it is not a

continuous process, also the manipulation time to withdraw the plated material

and time needed to immerse the another workpiece should be considered in the

future.

7.2 Magnetic Manipulation

The result presented in this section are the outcome of the joint work with Jǐŕı

Zemánek from the Czech Technical University in Prague. We will demonstrate

MPC implementation to a process with extremely fast dynamics. This section

represents only the first step of an interesting experiment and control design. The

future plans also involve size reduction of the device, manipulation of more than

one object at the same time, and extension from 2D to 3D. This could bring new

possibilities and new control challenges. We believe that in a not so distinct future



146 CHAPTER 7. CASE STUDIES

the principle of magnetic manipulator could be used in modern non-invasive surgery

techniques.

7.2.1 Device Description and Problem Formulation

The magnetic manipulator depicted in Fig. 7.5 consists of four separate modules.

Each module contains four coils and the control electronics which is located on the

bottom. Power supply connectors are located on each side of the module. This

allows to simply extend the magnetic manipulator platform. A surface with touch

foil is located over the set of coils. This pressure-sensitive plate is used to obtain

the actual position of the object, which is located above the coils. Furthermore

it is also possible to detect the position of the objects by an optical system. The

objects are recognized by color thresholds. The physical dimension of the plate is

20 by 20 centimeters and the coils are arranged in a regular 4-by-4 grid. The device

can operate at a frequency up to 1 kHz.

Each coil can be activated separately. The only stable equilibrium points are

located above the coils. The position of the object without feedback can only be

moved to the center of the coil. There is also an unstable equilibrium point between

the coils. However, if only two neighboring coils are activated there is no chance

to move the object to the unstable equilibrium.

The objective is to design an MPC controller which will manipulate the current

supplied to each coil such that the ball follows a prescribed trajectory. The reason

why MPC is employed stems from the fact that constraints play an important role

(Bemporad et al. (2004)). Specifically, the controller must ensure that the ball

never falls off the plate and that the calculated currents stay within their physical

limits.

7.2.2 Control Synthesis

For the sake of clarity of explanation, in this section we first present control design

assuming one-dimensional motion of the ball along a line. In this setup, only 4 coils

along the line will be activated. Under such conditions the model of the motion of
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Figure 7.5: MAGMAN - Magnatic Manipulator Device

the ball is given by

ṗx = vx, (7.8a)

v̇x = γ

4∑

i=1

F (px, i)Ti, (7.8b)

where px represents the position of the ball, and vx denotes the ball’s velocity.

Moreover, Ti is the current supplied to the i-th coil, and F (px, i) is the magnetic

force generated by the i-th coil as a function of the ball’s position. The final force

is then obtained by a superposition principle. Finally, γ is a system’s constant.

The following analytic representation of the function F (px, i) was obtained by ex-

perimental identification by our colleagues in Prague:

F (px, i) =
−0.1857(px − i)

((px − i)2 + 0.3303)3
, (7.9)

which assumes that the ball’s position px is normalized to the interval [0, 5]. If

px = 1, then the ball is directly above the first coil, if px = 2, then it is above the

center point of the second coil, etc.
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Figure 7.6: Force as function of position. Red line represents the minimal and black

line the maximal force

By assuming that the minimal applicable current is zero, and the maximal limit

is 0.8 (expressed in dimensionless, normalized units), one can plot the minimal and

maximal force which the array of 4 coils can generate as in Fig. 7.6. Any force

between the two functions shown in Fig. 7.6 can be generated by an appropriate

selection of the respective currents. As can be seen, the area of generate forces forms

a non-convex set, which represents a nonlinear constraint on decision variables (the

currents) in the control problem.

The problem of employing (7.8) in MPC is due to its nonlinearity. Specifically,

F (px, i) is a nonlinear function, and the model also features a product between

F (px, i) and the control inputs Ti. To avoid nonlinearity, we propose to replace

the nonlinear term by a new decision variable, which will represent the required

acceleration of the ball, i.e.,

ax =

4∑

i=1

F (px, i)Ti. (7.10)
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Using this substitution, the model in (7.8) turns into a linear system of the form

[
ṗx

v̇x

]
=

[
0 1

0 0

] [
px

vx

]
+

[
0

γ

]
ax, (7.11a)

y =
[
1 0

] [
px

vx

]
, (7.11b)

which is a well-known double integrator system.

With the model (7.11) at hand, standard convex MPC can be used to look for

optimal accelerations required for the ball to reach a certain position. However,

the constraints on the acceleration have to be chosen in a conservative fashion as

not to exceed the allowed authority depicted in Fig. 7.6. Another disadvantage of

this approach is that the MPC controller only provides optimal accelerations, not

the coils’ currents. To find the currents that generate a particular acceleration, we

propose to solve the following linear programming problem:

min

4∑

i=1

Ti (7.12a)

s.t. ax =
∑

i

F (px, i)Ti. (7.12b)

It is important to notice that in (7.12) both the acceleration ax as well as the

current position px are assumed to be known. Once px is known, the quantity

F (px, i) can be evaluated from (7.9). Therefore the value of F (px, i) is treated

as a constant in (7.12), and thus the constraint is linear. Minimizing the sum of

currents provides the least possible excitation of the magnets required to create a

certain acceleration.

The overall implementation is therefore as follows:

• obtain information about current states px and vx;

• obtain the optimal acceleration ax by solving an MPC problem;

• solve for Ti, i = 1, . . . , 4 from the LP in (7.12);

• apply all currents Ti to the device;

• request new state measurement at the next sampling instant and repeat from

the beginning.
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The procedure discussed above can be easily extended to the two-dimensional

scenario where the position of the ball is controlled along both axis. In particular,

the nonlinear model then takes the form

ṗx = vx, (7.13a)

v̇x = γ
4∑

i=1,j=1

Fx(px, py, i, j)Ti,j , (7.13b)

ṗy = vy, (7.13c)

v̇y = γ

4∑

i=1,j=1

Fy(px, py, i, j)Ti,j , (7.13d)

where px and py denote, respectively, positions of the ball along the x- and along the

y-axis. Moreover, Fx(·) is a force along the x-axis generated by the coil situated at

coordinates i and j (the first coordinate corresponds to the x-axis, the other one to

the y-axis), and Fy(·) is the force along the y-axis generated by the corresponding

coil. The force functions are given by

Fx(px, py, i, j) =
−0.1857(px − i)

((px − i)2 + (py − j)2 + 0.3303)3
, (7.14a)

Fy(px, py, i, j) =
−0.1857(py − j)

((px − i)2 + (py − j)2 + 0.3303)3
. (7.14b)

To eliminate the nonlinear terms from (7.13), we propose to introduce additional

variables ax and ay, which effectively denote accelerations along the corresponding

axis:

ax =
4∑

i=1,j=1

Fx(px, py, i, j)Ti,j , (7.15a)

ay =
4∑

i=1,j=1

Fy(px, py, i, j)Ti,j . (7.15b)
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The the system’s model simplifies to




ṗx

v̇x

ṗy

v̇y




=




0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0







px

vx

py

vy




+




0 0

γ 0

0 0

0 γ




[
ax

ay

]
, (7.16a)

y =

[
1 0 0 0

0 0 1 0

]



px

vx

py

vy




, (7.16b)

which is linear. It can thus be employed to synthesize an MPC controller as de-

scribed in previous sections. Note, however, that such an MPC controller produces

accelerations ax and ay as decision variables. To convert the accelerations into

currents, the following linear programming problem needs to be solved after the

MPC problem:

min

4∑

i=1,j=1

Ti,j (7.17a)

s.t. ax =

4∑

i=1,j=1

Fx(px, py, i, j)Ti,j , (7.17b)

ay =

4∑

i=1,j=1

Fy(px, py, i, j)Ti,j . (7.17c)

(7.17d)

Again, it is important to note that px and py are known at the time problem (7.17)

is solved. Thus Fx(px, py, i, j) and Fy(px, py, j, j) are constant and therefore the

constraints in (7.17) are linear.

The procedure reported above was first verified by a simulation, results of which

are shown in Fig. 7.7(a), Fig. 7.7(b) and Fig. 7.8. Subsequently, the MPC approach

was also implemented on the real device, albeit only in the one-dimensional sce-

nario. Several changes of the reference positions were made during the experiment

and the results are presented in Figures 7.9(a) and 7.9(b). The oscillation around

the set point was caused by the sensor and of course the small imperfection of the

balls and plates surface.
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Figure 7.7: Simulation results in two dimensional case
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Figure 7.8: Ball’s position in 2D
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Figure 7.9: Experimental results
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7.3 Summary

In this part of the work two different systems were introduced with several MPC

setups. We have shown that the control performance which is sufficient enough

could be achieved by appropriate tuning. However in the case of the electroplating

process we expected that the control evolution will be incomparably better in case

of assuming non-linear model of the system compared to those methods, where

we considered only linear approximations of the systems behavior. Thanks to the

systems slow dynamics and the limitation of the control variable it was shown

that in some cases even simpler MPC could be implemented in order to achieve the

desired performance. In case of the second system it was shown how could be a non-

linear MPC problem formulation divided into separate parts in order to reduce the

complexity of the optimization problem. Since this system has a relatively high

sampling frequency the computation time and effort required to solve the non-

linear MPC are higher we were looking for model simplification. In case of such a

decomposition only convex problem need to be solved, which can be precomputed

by parametric programming. The EMPC was shown to be fast enough to control

to magnetic manipulation systems. In the real case scenario oscillation around the

desired reference could be detected. This could be caused by imperfection on the

ball’s and plates surface or the badly identified parameters of the considered model.





Chapter 8
Conclusions and Future Research

In this work we investigated the possibilities of Model Predictive Control technique

in different applications. The beginning of the work is dedicated to complexity

reduction techniques that are useful when the advanced control technique must

be implemented on the real device. Different approaches were presented. Since

each application needs different approach during the synthesis there is no universal

method to obtain the desired complexity.

The next part was dedicated to a code generation, where the goal was to create

a new module to Multi-Parametric Toolbox, which is able to export the parametric

solution of the optimization problem in programming languages such Python and

JavaScript. The profit of the new module is demonstrated in 3 different applica-

tions. On the computer game, where MPC took place as an artificial player. The

second application deals with the control of Ar.Drone2’s yaw angle, while the last

application introduces the possibility to use the code generation for temperature

control in the single zone building.

The last part of the work deals with the problem of implementing MPC in

various nonlinear process. Different simplification techniques were used in order to

implement controller with the lower computation demand.

Motivation for future work can be summarized in three points:

1. Complexity reduction of explicit model predictive control

However interesting and applicable results were presented, there are still pos-

sibilities to reduce the memory or computational demand of the final para-

157
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metric solution. With the effective reduction technique the industry could use

the remaining computational resources for another applications. Our goal is

to merge the discussed method with recent approach presented in (Kvasnica

et al., 2015), which does not require to store the critical regions in the form

of H-representation. However until now this method is applicable only for

the original control parametric solution, we believe that further improvement

is possible.

2. Code generation

With the new code generation module in hand we are able to export the

parametric solution to different programming languages. Python and even

JavaScript are popular programming languages, and thanks to the new mod-

ule the implementation is easy. The merging with an actual applications can

be done in a plug-and-play manner. With this module the benefits of the para-

metric programming could be used in non-trivial or not directly control based

applications, like computer games or web based applications. Until now the

export procedure works only if the defined MPC problem could be solved as

a LP, QP, MILP or MIQP, because only the parametric solution of the listed

optimization problems have the form of PWA defined over polytopic regions.

In the future it would be beneficial to consider an export module for systems,

which have non-linear dynamics and the final optimization problem leads to

non-linear programming problem. For this purpose the new module should be

created, which can handle even nonlinear systems. After the appropriate for-

mulation of the optimization problem, the export procedure should generate

a file with the definition of the non-linear optimization problem together with

the appropriate solver. We plan to add an another logical switch, which will

take care about the choosing of appropriate numerical solver. The goal will

again to create such an export procedure, which create a self consistent file,

which would contain all the necessary mathematical operations to obtain the

optimal control action for the given parameter. This could increase the num-

ber of potential users of the Multi-Parametric Toolbox, since even systems

with non-linear dynamics could be handled in the future. Furthermore since

the code generation module presented in this work aim web based languages,

is would be interesting to create such an application, which has decentral-

ized structure. On each end of this structure an electronic device would be
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located and by using it’s free computational power a larger scale problems

could be solved. Recent problems like intelligent house control techniques,

which combines numerous control actions and measurable factors, could also

find attractive the code generation. We possible could use the free compu-

tational power of the mobile devices or computers to calculate and send the

optimal control actions via internet connection to the actuators. In the future

our goal is bring together different technologies to make it possible to create

a revolutionary applications.

3. Nonlinear Model Predictive Control

Generally in case of non-linear MPC different simplification techniques used

to be used in order to make the computation of the optimal control action

more tractable. Usually linearization of the non-linear mathematical model

used to be done around the given operation point. In some other cases based

on more operation points a PWA mathematical model used to be introduced

in order to approximate a non-linear behavior of the real system. In the future

it would be interesting not to simplify the mathematical model and obtain the

real optimal control action. It would be beneficial to compare the performance

of the linear, PWA or non-linear models. Therefore our goal is to explore the

possibilities of methods like direct single-shooting, direct multiple-shooting or

orthogonal collocation. Each of the methods uses different techniques to solve

the construction NLP. In the future it would be beneficial to generalize these

methods based on their computational requirements and control performance

for different systems. It could be a good survey for the future scientist.
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M. Klaučo, J. Drgoňa, M. Kvasnica, and S. Di Cairano. Building tem-

perature control by simple mpc-like feedback laws learned from closed-

loop data. In Preprints of the 19th IFAC World Congress Cape Town

http://control.ee.ethz.ch/~mpt
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6669667
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1356
http://www.ilog.fr/products/cplex/
http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1551


164 BIBLIOGRAPHY

(South Africa) August 24 - August 29, 2014, pages 581–586, 2014. URL

http://www.kirp.chtf.stuba.sk/publication_info.php?id_pub=1527. 123
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V., Slovak University of Technology Press, vol. 8, pp. 27–32, 2012.
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3. Ingole, D. – Holaza, J. – Takács, B. – Kvasnica, M. : FPGA-Based Ex-

plicit Model Predictive Control for Closed-Loop Control of Intravenous

Anesthesia. In Proceedings of the 20th International Conference on Pro-
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Resumé

Predkladaná dizertačná práca pojednáva o syntéze a implementácii predikt́ıvneho

riadenia. Predikt́ıvne riadenie je moderný pŕıstup, ktorý použ́ıva matematický opis

reálneho procesu na predpoved’ jeho budúceho správania. V porovnańı s klasick-

ými pŕıstupmi, výhodou predikt́ıvneho riadenia je schopnost’ predpovedat’ vývoj

systému v čase. Na základe toho je možné určit’ taký akčný zásah, aby mohli

byt’ dodržané vopred určené obmedzenia na stavové, výstupné a vstupné veličiny.

Okrem týchto obmedzeńı sa dajú zakomponovat’ aj zložiteǰsie relácie. Kvalitu

regulačného priebehu môžeme ovplyvnit’ správne zvolenou účelovou funkciou. Po

úspešnom naformulovańı problému optimálneho riadenia sa daná formulácia pre-

mietne do tvaru optimalizačnej úlohy, ktorú je možné vyriešit’ pomocou optimal-

izačných nástrojov. Muśı sa však vyriešit’ opakovane za daný vzorkovaćı čas.

Samotný výpočet je časovo náročný a vyžaduje vhodný výpočtový výkon. Niekedy

nie je možné zvýšit’ maximálny čas alebo zabezpečit’ silneǰśı hardvér. Týmto

obmedzeniam sa dokážeme vyhnút’ implementáciou explicitného predikt́ıvneho ri-

adenia, ktoré predstavuje predpoč́ıtanie optimalizačného problému pre všetky možné

riešitel’né počiatočné hodnoty. Takýto predpoč́ıtaný optimalizačný problém nepotre-

buje v implementačnej fáze žiadne dodatkové numerické nástroje na riešenie, vyžaduje

iba maticové násobenie a sč́ıtanie. Počas riešenia nie je potrebné rátat’ inverzie

alebo použ́ıvat’ delenie, tým pádom je samotná implementácia jednoduchšia a

správnost’ výsledného algoritmu sa dá jednoduchšie overit’. Kvôli ńızkym im-

plementačným požiadavkám je táto forma riadenia vel’mi populárna a žiadaná v

priemysle.

Nevýhodou explicitného riešenia je jeho pamät’ová náročnost’. Explicitný predik-
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t́ıvny regulátor je výsledkom parametrického riešenia optimalizačného problému

formou PWA funkcie, ktorá je definovaná nad polytopickými (mnohostennými)

regiónmi. Pre správne vyhodnotenie je potrebné si uložit’ informácie o všetkých

regiónoch. Ich množstvo exponenciálne rastie s d́lžkou predikčného horizontu a

v č́ım vyššej dimenzii je definovaný parametrický priestor, tým viac pamäte je

potrebnej na uloženie daného regiónu. Konečná pamät’ová stopa výsledného reg-

ulátora môže prekročit’ fyzikálne hranice daného zariadenia a tým pádom sa nedá

implementovat’. Našim ciel’om je navrhnút’ rôzne techniky na zńıženie zložitost

parametrického riešenia optimalizačného problému. Prvý pŕıstup prezentovaný v

tejto práci využ́ıva vlastnosti účelovej funkcie. V pŕıpade, že tvar účelovej funkcie

optimalizačného problému je lineárny, tak aj samotné parametrické riešenie bude

po častiach af́ınne. V pŕıpade, že sa hodnota účelovej funkcie zvýši o danú hod-

notu (stage cos), vytvoŕı sa trubica, v ktorej je zaručená stabilita systému. Ciel’om

je nájst’ novú po častiach af́ınnu funkciu, ktorá sa nachádza vo vymedzenej tru-

bici. Tento problém sa dá naformulovat’ ako nelineárny optimalizačný problém.

Nevýhodou tohto pŕıstupu je náročnost’ riešenia optimalizačného problému aj pri

nižš́ıch dimenziách. Ako d’aľśı spôsob na redukciu zložitosti parametrického rieše-

nia uvažujeme v tejto práci o aproximácii zákona riadenia. Pri tomto postupe sa

znova skonštruuje parametrické riešenie s nižš́ım predikčným horizontom, aby sa

ziskali nové kritické regióny, nad ktorými by sa mal vytvorit’ aproximovaný akčný

zákon. Ak chceme, aby bola únia kritických regiónov rovnaká pri formulácii opti-

malizačného problému, použije sa maximálna pozit́ıvna invariantná množina. Určia

sa prieniky jednotlivých regiónov, ktoré sa delia d’alej na simplexy. Nad simplex-

ami už môžeme aplikovat’ aproximáciu zákona riadenia využitel’nú už aj vo vyšš́ıch

dimenziách. Tieto aproximačné metódy śıce znižujú výkon regulátora, ale aspoň

zabezpečia splnenie pamät’ových kritéríı na úspešnú implementáciu.

Pri implementácii explicitného predikt́ıvneho riadenia je potrebné uložit’ para-

metrické riešenie ako aj vytvorit’ algoritmus, ktorý na základe vstupného parametra

vyextrahuje riešenie z optimalzačného problému. Existuje viacero druhov algorit-

mov. Táto práca sa zaoberá s tromi najznámeǰśım pŕıstupmi:

1. sekvenčné vyhl’adávanie

2. rozš́ırené sekvenčné vyhl’adávanie

3. binárny strom
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Pri sekvenčnom prehl’adávańı algoritmus vyšetruje, či daný bod patŕı do regiónu

alebo nie. V pŕıpade, že sa bod nenachádza v regióne, jeho index as použije na

výpočet akčného člena z uloženého af́ınneho zákona riadenia. V nasledovnom kroku

sa celý proces zač́ına od začiatku. V pŕıpade rozš́ıreného sekvenčného vyhl’adáva-

nia sa okrem vyšetrovania, či daný bod patŕı do regiónu, ešte vyhodnot́ı hodnota

účelovej funkcie v danom bode. Následne sa vyberie index regiónu, v ktorom je

hodnota vyhodnotenej účelovej funkcie najnižšia. Tento pŕıstup sa využ́ıva vtedy,

ked’ samotná funkcia akčného zákona nie je spojitá alebo sa prekrývajú regóny.

Posledná možnost’ je najefekt́ıvneǰsia spomedzi troch spomenutých. Pri prehl’adá-

vańı binárneho stromu krok za krokom, sa dá vylúčit’ polovica neprehl’adaných

regiónov. Táto metóda je využ́ıvaná vtedy, ked’ parametrické riešenie pozostáva

z vel’kého množstva regiónov. Ako pŕıklad uvedieme 1000 regiónov. V tomto

pŕıpade, na zistenie indexu požadovaného regiónu je potrebných iba 10 porovná-

vaćıch operácíı. Kým už samotné vyhl’adávanie je vel’mi efekt́ıvne, skonštruovanie

binárneho stromu hlavne vo vyšš́ıch dimenziách je časovo i výpočtovo náročné.

Ciel’om tejto práce je navrhnút’ nový modul do Multi-Parametrického Toolbox-u,

ktorý by zabezpečil automatické generovanie zvoleného algoritmu a potrebnej in-

formácie o parametrickom riešeńı. Modul bol navrhnutý tak, aby si mohol koncový

už́ıvatel’ vel’mi jednoducho vyberat’ zo spomenutých algoritmov. Na exportovanie

parametrického riešenia stač́ı v programovom prostred́ı Matlab vyhodnotit’ iba

jednu funkciu. Táto funkcia vytvoŕı na základe požiadaviek od už́ıvatel’a nový sú-

bor, ktorý bude obsahovat’ všetky potrebné informácie. Ďaľśı vygenerovaný súbor

je sebestačný, čo znamená, že nepotrebuje d’aľsie externé knižnice pri implemen-

tácii. Modul podporuje export do programového prostredia Python a JavaScript,

kým názvy funkcíı zabezpečujúce export v Matlabe sú:

1. toPython

2. toJavaScript

Obe funkcie požadujú argumenty ako parametrické riešenie optimalizačného

problému, názov vygenerovanej funkcie a typ prehl’adávacieho algoritmu. Po zadańı

správnych argumentov vytvoŕı modul nový súbor: v pŕıpade exportu do Pythonu

s pŕıponou .py, v pŕıpade exportu da JavaScript-u s pŕıponou .js a .html. Súbor

HTML slúži už len na kontrolu, či export prebehol úspešne. V pŕıpade obidvoch

jazykov je spájanie už s existujúcimi aplikáciami vel’mi jednoduché. Implemento-

vatel’nost’ modulu je ukázaná na troch odlǐsných aplikáciách. Na jednej známej
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poč́ıtačovej hre sme sa snažili navrhnút’ predikt́ıvne riadenie na riadenie výšky.

Druhá aplikácia sa zaoberá riadeńım lietajúceho zariadenia s názvom Ar.Drone2,

kým posledná aplikácia ukazuje možnost’ využitia exportovacieho modulu na ri-

adenie tepelného komfortu v budove.

Posledné kapitoly práce opisujú implementáciu prediktivného riadenia na dvoch

odlǐsných lineárnych systémoch. Jeden systém predstavuje problém riadenia galva-

nizácie a druhý riadenie polohy guličky pomocou magnetického pola. Oba systémy

sú nelineárne a pri návrhu predikt́ıvneho riadenia boli použité rôzne pŕıstupy na

vysporiadanie sa s nelinearitou.

Ako d’aľsie pokračovanie tejto práce uvažujeme o pokračovańı vo vývoji ex-

portovacieho modulu tak, aby umožnil implementáciu nielen explicitného predik-

t́ıvneho riadenia, tým pádom by koncový už́ıvatel’ mohol využ́ıvat’ benefity aj

explicitného, aj online pŕıstupu. Výsledky jednotlivých sekcíı, ktoré vznikli v

spolupráci s kolegami z České Technické Učeńı v Praze, Chulalongkorn University in

Bangkok a Slovenskej Technickej Univerzity v Bratislave, ešte nebol odpublikované.

Spomenuté výsledky sú zo sekcíı opisujúcich riadenie tepelného komfortu, riadenie

galvanizácie a riadenie guličky pomocou magnetického pola, ktoré so spoluautormi

plánujeme publikovat’ po doladeńı detailov v bĺızkej budúcnosti.
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