
SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

Reference number: FCHPT-19990-50911

FAST AND MEMORY-EFFICIENT IMPLEMENTATION

OF MODEL PREDICTIVE CONTROL

DISSERTATION THESIS

Bratislava, 2016 Ing. Juraj Holaza



SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

FAST AND MEMORY-EFFICIENT IMPLEMENTATION

OF MODEL PREDICTIVE CONTROL

DISSERTATION THESIS

FCHPT-19990-50911

Study program: Process Control

Study field number: 2621

Study field: 5.2.14 Automation

Workplace: Department of Information Engineering and Process Control

Supervisor: doc. Ing. Michal Kvasnica, PhD.

Bratislava, 2016 Ing. Juraj Holaza



Slovak University of Technology in Bratislava

Institute of Information Engineering, Automation Faculty of Chemical and Food Technology

and Mathematics

DISSERTATION THESIS TOPIC

Author of thesis: Ing. Juraj Holaza

Study programme: Process Control

Study field: 5.2.14. automation

Registration number: FCHPT-19990-50911

Student’s ID: 50911

Thesis supervisor: doc. Ing. Michal Kvasnica, PhD.

Title of the thesis: Fast and Memory-Efficient Implementation of Model

Predictive Control

Date of entry: 01. 09. 2012

Date of submission: 31. 05. 2016

Ing. Juraj Holaza

solver

prof. Ing. Miroslav Fikar, DrSc. prof. Ing. Miroslav Fikar, DrSc.

Head of department Study programme supervisor





Acknowledgements

In this opportunity, I would like to address my gratitude to all people who helped

me to get where I am now. Firstly, I would like to thank to my supervisor associate

professor Michal Kvasnica who has guided me for four years through my entire PhD

study. Particularly, I am grateful for his constructive consultations and criticism,

for giving me uncountable valuable advises and, most importantly, that he gave me

research freedom during my study. My gratefulness also goes to professor Miroslav

Fikar who has, beside of co-supervising me, created a skillful team at the Institute

of Information Engineering, Automation, and Mathematics, with whom I have

had a pleasure of working with. Here, I would especially thank to all professors
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during my studies, to Kataŕına Macušková and Andrea Kalmárová for giving me

a helping hand with all of the administration, to our technician Stanislav Vagač
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Abstract

Model predictive control (MPC) represents a state-of-the-art control strategy which

allows one to incorporate all of the system’s constraints directly into the optimal

control problem. The main limitation of MPC, however, is that complexity of such

optimal control problems might exceed available resources of the implementation

hardware. If exceeded, successful implementation of MPC is jeopardized and one

needs to perform additional measures to tackle this issue. This thesis proposes a

twofold answer to this issue and illustrates applicability of MPC to two practical

case studies.

In the first direction, the concept of explicit MPC is exploited to mitigate on-

line computational requirements of MPC. In order to keep the memory consump-

tion of these explicit controllers on a tractable level, several complexity reduction

techniques are introduced. Proposed methods aim at decreasing the complexity

of explicit MPC via approximating the original (complex) solution by its simpler

version. This approximation is performed in such a way that the approximation

error between these two counterparts is minimized and recursive feasibility and

asymptotic closed-loop stability is enforced.

The second direction suggests to decrease the complexity of MPC policy in a dif-

ferent manner. It is reported that certain system constraints might be omitted from

the MPC formulation and then a-posteriori verified whether they are voluntarily

enforced (e.g. by a proper tuning). Specifically, it is shown that multiparametric

programming can be used as a tool to determine if the MPC feedback law exhibits

properties like recursive feasibility or asymptotic closed-loop stability even when

its control inputs are subjected to rounding-based quantization. Moreover, a safety

property of MPC policies is verified, i.e. determining whether a set of unsafe states

is avoided by the control strategy from a given set of initial conditions.

The last part of this thesis is devoted to application of MPC to real-life pro-

cesses. Two plants are considered. In the first case study we aim at controlling

pH of a chemical reaction between acetic acid and sodium hydroxide. The second

process is a wind turbine, where the goal is to design a controller which performs

well and provides safety operation.

Keywords: explicit model predictive control, multiparametric program-

ming, reachability, quantization, pH control, wind turbine



Abstrakt

Predikt́ıvne riadenie (MPC) predstavuje moderný pŕıstup k riadeniu, ktorý dovo-

l’uje zostrojit’ regulátory pre mnohorozmerové systémy pri súčasnom zohl’adneńı

všetkých fyzických a výkonnostných ohraničeńı, ktoré sú priamo zakomponované

v optimalizačnom probléme. Avšak hlavnou prekážkou tejto stratégie je vysoká

výpočtová náročnost’, ktorá často prevyšuje dostupné prostriedky bežných (ńızko-

rozpočtových) riadiacich hardvérov. Predkladaná práca navrhuje dve principiálne

možnosti, ako zńıžit’ tieto požiadavky a súčasne poskytuje dve aplikácie tejto me-

todológie.

V prvom pŕıstupe, za účelom zńıženia výpočtových nárokov, sa využ́ıva koncept

explicitného MPC. Následne je predložená metóda, ktorá navrhuje ako zmiernit’ aj

pamät’ové nároky tohto pŕıstupu, a to prostredńıctvom aproximácie pôvodného ex-

plicitného riešenia jeho jednoduchšou verziou. Je preukázané, že uvedený pŕıstup

ma vždy aspoň jedno pŕıpustné riešenie a dokáže efekt́ıvne zńıžit’ zložitost’ ex-

plicitných regulátorov pri súčasnom zachovańı rekurźıvnej riešitel’nosti a zavedenia

asymptotickej spätnoväzbovej stability. Avšak, cenou za takéto zńıženie pamät’ovej

náročnosti je mierny pokles výkonnosti aproximovaného regulátora.

Druhý smer práce navrhuje odlǐsný pŕıstup zńıženia zložitosti MPC stratégie.

Hlavnou myšlienkou je zachovanie konvexnosti optimalizačných problémov pro-

stredńıctvom vynechania určitých ohraničeńı z matematických formulácíı a násled-

nou verifikáciou identifikovat’, či tieto riadiace vlastnosti sú aj napriek tomu im-

plicitne splnené (napŕıklad dôkladným ladeńım regulátora). Konkrétne, táto práca

predkladá rigorózne certifikáty, ktoré preverujú vlastnosti MPC zákonov riadenia,

ktorých akčné zásahy sú podmienené kvantizačným pravidlom, ale aj bezpečnost’

v zmysle vyhýbania sa nebezpečným stavom riadeného systému.

Praktická aplikácia MPC tvoŕı poslednú čast’ tejto práce. Prvým systém je che-

mický reaktor, kde hlavnou úlohou je riadit’ pH chemickej reakcie medzi kyselinou

octovou a hydroxidom sodným na požadovanú hodnotu. Druhým procesom je ve-

terná turb́ına, kde ciel’om je navrhnút’ regulátor, ktorý ma dobré riadiace vlastnosti

a zaručuje bezpečnú prevádzku turb́ıny.

Kl’účové slová: explicitné predikt́ıvne riadenie, parametrické programo-

vanie, dosiahnutel’nost’, kvantizácia, riadenie pH, veterná turb́ına
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Chapter 1

Introduction

“ Either write something worth reading or do

something worth writing. ”

Benjamin Franklin

Model predictive control (MPC) represents an advanced control strategy which

enjoys a wide popularity, especially in the industrial field. It is endorsed mainly

due to its natural capability of designing feedback controllers for large multiple-

input multiple-output (MIMO) systems, while enforcing all of the system’s physical

constraints which are explicitly embedded in the optimization problem. Moreover,

MPC employs a mathematical model, which approximates dynamics of the con-

trolled system, based on which it predicts the future evolution of the plant. This

enables MPC to optimize control actions on the entire (finite) prediction horizon,

hence increasing its control performance. Based on these advantages, MPC can

reduce not only the material and energy consumption, but also minimize nega-

tive impacts on the environment, while maximizing the profit. These economic

and environmental aspects are nowadays attracting an increased attention in the

design of advanced control algorithms. On the other hand, the main limitation

of this control approach lies in the computational demands, because in order to

maintain guarantees of optimality, stability and constraint satisfaction, the whole

optimization problem has to be solved within the duration of one sampling period.

However, such a requirement can be easily jeopardized if not enough computational
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resources are available in the control hardware, or if the sampling time decreases.

Therefore, at the beginning of this century a new method has been established

which is called the explicit MPC. This approach tries to abolish the aforementioned

computational limitations by means of offline pre-calculation of the whole optimiza-

tion problem for all feasible initial conditions by using multi-parametric program-

ming. The solution of such a computation is an explicit optimizer, encoded as a

piecewise affine function (PWA) defined over a certain polytopic partition, which

maps measurements of states onto the optimal control actions. Subsequently, after

implementation of this optimizer into control hardware, the whole online procedure

of obtaining optimal control inputs is then reduced only to a mere function eval-

uation, which can be performed efficiently even with a small computation power.

And this is the reason why explicit MPC opens a new possibilities of employing

MPC policy even to processes with fast dynamics, where the traditional implicit

MPC implementation was impracticable due to rapid sampling rates or software

reliability issues.

Fast evaluation of optimal control inputs is not the only feature of explicit MPC.

With the parametric solution in hand one has also better understand the control

behavior and properties of MPC, compared to its equivalent implicit formulation.

This possibility becomes very handy for the purposes of control analysis, where

one can validate properties such as closed-loop stability, optimality, robustness,

and many others, all of which play a crucial role in control theory.

Complexity Reduction in Explicit MPC

Even though explicit MPC is an attractive control strategy when aiming at fast

implementation of optimization-based controllers with limited control resources, it

also faces several theoretical and technical limitations. The main obstacle is a high

memory consumption of explicit solutions, which limits their practical implemen-

tation. It is important to point out that while the complexity of those optimizers,

in a terms of number of regions over which they are defined, can grow exponen-

tially with the prediction horizon, the commonly used industrial hardware (such

as programmable logic controllers or embedded microchips) have their available

memory strictly limited only up to several kilobytes. Therefore, it is of paramount

importance to keep the complexity of explicit MPC controllers at an acceptable

level. The evident advantages coming out of explicit MPC strategy have attracted
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a lot of interested researchers, which have put a lot of effort into development of

techniques that try to mitigate the implied disadvantages. One of the directions of

the research community is aimed towards reducing the complexity of explicit MPC

controllers in order to secure a successful implementation on the control hardware.

This direction is also referred to as a memory reduction in explicit MPC.

In this thesis we elaborate possibilities of abolishing the aforementioned hard-

ware limitations. Particularly, we propose a novel method of reducing complexity

of explicit MPC solutions, which belongs to the class of methods which trade lower

complexity for a certain reduction of performance. In the presented method, how-

ever, the loss of performance is mitigated as much as possible, hence achieving

nearly-optimal performance with low complexity. The method is based on the as-

sumption that a complex explicit MPC feedback law µ(x) is given, encoded as a

PWA function of the state measurements x. Our objective is to replace µ(·) by

a simpler PWA function ũ(·) such that: (i) ũ(x) generates a feasible sequence of

control inputs for all admissible values of x; (ii) ũ(x) renders the closed-loop system

asymptotically stable; and (iii) the integrated squared error between µ(·) and ũ(·)
(i.e., the suboptimality of ũ(·) with respect to µ(·)) is minimized. By doing so we

obtain a simpler explicit feedback law ũ(·), which is safe (i.e., it provides constraint

satisfaction and closed-loop stability), and is nearly optimal.

Designing an appropriate approximate controller ũ(·) requires first the construc-
tion of the polytopic regions over which ũ(·) is defined, and then the synthesis of

local affine expressions in each of the regions. We propose to approach the first task

by solving a simpler MPC optimization problem with a shorter prediction horizon.

In this way, we obtain a simple feedback µ̂(·) as a PWA function. However, such a

simpler feedback typically exhibits large deterioration of performance compared to

µ(·). To mitigate such a performance loss, we retain the regions of µ̂(·), but refine
the associated local affine feedback laws to obtain the function ũ(·) such that the

error between µ(·) and ũ(·) is minimized.

Performance Verification of MPC

Two directions of performance verification are followed in this thesis. Both of

them are essentially trying to reduce the complexity of MPC strategy such that

implementation on commonly used industrial hardware will be enabled. In the

first approach we define rigorous conditions under which a given explicit MPC
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controller provides guarantees of closed-loop stability and recursive constraint sat-

isfaction when its control commands are quantized, e.g. by a D/A converter. This

direction is motivated by employing explicit MPC strategies in control of systems

with quantized inputs, such as elevators. The second approach aims at verifying

safety of MPC policies. Here, we provide a rigorous certificate which validates

whether a given MPC feedback law avoids a given set of unsafe states. It will be

also shown that such verification procedure can be employed as an another memory

reduction technique.

Verification of A-Posteriori Quantized MPC

Control under finite precision arithmetic is a very important research field since

nowadays majority of the control policies are implemented on digital platforms

(which implies usage of A/D and D/A conversions). Moreover, it should be men-

tioned that there even exist systems with naturally quantized control behavior,

e.g. automatic transmissions, whose control precision is strictly limited by a finite

number of gears that are given by the systems construction. Devising an MPC

strategy for such systems is not an easy task. The solution to this problem usu-

ally leads to complex optimization problems which require increased computation

power and an appropriate solver. Therefore, when one aims to apply these feed-

back laws into lower-level industrial hardware, one can easily come across with

some implementation issues, which will make the implementation impossible.

In this thesis we tackle this problem by proposing a verification technique. Par-

ticularly, it is shown that MPC policy can be constructed without any knowledge of

the rounding-based quantizer (that is present in the closed loop) and then one can

use multiparametric programming as a tool for an a-posteriori verification whether

such MPC policy provides desired control properties (namely recursive feasibility,

closed-loop asymptotic stability or performance guarantees) even in the presence

of quantization. The main motivation behind this direction is that if we are able

to certify all necessary control properties of MPC policies, then one can safely em-

ploy these less complex MPC feedback laws, which have reduced implementation

requirements.

This verification technique assumes that we are given an explicit representation

of the MPC law µ(·) as a PWA function of the state, along with the information

of the rounding-based quantizer, i.e. the number and values of all quantization
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levels qi. Based on this knowledge the method proceeds as follows. Firstly, we

devise an a-posteriori quantized control law µq(·), which characterizes how the

real-valued control inputs of µ(·) is being rounded to the nearest quantization

level qi, via employing the technique known as Voronoi diagrams. It is shown

that µq(·) takes a form of a piecewise constant (PWC) function and is defined

over a polytopic partition that consists of D ≥ d regions, where d denotes the

number of quantization levels. Next, we suggest to construct performance bounds

V and V as to describe desired control properties, such as asymptotic closed-

loop stability, recursive feasibility and bounded deterioration of performance. And

finally, in the last step, we synthesize a rigorous certificate that verifies whether

V ≤ µq(·) ≤ V is satisfied, i.e., whether the quantized feedback law meets all

performance criteria. If a positive certificate is obtained, then we have a guarantee

that the real-valued controller µ(·) provides all the examined control properties

and can be hence implemented in the closed loop, where the investigated rounding-

based quantizer is located. On the other hand, if a negative certificate is obtained,

then certain property is known to be violated, e.g. the MPC policy µ(·) might

yield such control inputs, which after the quantization effect violate the control

constraints. In such a case, implementation of µ(·) would represent a risk and thus

it is then convenient to re-design and/or re-tune the MPC policy.

Safety Verification in MPC

In the recent years, the safety aspect takes an increasing attention in control design.

This trend has multiple causes. The most important reasons are to simply avoid any

hazardous situations, the outcome of which might lead to a great mechanical stress,

to impairment of product or even to explosions. Therefore, in order to minimize

economical losses and preserve human life, one needs to impose these criteria into

the control design. However, this task is not easy at all. The difficulty stems

from the fact that including certain safety properties directly into the optimization

problem often leads to non-convex formulations that are computationally expensive

to solve in real time. Therefore, in order to meet limitations of the industrial

hardware one needs to take additional measures and mitigate the computational

requirements of MPC to an acceptable level. In this thesis we show one direction

how to do that.

As in the previous approach, we suggest to omit safety constraints (e.g. obstacle
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avoidance constraints) from the MPC optimization problem, hence to keep it con-

vex. Subsequently, we propose a non-conservative certification procedure which

a-posteriori examines enforcement of all these neglected safety constraints. Par-

ticularly, we verify whether the MPC controller is designed such that it forces the

states of the controlled system, initialized from a set of known initial conditions,

to avoid all unsafe states. In another words, whether the unsafe situation cannot

be reached with the simple MPC feedback law in the closed loop.

We show that this certification can be done without the need of having the

analytical solution of MPC in hand. Instead, we exploit the Karush-Kuhn-Tucker

(KKT) conditions which implicitly encode the optimal control inputs. Under mild

assumptions this verification task can be carried out for infinite number of time

steps, i.e. ad-infimum. The final optimization problem takes a form of a mixed

integer linear program (MILP), the solution of which then indicates if the simple

MPC feedback law is well designed and provides guarantees of safety, or if it is

poorly designed and violates the safety criteria.

pH Control in a Chemical Vessel

Maintaining a specific value of pH represents a very important task for many pro-

cesses. The most common applications can be found in food processing, wastewater

treatment, pulp and paper production, and last but not least in chemical indus-

tries. It has to be stressed that majority of process plants in various industries

produce secondary unwanted products, such as wastewater, which must be neu-

tralized before they are reused or discharged into rivers. Biochemical experiments

are another application where maintaining of a specific pH value is needed. Here,

unfavorable pH conditions negatively affect entire experiments. The value of pH

plays also a vital role in medical research and medicine preparation since a vast ma-

jority of all drug preparation requires specific pH conditions. Needless to say, with

ever increasing pressure on product quality, process efficiency and environmental

protection, good pH control is highly desired.

In this thesis, we aim to provide a real application of MPC-based pH control.

The targeted process consists of two pumps which feed acetic acid and sodium

hydroxide solutions into the mixing vessel, where the chemical reaction between

these two reactants takes place. By keeping inflow of the acid solution constant,

our objective is to manipulate the flow rate of the base solution such that effluent
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from the system will attain specific value of the pH. The main challenge here is to

design a control strategy that will be able to handle the highly non-linear behavior

of this process and will exhibit a good control performance.

We approach this problem by designing a model of the system. Here, a black-

box identification approach is chosen, i.e. the model is obtained based on the input

and output responses of the controlled process. Subsequently, a reference governor

control strategy is proposed, where MPC shapes references for PID controller in an

optimal fashion, i.e. such that technological constraints are satisfied and specified

performance criterion is optimized. Such a control scheme is often used in chemical

and petrochemical industries with the goal of increasing the overall production

quality and quantity.

MPC Application to Wind Turbine Generator

Potential of wind as a power source was recognized thousand years ago. The first

instance of wind powering a machine in history was a windmill operating organ

that was built by Heron of Alexandria in the 1st century AD. Since then, people

have exploited wind power e.g. in windmills in order to automate grain grinding

and water pumping, or in sailboats to mitigate labor demands. Recently, this

eye-appealling and free power source has experienced an increased popularity by

providing the answer for still increasing world energy consumption, as well as to

climatic changes, via the use of wind turbines. Wind turbines are devices used to

transform kinetic energy of the wind into mechanical rotation energy, which is then

converted into electric energy in the generator. During the last two decades a lot

of attention was dedicated to development of wind turbines, where the main goals

were to maximize energy production, improve energy quality and minimize costs

of installation and maintenance (e.g. by prolonging the life cycle of wind turbine).

In this thesis, we will address the problem of implementing fast and safe control

strategy into the wind turbine. Particularly, we aim to construct MPC strategy

for rotor-flux-based field-oriented control (FOC) with voltage-controlled converter,

where control voltages are subjected to safety criteria. We show that to achieve

this goal is not an easy task, especially when circular safety constrains have to be

satisfied and rapid sampling period of 0.4 milliseconds has to be preserved. The

final controller will be based on explicit MPC policy with applied move-blocking

and disturbance modeling techniques.
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Goals of the Thesis

This work contributes to the field of MPC and aims to find new possibilities of

its fast and less memory demanding implementation. The main objectives can be

summarized into three principal directions as follows:

• Novel memory reduction techniques which mitigate memory consumption of

explicit model predictive controllers.

• Performance analysis of model predictive feedback laws, with the objective

to provide:

– Rigorous conditions under which a given explicit MPC controller pro-

vides guarantees of closed-loop stability, recursive constraint satisfaction

and bounded performance deterioration when its control commands are

quantized.

– Non-conservative reachability procedure, which determines whether an

implicitly defined MPC feedback law forces the closed-loop system to

avoid unsafe states from a particular set of initial conditions.

• Implementation of model predictive control on real processes. Systems of

interest are:

– pH reactor, where chemical reaction between acetic acid and sodium

hydroxide takes place,

– application of MPC to a wind turbine generator.

Complexity and memory reduction techniques were published in:

1. Holaza, J. – Takács, B. – Kvasnica, M. : Synthesis of Simple Explicit MPC

Optimizers by Function Approximation. In Proceedings of the 19th Interna-

tional Conference on Process Control, štrbské Pleso, Slovakia, pp. 377–382,

2013.

2. Takács, B. – Holaza, J. – Kvasnica, M. – Di Cairano, S. : Nearly-Optimal

Simple Explicit MPC Regulators with Recursive Feasibility Guarantees. In

IEEE Conference on Decision and Control, Florence, Italy, pp. 7089–7094,

2013.
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3. Holaza, J. – Takács, B. – Kvasnica, M. : Simple Explicit MPC Controllers

Based on Approximation of the Feedback Law. In ACROSS Workshop on

Cooperative Systems, Zagreb, Croatia, pp. 48–49, 2014.

4. Holaza, J. – Takács, B. – Kvasnica, M. – Di Cairano, S.: Nearly optimal

simple explicit MPC controllers with stability and feasibility guarantees. In

Optimal Control Applications and Methods, vol.6, 2015.

Techniques devoted to performance analysis were published in:

1. Holaza, J. – Takács, B. – Kvasnica, M. : Verification of Performance Bounds

for A-Posteriori Quantized Explicit MPC Feedback Laws. In Preprints of

the 19th IFAC World Congress Cape Town, Cape Town, South Africa, pp.

1035–1040, 2014.

2. Holaza, J. – Takács, B. – Kvasnica, M. : Safety Verification of Implicitly De-

fined MPC Feedback Laws. In European Control Conference, Linz, Austria,

pp. 2552–2557, 2015.

Results from the practical applications are in process of publishing.
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Theoretical Basis
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Chapter 2

Mathematical Optimization

A mathematical optimization problem, or simply an optimization problem, is the

search of the best possible solution from a set of all feasible candidates. This

technique is widely used in numerous fields e.g. in economics, or in mechanical and

control engineering. It provides the answer e.g. how to decrease a waste in the

production of some products (thus to increase income of manufacture) or how to

find the most fuel-efficient path from one place to another.

An optimization problem is composed of two parts and in general can be for-

mulated as

J⋆ = inf
x
f0(x) (2.1a)

s.t. x ∈ S ⊆ X . (2.1b)

The first part (2.1a) is called the objective function (or a cost function) with

f0 : R
n 7→ R, which assigns to each choice of the optimization variable x =

(x1, x2, . . . , xn)
T its cost f0(x). The second one (2.1b) are the constraints that

specify the space of all admissible optimization variables S ⊆ R
n, where X ⊆ R

n

denotes the domain of the objective function.

The solution x⋆ to (2.1), or simply the optimizer, is given as the vector x⋆ =

(x⋆1, x
⋆
2, . . . , x

⋆
n)

T , where the objective function J⋆ = f0(x
⋆) acquires its infimum

with respect to constraints (2.1b). In general we can classify the solution to (2.1)

into three categories:

Case 1: Problem is bounded, when J⋆ > −∞ and x⋆ ∈ S.

33
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Case 2: Problem is unbounded (from below), when J⋆ = −∞. This situation

occurs when set S does not stop vector x⋆ to lead J⋆ into infinity, or when

the problem is unconstrained, i.e., S = R
n.

Case 3: Problem is infeasible, when J⋆ = +∞. This is due to the fact that the

set S is empty.

Furthermore, optimization problem is called a feasibility problem if is given by

J⋆ = inf
x
c (2.2a)

s.t. x ∈ S ⊆ X , (2.2b)

where c is a constant c ∈ R. The purpose of (2.2) is only to find out whether there

exist any vector x that satisfies constraints S. Hence the result of this problem can

by either J⋆ = c if (2.2) is feasible, or J⋆ =∞ if (2.2) is infeasible.

2.1 Hierarchy of Optimization Problems

Optimization problems can be divided into multiple classes. We can classify them

on the bases of several indicators, e.g. type of the objective function, constraints

and optimization variables. A comprehensive overview can be seen in Figure 2.1.

Nevertheless, all optimization problems can be sorted into two main categories.

They are either convex or non-convex optimization problems. Convex optimiza-

tion problems are characterized by a convex objective function f0 and a convex

constraints set S. These optimization problems are widely adopted due to their

natural advantages:

1. Solution to a convex problem either always yields a global optimum f0(x) ≥
f0(x

⋆) if the problem is feasible.

2. Convex problems can be solved relatively easily compared to non-convex ones.

3. There is a wide variety of mature solvers for this type of problems.

On the other hand, non-convex optimization problems have either a non-convex

domain and/or a nonconvex objective function. Nonconvex problems may feature

multiple local optima, which renders the finding of the global optimum a time

consuming task.
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Figure 2.1: Hierarchy of optimization problems (NEOS, 2014).

The basic difference between convex and non-convex optimization can be seen

in Figure 2.2. Here, it is evident that in the case of convex optimization, there is

only one global optimum. But in the non-convex case one can find even multiple

optima, while only one being global. Evidently, in this case it is very important to

provide to the solver such initial condition, which is relatively close to the global

optimum. Otherwise it may take a longer time to find the global optimum (if even

the solver will find it at all).
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(b) Non-convex objective function

Figure 2.2: Comprehension of two different types of optimization problems. Here

blue circles denote local minima and red circles global minima.
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2.2 Convex Optimization Problems

This section will be concerned with fundamentals regarding convex functions and

convex sets (constraints), since such requirements have to be met in convex opti-

mization. An excellent overview on this topic can be found in Boyd and Vanden-

berghe (2004).

2.2.1 Objective Function

Objective functions play a very important role in optimization problems, as they

specify how each optimization variable is going to be penalized. There are many

possibilities how one can penalize optimization variables. One can use linear cost

(e.g. cTx), quadratic cost (e.g. xTCx), logarithmic cost (e.g. log(x)), and so on.

We need, however, keep in mind that the character of these costs determine the

convexity of the objective function and thus the type of the optimization problem

(see Figure 2.2). As we have pointed out, here we will aim at such functions that

lead to convex optimization problems.

Definition 2.2.1 (Convex function) A function f : S 7→ R is called convex if S
is a convex set and for any two optimization variables x1, x2 ∈ S following relation

holds:

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2), (2.3)

for all θ ∈ [0, 1].

Convexity can be also examined geometrically, where an example is depicted in

Figure 2.3. Here two points x1 and x2 are chosen such that x1 6= x2. They

define the line segment from [x1, f(x1)] to [x2, f(x2)]. Then the function f(x)

is convex if its graph lies under this chord (Figure 2.3(a)). On the other hand,

if it does not lie under this line segment, then the function f(x) is non-convex

(Figure 2.3(c)). Naturally, if sign ≤ is replaced by ≥ in (2.3), then the fulfillment

of the modified expression indicates concavity (Figure 2.3(b)). Moreover, in a case

of affine function, the equation (2.3) always holds for both signs (≤ and ≥). In

other words, affine (as well as linear) functions are both convex and concave.
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(a) Convex function
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(b) Concave function

A B

(c) Non-convex function

Figure 2.3: Graphs of convex, concave and non-convex functions. Here, for brevity,

points A = [x1, f(x1)] and B = [x2, f(x2)] are marked as black circles

and the line segment (ĀB) is donated by black dashed line. The red

segment of each function indicates the inequality (2.3).

2.2.2 Constraints

Constraints have a significant impact in an optimization problem, hence in control

of real technological processes or technical systems, where they restrict the domain

X of (2.1) to an admissible set of optimization variables S. Application of con-

straints in a control design has a lot of important aspects. They are used for a

better representation of physical systems (e.g. input saturation), to ensure stable

control (e.g. constraints in the form of end-stabilizing constraints), and last but

not least for tuning controller parameters to achieve better quality of control. In

terms of character constraints can be separated into two categories:

Hard constraints

This type of conditions must be always met, otherwise the optimization prob-

lem (2.1) would be infeasible (and the control input would not be provided).

A representative sample of hard constraints are physical restrictions, an ex-

ample of which can be represent by a valve (that can be opened only between

the interval [0%, 100%]) or by a gear in a car (where the gear lever can not

exceed level that is higher than the design allows).

Soft constraints

This type of constraints may be violated, but the level of their violation

is reflected in the objective function, hence minimized. An example of soft

constraints is safety restrictions (such as speed limitations, operating temper-

ature, operating noise, and many others), or all types of comfort restrictions.

Recalling that in convex optimization both objective function and constraint must

be convex. Since the convexity of a function we have already examined in Sec-
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tion 2.2.1, now we will take a closer look at convex sets (Fukuda., 2004; Gallini,

2014; Grunbaum, 2000; Webster, 1995; Ziegler, 1995). Also we would like to note

that most of the presented techniques are already embedded e.g. in the Multi-

parametric toolbox (MPT) (Herceg et al., 2013a).

Definition 2.2.2 (Convex set) A set S is convex if for any x1, x2 ∈ S, λ, µ ≥ 0,

λ+ µ = 1

λx1 + µx2 ∈ S. (2.4)

Graphically can be definition 2.2.2 interpreted as follows. Let us choose two (dif-

ferent) points x1, x2 ∈ S, such that x1 6= x2. Then a set S is convex if and only

if any convex combination of this points lies in S. Simply put, the line segment

created by this two points x1 and x2 must be contained in the set S. Figure 2.4

illustrates an example of a convex and non-convex set.

A

B

P
(a) Convex set

A

B

P

(b) Non-convex set

Figure 2.4: Simple exmaples of convex and non-convex sets. Here, for brevity,

points A = x1 and B = x2 are marked as black circles and the line

segment (AB) is denoted by dashed line. The red segment denotes

violation of convexity.

In practical applications, we can often encounter with convex constraints, which

are easily solvable, and can be defined as e.g. polyhedra, polytopes, simplices,

ellipsoids and other sets.

Definition 2.2.3 (ǫ-ball) We denote the ǫ-ball ∈ R
n with radius ǫ and centered

around xc ∈ R
n by Bǫ(xc) = {X ∈ R

n | ‖x − xc‖ < ǫ}, where ‖ · ‖ denotes any

norm.

Definition 2.2.4 (Closed set) We say that a set P ⊆ R
n is closed if

∀x /∈ P ⊆ R
n, ∃ǫ > 0 : Bǫ(xc) ∩ P = ∅. (2.5)
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Definition 2.2.5 (Bounded set) We say that a set P ∈ R
n is bounded if it is

contained in some ǫ−ball of finite radius, i.e.

∃ǫ <∞ : P ⊆ Bǫ(xc). (2.6)

Definition 2.2.6 (Polyhedron) Polyhedron P in R
n denotes a convex and closed

set defined as an intersection of a finite number of nH closed affine half-spaces

aTi x ≤ bi, ai ∈ R
n, b ∈ R, ∀i = 1, . . . , nH. A compact notation of a polyhedron is

P = {x ∈ R
n | Ax ≤ b}, (2.7)

where A ∈ R
nH×n, b ∈ R

nH .

Definition 2.2.7 (Polytope) Set P is called a polytope if it is a bounded polyhe-

dron.

Definition 2.2.8 (Vertex representation of a polytope) A polytope P ⊂ R
n

can be defined in its vertex representation as

P = {x | x =
∑

i λivi, 0 ≤ λi ≤ 1,
∑

i λi = 1}, (2.8)

where vi ∈ R
n, ∀i = 1, . . . ,M are vertices of the polytope.

Remark 2.2.9 Note that Definition 2.2.8 can be viewed at as a convex hull of all

vertices, i.e. P = conv(V ), where V = {v1, . . . , vM} (see definition 2.2.14)

For the brevity, Definition 2.2.7 will refer to H-polytope (Figure 2.5(b)), and

Def. 2.2.8 to V-polytope (Figure 2.5(c)). Another important category of convex

sets are simplices (Figure 2.5(d)), which play an important role e.g. in triangula-

tion techniques.

Definition 2.2.10 (Simplex) A n-dimensional simplex, or simply n-simplex, is

a polytope P in R
n, which is a convex hull (see definition 2.2.14) of its n+1 vertices

{v1, . . . , vn+1}
P = conv(v1, . . . , vn+1). (2.9)

Definition 2.2.11 (Set collection) We say that a set S ⊆ R
n is a set collection

if it collects a finite number of sets Si ⊆ R
n, i.e.

S = {Si}Ns
i=1, (2.10)

where i = 1, . . . , Ns and Ns <∞.
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P
(a) Polyhedron

P
(b) H-polytope

P
(c) V-polytope

P
(d) Simplex

Figure 2.5: Figure depicts four convex constraints (sets).Figure 2.5(a) shows an

opened polyhedron. In Figure 2.5(b) and Figure 2.5(c) one can see

polytopes in their half-space (H) and vertex (V) representations, re-

spectively. Further, 2.5(d) illustrates a 2-dimensional simplex, hence

2-simplex.

Definition 2.2.12 (Polytopic partition) Polytopic partition of a polytope Ω is

given by the collection of M polytopes {Ri}Mi=1 if:

1. Ω = ∪iRi,

2. int(Ri) ∩ int(Rj) = ∅, ∀i 6= j. def:partition

We call each polytope of the collection a region of the partition.

Properties of Convex Sets

We say that i−th half-space of a polyhedron in (2.7), i.e. aTi x ≤ bi, is redundant if
P = {x ∈ R

n | A\ix ≤ b\i}, where A\i, b\i denote matrices A, b, without its i−th
row. Or, in another words, P remains the same even if the redundant half-space is

removed from (2.7). Moreover, P hasminimal representation if it has no redundant

half-spaces.

We say that x ∈ P is an interior point of P if there exists Bǫ(xc) ∈ P with

ǫ > 0. Subsequently, an interior of P , i.e. int(P), is the collection of all interior

points.

We refer P to be full-dimensional if ∃Bǫ(xc) ⊂ P ⊂ R
n with ǫ > 0.

Next let polytope P ⊂ R
n be in its minimal representation, full-dimensional

and denoted by nH half-spaces e.g. (2.7). Then we have that P is bounded by

another full-dimensional polytopes in R
n−k that are generally referred as faces F

denoted as

F = P ∩ {x ∈ R
n | Ax = b}.
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Moreover, faces F based on their dimension are called 0−vertices, 1−edges, (n−2)-
ridges and (n− 1)-facets.

We have that i−th vertex of a polyhedron in (2.8), i.e. vi, is redundant if

P = conv(V\i). Minimal representation of (2.8) is when there are no redundant

vertices.

Operations With Sets

Generally we can still arise with constraints that are defined as non-convex sets. As

an illustrative example can serve a squared parking place where one car is already

parked. Subsequently, it does not matter where this car parks, next car that would

come to park will enter a non-convex parking place. Therefore this second car

should then operate with non-convex set (constraint) that lead to a non-convex

optimization problem.

Such a non-convex set can be obtained by removing one set (car) from another

(parking place). This technique is referred as a set difference.

Definition 2.2.13 (Set difference) Let P and Q be two polytopes, then the set

difference between these two polytopes can be defined as

P \ Q = {x | x ∈ P , x /∈ Q}. (2.11)

Note that generally a set difference R = P \ Q yields a non-convex set R, yet it
can be defined as a collection of finite polytopes, i.e. R = ∪ki=1 . Moreover, since

P and Q are closed sets, their set difference R is not closed set. But, for simplicity,

we consider its closure.

Since non-convex sets are extremely hard to handle in optimization problems,

one can still use a technique (e.g. convex hull and envelope) that will convert such

a set into its convex (approximated) form.

Definition 2.2.14 (Convex hull) Let V = (v1, . . . , vM )T ⊂ R
n be a finite vector

of points vi ∈ R
n. Then the convex hull is the smallest convex set containing all

points V and is given by

conv(V ) = {∑vM
i=1 λivi | λi ≥ 0,

∑vM
i=1 λi = 1}. (2.12)

Consider next union of polytopes R = ∪Mi=1Pi. The convex hull of R is a polytope

defined as

conv(R) = {∑M
i=1 λixi | xi ∈ Pi, λi ≥ 0,

∑M
i=1 λi = 1}. (2.13)
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P1
P2

(a) Two initial polytopes

P1 and P2

P1 P2

(b) Convex hull of P1

and P2
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(c) Convex envelope of

P1 and P2

Figure 2.6: Figure illustrates convex hull 2.6(b) and convex envelope 2.6(c) of two

polytopes 2.6(a).

Note that the opposite operation to convex hull is technique referred as vertex

enumeration, e.g. V = vert(P), see (Borrelli et al., 2016; Fukuda., 2004). This

technique is used e.g. to transform polytope from H-representation into its V-
representation.

Definition 2.2.15 (Convex envelope) A convex envelope of two H-polyhedra
P = {x ∈ R

n | Ax ≤ b} and Q = {x ∈ R
n | Cx ≤ d}, as in 2.2.6, is an

H-polyhedra defined as

env(P ,Q) = {x ∈ R
n | Ax ≤ b, Cx ≤ d}. (2.14)

The convex hull as well as the convex envelope technique are compared in

Figure 2.6, where union of two polytopes is considered. Here, one could notice the

difference between these two methods, in terms of volumes of the final polytope

created via the convex hull and the envelope technique, respectively.

Next, we define two additional techniques. First one is called projection, which

essentially transforms objects (constrains) to their lower dimension representation,

and the second one is triangulation, which is used to tessellate objects into multiple

simplices.

Definition 2.2.16 (Projection) Consider vectors x ∈ R
n and y ∈ R

m and a

polytope P = {[xT yT ]T | Axx+ Ayy ≤ b}. Then the projection of P ⊂ R
n+m into

x ∈ R
n can be defined as

projx(P) = {x ∈ R
n | ∃y ∈ R

m, Axx+Ayy ≤ b}. (2.15)
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Definition 2.2.17 (Triangulation) Triangulation of a polytope P ⊂ R
n is a set

of k n-simplices

△k = triangulate(P), (2.16)

such that ∪k△k = P and int(△i) ∩ int(△j) = ∅, ∀i 6= j.

2.2.3 Linear Programming

There is a wide classification of optimization problems which are categorized based

on their formulation, particularly structure of the objective function (2.1a) and con-

straints 2.1b. An important class of optimization problems is linear programming

(LP), where the cost function and the constraints of (2.1) are linear. Therefore,

from Section 2.2.1 and Section 2.2.2, we have that LP is a convex optimization

problem that can be in general stated as

J⋆ = min
x

cTx (2.17a)

s.t. Ax ≤ b, (2.17b)

where x ∈ R
n, A ∈ R

m×n and b ∈ R
m. There are two common forms of LPs. The

first one includes both equality and inequality constraints:

J⋆ = min
x

cTx (2.18a)

s.t. Ax ≤ b (2.18b)

s.t. Aeqx = beq, (2.18c)

where Aeq ∈ R
p×n and beq ∈ R

p. In the second formulation, only equality con-

straints are present, along with trivial inequalities:

J⋆ = min
x

cTx (2.19a)

s.t. Aeqx = beq (2.19b)

s.t. x ≥ 0. (2.19c)

The reason, why one should convert the form of LP is that there exist a wide

variety of solvers which can solve LP efficiently in a certain form. This applies even

if the number of variables is being increased (e.g. as it is in transformation from a

form of (2.18) to (2.19), where the number of variables raised from n to 2n + p).

It should be noted that there already exist multiple programs that automatically
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adjust formulation of an optimization problem into its appropriate form based on

the used solver (see e.g. (Löfberg, 2004)).

Solution Properties of LP

Consider optimization problem given as (2.17), where the intersection of (2.17b)

denotes polyhedron P . Furthermore, denote by J⋆ the optimal value of the ob-

jective function and by X⋆ the set of optimal solutions to (2.17). Then we can

encounter four different scenarios:

Case 1: The problem is unbounded (from below), then J⋆ = −∞.

Case 2: The problem is bounded, then J⋆ > −∞, with unique solution. Hence

X⋆ is a singleton.

Case 3: The problem is bounded (J⋆ > −∞), but with multiple optima X⋆. Here

X⋆ is a set of uncountable x⋆ in R
n. This is due to a fact that objective

function is parallel to the constraint, where optimum has been found.

Case 4: The problem is infeasible, J⋆ =∞, which is caused by the polyhedron P
being an empty set.

First three scenarios are illustrated in Figure 2.7 by using two-dimensional exam-

ples.

P

(a) Unbounded LP problem

����
����
����
����

P

x⋆

(b) Bounded LP problem

with unique optimizer.

P

X⋆

(c) Bounded LP problem with

non-unique optimizer.

Figure 2.7: Figure depicts three different results of LP problems. Here the blue

dashed lines represent contours of the objective function, the blue arrow

the direction of minimization and P considered polyhedron.
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P xc

ǫ

(a) Chebychev ball with unique

center.

P

xc xc

ǫǫ

(b) Chebychev ball with non-unique

center.

Figure 2.8: Figure shows solution of the Chebychev LP problem in (2.20) for two

distinguish polyhedra P ⊂ R
2. Here the radius of the ball is ǫ > 0,

while the center may attain various values.

Chebychev ball

As one of the suitable examples of LP can be chosen the Chebychev approximation

problem, which is also referred to as the Chebychev ball. The objective is to

inscribe a ball Bǫ(xc) ⊂ P with the largest radius ǫ and with the center xc into a

polyhedron P ⊂ R
n as in (2.2.6), which corresponds to the intersection of nai

half-

spaces aTi x ≤ bi, i = 1, . . . , nai
. The aforementioned task can be then formulated

as an LP in the form of:

max
xc,ǫ

ǫ (2.20a)

s.t. aixc + ǫ‖ai‖2 ≤ bi, i = 1, . . . , nai
(2.20b)

with vectors ai ∈ R
n and bi ∈ R, defining the set P . By solving (2.20) one can

obtain three results:

• If the optimal radius of the ball ǫ⋆ > 0, then the polyhedron P is full-

dimensional (see Figure 2.8).

• If ǫ⋆ = 0, then the polyhedron P is lower-dimensional, but not empty (e.g.

in case of n = 2 polyhedron can be a line segment or a point).

• If ǫ⋆ < 0, then the polyhedron P is an empty set.

Remark 2.2.18 The Chebychev ball problem (2.20) can have actually multiple

centers xc, for the same objective function value ǫ, radius respectively. This is due

to the fact that to the currently investigated polyhedron P one can write B(xc, ǫ)
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several times. For example as shows Figure 2.8(b), an infinite number of circles

can be written into P (along the dashed line).

2.2.4 Quadratic Programming

An optimization problem is called a quadratic program (QP), if (2.1) has linear

constraints and a quadratic objective function. In general, convex QPs can be

formulated as

J⋆ =min
x

1
2x

THx+ qTx+ c (2.21a)

s.t. Ax ≤ b, (2.21b)

or with constraints in a form of equalities as

J⋆ =min
x

1
2x

THx+ qTx+ c (2.22a)

s.t. Ax ≤ b (2.22b)

s.t. Aeqx = beq, (2.22c)

where x ∈ R
n, H = HT ≻ 0 ∈ R

n×n, q ∈ R
n, c ∈ R, A ∈ R

m×n, b ∈ R
m,

Aeq ∈ R
p×n and beq ∈ R

p. Next, we will show how to reformulate QP from (2.22)

into (2.21), i.e. how to eliminate equality constrains. This technique is commonly

used in the formulations of advanced control strategies, which we will discuss later.

The reversed direction will be omitted as it is straightforward procedure. Particu-

larly, we can define Aeq = 0 and beq = 0, where 0 is a zero matrix of appropriate

dimensions.

Eliminating Equality Constraints

By comparing QP forms (2.22) and (2.21), one can see the main challenge is to

eliminate equality constraints. The most straightforward way would by to rewrite

this equality constraint into two inequality constraints, i.e. substitute Aeqx = beq

by Aeqx ≤ beq and −Aeqx ≤ beq. The shortcoming, however, is that this technique

may lead to a bad numerical conditioning, thus can jeopardize accuracy in solvers.

To workaround this problem one can parameterize the solution that will lead into

a new optimization vector λ ∈ R
n−p with decreased number of elements, compared

to the original vector x ∈ R
n, by exactly the number of equality constraints p.
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To proceed we will firstly find one particular solution x0 of (2.22c) as

x0 = A†
eqbeq, (2.23)

where A†
eq is the left pseudo-inverse of matrix Aeq. Note that Aeq ∈ R

p×n, with

p ≤ n, i.e. the number of equality constraints have to be smaller as the number of

optimized variables, since if p = n then solution would be a singleton (and there

is nothing to optimize). As Aeq might not be a squared matrix, we have to apply

the pseudo inverse. Next we will find the correct direction F to the optimum via

computing null space of Aeq

AeqF = 0. (2.24)

Now we can parametrize the optimized variable x with expression

x = x0 + Fλ (2.25)

and by substituting (2.25) into (2.22) we obtain a new optimization problem

λ⋆ = arg minλ
1
2λ

T H̃λ+ q̃Tλ+ c̃ (2.26a)

s.t. Ãλ ≤ b̃, (2.26b)

where H̃ = FTHF , q̃ = FT q + FTHx0, c̃ = 1
2x

T
0Hx0 + qTx0 + c, Ã = AF and

b̃ = b − Ax0. Note that we have get rid of equality constraints (2.22c) as they

become redundant. Finally, optimizers x⋆ can be derived by solving (2.26) and

plugin optimal distance λ⋆ back into (2.25) as

x⋆ = x0 + Fλ⋆. (2.27)

For better interpretation, this transformation is depicted in Figure 2.9. Here,

ellipsoids represent contours of the objective function (2.22a) and black-dashed

line equality constraints (2.22c). Inequality constraints (2.22b) are omitted for

brevity. Firstly, we have computed a feasible point x0 that lies in the straight

line, which represents equality constraints. And as we know also the optimizer

x⋆ has to be situated on this line. Therefore, we have computed the direction F

which can slide the feasible point x⋆ to the optimum along the line. The only

missing piece is the length of the step which we have to proceed in order to get to

this optimum. And this distance is exactly denoted by λ that is optimized in the

modified optimization problem (2.26). Subsequently, the original optimizer is then

easily obtained via (2.27).
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λ⋆

x0 F x⋆

Aeq

Figure 2.9: Figure illustrates parametrization technique used to eliminate equality

constraints from the optimization problem.

Solution Properties of QP

Let us denote P as a polyhedron constituted by the inequalities in (2.21b), J⋆ the

optimal cost and x⋆ a solution of (QP). Here we can encounter three scenarios:

Case 1: The problem is bounded, J⋆ > −∞, and the solution x⋆ lies strictly in

the interior of polyhedron P .

Case 2: The problem is bounded, J⋆ > −∞, and the solution x⋆ lies on the

boundary of polyhedron P .

Case 3: The problem is infeasible, J⋆ =∞, caused by an empty polyhedron P .

Quadratic programming has a specific property, compared to LP, which is that the

solution x⋆ is always unique. This fact can be seen in Figure 2.10, where first two

scenarios are depicted.

2.3 Non-convex Optimization Problems

As we have already pointed out, convex optimization problems are much easier

to solve and thus are more preferable. The downside, however, is that sometimes

we can not formulate our problem as a convex optimization problem, e.g. due to

its natural (non-convex) behavior. As an example we can mention transmissions

(gearboxes) or on-off valves, which can operate only with finite number of levels.
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P

x⋆

(a) QP solution in the interior of P

P

x⋆

(b) QP solution in the facet of P

Figure 2.10: Two different QP solutions are depicted here. First one 2.10(a) lies

in the interior of the polytope P , while the other one strictly on the

P facet. This is the consequence of two distinguish objective func-

tions, which are here denoted by blue ellipsoids, while the optimizer

is marked as the red dot.

Therefore, with these types of systems, we usually end up in non-convex optimiza-

tion problems where objective function or (and) constraints are non-convex.

From this category we will be particularly interested in a specific type of problem

which is called Mixed Integer Programming (MIP). These optimization problems

are characterized by containing both continuous variables and integer variables, i.e.

a new domain of optimization problems is

X ⊆ {[x, δ] | x ∈ R
n, δ ∈ N

nq}. (2.28)

Subsequently, a general formulation of a MIP can be stated as

J⋆ = inf
x,δ

f0(x, δ) (2.29a)

s.t. [x, δ] ∈ S ⊆ X . (2.29b)

Obviously, a particular category of MIP is when integer variables δ ∈ {0, 1}, i.e.
are binary variables. In the sequel, we complete our overview by two non-convex

functions, that will be used in this thesis, and two standard formulations of MIP.

Deeper insight into this type of programming can be find e.g. in (Bemporad and

Morari, 1999; Borrelli et al., 2016; Wolsey, 1998).
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2.3.1 Non-convex functions

Here, two (generally) non-convex functions are presented, each of which is defined

over polytopic set described in Definition 2.2.12.

Definition 2.3.1 (Polytopic piecewise affine (PWA) function) Function f :

Ω→ R
m is called a piecewise affine (PWA) function over polytopes if

1. Ω ⊂ R
n is a polytope,

2. there exist polytopes Ri, i = 1, . . . ,M such that {Ri}Mi=1 is the partition of

Ω,

3. for each i = 1, . . . ,M we have f(x) = Fix+ gi, with Fi ∈ R
m×n, gi ∈ R

m.

Definition 2.3.2 (Polytopic piecewise quadratic (PWQ) function) We call

function f : Ω→ R a piecewise quadratic (PWQ) function over polytopes if

1. Ω ⊂ R
n is a polytope,

2. there exist polytopes Ri, i = 1, . . . ,M such that {Ri}Mi=1 is the partition of

Ω,

3. for each i = 1, . . . ,M we have f(x) = xTHix + Fix + gi, with Hi ∈ R
n×n,

Fi ∈ R
n, gi ∈ R.

2.3.2 Mixed Integer Linear Programming

A non-convex MIP (2.29) with linear objective function (2.29a) and linear con-

straints (2.29b) is called Mixed Integer Linear Program (MILP) that can be gen-

erally formulated as

J⋆ = min
x,δ

cTx+ dtδ (2.30a)

s.t. Ax+Bδ ≤ b, (2.30b)

Aeqx+Beqδ = beq, (2.30c)

with matrices c ∈ R
n, d ∈ R

nq , A ∈ R
m×n, B ∈ R

m×nq , b ∈ R
m,Aeq ∈ R

p×n,

Beq ∈ R
p×nq , beq ∈ R

p, decision variables x ∈ R
n and δ ∈ N

nq . Here is evident,

that the only structural difference between standard LP (2.18) and MILP (2.30)

formulation is in the additional (integer) type of optimization variables δ.
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2.3.3 Mixed Integer Quadratic Programming

Non-convex MIP (2.29) with Quadratic objective function (2.29a) and linear con-

straints (2.29b) is called Mixed Integer Quadratic Program (MIQP) that can be

generally stated as

J⋆ = min
x,δ

1
2x

TH1x+ 1
2x

TH2δ +
1
2δ

TH3δ + qT1 x+ qT2 δ + c (2.31a)

s.t. Ax+Bδ ≤ b, (2.31b)

Aeqx+Beqδ = beq, (2.31c)

with matrices H1 ∈ R
n×n, H2 ∈ R

n×nq , H3 ∈ R
nq×nq , q1 ∈ R

n, q2 ∈ R
nq , c ∈ R,

A ∈ R
m×n, B ∈ R

m×nq , b ∈ R
m, Aeq ∈ R

p×n, Beq ∈ R
p×nq , beq ∈ R

p, decision

variables x ∈ R
n and δ ∈ N

nq . Similarly, as in the comparison between LP and

MILP, the only structural difference between QP and MIQP is the presence of

integer optimization variables δ.

2.3.4 Aspects and Solutions of MIP

In brevity, solving a MILP or MIQP can be represented as seeking for such opti-

mizer [x⋆, δ⋆] where the objective function J⋆ reaches its optimum, with respect to

all constraints, and variables δ⋆ attain integer values. From the formulation per-

spective MILP and MIQP do not distinguish much from their subgroups LP and

QP. However, the main difference between them can be found in the techniques,

used to solve these sort of problems, and the computational burden associated with

them.

One of the most straightforward way how one can solve such problems is to

omit restriction that δ is a vector of integer variables and solve the correspond-

ing LP/QP (relaxed) problem. Subsequently, optimization variables δ are rounded

to the nearest integer value. The problem, however, is that the solution of such

approach may be not optimal or even not feasible. This issue is depicted in Fig-

ure 2.11. Here, it is evident that by rounding the relaxed solution x⋆rel we would

not get to the optimum x⋆MIP , but outside of the MIP feasible domain. Therefore

we can say that the accuracy is the price that we need to pay for the reduced

computational complexity in this approach.

Complexity of MIP can be also interpreted on one of the most intensively stud-

ied optimization problems named Traveling Salesman Problem (TSP) (see e.g. Ap-
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Figure 2.11: Figure shows an elementary MIP technique. P denotes feasible set, red

dots represents feasible integer values and dashed blue line is objective

function specified direction vector. Finally, the blue dot is solution of

relaxed problem and the green dot solution of integer-valued problem.

plegate et al. (2006)). Popularity of this problem is established due to its wide

applicability mainly in planing and logistics (see e.g. Klaučo et al. (2014); Oravec

et al. (2015)). Here the main idea is to find the shortest path that intersects all

given places. The most straightforward way how to solve such problem is to sequen-

tially examine all possible transitions, but obviously the problem becomes quickly

unpractical with the increasing number of integer variables.

Nowadays there is a wide range of sophisticated methods that decrease the num-

ber of investigated integer combinations and thus provide better complexity scaling

for MIP. The commonly used are branch-and-bound or branch-and-cut methods

(see e.g. Linderoth and Ralphs (2004)). Furthermore improvement has been also

detected in numerous solvers e.g. (Gurobi Optimization, 2014; ILOG, Inc., 2003).



Chapter 3

Model Predictive Control

Model Predictive Control (MPC) is a control strategy which belongs to a class of

optimal control algorithms. It exploits a mathematical model of the process to

predict dynamics of the plant over a certain prediction horizon. Subsequently, an

optimization technique is employed to compute adequate control actions that lead

to a desired control performance.

This chapter provides a basic introduction to MPC with a brief history and

comparison of properties and characteristics. Furthermore, it defines and discusses

several standard mathematical formulations of MPC.

3.1 Introduction to MPC

3.1.1 Origins of MPC

The history of MPC can be traced back to late 1970’s with the outcome of two

pioneering works. The first one was called Model Predictive Heuristic Control

(MPHC) shown by Richalet et al. (1976, 1978) along with its solution software ID-

COM, which stands for Identification and Command. The second one was referred

as Dynamic Matrix Control (DMC) that was introduced in 1979 by Shell Oil engi-

neers (Cutler and Ramaker, 1979, 1980). Both of these approaches belong to the

so-called first generation of MPC and were developed by engineers in the industry,

who benefited from the rapid development of computer technology. This dramatic

change had a great impact on industrial process control and set a new foundation

53
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to industrial MPC paradigm. From this point forward, many researchers have put

a lot of effort to further polish this methodology (e.g. establishing stability, that

was firstly incorporated only via proper tuning, embedding constraints, increasing

flexibility, etc.) and they are busy with this task ever since. For interested read-

ers, an extensive historical survey of industrial MPC can be find e.g. in Qin and

Badgwell (2003).

3.1.2 MPC Nowadays

During the last decades, MPC has experienced a significant change from the the-

oretical research to practical applications. At first, it has been applied only on

systems with a slow dynamics, which was caused mainly due to computational bur-

den. But nowadays, with the technological progress and many accelerating solvers

(e.g. Gurobi Optimization (2014); ILOG, Inc. (2003)) or toolboxes (e.g. Houska

et al. (2011); Wächter and Biegler (2006)), it is a widely adopted control strategy

especially in the process control, see, e.g., Maciejowski (2001), Qin and Badgewell

(2003). Its success stems from its natural capability of designing controllers for

multidimensional systems while taking into account all of the systems physical

constraints and performance specifications which are explicitly embedded in the

optimization problem. Based on these advantages model predictive control can

not only reduce the material and energy consumption, but also to minimize the

negative impacts on the environment, while maximizing the profit. And it is these

economical and environmental aspects which, nowadays, are attracting increasing

attention in the design of advanced control algorithms.

Needless to say, MPC is one of the most modern control policy that overcomes

the shortcomings of conventional control approaches, such as Proportional-Integral-

Derivative controller (PID) or Linear-Quadratic Regulator (LQR). A basic compar-

ison between these methodologies is depicted in Table 3.1. Here, the superiority of

MPC properties are evident. However it should be noted that other commonly used

control algorithms, even thought that they have limited applicability, can still find

their place and utilization. E.g. the most widespread controllers are PIDs that due

to their cheap and effective implementation, mainly on single-input single-output

(SISO) systems, cover approximately 90% of control loops in industry.

On the other hand, the consequence of these embedded constraints and the

finite prediction of systems dynamics leads to a complex optimization problem,
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PID LQR MPC

Model Linear Linear (Non-)Linear,

Hybrid

Dimension SISO MIMO MIMO

Time variance Time-invariant Time-invariant Time-variant

Optimization NO YES YES

Constraints NO NO YES

Implementation Cheap, Easy Cheap, Easy Expensive,

Complex

Table 3.1: Comparation of three commonly used control approaches.

which (in order to guarantee optimality, stability and constraints satisfaction) has

to be solved within duration of one sample instant. Therefore, such an optimization

requires a lot of computation power and last, but not least an appropriate solver.

However, if such limitations are not meet in the control hardware, then one need

to change the control setup e.g. to simplify the model of the process (what will

decrease the control performance), use open loop implementation (if it is possible),

or apply a different control method (e.g. explicit MPC).

3.1.3 Receding Horizon Control

MPC is usually implemented in a closed-loop fashion in an approach referred to

as the Receding Horizon Control (RHC). The basic principle of RHC, illustrated

in Figure 3.1, is to solve an MPC optimization problem to obtain a sequence of

optimal control actions, over a finite horizon, from which only the first element

of this sequence is taken and applied to the process to achieve a feedback. The

remaining control inputs are simply discarded. At the next sampling instant, a

new state measurement is obtained, the prediction horizon is shifted and then

the optimization problem is solved once again. This yields a new sequence of

optimal control inputs, from which the first action is extracted and executed in the

controlled process. Subsequently, the whole procedure then repeats ad-infinitum.

Generally, implementation of MPC in a RHC fashion can be summarized as follows:

1. Derive a mathematical model of the controlled plant.



56 CHAPTER 3. MODEL PREDICTIVE CONTROL

2. Formulate an optimization problem.

3. At a time instant t acquire state measurements from the plant, i.e. x(t).

4. Solve the optimization problem which yields a sequence of optimal control

actions along the prediction horizon N , i.e. U⋆
ol = [u⋆0

T , u⋆1
T , . . . , u⋆N−1

T ]T .

5. Apply only the first element of this sequence to the plant, i.e. u⋆T0 .

6. Repeat this procedure from the third step as the time progress to the next

sampling period Ts, i.e. t+ Ts.

Past Future

Prediction horizon

Sample

LEGEND
Reference trajectory
Predicted output
Measured output

Implemented inputs
Predicted inputs
Current input

tk tk+1 tk+2 tk+3 . . . tN−1

Figure 3.1: Characteristic scheme of MPC policy.

3.1.4 Open-loop Implementation

MPC can be implemented also in open-loop manner, where the entire optimal

control sequence U⋆
ol(t) is implemented. This means that the optimization problem

has to be solved not at each sampling instant Ts as in RHC, but only when all

optimal control actions were applied, i.e. each NTs steps.

This implementation technique might, however, lead to some unwanted con-

sequences. One of them is depicted in Figure 3.2. Here, three different control

trajectories are shown. The black one illustrates the real state trajectory of the con-

trolled system, while other denote predicted state trajectories with accurate model
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(green line) and inaccurate model (red line). It can be seen that even thought that

all originates from state measurement x(t), their control performances distinguish

even more with each predicted step. It follows directly from this situation that the

open-loop implementations with weakly design models exhibit pure control perfor-

mances which might lead to hazardous scenarios. On the other hand, in the RHC,

this problem is mitigated (yet not directly eliminated) with continuously updating

state measurements x(t).

Moreover, it should be noted that under certain conditions both (closed-loop

and open-loop) implementations are identical see e.g. Mayne et al. (2000). This

phenomenon will be closely discussed and exploited later.
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Figure 3.2: Plant-model mismatch in open-loop implementation.

3.2 Basic Mathematical Formulations of MPC

As we have shown in the previous section, MPC policy is well adopted control

strategy which allows one to adjust its formulation to the need of the controlled

system. Particularly, this strategy can handle and incorporate wide variety of

constraints, penalization expressions or models, each of which might lead to a

different type of optimization problem. Therefore the consequence of this flexibility

is that there exists a rich diversity of MPC formulations.

In this section we will just scratch the surface of this topic and provide only a

basic overview of standard MPC formulations which are commonly used in process

control.
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3.2.1 General MPC Formulation

Consider prediction model in discrete-time, which approximates the controlled pro-

cess, given as

xk+1 = f(xk, uk), (3.1)

with vector of states xk ∈ R
n and vector of inputs uk ∈ R

m. Further, let the

prediction model (3.1) be subject to constraints

xk ∈ X , uk ∈ U , (3.2)

where X ⊆ R
n, U ⊆ R

m. Then a general form of the MPC optimization problem

can be formulated as

J⋆ = min
u0,...,uN−1

ℓ(xN ) +
N−1∑

k=0

ℓ(xk, uk) (3.3a)

s.t. xk+1 = f(xk, uk), k = 0, . . . , N − 1, (3.3b)

xk ∈ X , k = 0, . . . , N, (3.3c)

uk ∈ U , k = 0, . . . , N − 1, (3.3d)

x0 = x(t), (3.3e)

where xk, uk denote values of state and inputs predicted at the k-th stage of the

prediction horizon N ∈ N. These predictions are made based on the mathematical

model (3.3b) and initialized from the state measurement x(t) in (3.3e). Next, the

term ℓ(·) in (3.3a) refers to a stage cost that penalizes the predicted variables xk, uk

and X ,U are sets representing state (3.3c) and input (3.3d) constraints.

Finally, the solution of the optimization problem (3.3) yields a vector of opti-

mal open-loop control actions U⋆
ol = [u⋆0

T , . . . , u⋆N−1
T ]T , where the objective func-

tion (3.3a) reaches its optimum J⋆. Moreover, since in the RHC implementation

we are interested only in the first element of the vector U⋆
ol, we can then define the

RHC feedback law µ : Rn → R
m as

κ(x(t)) = [Im×m,0m×m, . . . ,0m×m]U⋆
ol(x(t)). (3.4)

As was mentioned, complexity of the optimization problem (3.3), as well as its

computational burden, may differ based on the type of each of its component (e.g.

objective function, constraints or decision variables). Next we introduce only stan-

dard techniques, to formulate these components, that lead to convex optimization

problems.
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3.2.2 Prediction Model

The prediction model acts as the corner stone in MPC policy which is used to

predict the behavior of the controlled system. Subsequently, based on these predic-

tions, optimal control actions are being computed. In practice we often encounter

with processes, whose behavior is highly nonlinear (e.g. neutralization process) and

described e.g. by ordinary differential equations (ODE). But in control theory, for

simplicity, a more preferable state-space model is being used, which however rep-

resents only an approximation of a real system that behaves in a more complicated

nonlinear fashion. Therefore in this section we firstly state a linear time-invariant

(LTI) model, which is used in the majority of this thesis, and then we show how

one can derive such model.

In this thesis we consider discrete-time LTI systems in a state-space form, whose

dynamics can be described by

x(t+ 1) = Ax(t) +Bu(t), (3.5)

with state vector x(t) ∈ R
n, input vector u(t) ∈ R

m, and with matrices A ∈ R
n×n,

B ∈ R
n×m, where the pair (A,B) is controllable. Next, let the system (3.5) be

subjected to constraints

x(t) ∈ X , (3.6a)

u(t) ∈ U , (3.6b)

where X ∈ R
n, U ∈ R

m are polytopes that contain origin in their interiors.

Remark 3.2.1 Note that we keep the system in (3.5) quite simple by neglecting

disturbances, model uncertainties and the output equation. Moreover, we assume

to have knowledge of the full state measurements. It will be explicitly specified if a

different setup will be considered.

Linearization

This section describes a commonly used linearization technique used to transform

nonlinear model of the system into linear one. Even thought that thesis assumes

model in (3.5), here we provide more general approach.
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Given is a nonlinear system which is described by following dynamics1

dx

dt
= f(x, u), (3.7a)

y = g(x, u), (3.7b)

where x ∈ R
n is a state vector, u ∈ R

m is an input vector and y ∈ R
r denotes

output vector. Consider an operating point x0, associated with input u = u0 and

output y = y0 = g(x0, u0), where the system (3.7) is going to be controlled (or

in its neighborhood). Then the linear continuous-time systems, can by derived by

linearization around x0 via Taylors expansion as

dx

dt
= f(x, u) ≈ f(x0, u0) +

∂f(x, u)

∂x

∣∣∣∣
x0,u0

x(t) +
∂f(x, u)

∂u

∣∣∣∣
x0,u0

u(t), (3.8a)

y = g(x, u) ≈ g(x0, u0) +
∂g(x, u)

∂x

∣∣∣∣
x0,u0

x(t) +
∂g(x, u)

∂u

∣∣∣∣
x0,u0

u(t), (3.8b)

with Jacobian matrices2 ∂f(x,u)
∂x , ∂f(x,u)

∂u , ∂g(x)
∂x , ∂g(x,u)

∂u and where x(t) = x − x0,

u(t) = u − u0 denote deviation variables. Next, as x0 is only a particular value of

state, we have that

dx(t)

dt
= Âx(t) + B̂u(t) + f(x0, u0), (3.9a)

y(t) = Ĉx(t) + D̂u(t), (3.9b)

with an output in its deviation form y(t) = y − y0 and matrices Â, B̂, Ĉ and D̂

denote appropriate Jacobian matrices. Furthermore, it is a standard practice to

choose (x0, u0) as an equilibrium point of the system, what reduces (3.9) and we

obtain a LTI state-space system, in a continuous domain, defined as

dx(t)

dt
= Âx(t) + B̂u(t), (3.10a)

y(t) = Ĉx(t) + D̂u(t), (3.10b)

Finally, by applying a discretization technique (e.g. Euler’s method, Zero-order

hold, etc.), LTI system in (3.10) can be defined in its discrete-time domain as

x(t+ 1) = Ax(t) +Bu(t), (3.11a)

y(t) = Cx(t) +Du(t), (3.11b)

1For simplicity, time domain, e.g. x(t) = x, is omitted
2Here, terms of a higher-order in x and u are neglected.
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with state vector x(t) ∈ R
n, input vector u(t) ∈ R

m, output vector y(t) ∈ R
r, and

with matrices A ∈ R
n×n, B ∈ R

n×m, C ∈ R
r×n and D ∈ R

r×m, where a constant

interval between each input sampling Ts = △t is assumed.

Remark 3.2.2 Generally, there are three classes of modeling techniques. The

white-box approach, also known as a-priori modeling, exploits physical and chemical

laws to devise the model. The problem from this direction, however, is that such

constructed models are usually too complex, and to tackle this issue the aforemen-

tioned linearization is employed. On the other hand, if there are no mathematical

descriptions of a system dynamics in hand (e.g. as in (3.7)), one can consider the

black-box approach, also called a-posteriori modeling. Here, the model is constructed

via experimental data which describe the relationship between input and output sig-

nals of the system. Nowadays, since it is the most common technique, there exist

many identification methods which are embedded in numerous toolboxes (Oravec and

Bakošová, 2012; Overschee and Moor, 1994). Finally, the grey-box approach com-

bines both previous techniques, i.e. it exploits insight into theory and experimental

data analysis.

Remark 3.2.3 It should be noted that it is standard practice to control the system

only in the operating point, or in its neighborhood, where such linearized models are

satisfactory. However, for the systems with strong nonlinearity, or with increasing

control range, this models can be imprecise and thus might lead to pure control

performance. In this case a nonlinear dynamic has to be considered.

3.2.3 Objective Function

Objective function, in a concept of MPC, is a mathematical term that assigns a

specific cost to each predicted variable to provide desired control performance, or

shortly it defines the aim of the control. It is a standard practice to define objective

function as

J = ‖QxxN‖p +
N−1∑

k=0

(‖Qxxk‖p + ‖Quuk‖p) (3.12)

where p denotes a norm and Qx ∈ R
n×n, Qu ∈ R

m×m are weighting matrices,

which assign costs to vector of states and inputs, respectively. Since these matrices

are one of the most common subjects in the tuning procedure of MPC policy, thus

we will next aim at norms and discuss their aspects in the concept of MPC.
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A norm is a convex function (see Section 2.2.1) that assigns strictly positive

length of all nonzero vectors, i.e. it specifies the length or size of a vector. For-

mulation of a general p-norm of a vector x ∈ R
n, or shortly ‖x‖p, can be given

as

‖x‖p =

(
∑

i

|x|p
)1/p

(3.13)

with a following properties:

• ‖x‖p ≥ 0,

• ‖x‖p = 0, if and only if x = 0,

• ‖cx‖p = |c|‖x‖p, for any c ∈ R,

• ‖x1 + x2‖p ≤ ‖x1‖p + ‖x2‖p.

There is a wide variety of norms (as shown e.g. in (Gradshteyn and Ryzhik, 2007,

p. 1081)), but the commonly used norms are Manhattan (1-norm), Euclidean (2-

norm) or Maximum (∞-norm) norms.

Manhattan norm

Manhattan norm, also referred to as the 1-norm, is defined as a sum of absolute

values of all vector elements xi, i.e.

‖x‖1 =
∑

i

|xi|. (3.14)

Consider now a following example. Given is an optimization problem as in (2.17),

where the length of the vector x ∈ R
n is going to be minimized

J⋆ =min
x
‖Cx‖1 (3.15a)

s.t. Ax ≤ b, (3.15b)

where C = diag(c), c ∈ R
n. The problem (3.15) is no longer a LP, since the

objective function (3.15a), depicted in Figure 3.3(a) for an arbitrary element xi,

has form of a piecewise linear function (PWL). To avoid any numerical difficulties,

it is convenient to perform a transformation of (3.15) into a standard form of LP
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as in (2.17). This can be achieved be introducing an epigraph formulation

J⋆ =min
x,ǫ

∑

i

ǫi (3.16a)

s.t. Ax ≤ b, (3.16b)

− ǫ ≤ Cx ≤ ǫ, (3.16c)

where the sum of all epigraphs ǫ ∈ R
n is minimized (Figure 3.3(b)). The optimiza-

tion is terminated, when x ∈ R
n meets the added constraints (3.16c). Subsequently,

a solution x⋆ ∈ R
n is obtained (Figure 3.3(c)). It is important to note, that in the

transformed form (3.16), the number of optimization variables is maintained, but

number of constraints is increased from m to (m+ 2n).

xi

|xi|

0
(a) Objective value of |xi|

xi

|xi|

0

ǫi

(b) Epsilon representation
xi

|xi|

0

ǫi

x⋆i

|x⋆i |

(c) Result of LP

Figure 3.3: Figures show the transformation of basic MPC optimization defined

as PWL problem 3.3(a), due to the Manhattan norm, which is trans-

formed into LP (3.16) via epigraph formulation 3.3(b). The result of

such optimization problem is depicted in 3.3(c). The green-dashed line

represents the epigraph function ǫi that is minimized, what is indicated

by the green arrow. The solution of this optimization |x⋆i | is illustrated
by the red dot, through which the state x⋆i is determined.

Maximum Norm

Maximum norm, also referred as ∞-norm, is defined as a maximum among all

absolute values of vector x, i.e.

‖x‖∞ = max
i
|xi|. (3.17)

Similarly as in Manhattan norm, by substituting the 1-norm by the ∞-norm

in (3.15), one obtains the objective function (3.17) in form of a PWL function.
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To tackle this problem, one can exploit the epigraph formulation, what leads to

J⋆ =min
x,ǫ

ǫ (3.18a)

s.t. Ax ≤ b, (3.18b)

− 1nǫ ≤ Cx ≤ 1nǫ, (3.18c)

where only the worst absolute value among vector x is minimized ǫ ∈ R. Hence,

the number of constraints is here increased from m to m+ 2.

Euclidean Norm

Euclidean norm can be interpreted as the shortest distance in the euclidean space

and is defined by

‖x‖2 =

√∑

i

x2i . (3.19)

By plugging (3.19) into the optimization problem (2.17), to penalize the distance

of the vector x (from the origin), leads to neither LP nor QP (due to the square

root). This obstacle can be overcome by squaring the norm, i.e. ‖x‖2 =⇒ ‖x‖22.
The optimization problem (3.15) will be then a QP in a following form

J⋆ = min
x

xTCx (3.20a)

s.t. Ax ≤ b. (3.20b)

One should note that the consequence of this transformation into QP is that, com-

pared to the expression
√
xTCx, in the interval [−1, 1] cost J⋆ is undervalued and

in the interval (−∞,−1) ∪ (1,∞) cost J⋆ is overvalued. But, most importantly,

the optimizer x⋆ is identical to the optimizer which minimizes
√
xTCx.

Remark 3.2.4 Aforementioned examples demonstrate the Manhattan, Maximum

and Euclidean norms only for one vector x. In MPC policies, e.g. in (3.12), one

needs to apply a norm for each predicted state ‖xk‖p and input ‖uk‖p vector. We

need to keep in mind that in the case of 1-norm or ∞-norm this increases the

number of variables ǫ, thus the number of constrains.
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3.2.4 MPC as a Linear Program

Consider system (3.5) to be used as a prediction model and subjected to polyhedral

constraints

X = {x ∈ R
n | Hxx ≤ Kx}, (3.21a)

U = {u ∈ R
m | Huu ≤ Ku}, (3.21b)

with Hx ∈ R
nx×n, Kx ∈ R

nx , Hu ∈ R
nu×m and Ku ∈ R

nu , where nx, nu is the

number of half-spaces corresponding to state and input polyhedron respectively.

Next, let 1-norm (3.14) or∞-norm (3.17) be used in the objective function in (3.12).

Then the MPC problem (3.3) can be stated as a linear optimization problem of a

form

J⋆ = min
u0,...,uN−1,ǫx,ǫu

1T
n ǫ

x
N +

N−1∑

k=0

(1T
n ǫ

x
k + 1T

mǫ
u
k) (3.22a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1, (3.22b)

x0 = x(t), (3.22c)

Hxxk ≤ Kx, k = 0, . . . , N, (3.22d)

Huuk ≤ Ku, k = 0, . . . , N, (3.22e)

− Γnǫ
x
k ≤ Qxxk, k = 0, . . . , N, (3.22f)

− Γnǫ
x
k ≤ −Qxxk, k = 0, . . . , N, (3.22g)

− Γmǫ
u
k ≤ Quuk, k = 0, . . . , N − 1, (3.22h)

− Γmǫ
u
k ≤ −Quuk, k = 0, . . . , N − 1, (3.22i)

where xk ∈ R
n, uk ∈ R

m are state and input vectors at the k-th prediction instance,

x(t) ∈ R
n is a state measurement at time t, N ∈ N is a prediction horizon and

A ∈ R
n×n, B ∈ R

n×m are model matrices. Next, in 1-norm Γj denotes an identity

matrix Γj = Ij and if ∞-norm is applied then Γj = 1j, i.e. Γj = [1, . . . , 1]T ∈ R
j .

Moreover, epigraphs at k-th prediction stage are denoted in 1-norm by vectors

ǫxk ∈ R
n, ǫuk ∈ R

m and in case of ∞-norm by vectors ǫxk ∈ R, ǫuk ∈ R.

Remark 3.2.5 It should be noted that even though both norms admit an LP repre-

sentation, the two formulations have their own disadvantages, e.g. while ∞-norm

might lead to a pure control performance (as only the largest violations are sup-

pressed), in the 1-norm the number of variables is increased.
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3.2.5 MPC as a Quadratic Program

Consider system (3.5) to be used as a prediction model, subjected to polyhedral

constraints as in (3.21). Next, let the squared 2-norm (3.19) be used in the objective

function in (3.12). Then the MPC problem (3.3) can be stated as a quadratic

optimization problem of a form

J⋆ = min
u0,...,uN−1

xTNQNxk +

N−1∑

k=0

(xTkQxxk + uTkQuuk) (3.23a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1, (3.23b)

x0 = x(t), (3.23c)

Hxxk ≤ Kx, k = 0, . . . , N, (3.23d)

Huuk ≤ Ku, k = 0, . . . , N − 1, (3.23e)

where xk ∈ R
n, uk ∈ R

m are state and input vectors at the k-th prediction instance,

x(t) ∈ R
n is a state measurement at time t, N ∈ N is a prediction horizon and

A ∈ R
n×n, B ∈ R

n×m are model matrices.

3.2.6 Dense Formulation of QP MPC

In previous sections we have shown how one can formulate MPC policy e.g. based

on used norms or control target. Yet, to obtain the desired optimal control ac-

tions, one need to employ an optimization solver that usually accepts optimization

problems in their standard forms.

Generally there are two main compositions of MPC. First one is referred as dense

formulation and second one is called sparse formulation. Their difference manifests

from the structural composition of matrices and number of optimized variables.

Particularly, dense formulation has lower number of optimization variables Nm

compared to sparse formulation with N(n+m) variables. However, the price which

is paid for this reduction is less preferable structure of matrices, that might lead to

increased computational demands. It is well known that computational burden of

these formulations scales with the prediction horizon. While the dense formulation

is preferred in a case with shorter prediction horizon, the sparse formulation is used

for MPC problems with longer prediction horizons.

Despite the fact that there are already toolboxes (e.g. Yalmip (Löfberg, 2004)),

which performs this transformation for us, for the purposes of this thesis we will
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show how to transform (3.23) into its standard dense QP form.

To proceed let us define state and input vectors for the entire prediction horizon

N as

Xol =




x0
...

xN


 , Uol =




u0
...

uN−1


 .

Then the objective function in (3.23a) can be rewritten into

J(x(t), Uol) = XT
olQ̃xXol + UT

olQ̃uUol, (3.24)

with matrices

Q̃x =




Qx 0 0 0

0 Qx 0 0

0 0
. . . 0

0 0 0 Qx



, Q̃u =




Qu 0 0 0

0 Qu 0 0

0 0
. . . 0

0 0 0 Qu



,

which can be computed e.g. via kronecker tensor product between matrix Qx and

an identity matrix IN , i.e. Q̃x = Qx ⊗ IN+1. Next, by introducing substitution

xk = Akx(t) +
k−1∑

i=0

Ak−i−1Bui (3.25)

the state evolution based on model in (3.23b) and along the horizon N can be

explicitly expressed by

Xol = Ãx(t) + B̃Uol, (3.26)

with matrices Ã ∈ R
n(N+1)×n, B̃ ∈ R

n(N+1)×mN defined as

Ã =




In

A

A2

...

AN




, B̃ =




0 0 . . . 0

B 0 . . . 0

AB B
. . .

...
...

...
. . . 0

AN−1B AN−2B . . . B




. (3.27)

By plugging the state evolution (3.26) into the objective function (3.24) and per-

forming some straightforward mathematical transformations we get

J(x(t), Uol) =
1
2U

T
olHUol + x(t)TFUol + x(t)T Y x(t), (3.28)
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with H = 2B̃T Q̃xB̃ + Q̃u, F = 2ÃT Q̃xB̃ and Y = ÃT Q̃xÃ.

With the finished objective function we can now target at state and input

constraints that are assumed to be in a polyhedral form of (3.21). The state

constraints in (3.23d) can by expressed for entire prediction vector N as

H̃xXol ≤ K̃x, (3.29)

where H̃x = IN+1 ⊗Hx and K̃x = 1N+1 ⊗Kx. Furthermore, by applying substi-

tution (3.25) into (3.29) we have

H̃xB̃Uol ≤ K̃x − H̃xÃx(t). (3.30)

Analogically, the input constraints (3.23e), along the prediction horizon N , are

denoted by

H̃uUol ≤ K̃u, (3.31)

with H̃u = IN ⊗Hu and K̃u = 1N ⊗Ku. By merging (3.30) with (3.31) we get

GUol ≤ w + Ex(t), (3.32)

with

G =

[
H̃xB̃

H̃u

]
, w =

[
K̃x

K̃u

]
, E =

[
−H̃xÃ

0(nuN)×n

]
.

Finally, by using results from (3.28) and from (3.32), the MPC optimization prob-

lem (3.23) can be rewritten as a QP in a form of

J⋆(x(t)) = min
Uol

1
2U

T
olHUol + x(t)TFUol (3.33a)

s.t. GUol ≤ w + Ex(t). (3.33b)

The term x(t)TY x(t) is here omitted since it does not affect the optimal argu-

ment. The overall cost function at the optimum is then obtained by e.g. J⋆(x(t)) =

J⋆(x(t)) + x(t)TY x(t).

Remark 3.2.6 MPC optimization problem defined as QP in (3.33) can be rewrit-

ten into its equivalent problem

J⋆(x(t)) = min
U

UTHU (3.34a)

s.t. GU ≤ w + Sx(t), (3.34b)

by using substitution U = Uol +H−1FTx(t), with S = E +GH−1FT .
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3.3 Stability

Even thought MPC has a great successes from its beginnings, researchers found

out that there are many aspects, e.g. plant-model mismatch, disturbances, finite

prediction horizon, which might drag the controlled system to instability and thus

to hazardous situations. Therefore, for safety reasons, it was invariable to impose

MPC optimization problem in a such manner which eliminates this shortcoming.

In the sequel, firstly stability and asymptotic stability (in Lyapunov sense) are

defined followed by its application to MPC strategy.

3.3.1 Lyapunov Stability

In practice a standard convergence started to be only wanted, but not satisfactory

property. It was desired not only to asymptotically converge e.g. to the origin, but

also to persistently stay there (or its neighborhood) even after a perturbation. And

this property is referred to as Lyapunov stability.

Given is a discrete-time autonomous system

x(t + 1) = f(x(t)), (3.35)

with x(t) ∈ R
n, f : Rn 7→ R

n and f(0) = 0.

Definition 3.3.1 The origin of the system (3.35) is referred to be stable (in the

sense of Lyapunov) if ∀ǫ > 0, ∃δ > 0, such that

‖x(0)‖ ≤ δ =⇒ ‖x(t)‖ < ǫ, ∀t ≥ 0

and additionally if the origin is locally attractive, i.e.

‖x(0)‖ ≤ δ =⇒ lim
t→∞

‖x(t)‖ = 0,

then it is called asymptotically stable.

Theorem 3.3.2 System (3.35) is stable if there exists a function V : Rn 7→ R for

which

V (x(t)) > 0, ∀x(t) 6= 0 (3.36a)

V (0) = 0, (3.36b)

V (x(t+ 1))− V (x(t)) ≤ 0, ∀x(t) (3.36c)
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δ ǫ

x0

Figure 3.4: Illustrative example of a stable system.

holds. Moreover, if the function V (x(t)) satisfies the strict inequality in (3.36c),

i.e. V (x(t + 1))− V (x(t)) < 0. ∀x(t), then the system (3.35) is said to be asymp-

totically stable.

Definition 3.3.3 The positive definite function V (·) which satisfies (3.36) is also

referred as a Lyapunov function.

3.3.2 Stability in MPC

In early years MPC policy did not explicitly ensured stability, yet it was achieved

only by a proper tuning of engineers. This drawback motivated theoreticians to

put a lot of attention to this topic. In late 1980’s the necessity to use Lyapunov

stability theory in MPC was proposed by (Keerthi and Gilbert, 1988) for discrete-

time systems and by (Mayne and Michalska, 1990) for continous-time systems and

from this point forward the cost function has been used as a natural Lyapunov

function for ensuring closed-loop stability.

Consider general MPC optimization problem given as in (3.3), that is subjected

to (3.2). The control objective is to stabilize and steer the system (3.3b) to the

origin, i.e. f(·, ·) = 0. Then the MPC optimization problem can be stated as
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J⋆ = min
Uol

ℓN(xN ) +
N−1∑

k=0

ℓ(xk, uk) (3.37a)

s.t. xk+1 = f(xk, uk), k = 0, . . . , N − 1, (3.37b)

xk ∈ X , k = 0, . . . , N − 1, (3.37c)

uk ∈ U , k = 0, . . . , N − 1, (3.37d)

xN ∈ Xf , (3.37e)

x0 = x(t), (3.37f)

where xk, uk denote values of state and inputs predicted at the k-stage of the

prediction horizon N ∈ N, x(t) is a state measurement, ℓN(xN ) is the terminal

cost, ℓ(xk, uk) is the stage cost, Xf is terminal set and X ,U are polytopes, each

of which contains the origin in its interior. Then MPC policy exhibits asymptotic

closed-loop stability if following assumptions are met (Mayne et al., 2000):

A1: The terminal set satisfies the state constraints Xf ⊂ X , is closed and contains

origin 0 ∈ Xf .

A2: Constraints are satisfied in Xf via a terminal feedback law, i.e. κf (xk) ∈ U ,
∀xk ∈ Xf , k = N, . . . ,∞.

A3: The terminal set Xf is positive invariant under a terminal feedback κf (xk),

i.e. f(xk, κf (xk)) ∈ Xf , ∀xk ∈ Xf , k = N, . . . ,∞.

A4: Function ℓN(·) is a local Lyapunov function, in other words ℓN (xk+1) −
ℓN (xk) ≤ −ℓ(xk, κf (xk)), ∀xk ∈ Xf , k = N, . . . ,∞.

During the last decades a wide varieties of stabilizing MPC techniques have

been proposed. Generally, their diversity stems from the modification of three

essential ingredients that provide asymptotic stability (assumptions A1−A4), which
are terminal penalty ℓN(·), terminal constraint Xf and terminal feedback κf (·). In
the sequel we briefly describe these methods. One can find an extensive overview

in (Mayne et al., 2000) or in (de Oliveira Kothare and Morari, 2000; Keerthi and

Gilbert, 1988; Rawlings and Muske, 1993; Scokaert and Rawlings, 1998).

Terminal equality constraint: One of the first methods used in MPC to ensure

stability. Here ℓN((xN ) = 0, Xf = {0} is imposed to MPC. From A3 we
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have that κf (xk) = 0, k = N, . . . ,∞. The main goal of this approach is to

steer the controlled system to origin within N steps. This leads to decreased

feasible set of MPC. Therefore it is required either to initialized the system

in a neighborhood of the origin or to use a longer N .

Terminal constraint set: Here only terminal set Xf is embedded in MPC for-

mulation and terminal cost ℓN ((xN ) = 0. The main goal is to employ two

controllers. MPC which steers the system to the terminal set Xf within N

steps, where the stabilizing terminal controller κf (·) takes over the control.

Therefore this approach is also referred as a dual mode.

Terminal penalty: In this approach the terminal set is omitted Xf = R
n and the

stabilizing role is moved to terminal cost function ℓN(·) 6= 0. The downside of

this methodology however is that it is valid only for smaller range of control

problems (unless longer N is used).

Terminal penalty and terminal constraint set: One of the most used forms

today, which exploits advantages from both stabilizing ingredients (terminal

set Xf ⊂ R
n with terminal penalty ℓN (·) 6= 0) and thus is suitable for wide

range of control problems.

Infinite horizon: Infinite horizon (N = ∞) substitutes assumptions A1−A4,
however leads to complex optimization problem (infinite number of optimiza-

tion variables and constraints respectively).

Contractive constrains: Here the stabilizing essence is denoted be adding con-

tractive constraints into MPC formulation, based on which the decaying val-

ues of states are explicitly enforced at each step, i.e.

‖f(xk, µ(xk))‖p ≤ γ‖xk‖p,

with so-called concrative parameter γ ∈ [0, 1) and ‖ · ‖p denoting p-norm.



Chapter 4

Explicit Model Predictive Control

As mentioned in Chapter 3, MPC is a widely adopted control strategy that has

already found its usage in many industrial fields. The main advantage, which

makes MPC industrially desirable, is a possibility to explicitly embed constraints

into the control design problem, to handle multivariable systems with complex

dynamics and last, but not least, to offer the best possible performance, which

may correspond to the most profitable or efficient control. However, the drawback

of this approach lies in computational complexity. This is due to the fact that

its traditional implementation (RHC) relies on the use of a real-time optimization

solver, which is required to compute the sequence of optimal control inputs for

each new set of measurements within duration of one sample instant. Even though

computational power and optimization algorithms are continuously improving (see

references in Chapter 3), traditionally such solvers have been able only to deal with

relatively low update rates. Hence, the conventional MPC applications have been

limited to situations, where such software and hardware costs have been met and

which allowed a sufficient time for solving the whole optimization problem. One

could come across to this shortcoming of the conventional MPC control strategy

for example in the automotive and aerospace industries, where systems (subject to

actuator limitations) had to be sampled and controlled within range of milli- or

micro-seconds.

Therefore, a different MPC implementation approach has been established at

the beginning of this century. It is called an explicit MPC (Bemporad et al. (2002b))

73
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and it abolished the aforementioned required computational effort by shifting the

whole optimization offline, where it could be computed by any computing device.

Explicit MPC is based on a multiparametric programming (Borrelli (2003b); Gal

and Nedoma (1972); Willner (1967)) that allows one to determine the optimal

solution of an optimization problem for all feasible initial conditions as an ex-

plicit function of certain varying parameter(s). The repetitive optimization is here

avoided, since the optimal solution can readily be obtained using the precomputed

function, when the parameter(s) change. Thus the whole computational burden

of obtaining optimal control inputs in the online procedure is reduced to a series

of mere function evaluation. This eliminates the need of real-time optimization

solvers and makes MPC accessible for applications with strictly limited computa-

tional resources such as in automotive (S.Di Cairano et al. (2012); Stewart and

Borrelli (2008)) and aerospace (Di Cairano et al. (2012)) industries.

As numerous authors have shown (e.g. in Baotić et al. (2006); Bemporad et al.

(2002a, 2003); Dua and Pistikopoulos (2000); Spjøtvold et al. (2005)), such a pre-

computed explicit solution, for a rich class of MPC problems, takes a form of a

PWA function, which maps measurements of states onto optimal control actions.

The domain of the PWA function is partitioned into a finite number of regions (also

called critical regions), which are associated with affine functions that determine

the optimal control input(s) for a given state measurement. A method that identi-

fies the active region, hence an active control affine function, is a called the Point

Location (PL) procedure, which consumes a major of time in the online implemen-

tation of explicit MPC. Figure 4.1 illustrates an example of an explicit solution for

a 2-state system with one control input. Here, the planar domain (Figure 4.1(a))

consist of 278 critical regions, over which the associated pre-computed control law

in the form of a PWA function is defined (Figure 4.1(b)).

The most prominent advantages of explicit MPC can be summarized as follows:

• Once the explicit controller is obtained, via computing the optimization prob-

lem offline, the online implementation requirements are decreased to a mere

function evaluation (e.g. no matrix inversions are required). Needlessly to

say, certification of those controllers is much cheaper (compared to the im-

plicit approach).

• The low implementation cost of explicit controllers allows their usage even on

simple hardware such as programmable logic controllers (PLC) or embedded
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(b) Explicit representation of MPC feedback law.

Figure 4.1: Figure shows polytopic PWA explicit optimizer for a system with two

states and one control input.

microchips.

• Reduced (online) computational effort enables explicit MPC feedbacks to be

used on systems, where high update frequencies are required (e.g. aerospace

and automotive industries)

• Explicit MPC controllers, e.g. example of which is shown in Figure 4.1, offer

a better understanding of the control behavior and properties (comparing to

the implicit approach). This is often exploited e.g. in safety analysis.

On the other hand, the explicit MPC implementation can be still prohibitively

expensive for large optimization problems. Even though that the problem is solv-

able for a multitude of interesting control applications, the offline computation

effort required to solve the multi-parametric optimization problem grows fast as

the problem size increases. One should here point out that the complexity of such

explicit optimizers grows hand in hand as the size of the optimization problem

increases. As was shown by numerous researchers (e.g. Borrelli (2003b); Grieder

(2004)), the complexity of explicit optimizers, expressed by the number of region

over which the PWA control law is defined, can grow exponentially with the predic-

tion horizon (i.e., with the number of optimized variables and constraints). Hence,

one can conclude that the required storage space (as well as the online function eval-

uation time needed in PL problem) for the explicit MPC controller implementation
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can easily overcome the hardware limitations, since the commonly used industrial

low-cost hardware have their memory capacities strictly limited only up to a several

kilobytes. Therefore, it is important to track this complexity of explicit optimizers

in order to meet required limits.

4.1 Multiparametric Programming

As we have already mentioned, explicit model predictive control is based on multi-

parametric programming, where the optimal solution of an optimization problem is

determined for a full range of parameter values (feasible initial conditions) in order

to obtain an explicit representation of MPC feedback law. In this section we will

discuss how these explicit solutions are constructed for both multiparametric linear

programming (mp-LP) and multiparametric quadratic programming (mp-QP). Let

us assume following optimization problem

J⋆ = min
z

J(z, θ) (4.1a)

s.t. Gz ≤ w + Eθ, (4.1b)

with a vector of optimization variables z ∈ R
nz and a vector of parameters θ ∈ R

nθ .

The objective function J(z, θ) attains its optimum at J⋆. The constraints are

formed by matrices G ∈ R
r×nz , w ∈ R

r and E ∈ R
r×nθ , where r denotes the

number of constraints.

Remark 4.1.1 Note that in the previous Section 3.2.6 we have shown how to

derive dense form of MPC formulated as a QP (3.33), with decision variables

Uol ∈ R
Nm and parameter vector x(t) ∈ R

n. Here, for generality, we denote

optimization variables by z ∈ R
nz as the control inputs might not be the only opti-

mized variables (see e.g. (3.22)), i.e. Uol ⊆ z. For the same reason the vector of

all parameters is denoted by θ ∈ R
nθ , i.e. x(t) ⊆ θ.

In multiparametric programming we are interested to compute three compo-

nents:

• The first component is a feedback law, which is also referred as an optimizer,

i.e. µ⋆(θ) = arg minz J(z, θ) w.r.t. Gz ≤ w + Eθ, that takes a form of a

polytopic PWA function.
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• The second component is the objective function J⋆(θ) in a polytopic PWA

form (if (4.1) is a mp-LP) or in a polytopic PWQ form (if (4.1) is a mp-QP).

• The third component is the polytopic partition, separated into polytopes

(called regions), denoting a domain of all feasible parameters θ, i.e.

Ω = {θ ∈ X | ∃z : Gz ≤ w + Eθ}, (4.2)

over which both functions µ⋆(θ) and J⋆(θ) are being defined.

4.1.1 Categorization of Inequalities

Given is a set of r inequalities (4.1b). Let I = {1, . . . , r} be the vector of indexes,

i.e. GI = G as it retains all of its rows (indexed by I). Denote submatrices GA,

EA, wA, GN , EN , wN of matrices G, E and w, for A ⊆ I and N ⊆ I such that

A∪N = I and A∩N = ∅. Moreover denote nA = |A| and nN = |N | as a number

of active and inactive indicators, respectively.

Definition 4.1.2 (Active constraints) An inequality is referred to be active if

it holds with equality, for some θ ∈ R
nθ , at the optimum, i.e.

A = {i ∈ I | Giz
⋆ − wi − Eiθ = 0}. (4.3)

Definition 4.1.3 (Inactive constraints) An inequality is referred as an inactive

if it holds with strict inequality, for some θ ∈ R
nθ , at the optimum,i.e.

N = {i ∈ I | Giz
⋆ − wi − Eiθ < 0}. (4.4)

Definition 4.1.4 (Critical region) A polytopic set of parameters θ associated to

a particular feasible and optimal combination of indicators A is referred as a critical

region and can be denoted by

R = {θ ∈ Ω | A(A)θ ≤ b(A)}. (4.5)

Definition 4.1.5 (LICQ) Let A be a set of active constraints, then we have that

matrix GA satisfies the linear independence constraint qualification (LICQ) if its

gradients are linearly independent, i.e. matrix GA is of full row rank.

One should note here that violation of LICQ informs that in GA are included

redundant constraints, thus indicates a degeneracy.
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4.1.2 Multiparametric Linear Programming

Assume an mp-LP program

J⋆(θ) = min
z

cT z (4.6a)

s.t. Gz ≤ w + Eθ, (4.6b)

with decision variables z ∈ R
nz , parameters θ ∈ R

nθ and vectors/matrices c ∈ R
nz ,

G ∈ R
r×nz , w ∈ R

r and E ∈ R
r×nθ . In this section we will introduce the general

concept how to synthesize a result of a mp-LP problem (4.6), which consist of:

• the optimizer µ⋆(θ) = arg minz J(z, θ), w.r.t. Gz ≤ w + Eθ

• the objective function J⋆(θ),

• and polytopic partition Ω = ∪iRi consisting of M critical regions.

Since problem (4.6) is convex, the Karush-Kuhn-Tucker (KKT) conditions are

necessary and sufficient conditions (Boyd and Vandenberghe (2004)) for solution

z⋆ to be a global minimizer. Let us now state the Lagrangian function of the LP

problem (4.6) as

L(z, θ, λ) = cT z + λT (Gz − w − Eθ) (4.7)

and the corresponding KKT conditions as

Gz⋆ − w − Eθ ≤ 0, (4.8a)

λ⋆ ≥ 0, (4.8b)

λ⋆T (Gz⋆ − w − Eθ) = 0, (4.8c)

cT + λ⋆TG = 0, (4.8d)

where z⋆ ∈ R
nz and λ⋆ ∈ R

r are optimal solutions of primal and dual problem

with zero duality gap. Further denote equation (4.8a) as the primal feasibility

condition, equation (4.8b) as the dual feasibility condition, equation (4.8c) as the

complementary slackness condition and equation (4.8d) as the stationary condition.
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By separating KKT conditions (4.8) into active and inactive constraints, as in

Section 4.1.1, one obtains

GAz
⋆ − wA − EAθ = 0, (4.9a)

GN z
⋆ − wN − EN θ < 0, (4.9b)

λ⋆N ≥ 0, (4.9c)

λ⋆A ≥ 0, (4.9d)

λ⋆A
T (GAz

⋆ − wA − EAθ) = 0, (4.9e)

λ⋆I
T (GN z

⋆ − wN − EN θ) = 0, (4.9f)

cT + λ⋆TG = 0. (4.9g)

Here, by a simple investigation of (4.9c)−(4.9f) one can deduce that Lagrange

multipliers associated with inactive constraints λI must be equal to zero, while in a

case of active constraints Lagrange multipliers λA can be (but need not be) strictly

positive, i.e.

λ⋆N = 0, (4.10a)

λ⋆A > 0. (4.10b)

To see this, notice that for all inactive constraints (4.4) we have that GN z⋆−wN −
EN θ < 0 and hence from (4.9f) we deduce that λ⋆N = 0.

By plugging (4.10) into (4.9) and omitting the complementary slackness in (4.9e)

and(4.9f)1. Then the KKT conditions (4.9) simplifies into

GAz
⋆ − wA − EAθ = 0, (4.11a)

GN z
⋆ − wN − EN θ < 0, (4.11b)

λ⋆N = 0, (4.11c)

λ⋆A > 0, (4.11d)

cT + λ⋆A
TGA = 0. (4.11e)

By solving equation (4.11a) for z⋆ one can obtain optimizer

µ⋆(θ) = αzθ + βz, (4.12)

1The complementary slackness condition in (4.9e) is trivially satisfied due to (4.9a) and (4.9f)

is redundant due to (4.10a)
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with

αz = G−1
A EA,

βz = G−1
A wA.

The dual optimizer can be derived from the stacionarity condition (4.11e) as

λ⋆A = −G−1
A

T
c. (4.14)

The critical region is then given as an intersection of all inequalities in (4.11).

particularly it can be denoted by

R = Pprimal ∩ Pdual, (4.15)

hence as an intersection of Pprimal defined by inactive primal condition (4.11b),

where z⋆ is substituted by (4.12), and Pdual defined by active dual feasibility (4.11d).

Subsequently we have that

(GNαz − EN )θ +GNβz − wN < 0, (4.16a)

G−1
A

T
c < 0. (4.16b)

But, since equation (4.16b) does not contribute any restriction for parameter θ, it

can be omitted and the critical region can be constructed by a closure of (4.16a),

i.e. replacing < by ≤, as

R = {x ∈ R
n | Ax ≤ b}, (4.17)

which is a polyhedron with matrices A ∈ R
nc×n, b ∈ R

nc defined by

A =
[
GNαz − EN

]
, b =

[
wN −GNβz

]
,

where nc denotes the number of (non-redundant) half-spaces.

To complete, the objective function (as a function of parameter θ) can be ob-

tained via substitution of (4.12) into (4.6a), where we have that

J⋆(θ) = αJθ + βJ , (4.18)

with matrices

αJ = cTαz,

βJ = cTβz.
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Remark 4.1.6 In the aforementioned procedure we are considering that matrix

GA is invertible. However this assumption does not always hold. If the matrix

GA is not invertible, then one can still apply QR decomposition, using of which

will reflect in the computational complexity of the problem. Interested readers are

referred to Borrelli et al. (2016).

4.1.3 Multiparametric Quadratic Programming

In this section we will provide a general procedure how the mp-QP computes a given

problem and yields a solution, which is composed by these three components:

• the optimizer µ⋆(θ) = arg minz J(z, θ),

• the objective function J⋆(θ),

• and polytopic partition Ω = ∪iRi consisting of i = 1, . . . ,M critical regions.

Consider a mp-QP program given as

J⋆(θ) = min
z

1
2z

THz + (FT θ + fz)
T z + θTY θ + fT

θ θ + fc (4.20a)

s.t. Gz ≤ w + Eθ, (4.20b)

where z ∈ R
nz is an optimized variable, θ ∈ R

nθ is a parameter and H ∈ R
nz×nz ,

H = HT ≻ 0, F ∈ R
nθ×nz , fz ∈ R

nz , Y ∈ R
nθ×nθ , fθ ∈ R

nθ , fc ∈ R, G ∈ R
r×nz ,

w ∈ R
r, E ∈ R

r×nθ . As it was shown in (Boyd and Vandenberghe, 2004), the KKT

are necessary and sufficient conditions for solution z⋆ to be a global minimizer,

since (4.6) is convex. Hence, we can state the Lagrangian function of the given

problem (4.20) by

L(z, θ, λ) = 1
2z

THz+(FT θ+ fz)
T z+ θTY θ+ fT

θ θ+ fc+λT (Gz−w−Eθ) (4.21)

and the KKT conditions can be formulated as

Gz⋆ − w − Eθ ≤ 0 (4.22a)

λ⋆ ≥ 0 (4.22b)

λ⋆T (Gz⋆ − w − Eθ) = 0 (4.22c)

Hz⋆ + FT θ + fz +GTλ⋆ = 0, (4.22d)

where z⋆ ∈ R
nz and λ⋆ ∈ R

r are optimal solutions of primal and dual problem

with zero duality gap. Recalling from Section 4.1.2, the equation (4.22a) refers
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the primal feasibility condition, equation (4.22b) the dual feasibility condition,

equation (4.22c) the complementary slackness condition and equation (4.22d) the

stacionarity condition. By introducing the conception of constrains categorization

(see Section 4.1.1), where active constraints are denoted by index A and inactive

by N as in (4.3) and (4.4), respectively, we can recast the KKT condition into form

of

GAz
⋆ − wA − EAθ = 0, (4.23a)

GN z
⋆ − wN − EN θ < 0, (4.23b)

λ⋆A > 0, (4.23c)

λ⋆N = 0, (4.23d)

Hz⋆ + FT θ + fz +GT
Aλ

⋆
A = 0. (4.23e)

Note that we have here, for the same reasons as in previous Section 4.1.2, omitted

the complementary slackness (4.22c) condition.

To proceed, from the stationary condition (4.23e) we have that

µ⋆(θ, λ⋆) = −H−1(FT θ + fz +GT
Aλ

⋆
A). (4.24)

By substituting (4.24) into active primal feasibility (4.23a) one will obtain

−GAH
−1(FT θ + fz +GT

Aλ
⋆
A)− wA − EAθ = 0,

from which optimal Lagrange multipliers can be compactly expressed as

λ⋆A = αλθ + βλ (4.25)

with

αλ = (GAH
−1GT

A)
−1(−GAH

−1FT − EA),

βλ = (GAH
−1GT

A)
−1(−GAH

−1fz − wA).

Finally the optimizer is obtained via substituting λ⋆A into (4.24) what yields

µ⋆(θ) = αzθ + βz (4.27)

with

αz = H−1GT
Aαλ −H−1FT ,

βz = −H−1fz −H−1GT
Aβλ.
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Let us now construct a critical region which is given by (4.15), i.e. as an in-

tersection of nactive primal conditions (4.23b) and active dual conditions (4.23c),

where active Lagrange multipliers (4.25) and optimizer (4.27) are replaced. Subse-

quently a critical region, for a given vector of active constraints, can be defined as

a closure of these inequalities, i.e. replacing < by ≤, as

R = {θ ∈ R
nθ | Aθ ≤ b}, (4.29)

which is a polyhedron with matrices A ∈ R
nH×nθ , b ∈ R

nH defined by

A =

[
GNαz − EN

−αλ

]
, b =

[
wN −GNβz

βλ

]
,

where nH denotes the number of (non-redundant) half-spaces.

The objective function J(θ) can be then easily obtained via substitution of the

optimizer (4.27) into objective (4.20a). The substitution then yields

J⋆(θ) = θTαJθ + βJθ + γJ , (4.30)

where

αJ = 1
2α

T
zHλz + Fαz + Y,

βJ = βT
z Hαz + βT

z F
T + fT

z αz + fθ,

γJ = 1
2β

T
z Hβz + fT

z βz + fc,

what completes the solution of mp-QP problem.

Remark 4.1.7 In the previous procedure we have not taken into account degenera-

tion. In another words we have assumed that matrix GA is of full row rank (LICQ)

and that matrix GA has at most m linearly independent rows.

4.1.4 Properties of Multiparametric Solutions

In previous Sections 4.1.2 and 4.1.3 we have shown how to derive three essential

ingredients of multiparametric solutions: the optimizer µ⋆(θ), the objective func-

tion J⋆(θ), as functions of a parameter θ, and the underlying polytopic partition

∪iRi. In the sequel we will summarize their properties.

Polytopic partition

The feasible set Ω ⊂ R
nθ is partitioned into M critical regions Ri with
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∪iRi = Ω. The regions have disjoint interiors int(Ri) ∩ int(Rj) = ∅, ∀i 6= j.

The i−th critical region (for an appropriate set of parameters θ) is denoted

by

Ri = {θ ∈ R
nθ | Aiθ ≤ bi}, (4.32)

with matrices Ai ∈ R
nH×nθ and bi ∈ R

nH defined in (4.1.2) and (4.1.3),

respectively. Furthermore, nH is the number of half-spaces defining the i-th

region.

Optimizer

The optimizer µ⋆ : Ω → R
nz is a continuous PWA function defined over

polytopic partition Ω, hence it is a polytopic PWA function in the sense of

Def. 2.3.1, denoted as

µ⋆(θ) =





Fz,1θ + gz,1 if θ ∈ R1

...

Fz,Mθ + gz,M if θ ∈ RM ,

(4.33)

with matrices Fz ∈ R
nz×nθ and gz ∈ R

nz .

Objective function

In mp-LP the objective function J⋆ : Ω→ R is a continuous and convex PWA

function defined over polytopic partition Ω, thus a polytopic PWA function

(cf. Def 2.3.1), denoted by

J⋆(θ) =





FJ,1θ + gJ,1 if θ ∈ R1

...

FJ,Mθ + gJ,M if θ ∈ RM ,

(4.34)

with a matrix FJ ∈ R
nθ and a scalar gJ ∈ R.

In mp-QP the objective function J⋆ : Ω→ R is a continuous and convex PWQ

function defined over polytopic partition Ω, i.e. polytopic PWQ function (see

Def. 2.3.2), denoted as

J⋆(θ) =





θTHJ,1θ + FJ,1θ + gJ,1 if θ ∈ R1

...

θTHJ,Mθ + FJ,Mθ + gJ,M if θ ∈ RM ,

(4.35)

with a matrix HJ ∈ R
nθ×nθ , FJ ∈ R

nθ and a scalar gJ ∈ R.
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Theorem 4.1.8 The optimizers µ⋆(θ) defined in (4.12) or in (4.27) are continuous

PWA functions defined over a feasible set Ω. The value function J⋆(θ) given in

a form of (4.18) is a continuous and convex PWA function defined over Ω, while

in mp-QP the value function (4.30) is a continuous and convex PWQ function

defined over Ω. The critical regions (4.32) and (4.29), respectively, are polytopes

with disjoint interiors, the union of which covers the entire set of feasible parameters

∪iRi = Ω, ∀i = 1, . . . ,M , where M denotes number of critical regions. The set Ω

is hence polytopic partition defined as in Definition 2.2.12.

Proof. The proof can be seen in Borrelli et al. (2016).

To illustrate results of the multiparametric programming we have devised MPC

controller with model xk+1 =
[
0.5403 −0.8415
0.8415 0.5403

]
xk +

[−0.4597
0.8415

]
uk, describing dynam-

ics of a pendulum, constraints −5 ≤ x ≤ 5, prediction horizon N = 5, weighting

matrices Qx = I2, Qu = 1 and norms 1-norm, 2-norm to cover both mp-LP and

mp-QP scenario. All multiparametric results (polytopic partition, optimizer and

objective function) are depicted in in Figure 4.2. Here one should note the com-

plexity difference (in terms of number of regions over which these functions are

defined) between mp-LP (440 regions) and mp-QP (93 regions), which stems from

the increased number of optimized variables and constraints (cf. Section 3.2.4).

4.2 Multiparametric Algorithms

The goal of all multiparametric algorithms is to synthesize the polytopic partition

Ω, which is separated into M critical regions Ri, i = 1, . . . ,M , and both objective

function J⋆(θ) and optimizer µ⋆(θ) that are defined over the aforementioned poly-

topic partition. In other words, they need to determine all components defined in

Section 4.1.4. All multiparametric algorithms are composed of two parts:

Active set generator: which aims at determining all active (4.3) constraints that

would generate all full-dimensional critical regions (4.5).

KKT solver: that constructs all critical regions, via using the list of active con-

straints formed in the active set generator, that would cover the entire feasible

set of parameters Ω. The principle of this solver is described in Section 4.1.2

and 4.1.3, respectively.
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(a) Polytopic partition of mp-LP. (b) Polytopic partition of mp-QP.
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(c) Optimizer of mp-LP.
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(d) Optimizer of mp-QP.
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(e) Objective function of mp-LP. (f) Objective function of mp-QP.

Figure 4.2: Illustrative results of mp-LP and mp-QP.
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Since the KKT solver is practically the same for all algorithms, hence we will

concentrate at the active set generators. In sequel we will introduce three commonly

used multiparametric algorithms. Particularly, we will introduce the enumeration

based method (Gupta et al., 2011), the geometric method (Baotić, 2002), embeded

in MPT toolbox (Herceg et al., 2013a), and a geometric approach (Bemporad et al.,

2002b)

4.2.1 Enumeration Based Approach

The active set generator in the explicit enumeration based approach is straightfor-

wardly constructed by a simple listing of all possible combinations of active sets.

Actually, this was the first approach in multiparametric programming, which was

however criticized by its limited applicability due to its computational complexity.

The main drawback was that only a fragment of the entire combination tree yielded

full-dimensional critical regions inside of Ω out of the explored space X , thus a lot

of unnecessary computation was required. Moreover the combination tree could

easily become too complex even for relatively small problems. Therefore, for a long

time, the research community was not paying any attention to this technique.

Recently, however, this enumeration based technique was ”reinvented”by Gupta

et al. (2011). Its authors have shown that this approach can be enhanced by a prun-

ing criteria, which significantly reduces the total number of active sets (needed to

be enumerated), while also providing a guarantee that its solution will arrive at the

minimal number of partitions (critical regions) while ensuring that the whole Ω will

be explored. In C. Feller (2013) the authors have analyzed this technique and shown

its performance, compared to the commonly used geometric approach (Baotić,

2002), on two illustrative examples. It was shown that this enumeration based

technique is very practical, for MPC problems with simple constraints and predic-

tion horizon, even when the state space is large (e.g. with 80 states). Note that

this approach has been further carefully studied and many researchers are trying

to further enhance this technique (see e.g. P. Ahmadi-Moshkenani and Johansen

(2016), where facet-to-facet property has been exploited).

The principle of this approach will be explained on two examples. In the first

one we illustrate the applicability of this approach in LP is pure, while in the second

example we fully demonstrate its potential.

Consider two dimensional mp-LP as in (4.6), where z ∈ R
nz with s = 2



88 CHAPTER 4. EXPLICIT MODEL PREDICTIVE CONTROL

(e.g. single input m = 1 and prediciton horizon N = 2) and five constraints r = 5.

From the fact that we are dealing with LP problem we can conclude that the op-

timum will be located at the vertex of (4.6b), hence in the intersection of two

constraints (see LP properties in Section 2.2.3). Therefore, we need to generate

list of active sets only for all couples of active constraints. (In general we need to

produce nz-tumples of all available constraints.) Thus, our list of all possible active

sets as in (4.3) will be defined by

W = {A1 = {1, 2}, . . . ,A4 = {1, 5},A5 = {2, 3}, . . . ,A10 = {4, 5}}. (4.36)

Now comes the crucial part, where we need to determine if combinations Ai, ∀i =
1, . . . , 10 in W are optimal. Authors in Gupta et al. (2011) proposed to use LP in

a form

max
t,z,θ,λ⋆

Ai

t (4.37a)

s.t. cT + λ⋆Ai

TGAi
= 0, (4.37b)

GAi
z − wAi

− EAi
θ = 0, (4.37c)

t ≤ wNi
+ SNi

θ −GNi
z, (4.37d)

λ⋆Ai
≥ t, (4.37e)

t ≥ 0, (4.37f)

with decision variables t, z, θ, λ⋆Ai
, Ni = I\Ai. We have that (4.37) is feasible if

t⋆ > 0 what indicates that the active set Ai is feasible optimal and yields a full-

dimensional critical region. Thus Ai is preserved in the listW . On the other hand,

if (4.37) is infeasible, then Ai is not optimal and can be directly removed from the

listW . We would like to note, that since we are dealing here with mp-LP problem,

there is no need to check whether Ai is at least feasible (and hence to employ the

pruning technique from Gupta et al. (2011)). By iterative computation of all ten

combinations, the entire list W will be explored and only optimal combinations of

active constraints will be stored. Hence part of the active set generator is finished

and the priority is then handovered to KKT solver, where mp-LP algorithm will

synthesize polytopic partition, objective function and optimizer as in Section 4.1.4

via method described in Section 4.1.2.

Remark 4.2.1 Advantage of this mp-LP solver based on the explicit enumeration

technique is that we need to explore only nz-tumples of all constraints. Therefore,
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this method could be used for processes with e.g. single input (m = 1) and twenty

states nθ = n = 20. But the limitation is more strict because if e.g. 1-norm is

considered (see Section 3.2.3) in MPC problem as in (3.22), then the number of

optimized variables will be here automatically increased from nz = Nm to n̂z =

(nz+Nm+Nn) and number of constraints from r to r̂ = (r+2Nm+2Nn) , where

N denotes prediction horizon, m number of inputs and n number of states 2. By

considering the aforementioned setup, we would end up with n̂z = 24 optimization

variables and r̂ = 89 constraints, which would result in computational explosion of

such mp-LP algorithm.

The contribution of Gupta et al. (2011) is in mp-LP algorithms omitted, hence

we will provide an additional example. Consider mp-QP problem given by (4.20),

where we denote nz dimension of optimized variables, r as number of constraints

and nθ as dimension of parameter θ. From (2.2.4) we have that the optimum of

QP may be located anywhere, at the face or in the interior, of Ω. Therefore, the

list of all active sets will be defined as

W = {A1 = {},A2 = {1}, . . . ,Ar+1 = {r}, . . . ,
Ar+2 = {1, 2}, . . . ,AnA

= {1, 2, . . . , r}},

where nA =
(

r
nz

)
, hence the maximal number of optimal active sets can be k =

∑nz

i=0

(
r
i

)
. Therefore, in our case we have to explore all k candidates of active sets

via LP problem

max
t,z,θ,λ⋆

Ai

t (4.39a)

s.t. Hz⋆ + Fθ + f +GAi

Tλ⋆Ai
= 0, (4.39b)

GAi
z − wAi

− EAi
θ = 0, (4.39c)

t ≤ wNi
+ SNi

θ −GNi
z, (4.39d)

λ⋆Ai
≥ t, (4.39e)

t ≥ 0, (4.39f)

2If 1−norm is considered in MPC then we need to add additional optimization (slack) variables

ǫx and ǫu. Particularly Nn variables for term ‖Qxxk‖1 and Nm variables for term ‖Quuk‖1. The

constraints are also extended by the aforementioned slacks variables, e.g. by 2n for each predicted

step ±ǫx
k
≤ Qxxk and by 2m for each ±ǫu

k
≤ Quuk, what is together (2Nn + 2Nm) constraints.

Also note that the terminal penalty (e.g. ‖PxN‖1) is here omitted.
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with decision variables t, z, θ, λ⋆Ai
, Ni = I\Ai. This modified problem then indi-

cates whether the given active set Ai is feasible optimal (t⋆ > 0). If we will compare

mp-QP problem, with the same setup nz = 2 and r = 5, where k = 16 with mp-LP

problem where k = 10, then one can say that we are disadvantaged, in a sense that

we need to evaluate more combinations of active constraints. However, the main

added value of Gupta et al. (2011) lies in the pruning technique, which can tackle

this problem that has arisen.

The concept of the proposed pruning technique relies on the fact that examined

set of active constrains can be either feasible optimal, feasible or infeasible. Partic-

ularly, if active set Ai is not feasible optimal, i.e. LP problem (4.39) is infeasible,

then the same LP problem can be solved once again but with omitted stationar-

ity condition (4.39b). Then if this modified problem is also infeasible, then we

have that Ai and all its subsets are infeasible and can be removed from the list

W .This technique can significantly decrease the total number of active set, which

the algorithm need to explore, thus to reduce the computational complexity of this

enumeration based approach.

And the whole iterative procedure is summarized in the Algorithm 1 and the

pruning technique is illustrated in Figure 4.3. Here the algorithm determined that

active set combinationAi = 3 is infeasible, hence all subsequent subsets Ai = {⋆3⋆}
were removed from the list W .

. . .

. . .

. . .

. . .

{}

{1} {2} {3} {r}

{1, 2} {1, 3} {1, r} {3, 4} {3, r}

{1, 3, 4} {1, 3, r}
If {3} is infeasible, then
each node where {∗3∗}
appears can be pruned.

Figure 4.3: Pruning in enumeration strategy used in Gupta et al. (2011).
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Algorithm 1: Enumeration based approach.

Input: List of all candidates: W = Ai, i = 1, . . . ,
∑nz

i=0

(
r
i

)

Output: List of all optimal candidates: W⋆ = Aj

1 Initialization: i← 1, k ←∑s
i=0

(
r
i

)
;

2 while i ≤ k do

3 Extract i-th element from the list W : Ai ← Wi;

4 if GAi
has full row rank then

5 Solve LP problem (4.39);

6 if feasible then

7 i← i+ 1;

8 else

9 Solve LP problem (4.39) with dropped (4.39b);

10 if feasible then

11 Remove combination Ai: W ←W\Ai;

12 k ← k − 1;

13 else

14 Pruning: remove all combinations of Ai: W ←W\{⋆Ai⋆};
15 k ← |W|;
16 end

17 end

18 else

19 Remove combination Ai: W ←W\Ai;

20 k ← k − 1;

21 end

22 end

23 return W⋆ ←W ;

One should note that the shown Algorithm 1 is simplified. This is due to the

fact that removing sequence Ai from the entire list of W can be costly operation,

since it can be performed multiple times. Therefore, it is more efficient to save

the infeasible combinations and enforce the algorithm to construct iteratively W
without the mentioned infeasible combinations. Subsequently, as the enumeration

algorithm is finished, set of all optimal active sets W⋆ is determined, KKT solvers

then takes priority and computes all results shown in Section 4.1.4.
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Remark 4.2.2 The pruning technique can be even more enhanced via taking into

account all inequalities that can not be satisfied at the same time. For example

consider these two constraints

− a ≤ z ≤ a (4.40)

that we can equivalently formulate as

z ≤ a, (4.41a)

−z ≤ a. (4.41b)

It is obvious that if constraint (4.41a) is active, then constraint (4.41b) can not

be active (and vice versa). Therefore, we can conclude that their combination is

incompatible, hence this combination (in any level) can be immediately removed

from list W.

4.2.2 Multiparametric Algorithm I

Multiparametric algorithm of Baotić (2002), which can be categorized as a geomet-

ric approach, tries to avoid the combination explosion of the complete enumeration

via applying recursive exploration strategy in order to explore only feasible set of

parameters Ω and not the whole set X . Therefore, evaluation of a lot of infeasible

active set candidates is here avoided, what was in Gupta et al. (2011) handled by

pruning technique.

Given is problem (4.1), with parameters subjected to θ ∈ X . Denote an ar-

bitrary feasible parameter θ0 ∈ X , which is commonly chosen as a center of X ,
Q = θ0 to be a set of all unexplored candidates and Qi as the i-th candidate of

set Q. Algorithm of (Baotić, 2002) proceeds as follows. Extract a candidate θ0

from Q, i.e. θ0 = Q1. For the given parameter θ0 solve the multiparametric opti-

mization problem (4.1). If this problem is feasible, then the optimizer µ⋆(θ0) is ob-

tained. Subsequently, by plugging µ⋆(θ0) into primal feasibility condition of (4.1),

i.e. (4.8a) or (4.23a), we determine set of all active constraints Aθ0 . With the set

of active constraints in a hand one can compute the optimizer µ⋆
i (θ), the objective

function J⋆
i (θ) and the critical region Ri = {θ|Ajθ ≤ bj}, where j = 1, . . . , nF

denotes the j-th half-space of Ri, via procedure shown in Section 4.1.2 and Sec-

tion 4.1.3, respectively. For each face Fj = {θ|Ajθ = bj} of the critical region Ri

compute the center θ̄j ∈ Fj and shift it by a scalar ǫ > 0 in direction of the normal

vector Aj , i.e. θj = θ̄j + ǫ(Aj)
T . Next, remove all redundant candidates from the
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vector θj that are contained in already created regions, i.e. θj = {} if θj ∈ ∪iRi,

∀j. Finally, discard examined parameter Q = Q\θ0 and store all unexplored can-

didates Q = Q ∪j θj . The algorithm then proceed iteratively by extracting a next

candidate parameter θ0 = Q1, until the set of all candidates is empty Q 6= {}.
The result of this algorithm is objective function J⋆(θ) and optimizer µ⋆(θ) de-

fined over polytopic partition Ω, according to Section 4.1.4. The procedure of this

approach Baotić (2002) is summarized in Algorithm 2 and illustrated in Figure 4.4.

Algorithm 2: Algorithm of Baotić (2002).

Input: X
Output: Ω, J⋆(θ), µ⋆(θ)

1 Initialization: Q ← θ0, i← 0;

2 while Q 6= {} do
3 Extract the first vector of parameters: θ0 ← Q1;

4 Solve (4.1) with θ = θ0 and obtain µ⋆(θ0);

5 if infeasible or θ0 ∈ ∪iRi then

6 Q ← Q\θ0;
7 else

8 Update increment: i← i+ 1;

9 Find active sets:Aθ0 ← {k ∈ I | Gkµ
⋆(θ0)− wk − Ekθ0 = 0};

10 Synthesize: µ⋆
i (θ), J

⋆
i (θ) and Ri = {θ|Ajθ ≤ bj}, j = 1, . . . , nF ;

11 for j = 1, . . . , nF do

12 Find a center of the face: θ̄j ∈ Fj = {θ|Ajθ = bj};
13 Create a new point: θj ← θ̄j + ǫ(Aj)

T , with ǫ > 0;

14 Remove redundant candidates: θj ← {} if θj ∈ ∪iRi;

15 end

16 Remove the examined candidate: Q ← Q\θ0;
17 Store all new candidates: Q ← Q∪j θj ;
18 end

19 end

20 return Ω← ∪iRi, µ
⋆(θ)← ∪iµ⋆

i (θ), J
⋆(θ)← ∪iJ⋆

i (θ);

The main advantage of this approach provided by Baotić (2002) is that only

the regions from the interested feasible set Ω are being investigated, hence the

computational complexity of such algorithm is bearable. A comparison of this

approach and the aforementioned enumeration technique from Gupta et al. (2011)
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(a) Initial point θ0.
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(b) Constructed critical region based on given θ0.
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(c) Exploring new points θj .
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(d) Construction of critical regions by means of

given θj .

Figure 4.4: Figure illustrates the Algorithm 2. Here the black dots represent the

points θj stored in the set Q, based on which critical regions R are

constructed.

is shown e.q. in C. Feller (2013). On the other hand, the disadvantage of this

technique is that there is no theoretical guarantee that the union of all created

critical regions will cover the entire feasible set of all parameters Ω = ∪iRi. This

is due to ǫ, that is used to obtain new candidates θj (by shifting central points of

faces θ̄j ∈ Fj). Even though that this scalar is typically set as a very small number

(e.g. 10−5), there is possibility that in this tiny area actually exist another critical

region(s), thus we have that Ω ⊇ ∪iRi (see e.g. Figure 4.4(d), where such gap is

created under the region R3). Moreover, since only center of a face is considered,

this might also lead to not exploring certain areas, hence to create gaps in Ω.

Remark 4.2.3 In Algorithm 2 one can come across to critical regions, which are
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not full-dimensional (degenerated), what can mean e.g. that the point x0 lies in the

facet of another critical region. Then an additional action is needed to be performed,

e.g. perturbation that further shifts the point θ0, in any direction, until the critical

region is fully-dimensional.

4.2.3 Multiparametric Algorithm II

In previous section we have shown algorithm which uses geometry in order to

construct the explicit solution. Specifically, critical regions were derived based

on exploring faces of already constructed regions. In what follows, we present

algorithm proposed in Bemporad et al. (2002b), the main idea is also to exploit

geometry to synthesis critical regions, but with a different exploration of feasible

space X .
Consider that we are given problem (4.1) with parameters subjected by θ ∈ X .

Denote Q = {Q1, . . . QM} to be the list of all critical region candidates. Algo-

rithm in (Baotić, 2002) then proceeds as follows. Initialization of algorithm is

accomplished by assigning to the set of all unexplored candidates Q entire feasible

domain, i.e. Q = X . Then an investigated region Q0 = {θ | Hi
Qθ ≤ Ki

Q}, with
half-spaces i = 1, . . . , nHQ

, is extracted from the set Q. Generally, it does not mat-

ter which one is chosen, but usually the first one Q1 is chosen, i.e. Q0 = Q1 = X .
Next, for this particular candidate Q0, a feasible parameter θ0 is determined such

that θ0 ∈ Q0. This can be done by solving one LP

max
θ,z,ǫ

ǫ (4.42a)

s.t. Hi
Qθ + ǫ‖Hi

Q‖2 ≤ Ki
Q, i = 1, . . . , nHQ

(4.42b)

Gz − Eθ − w ≤ 0. (4.42c)

Problem in (4.42) is basically enhanced Chebychev problem (2.20), by primal fea-

sibility constraints (4.42c). This particular constraints are here embedded in order

to restrict the parameter-space only to Ω, hence the redundant regions are not

explored. By recalling from Section 2.2.3, the problem (4.42) can return three

different results from which we can deduce that:

• If the optimized radius of the ball ǫ > 0, then the investigated critical region

is full-dimensional.
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• If the optimized radius of the ball ǫ = 0, then the investigated critical region

is lower-dimensional.

• If the optimized radius of the ball ǫ < 0, then the investigated critical region

is empty.

Assume, that the solution of the problem (4.42) returns the center θ0 of the

full-dimensional critical region θ0 ∈ Q0. In order to obtain the optimizer µ⋆(θ0) we

solve (4.1) for the given parameter θ0. With θ0 in hand, we solve the problem (4.1)

what leads to the optimizer µ⋆(θ0). The vector of all active constraints Aθ0 is

obtained by solving KKT primal feasibility condition, with θ0 and the optimizer

µ⋆(θ0). Subsequently, an objective function J⋆(θ), an optimizer µ⋆(θ) and a critical

region R ⊆ Q0 are computed for the neighborhood of the parameter θ0 via proce-

dure shown in Section 4.1.2 and 4.1.3, respectively. Removing the created critical

region R from the investigated set Q0 typically leads to an unconvex set. Yet,

one can still use a set difference technique Q0\R (cf. Definition 2.2.13), which will

tessellate the Q0 into collection of k candidates, i.e. Q\Q0 = {QnQ
}knQ=1. Sub-

sequently, the examined region Q0 is removed Q = Q\Q0 and all new candidates

are added into the list Q = Q ∪nQ
QnQ

. Algorithm then proceeds iteratively by

selecting a next candidate from Q, until the list is empty Q = {}. The procedure of
this geometric approach is summarized in Algorithm 3 and illustrated in Figure 4.5.

The main advantage of this approach, compared to the aforementioned method

(Baotić, 2002), is that here we have theoretical guarantee of covering the entire

set of all feasible parameters Ω = ∪jRj . On the other hand, the computational

complexity is increased, since (mainly) the set difference is computationally ex-

pensive technique. Another drawback of this approach is that if problem (4.42) is

feasible with ǫ = 0, hence the investigated critical region would be degenerated,

an additive handling is needed to be performed (e.g. perturbation) in order to

find a new, suitable parameter θ0 ∈ Ω. This issue is actually commonly occur-

ring in this method. Furthermore, additional post-processing is required, since this

method can create duplicative regions. For example in Figure 4.5(d) the critical

region R2 is constructed, which however will be refunded when the subset Q2 will

be explored. Therefore, it is recommended to keep list of active constraints for all

critical regions. Then, we can simply remove regions, which have the same active

constraints. However, even this technique is insufficient, because two same regions

do not need to have identical active sets, what occurs due to redundant constraints.
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Algorithm 3: Algorithm of (Bemporad et al., 2002b).

Input: X
Output: Ω, J⋆(θ), µ⋆(θ), ∀θ ∈ Ω

1 Initialization: Q ← X , j ← 0;

2 while Q 6= {} do
3 Extract the first candidate Q0 ← Q1;

4 Solve (4.42) for Q0 to obtain θ0 ∈ Ω;

5 if ǫ ≤ 0 then

6 Remove the investigated candidate: Q ← Q\Q0;

7 else

8 Find active set constraints:

Aθ0 ← {i ∈ I | Giz
⋆(θ0)− wi − Eiθ0 = 0};

9 Update increment: j ← j + 1;

10 Synthesize: µ⋆
j (θ), J

⋆
j (θ) and Rj ;

11 Set difference: QnQ
← Q0\Rj , nQ = 1, . . . , k;

12 Remove examined candidate: Q ← Q\Q0;

13 Add new candidates: Q ← Q∪nQ
QnQ

14 end

15 end

16 return Ω← ∪jRj , µ
⋆(θ)← {µ⋆

j (θ)}, J⋆(θ)← {J⋆
j (θ)};

Remark 4.2.4 As mentioned in Remark 2.2.18, the extended Chebychev ball prob-

lem in (4.42) can actually write a ball multiple times into the investigated critical

region Q0, with different centers θ0, yet with the same radius ǫ. But this fact has

only a minor impact to this geometric approach, since in the end all critical re-

gions will be found. The only difference is that they might have different indexes j.

However, due to the commutative law, we have that entire Ω will be covered.

Remark 4.2.5 Note that including constraints from the set difference operation

into matrix G in (4.3) (the 8-th step of Algorithm 3) can be counterproductive,

since as it is depicted in Figure 4.5(d) we would end up with two critical regions

instead of one. (First one would lay in the subset Q1, while the other part in Q2.)
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(a) Finding initial point θ0 via solving (4.42).

X

R1

(b) Constructed critical region based on

given θ0.
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(c) Set difference as in step 11 of Algo-

rithm 3.
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Q3

Q4Q5Q6
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Q8

(d) Another cycle of Algorithm 3.

Figure 4.5: Figure illustrates the Algorithm 3. Here the black dot represent the cen-

ter of Chebychev ball (black-dashed circle) θ0 obtained from LP (4.42),

based on which critical regions Rj is constructed.

4.3 Online Implementation of Explicit MPC

As was shown in Chapter 3, MPC is widely adopted control strategy, due to its

natural advantages that significantly outstrips its rivals such as PID, LQR,. . . On

the othe hand, MPC has its disadvantages as well. From the Table 3.1, where these

properties are compactly summarized, one can see that the most evident drawback
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of this methodology is in the implementation cost. This is caused mainly by the

computational burden, since in order to solve a MPC optimization problem requires

a powerful computational hardware and an appropriate solver. Therefore, in this

section we will aim at this deficiency and the contribution of explicit approach of

MPC in this field.

Implicit MPC is commonly implemented in receding horizon fashion (illustrated

in Figure 3.1), where entire optimization problem has to be solved every sample

instance and only first control input is applied to the plant. The online implemen-

tation of implicit MPC can be summarized by

1. Obtain (estimate) current state x ∈ R
n and update parameter θ ∈ R

nθ .

2. Solve (4.1) with θ to obtain µ⋆ ∈ R
nz .

3. Implement µ⋆ into plant (κ ⊆ µ⋆ respectively).

4. Repeat from step 1 at the next sampling instant.

It is evident that the computational burden of this implicit MPC approach is in

the second step of the algorithm. This is mainly due to fact, that it has to be

computed in the aforementioned industrial control platforms, which computational

potential is strictly limited. Furthermore, if this computational effort wants to

be accelerated, then one need to purchase a new hardware or (and) a modern

commercial solver. Since both of these options lead to a major financial investment,

companies normally are trying to find a different option.

However, these shortcomings were abolished with the established explicit MPC

approach, which offered new opportunities in implementation. This method has

successfully reduced the computation burden (of the second step of the algorithm)

via offline computing the whole optimization problem (4.1) for all parameters θ

by using a multiparametric programming. The procedure, as well as the results of

this programming, have been already discussed and analyzed in Section 4.1. Yet

we should note that this offline computation can be performed in any computing

device (even e.g. a commercial server) and not only the industrial ones, where

implicit MPC performs all computation. The implementation algorithm of explicit

MPC can be summarized by these steps:

1. For a given problem (4.1) offline compute optimizer µ⋆(θ), objective function

J⋆(θ) and polytopic partition Ω.
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2. Obtain (estimate) current state x ∈ R
n and update parameter θ ∈ R

nθ .

3. Obtain µ⋆ from µ⋆(θ).

4. Implement µ⋆ into plant (κ ⊆ µ⋆ respectively).

5. Repeat procedure from step 2.

The main difference, compared to implicit implementation, is that the optimization

problem is computed only once and for all feasible parameters. Subsequently, as the

actual parameter θ is obtained, one need to compute µ⋆, that will be sent back to

the plant, hence to achieve a feedback. This method is referred as a Point Location

(PL) problem and it represents the most time consuming operation in the online

implementation of explicit MPC.

4.3.1 Point Location Problem

The point location problem (Snoeyink, 1997) can be interpreted as a technique that

for a given state measurement θ ∈ R
nθ assigns optimal control inputs µ⋆ ∈ R

nz .

In order to achieve this goal it is required to have a solution of multiparametric

programming in hand. The construction, as well as their properties, have been

analyzed in Section 4.1. It is well known that optimizer µ⋆(θ) is a polytopic PWA

function defined over polytopic partition Ω, which is composed of i = 1, . . . ,M

regions Ω = ∪iRi. Hence we have M different affine control laws, from which we

need to assign µ⋆. The question here arises, which of these M control laws should

be applied for a given parameter (state measurement) θ. Generally the PL problem

consists of two main tasks:

Task 1: Find the index i, of the active region Ri, based on the current value of

parameter θ, such that θ ∈ Ri.

Task 2: Extract optimal control inputs µ⋆ from the control law µ⋆(θ) that are

associated with index i.

The second operation of PL problem is computationally inexpensive, since once

the index i of active region Ri is obtained, the optimal control inputs µ⋆ are then

determined only via one affine equation

µ⋆ = Fz,iθ + gz,i, (4.43)
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Figure 4.6: Point location problem via sequential search.

what involves only a simple mathematical operations, i.e. multiplication and a

sum of two matrices Fz,i ∈ R
nz×nθ and gz,i ∈ R

nz . On the other hand, the

first operation is crucial, because basically the whole computation effort of the PL

problem is here involved. In sequel we will introduce two basic PL algorithms

followed be a short discussion.

Sequential Search

PL problem based on the sequential search represents the basic and most straight-

forward approach in this field. The main idea of this approach is to lists through

all regions in order to find out whether the current parameter (state measurement)

lies in it θ ∈ Ri. Since we have that θ ∈ Ω and Ω = ∪iRi, it is obvious that

eventually we will across to a region Ri, which will satisfy such criteria. Sequential

search technique is summarized in Algorithm 4 and illustrated in the Figure 4.6.

Algorithm 4: Point location problem via sequential search.

Input: θ

Output: µ⋆

1 for j = 1, . . . ,M do

2 if θ ∈ Rj then

3 i← j;

4 break;

5 end

6 end

7 return µ⋆ ← Fz,iθ + gz,i;

From the computational point of view, this algorithm scales linearly with the

number of regions. E.g. denote tc the time required to verify whether θ ∈ Rj by

comparing all its half-spaces, we have that the entire computational time Tc of the

Algorithm 4 can be expressed as a linear function Tc = ta+
∑i

j=1 tc, where i is the
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index of the active region and ta time required to extract the optimal control input

z⋆. Since Tc may vary on the basis of actual active index i, the more appropriate

information of the required time for PL problem is hence the worst case, where we

need to go through each region. Therefore, the worst computational time of PL

problem, based on sequential search, is given by Tc = ta +Mtc, where M is the

total number of regions that covers entire feasible set of parameters Ω. It is evident

that the number of regions M plays here a major role, since the larger M gives a

greater chance to jeopardize the condition Tc ≤ Ts, which basically says, that the

computation time Tc (required to compute the control input) must be shorter or

equal as the sampling time Ts of the system.

Remark 4.3.1 We should note that a in sequential search is prone to continuity

of the optimizer, because e.g. for a discontinuous control law µ⋆(θ) as in (4.33)

and a parameter (state measurement) θ ∈ Rj ∪ Rj+1 we can obtain two different

control inputs µ⋆
j ∈ Rj and µ⋆

j+1 ∈ Rj+1. Then, based on Algorithm 4, the control

input µ⋆ ∈ R
nθ , which will be sent into controlled system, is identified in respect

to the index j (since j < (j + 1)), thus we have that µ⋆ = µ⋆
j = Fz,jθ + gz,j.

However, there is no guarantee that such selected control input is optimal, in a

sense that it do not necessarily possess the lowest value of objective function J⋆(θ).

Therefore, we are forced to check whether J⋆
j (θ) ≤ J⋆

j+1(θ) holds, where J⋆
j (θ) is

associated with µ⋆
j and J⋆

j+1(θ) with µ⋆
j+1. The consequence of this verification

is reflected in an additional computational effort required to obtain optimal control

input µ⋆ and, what is worst, an additional memory requirement subjected to storing

objective function J⋆(θ). On the other hand, e.g. in the PL approach presented in

Algorithm 5, this problem is circumvented.

PL problem via exploiting convexity of the objective function

As it was suggested in Borrelli et al. (2001) the active index i can be obtained by

exploiting convexity of a PWA value function J⋆(θ). Here, the first operation of

PL problem is proceeded by evaluation of all affine functions of J⋆(θ) for a given

parameter (state measurement) θ. Then the maximum value among them is found

that is associated with a certain index i. Subsequently, since active index is known,

we can compute the optimal control inputs via appropriate control affine expression

µ⋆ = Fz,iθ + gz,i. The overall procedure of this approach can be summarized

by Algorithm 5 and illustrated in Figure 4.7, where a PWA objective function
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Figure 4.7: Point location problem via exploiting convexity of a PWA value func-

tion.

is considered defined over six regions and the actual value of the parameter θ is

denoted by the black solid line.

Algorithm 5: Point location problem via exploiting convexity of a PWA

value function.
Input: θ

Output: µ⋆

1 for j = 1, . . . ,M do

2 Ji ← FJ,iθ + gJ,i;

3 end

4 i← max(Ji);

5 return µ⋆ ← Fz,iθ + gz,i;

This approach not only accelerates the evaluation speed of PL problem, but

at the same time it also reduces the online storage demands of explicit solution,

since the Algorithm 5 does not require information about polytopic partition Ω.

Compared to the sequential search, this technique has fixed evaluation time. Tc =

ta +M(tJ + tm), where ta time required to extract the optimal control input z⋆ ∈
R

nz , tJ is time needed to evaluate all objective values for the given parameter θ ∈
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R
nθ and tm time associated with computing maximum value. The computational

and memory requirements, of these two methods (for both LP/QP), are compared

in (Baotić et al., 2008).

Remark 4.3.2 It should be noted, that the efficient implementation of explicit

MPC algorithm based on exploiting the convexity of the objective function, proposed

in Borrelli et al. (2001), is not yet directly applicable. This problem manifests

from the fact that the convex objective function J⋆(θ) may posses two identical

expressions in two different regions, while the control laws µ⋆(θ) above these regions

are different. In another words, consider solution of mp-LP given as in (4.34),

(4.32) and (4.33), respectively, then (Ri,Rj), i 6= j, (FJ,i, gJ,i) = (FJ,j , gJ,j),

(Fz,i, gz,i) 6= (Fz,j , gz,j). Subsequently the aforementioned algorithm will not be able

to apply as it might lead to incorrect (non-optimal) control inputs. This obstacle

was, however, overcame in (Anh, 2015, Section 7.1) where, by means of convex

lifting, a new (convex and continuous) objective function was constructed such that

there was defined an unique expression for each region.

Further readings and discussions

In Bemporad et al. (2002b) it was pointed out that one can construct a binary tree

while the mp-QP problem is solved offline. Unfortunately, here it was not quite

clear how to adjust the algorithm into more appropriate form, such that the search

tree would be balanced. This deficiency has been however removed in Tøndel

et al. (2002), where authors proposed primary to minimize the time required in

PL problem and secondary the data storage via more efficient data structure of the

explicit solution. The main contribution of this technique lies in the PL acceleration

in a sense that its evaluation time is in the best scenario only logarithmic in the

number of regionsM . However, in the worst scenario it is linear in the total number

of facets, what relegates this method (in the worst case) on the same level as is

the previous sequential search summarized in Algorithm 4. Even though, that the

number of facets is larger then the number of regions, this method works fine for a

wide range of smaller, less complex problems, respectively. Numerous authors have

made a great effort and further investigated in this field (see e.g. Christophersen

et al. (2007); Herceg et al. (2013b); Johansen and Grancharova (2003)).

Remark 4.3.3 It is worth to emphasize that all PL problems require only a few

lines in the control script. Thus their certification is not so costly as in the implicit
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implementation of MPC. Moreover, they can be easily implemented in different

programming languages.





Part II

Theoretical Contributions
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Chapter 5

Memory Reduction in Explicit

Model Predictive Control

Explicit model predictive control is a very interesting control strategy, especially

when one aims at implementation of MPC in a fast and computational less de-

manding fashion. The main contribution of explicit MPC lies in the fact that the

online computation is shifted offline, where the multiparametric programming is

exploit in order to obtain an optimizer as a function of state parameters, which

takes a form of PWA function defined over polytopic partition (see Section 4.1). It

can be also noted that such computation can be performed in any computational

device (e.g. commercial servers). The online computational effort is then reduced

primarily to a point location problem (described in Section 4.3.1) that requires only

mere function evaluation, which can be carried out efficiently even on a hardware

with low computational resources. This has opened a new possibilities of imple-

mentation of MPC even to processes with fast dynamics, where the traditional

implicit MPC implementation was impracticable due to rapid sampling rates or

software reliability issues.

On the other hand, these advantages of explicit MPC comes with new limita-

tions that can be separated into two categories:

Offline computation demands

This restriction is associated with the computational burden in the offline

part of explicit MPC, hence in the multiparametric programming. In general

109
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such an obstacle prevents the widespread use of explicit MPC for systems of

moderate or higher complexity. Even though that this offline computation can

be performed even on off-the-shell devices, such personal computers or servers,

this limitation is reached when one aims at a process which has number of

states and control inputs greater then five. However, in the presence of new

modern techniques (cf. Section 4.2), the practical use of explicit MPC has

been extended even to systems, which optimization problems do not exceed

five optimized variables, while the number of parameters (states) can easily

go over fifty.

Hardware limitation

As shown in Section 4.1.4 the solution of multiparametric algorithm is an

optimizer that is encoded as a PWA function defined over certain polytopic

partition. The problem however arises from the fact that the complexity

of such explicit optimizers, in a terms of number of region over which this

polytopic function is defined, grows exponentially with the prediction horizon,

the number of optimized variables, respectively (see e.g. Borrelli (2003b);

Grieder (2004)). Therefore, the required memory footprint of such solution

can be prohibitive for a large scale of commonly used industrial hardware,

since their storage capacities are limited only up to a several kilobytes.

In this chapter, we will deal with the second limitation of explicit MPC. More

specifically, we will propose a novel technique which reduces the memory footprint

of explicit optimizers by decreasing the number of regions over which this control

policy is defined. The method assumes that the complex explicit MPC feedback

law µ(x) is given and the objective is to replace it by a new PWA function ũ(·) such
that it will provide recursive satisfaction of the original constraints and asymptotic

closed-loop stability, while minimizing the integrated square error between µ(·)
and ũ(·) (hence mitigating the suboptimality). By following his procedure we will

obtain a new explicit feedback law ũ(·), which is safe (i.e., it provides constraint

satisfaction and closed-loop stability), and is nearly optimal.

In the sequel we start by a literature overview of the proposed technique, fol-

lowed by the problem statement and its subsequent solution. The efficiency of the

proposed method will be demonstrated on three illustrative examples.
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5.1 Comprehensive Overview of Proposed Com-

plexity Reduction Techniques

The natural advantages of explicit MPC implementation has attracted a lot of in-

terested researchers, which have put a lot of effort to keep the complexity of explicit

MPC solutions on the admissible level. Therefore, numerous techniques have been

developed to decrease the required memory storage capacity, in order to meet the

required limitations on the targeted control platform. Nowadays, there is wide

variety of these techniques, which offers one to choose the most suitable one for

the given application. Moreover, one can even combine them by means of apply-

ing different technique on each reduction level. It should be, however, noted that

each method has usually its price, which can be expressed by e.g. computational

burden of a technique, suboptimality of the resulting optimizer, or increased com-

putational time in the point location problem. Nevertheless, by putting besides

their differences, their common goal is still the same and can be referred as com-

plexity reduction in explicit MPC and in general there are two principal directions

presented in the literature.

Optimal complexity reduction

This reduction technique aims at replacing the original complex control law

by a new simpler one, such that the optimality of the controller is retained.

This goal can be achieved e.g. by employing optimal region merging (ORM)

that was proposed in Geyer et al. (2004). ORM is based on merging the

regions, which affine expressions are identical and whose union is a convex

set (larger region). The disadvantage of this technique lies in the computa-

tional burden, since such merging is a NP-hard problem. This makes ORM

prohibitive in greater (more complex) explicit optimizers. However, as was

shown in Kvasnica and Fikar (2012), the saturated regions can be simply

removed and subsequently the blank spaces can be fixed via using so-called

clipping filter, which ensures that entire set of feasible parameters is cov-

ered. As it was already mentioned in Baotić et al. (2008) authors have shown

that the point location problem can be carried out based on the convexity

of objective function, thus without need of storing polytopic partition. On

the other hand authors in Borrelli et al. (2010) and in Kvasnica et al. (2015)

respectively have shown that the polytopic partition does not need to be
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computed at all, instead it was advised to store less memory demanding dual

optimizers. Furthermore, one can exploit a lattice representation of PWA

function (see Wen et al. (2009)) or inner and outer approximations (Oravec

et al., 2013) to achieve the goal. The memory footprint of explicit solution

can be decreased not only by reduction of the total number of regions, but

also by a technique which aims to the problem from a different perspective.

For example, in Sz

Hucs et al. (2011) a three layer compression technique was shown, where the

data of explicit MPC solution are shrinked to a fraction of the original size

proportion. On the other hand, such compressed data has to be decripted at

each sampling instance of the online procedure, hence an additional compu-

tational effort is needed. This technique is useful when one aims at control

device with acute shortage of available memory, but sufficient computational

power.

Suboptimal complexity reduction

Function approximation technique tries to find a new explicit optimizer, such

that the complexity of such fitted function is reduced, while the optimality is

allowed to be reduced. Hence we can say that the complexity of PWA control

law is being exchanged for the suboptimality. Numerous methods have been

proposed e.g. that exploits freedom of Lyapunov function (Lu et al., 2011),

move-blocking (Cagienard et al., 2007a), polynomial approximations (Kvas-

nica et al., 2011; Valencia-Palomo and Rossiter, 2010) inner and outer approx-

imations (Jones and Morari, 2010), approximation of PWA control laws that

are defined over simplical (Bemporad et al., 2011) or hypercube (Johansen

and Grancharova, 2003) domains, bounded PWA approximation of the cost

function (Holaza et al., 2012), and many others. It should be noted, that

methods that sacrifice the performance usually achieve better memory re-

duction, compared to methods that maintain optimality. Moreover, the level

of the suboptimality is typically proportional to the complexity reduction.
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5.2 Notation and Problem Statement

5.2.1 Notation

In this entire section, for simplicity, we are considering MPC defined as a QP with

control to the origin. Therefore, we denote the state vector to be identical with the

vector of parameters, i.e. x = θ ∈ R
n, and the vector of inputs to be the vector of

all optimization variables, i.e. u = z ∈ R
m. Next, let us recall that the x is the

state measurement (parameter) and xk to be the k-th prediciton of the state at the

time t. Moreover, denote vert(P) vertices of a polyhedron P , triangulate(·) the

triangulation technique (cf. Definition 2.2.17), projx(·) the projections into x-space
(cf. Definition 2.2.16) and diag(·) to be a diagonal matrix.

5.2.2 Problem Statement

We consider the control of linear discrete-time systems in the state-space form (3.5),

subjected to polytopic constraints (3.6). We are interested in obtaining a feedback

law µ : Rn → R
m which drives all states of (3.5) to the origin while providing

recursive satisfaction of state and input constraints, i.e., ∀t ∈ N x(t) ∈ X , u(t) ∈ U .
For such setup, we have constructed the following optimization problem:

µ = arg min
N−1∑

k=0

(xTk+1Qxxk+1 + uTkQuuk) (5.1a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1, (5.1b)

uk ∈ U , k = 0, . . . , N − 1, (5.1c)

xk ∈ X , k = 0, . . . , N − 1, (5.1d)

x0 = x(t). (5.1e)

As it was shown in Section 4.1, by solving (5.1) for all feasible initial conditions via

multiparametric programming, per Theorem 4.1.8, one obtains explicit optimizer

of the form

µ(x) = Fjx+ gj if x ∈ Rj , j = 1, . . . ,M, (5.2)

where F ∈ R
m×n, g ∈ R

m are gains of the appropriate affine control law and

Ω = ∪jRj = dom(µ(·)) being the polytopic partition.

The main problem of explicit MPC is that the complexity of the feedback law

µ(x) in (5.2), expressed by the number of polytopes M , grows exponentially with
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the prediction horizon N . Moreover, this issue comes hand in hand with the on-

line computation complexity (see PL problem in Section 4.3.1). In another words,

the more polytopes constitute µ(x), the more memory is required to store the

function in the control hardware and the longer it takes to obtain value of the

optimizer for a particular value of the state measurements. Therefore, in order to

satisfy the hardware limitations, hence to guarantee a successful implementation

into control platforms, we want to replace µ(x) by a similar, yet less complex,

PWA feedback law ũ(x). We propose to perform this substitution such that the

approximated optimizer ũ(x) will preserve recursive satisfaction of original con-

straints (5.1c) and (5.1d). The price that we are willing to pay, in favor of achieving

smaller complexity, can be expressed in terms of increased suboptimality of ũ(x)

with respect to the optimal representation µ(x). Therefore, our approach can be

categorized as suboptimal complexity reduction technique.

Problem 5.2.1 Assume µ : R
n → R

m to be a PWA explicit representation of

the MPC feedback law defined as in (5.2). Our goal is to construct a new PWA

optimizer ũ : Rn → R
m as

ũ(x) = F̃ix+ g̃i if x ∈ R̃i, i = 1, . . . , M̃ , (5.3)

with matrices F̃ ∈ R
m×n and g̃ ∈ R

m, where M̃ < M . Moreover, we propose to

synthesize ũ(x) such that:

R1: the recursive satisfaction of state and input constraints as in (3.3d) is pre-

served, thus for all t ∈ N we have that ũ(x) ∈ U and Ax+Bũ(x) ∈ X ;

R2: the asymptotic stability of the closed-loop system

x(t+ 1) = Ax(t) +Bũ(x(t)) (5.4)

is provided with respect to the origin as an equilibrium point;

R3: the squared error between ũ(x) and µ(x) on the entire domain Ω is minimized

via exploiting integral

min

∫

Ω

‖µ(x)− ũ(x)‖22 dx, (5.5)

where dx denotes the Lebesgue measure of Ω, see e.g. Baldoni et al. (2010);
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The Problem 5.2.1 is illustrated in the Figure 5.1. Here a new optimizer ũ(x),

drawn by red color, is constructed based on the original feedback µ(x), shown in

black, via minimization of integral of the squared difference between them (5.5).

The reduced complexity is here evident, since µ(x) is defined over 7 regions, while

ũ(x) is defined only over 3 regions. Yet, the cost of this reduction is expressed in

terms of optimality, what will be demonstrated in case studies.

x

u µ(x)

ũ(x)

R1 R2 R3 R4 R5 R6 R7

R̃1 R̃2 R̃3

Figure 5.1: Illustrative example of problem statement.

Since the aforementioned Problem 5.2.1 is not an easy task, we propose to solve

it via three steps. In the first step we will construct a simple polytopic partition Ω̃

that will be composed of a fewer number of regions ∪iR̃i = Ω̃ for all i = 1, . . . , M̃ ,

such that M̃ < M , where M denotes the number of regions associated with the

partition Ω of the optimal feedback µ(x). Moreover, in order to provide criterion

R1 we have that the union of new regions must be equal to union of the original

regions ⋃

i

R̃i = Ω̃ = Ω =
⋃

j

Rj , (5.6)

hence we will have guarantee that domains of both optimizers ũ(x) and µ(x) will

be identical. Subsequently, if such domain Ω̃ will be known, we move to the second

step. Here parameters F̃ and g̃ of the optimizer ũ(x) are optimized such that the

error between µ(x) and ũ(x) in (5.5) is mitigated and all of the original constraints

as in (3.3d) are preserved. In the last third step we will provide a closed-loop

stability criterion of R2.
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5.3 Constrution of the Polytopic Partition

The objective of this section is to construct a new (less complex) polytopic partition

Ω̃ = ∪iR̃i with i = 1, . . . , M̃ , such that

Ω̃ = Ω, (5.7a)

M̃ < M, (5.7b)

will be satisfied. By recalling from Section 4, the complexity of explicit optimiz-

ers, in a terms of number of regions over which they are defined, grows (in the

worst case) exponentially with the prediction horizon N . Hence, to satisfy (5.7b),

we propose to obtain the polytopic partition Ω̃ by solving the same optimization

problem (5.1) once again, but with a shorter prediction horizon N̂ < N . Then, by

Theorem 4.1.8, we obtain the feedback law µ̂(·) as a PWA function of x:

µ̂(x) = F̂ix+ ĝi if x ∈ R̃i, i = 1, . . . , M̃ , (5.8)

which is defined over M̃ polytopes R̃i. However, it is well known that with N̂ < N

also the volume of the polytopic partition might decrease, i.e. vol(Ω̃) ⊆ vol(Ω),

what is in a conflict with condition (5.7a). To tackle this problem, we suggest

to replace the original state constraint X in(5.1) by a new unique one, where the

maximal control invariant set will be employed.

Definition 5.3.1 (Maximum control invariant set) Let xk+1 = Axk + Buk

be a linear system that is subject to constraints x ∈ X ⊆ R
n, u ∈ U ⊆ R

m. Then

the set

C∞ = {x0 ∈ X | ∀k ∈ N : ∃uk ∈ U s.t. Axk +Buk ∈ X} (5.9)

is called the maximum control invariant set.

Assuming that system dynamics is described by xk+1 = Axk+Buk and constraints

X , U and F are polytopes denoted as in (2.7) with an appropriate index, i.e.

X = {x ∈ R
n | Axx ≤ bx},

U = {u ∈ R
m | Auu ≤ bu},

F = {x ∈ R
n | AFx ≤ bF },

then the procedure of computing maximum control invariant set can be summarized

as in Algorithm 6.
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Algorithm 6: Maximum control invariant set C∞.

Input: X ,U , A,B
Output: C∞

1 Initialization: F0 ← X , k = 0;

2 repeat

3 k ← k + 1;

4 Fk ← projx







AFA AFB

AF 0

0 Au




[
x

u

]
≤




bF

bF

bu





;

5 until Fk = Fk−1;

6 return C∞ ← Fk;

Remark 5.3.2 The Algorithm 6 terminates in a finite iteration if the system is

open-loop stable and X is bounded and contains the origin. Otherwise one should

add a condition that terminates Algorithm 6 in a finite number of iterations (see

e.g. Gilbert and Tan (1991)).

By exploiting (5.9) into (5.1) one can obtain optimization problem

u = arg min
N−1∑

k=0

(xTk+1Qxxk+1 + uTkQuuk) (5.11a)

s.t. xk+1 = Axk +Buk, ∀k = 0, . . . , N − 1, (5.11b)

uk ∈ U , ∀k = 0, . . . , N − 1, (5.11c)

x0 ∈ C∞, x1 ∈ C∞, (5.11d)

where C∞ is a maximum control invariant set.

Lemma 5.3.3 Consider µ(x) as in (5.2) to be the solution of (5.11) according

to Theorem 4.1.8 for some prediction horizon N . Further, let µ̂(x) be the explicit

MPC feedback function as in (5.8) obtained by solving the same optimization prob-

lem (5.11), for some prediction horizon N̂ < N . Then we have that (5.7a) holds.

Proof. As was shown in Algorithm 6 the domain Ω and Ω̃ respectively are pro-

jections of constraints in (5.1) onto state-space x. Since (5.11d) are the only state

constraints of the problem (5.11), Ω is independent of the choice of the predic-
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tion horizon. Therefore ΩN = ΩN̂ . Finally, since ∪jRj = ΩN = ΩN̂ = ∪iR̃i by

Theorem 4.1.8, the result follows.

Therefore, the bottom line is, the optimal explicit feedback function µ(x) as

in (5.2) can be obtained by solving (5.11) with some prediction horizon N . Sub-

sequently, by solving the same optimization problem (5.11) for some prediction

horizon N̂ < N , one obtains a simpler optimizer µ̂(x) as (5.8) such that recursive

satisfaction of the original constraints in (5.1) is provided due to (5.11c) and (5.11d)

respectively. Therefore, we have that criterion R1 in Problem 5.2.1 for µ̂(x) holds.

However, we have no guarantee that µ̂(x) minimizes the offset (5.5), thus its per-

formance is questionable. Due to this deficiency, we propose to simply discard

this simpler optimizer µ̂(x) and preserve only its polytopic partition Ω̃ = ∪iR̃i for

i = 1, . . . , M̃ , with M̃ < M , since N̂ < N . That completes the objective (5.7) of

this section.

Remark 5.3.4 The advantage of the procedure presented here is that the domain

of µ(·) is partitioned into {R̃i} in such a way that the approximation problem

is always feasible, i.e., there always exist parameters F̃i, g̃i in (5.3) such that ũ

guarantees recursive satisfaction of input and state constraints. This is not always

the case if an arbitrary partition is selected.

Remark 5.3.5 It should be noted that if a smaller prediction horizon N̂ is used,

then a greater complexity reduction of µ̂(x) is achieved. Hence it is recommended

to use N̂ ≪ N e.g. N̂ = 1. Moreover, to provide the best references of µ(x) it is

advised to use the longest possible prediction horizon N .

5.4 Function Fitting

In the previous Section 5.3 we have shown how to construct a simple, memory

less demanding polytopic partition Ω̃ associated with a simpler optimizer ũ(x), in

respect to the original one Ω belonging to µ(x), such that (5.7) hold. This was

achieved by solving the optimization problem (5.11) for some prediction horizon

N̂ < N , where N denotes prediction horizon used in (5.11) in order to compute the

original optimizer µ(x). However due to the poor performance of this optimizer

ũ(x), since no offset minimization (5.5) has been provided, only the domain Ω̃ was

stored.
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In this section our goal will be, for the given polytopic partition Ω̃, to optimize

parameters F̃i ∈ R
m×n and g̃i ∈ R

m of the approximated optimizer

ũ(x) = F̃ix+ g̃i if x ∈ R̃i, i = 1, . . . , M̃ , (5.12)

such that the error between µ(x) and ũ(x) is minimized and all of the original con-

straints in (5.1) are preserved. This way both criterion R1 and R3 of Problem 5.2.1

will be satisfied.

Let us recall from Section 4.1.4, the polytopes R̃i form the partition of the

domain of µ̂(x), i.e. their respective interiors do not overlap. Therefore we can

divide the search for parameters F̃i and g̃i for i = 1, . . . , M̃ into a series of M̃

optimization problems formulated as:

min
F̃i,g̃i

∫

R̃i

‖µ(x)− ũ(x)‖22 dx (5.13a)

s.t. F̃ix+ g̃i ∈ U , ∀x ∈ R̃i, (5.13b)

Ax+B(F̃ix+ g̃i) ∈ C∞, ∀x ∈ R̃i, (5.13c)

where C∞ denotes a maximum control invariant set as in Definition 5.3.1. Further-

more constraints (5.13b) and (5.13c) ensures recursive satisfaction of input and

state constraints respectively.

However, by solving the optimization problem (5.13), one can encounter with

these three technical issues:

1. Even though that only parameter x is restricted to a particular region x ∈ R̃i,

where (5.12) is an affine function, the optimal control feedback µ(x) may here

still attain a PWA character.

2. The integration in (5.13) has to be performed even over polytopes of a greater

dimension n ≥ 1..

3. In order to privide R1 in Problem 5.2.1 both constraints (5.13b) and (5.13c)

have to hold ∀x ∈ Ri, i.e. for an infinite number of points.

In order to circumvent the first limitation, we propose to proceed the intersec-

tions of polytopes {R̃}i with i = 1, . . . , M̃ and {R}j with j = 1, . . . ,M . In another

words, for a fixed index i of R̃i we compute M̃ -times expression

Qi,j = R̃i ∩Rj , ∀j = 1, . . . ,M, (5.14)
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the product of which yields a cell of polytopes Q. Moreover, we have that over a

given polytopeQi,j both explicit MPC feedback functions µ(x) and ũ(x), as in (5.2)

and (5.12) respectively, have affine expression. Yet there is another problem that

needs to be solved. Specifically the intersection in (5.14) can produce an empty

polytope Qi,j = ∅. Thus it is convenient to store only indexes of the non-empty

intersections as

Ji = {j = 1, . . . ,M | R̃i ∩Rj 6= ∅}, (5.15)

where i is the fixed index of simpler region R̃i.

By applying (5.14) with respect to (5.15) into (5.13a), one can obtain an objec-

tive in a form of a sum of integrals evaluated over non-empty intersected polytopes

Qi,j ∈ R
n as

min
F̃i,g̃i

∑

j∈Ji

∫

Qi,j

‖(Fjx− gj)− (F̃ix+ g̃i)‖22 dx, (5.16)

with known matrices Fj , gj, associated to complex feedback (5.2), and optimized

variables F̃j , g̃j , associated to approximated feedback (5.12).

In order to obtain an analytic form of the integral in (5.16), we use the re-

sults derived in Lasserre and Avrachenkov (2001), which were further extended

by Baldoni et al. (2010).

Lemma 5.4.1 (Baldoni et al. (2010)) Let f be a homogeneous polynomial of

degree d in n variables, and let s1, . . . , sn+1 be the vertices of an n-dimensional

simplex ∆. Then

∫

∆

f(y)dy = γ
∑

1≤i1≤···≤id≤n+1

∑

ǫ∈{±1}d

ǫ1 · · · ǫdf(
∑d

k=1 ǫksik) (5.17)

where

γ =
vol(∆)

2dd!
(
d+n
d

) , (5.18)

and vol(∆) is the volume of the simplex.

However, the issue is that Lemma in (5.4.1) is not directly applicable to the

objective function (5.16) since the intersected polytopes Qi,j are not in general

simplices. Hence, in order to tackle this problem we propose to tessellate each Qi,j

into simplices via

∆i,j,k = triangulate(Qi,j), (5.19)
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such that

int(∆i,j,k1
) ∩ int(∆i,j,k2

) = ∅, ∀k1 6= k2,

∪k∆i,j,k = Qi,j ,

where k = 1, . . . ,K and K denoting the number of simplices created by tessellat-

ing polytope Qi,j . Subsequently, we can rewrite (5.16) as a sum of the integrals

evaluated over each simplex ∆i,j,k as

min
F̃i,g̃i

∑

j∈Ji

Ki,j∑

k=1

∫

∆i,j,k

‖(Fjx− gj)− (F̃ix+ g̃i)‖22 dx. (5.21)

Furthermore, note that Lemma 5.4.1 applies only to homogeneous polynomials.

However the function under the integral

f(x) := ‖(Fjx+ gj)− (F̃ix+ g̃i)‖22 (5.22)

is not homogeneous. To see this let us expand the quadratic objective function

f(x) into

f(x) := xTQx+ rTx+ q, (5.23)

where

Q = FT
j Fj − 2FjF̃i + F̃T

i F̃i,

r = 2(FT
j g̃i + F̃T

i g̃i − F̃T
i gj − FT

j g̃i),

q = gTj gj − 2gTj g̃i + g̃Ti g̃i.

Now it is evident that f(x) is a quadratic function with optimized variables F̃i and

g̃i, yet is not homogeneous, since not all of its monomials have the same degree

(in particular, we have monomials of degrees 2, 1 and 0 in f). However, since an

integral is closed under linear combinations, we have that
∫

∆

f(x)dx =

∫

∆

fquad(x)dx+

∫

∆

flin(x)dx+

∫

∆

fconstdx, (5.25)

with fquad(x) := xTQx, flin := rTx and fconst := q. Since each of these newly

defined functions is a homogeneous polynomial of degree 2, 1 and 0, respectively,

the integral
∫
∆
f(x)dx can now be evaluated by applying (5.17) of Lemma 5.4.1

to each integral in the right-hand-side of (5.25). We hence obtain an analytic

expression for the integral error as a quadratic function of the unknowns F̃i and g̃i.
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Remark 5.4.2 The formulation in (5.25) can be simplified, since the degree of the

last polynomial in (5.25) is equal to d = 0, from (5.17) it follows that
∫

∆

fconstdx =

∫

∆

qdx = q vol(∆),

where q is a constant and vol(∆) is denoting a volume of the simplex ∆.

Finally, when optimizing for F̃i and g̃i, we need to ensure that the constraints

in (5.13) hold for all points x ∈ R̃i. By our assumptions, the sets U and C∞ are

polytopes, hence can be represented by U = {u |Huu ≤ hu} and C∞ = {x |Hcx ≤
hc}. By using u = F̃ix+g̃i, constraint (5.13b) and (5.13c) can be compactly written

as

∀x ∈ R̃i : f(x) ≤ 0, (5.26)

with

f(x) :=

[
HuF̃i

Hc(A+BF̃i)

]
x+

[
Hug̃i − hu
HcBg̃i − hc

]
. (5.27)

Then we can state our next result.

Lemma 5.4.3 Let Vi = {vi,1, . . . , vi,nv,i
}, vi,j ∈ R

n be the vertices of polytope R̃i

(see Definition 2.2.8). Then (5.26) is satisfied ∀x ∈ R̃i if and only if f(vi,j) ≤ 0

holds for all vertices.

Proof. To simplify exposition, we replace R̃i by P to avoid double indexing, and we

let the vertices of P be v1, . . . , vnv
. As seen from (5.27), f(·) is a linear function of x.

Necessity is obvious since vj ∈ P trivially holds for all vertices, cf. Definition 2.2.8.

To show sufficiency, represent each point of P as a convex combination of its vertices

vj , i.e., z =
∑

j λjvj . Then f(z) ≤ 0 ∀z ∈ P is equivalent to f(
∑

j λjvj) ≤ 0,

∀λ ∈ Λ, where Λ = {λ | ∑j λj = 1, λj ≥ 0} is the unit simplex. Since f(·) is

assumed linear, we have f(
∑

j λjvj) =
∑

j λjf(vj). Therefore,
∑

j λjf(vj) ≤ 0

holds for an arbitrary λ ∈ Λ since f(vj) ≤ 0 is assumed to hold, and because each

λj is non-negative. Therefore f(vj) ≤ 0⇒ f(z) ≤ 0 ∀z ∈ P .
By combining Lemma 5.4.3 with the integration result in (5.25), we can formu-

late the search for F̃i, g̃i from (5.13) as

min
F̃i,g̃i

∑

j∈Ji

Ki,j∑

k=1

∫

∆i,j,k

‖(Fjx− gj)− (F̃ix+ g̃i)‖22 dx, (5.28a)

s.t. F̃ivi,ℓ + g̃i ∈ U , ∀vi,ℓ ∈ vert(R̃i), (5.28b)

Avi,ℓ +B(F̃ivi,ℓ + g̃i) ∈ C∞, ∀vi,ℓ ∈ vert(R̃i), (5.28c)
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where vert(R̃i) enumerates all vertices of the corresponding polytope. Since each

polytope R̃i has only finitely many vertices Ziegler (1994), problem (5.28) has a

finite number of constraints. Moreover, the objective in (5.28a) is a quadratic func-

tion in the unknowns F̃i, g̃i and its analytic form can be obtained via (5.17). Finally,

since the sets U and C∞ are assumed to be polytopic, all constraints in (5.28) are

linear. Thus problem (5.28) is a quadratic optimization problem for i = 1, . . . , M̃ ,

where M̃ is the number of polytopes that constitute the domain of ũ(·) in (5.3).

As our next result we show that if polytopes R̃i are chosen as suggested by

Lemma 5.3.3, then (5.28) is always feasible for each i = 1, . . . , M̃ .

Theorem 5.4.4 Let R̃i, i = 1, . . . , M̃ be obtained by Lemma 5.3.3 for N̂ <

N . Then the optimization problem (5.28) is always feasible, i.e., for each i =

1, . . . , M̃ there exist matrices F̃i and vectors g̃i such that the simplified feedback

ũ(x) from (5.3) provides recursive satisfaction of constraints in (5.1c) and (5.1d),

respectively, for an arbitrary x ∈ Ω.

Proof. Obtaining R̃i via Lemma 5.3.3 amounts to solving the MPC problem (5.1)

explicitly for some N̂ < N . By doing so, one obtains the explicit controller µ̂(·) as
in (5.8). Since (5.1) includes the invariant set constraint (5.11d), it follows from

Definition 5.3.1 that the feedback µ̂(x) = F̂ix + ĝi provides recursive satisfaction

of constraints in (5.1c) and (5.1d), respectively, but is not necessarily optimal with

respect to approximating the long-horizon feedback µ(·). Since the polytopes R̃i

in (5.28) are the same as in (5.8), the choice F̃i = F̂i and g̃i = ĝi obviously satisfies

constraints in (5.28). Finally, since feasibility of (5.28) is independent of the choice

of the objective function, the result follows.

Remark 5.4.5 Optimization problem (5.28) naturally covers the multi-input sce-

nario where F̃i ∈ R
m×n, g̃i ∈ R

m with m ≥ 1.

Remark 5.4.6 It is worth mentioning that proposed method (5.28) is suitable not

only for PWA functions, but also e.g. for PWQ functions. This fact can be exploited

e.g. in the dynamic programming (of mp-QP), where one need to approximate cost-

to-go function, which attains a PWQ form, to proceed into further iterations (see

e.g. (Borrelli et al., 2016)).
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5.4.1 Function Fitting via Vertex Approximation

As was shown in (Holaza et al., 2013) the function fitting as in (5.13) can be ap-

proached also via exploiting only vertices. The integral in (5.13a) can be circumvent

by a sum

min
F̃i,g̃i

Nw∑

j=1

‖µ(wj)− ũ(wj)‖22 (5.29)

where wi, . . . , wNw
are points which should be used to evaluate the approximation

error. The selection of these points can be deducted e.g. from Figure 5.1, since the

only points where either optimizer µ(x) or ũ(x) change the tangents of the respec-

tive local affine functions are in the vertices of corresponding regions. However,

as it has been already discussed at the beginning of this section (first issue), for a

general n-dimensional scenario with n > 1 we need to consider the points from the

intersections (5.14), more specifically only the non-empty ones (5.15). Thus, the

approximation points in (5.29) are given as

W = {vert(Qi,j) | Qi,j 6= ∅}, (5.30)

where {w1, . . . , wNw
} are the vertices of the polytopes contained in W . Therefore,

we have that the optimization problem (5.13) can be rewritten into a QP in a form

of

min
F̃i,g̃i

Nw∑

j=1

‖µ(wj)− (F̃ix+ g̃i)‖22 (5.31a)

s.t. F̃ivi,ℓ + g̃i ∈ U , ∀vi,ℓ ∈ vert(R̃i), (5.31b)

Avi,ℓ +B(F̃ivi,ℓ + g̃i) ∈ C∞, ∀vi,ℓ ∈ vert(R̃i). (5.31c)

Remark 5.4.7 The main difference between the aforementioned approaches is that

in (5.31) we have used vertex enumeration of all intersected polytopes as in (5.30),

while in (5.28) we have preserved the general formulation of Problem 5.2.1 and

employed triangulation (5.19) with formula from Baldoni et al. (2010), in order

to proceed the integral. From the implementation point of view, the vertex ap-

proximation technique 5.4.1 is computationally less expensive, yet less general (cf.

Remark 5.4.6). Their comparison will be also provided in Section 5.7.3 through one

illustrate example.
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5.4.2 Properties of Fittted Explicit MPC Control Law

In Section 5.3 we have suggested how to synthesize polytopic partition Ω̃, which

can be exploit in optimization problem (5.28) that yields explicit controller ũ(x).

Here we will investigate the main properties of such approximated optimizer, which

are:

Complexity

The complexity reduction of the control law µ(x) was the property with the

highest priority (as the title of Chapter 5 indicates). We have that the com-

plexity of µ(x) is reduced from M to M̃ regions, since ũ(x) was obtained

from the optimization problem (5.28), where a new polytopic partition Ω̃,

constructed e.g. as suggested in Section 5.3 or randomly selected with re-

spect to (5.7), has been employed. However, the price that we have paid,

in order to achieve this goal, can be expressed by the value of the objective

function (5.28a), which reflects the suboptimlity of ũ(x) with respect to µ(x).

Continuity

The optimization problem (5.28) does not a-priori guarantee a continuity of

the approximated optimizer ũ(x), what may cause some difficulties. For ex-

ample if ũ(x) is obtained as in (5.28) and we are given a state measurement

that lies in between two regions x ∈ R̃i ∩ R̃j , where the optimizer is dis-

continuous. Thus for this state we will obtain two different function values

F̃ix + g̃i 6= F̃jx + g̃j that could lead the controlled system out of balance

(by switching from one control input to another), hence to cause a great

mechanical stress. As consequence of this problem, we are forced to use an

additional control logic (see Remark 4.3.1), that would decide, which of these

control inputs should be applied to the system. Therefore, in order to pre-

vent the aforementioned complication, one can enforce the continuity of ũ(x)

by adding the additional constrains F̃iwk + g̃i = F̃jwk + g̃j to constraints

in (5.28), where wk is a vector of vertices of the n − 1 dimensional inter-

section R̃i ∩ R̃j , ∀i, j = 1, . . . , M̃ . Note that, since the simple feedback µ̂

is continuous, the choice F̃i = F̂i, g̃i = ĝi is a feasible continuous solution

in (5.28). Needless to say, sacrificing continuity allows for a greater reduction

of the approximation error in (5.28a).

Recursive satisfaction of original constraints
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We have that ũ(x) provides recursive satisfaction of the original constraints

in (5.1) due to (5.28b) and (5.28c), with respect to Lemma 5.4.3 and Defini-

tion 5.3.1.

Closed-loop stability

Here we need to distinguish two types of closed-loop stability, because such

approximated optimizer ũ(x) provides bounded outputs for bounded inputs

(BIBO), but, on the other hand, we do not have guarantee of asymptotic

stability even though the original one µ̂(x), as in (5.8), did provide it. The

asymptotic stability of ũ(x) can be provided e.g. by a posteriori certification

that can be carried out by constructing a Lyapunov function to ũ(x), or by

enforcing this property implicitly via adding constraints into the optimization

problem (5.28).

5.5 Closed-Loop Stability

In Sections 5.3 and 5.4 we have shown the procedure, which yields a simpler, mem-

ory less demanding, control law ũ(x) that provides recursive satisfaction of the

original state and input constraints, and furthermore guarantee that the approxi-

mation error, the suboptimality respectively, is minimized. Thus we have that ũ(x)

satisfies criterion R1 and R3 of Problem 5.2.1 so far. On the other hand, as it was

point out in Section 5.4.2, we have no a-priori guarantee of asymptotic closed-loop

stability. Therefore, in this section we will show our further results (published

in Holaza et al. (2015)), where the search for aforementioned simpler feedback law

is enhanced such that R2 of Problem 5.2.1 holds.

To achieve such a property, we will assume that for system (5.11b) we have

knowledge of a convex piecewise linear (PWL) Lyapunov function V : Rn → R

with dom(V ) ⊇ C∞. Such a PWL Lyapunov function can be straightforwardly

obtained by considering the Minkowski function (also called the Gauge function)

of C∞ in (5.9). Let the minimal half-space representation of C∞ be normalized to

C∞ = {x ∈ R
n | Wx ≤ 1}, (5.32)

where 1 is a column vector of ones of appropriate dimension. Then V (·) is given,
see Blanchini and Miani (2008), as

V (x) := max
k=1,...,d

wT
k x, (5.33)
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where wT
j denotes the j-th row of W ∈ R

d×n in (5.32). It follows from Blanchini

and Miani (2008); Lazar et al. (2008) that V (·) of (5.33) is a Lyapunov function for

system (5.11b), with domain C∞. Importantly, note that the number K of affine

functions defining (5.33) is equal to d, the number of facets of C∞.

Then it is well-known (see e.g. Lazar et al. (2008)) that ũ(x) will render the

closed-loop system (5.4) asymptotically stable if

V (Ax +Bũ(x)) ≤ γV (x) (5.34)

holds for all x ∈ C∞ and for some γ ∈ [0, 1). By adding (5.34) to the constraints

of (5.13), we can formulate the search for parameters F̃i, g̃i of a stabilizing feedback

ũ(x) in (5.3) as

min
F̃i,g̃i

∫

R̃i

‖µ(x)− ũ(x)‖22 dx (5.35a)

s.t. F̃ix+ g̃i ∈ U , ∀x ∈ R̃i, (5.35b)

Ax+B(F̃ix+ g̃i) ∈ C∞, ∀x ∈ R̃i, (5.35c)

V (Ax +B(F̃ix+ g̃i)) ≤ γV (x), ∀x ∈ R̃i, (5.35d)

which needs to be solved for all regions R̃i of ũ(x).

Remark 5.5.1 The constraint V (Ax + B(F̃ix+ g̃i)) ≤ γV (x) with γ ∈ [0, 1) and

V (·) as in (5.33) implicitly guarantees that u = F̃ix+ g̃i = 0 for x = 0.

Lemma 5.5.2 With U = {u | Huu ≤ hu} and C∞ = {x | Wx ≤ 1} as in (5.32),

problem (5.35) is equivalent to

min
F̃i,g̃i

∑

j∈Ji

Ki,j∑

k=1

∫

∆i,j,k

‖(Fjx− gj)− (F̃ix+ g̃i)‖22 dx, (5.36a)

s.t. Hu(F̃ivi,ℓ + g̃i) ≤ hu, ∀vi,ℓ ∈ vert(R̃i), (5.36b)

W (Avi,ℓ +B(F̃ivi,ℓ + g̃i)) ≤ 1, ∀vi,ℓ ∈ vert(R̃i), (5.36c)

wT
k (Avi,ℓ +B(F̃ivi,ℓ + g̃i)) ≤ γmi, ∀k = 1, . . . , d, ∀vi,ℓ ∈ vert(R̃i), (5.36d)

with

mi = max
ℓ=1,...,nv,i

max
k=1,...,d

wT
k vi,ℓ, (5.37)

and vi,1, . . . , vi,nv,i
being the vertices of polytope R̃i.
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Proof. The first two constraints of (5.36) are equivalent to (5.28b) and (5.28c),

respectively, and the objective function is the same as in (5.28a). Therefore it

suffices to show that (5.36d) is equivalent to (5.35d). With V (·) as in (5.33), the

constraint (5.35d) yields

max
k=1,...,d

wT
k (Ax +B(F̃ix+ g̃i)) ≤ γ max

k=1,...,d
wT

k x, ∀x ∈ R̃i. (5.38)

Since R̃i is assumed to be a polytope, and because the arguments of the maximum

in the right-hand-side of (5.38) are linear functions of x, the maximum is attained

at one of the vertices {vi,1, . . . , vi,nv,i
} of R̃i, and is denoted by mi as in (5.37).

Then, we can equivalently write (5.38) as

max
k=1,...,d

wT
k (Ax +B(F̃ix+ g̃i)) ≤ γmi, ∀x ∈ R̃i. (5.39)

Next, denote f(x) := maxk=1,...,dw
T
k (Ax +B(F̃ix+ g̃i)) and recall that the maxi-

mum of affine functions is a convex function (Boyd and Vandenberghe, 2004, Section

3.2.3). With f(·) convex, it is trivial to show that f(x) ≤ mi for all x ∈ R̃i if and

only if f(vi,ℓ) ≤ mi for all vertices vi,1, . . . , vi,nv,i
of polytope R̃i. Hence (5.39) is

equivalent to

max
k=1,...,d

wT
k (Avi,ℓ +B(F̃ivi,ℓ + g̃i)) ≤ γmi, ∀vi,ℓ ∈ vert(R̃i). (5.40)

Finally, since maxk w
T
k z ≤ mi holds if and only if wT

k z ≤ mi is satisfied for all k,

we get

wT
k (Avi,ℓ +B(F̃ivi,ℓ + g̃i)) ≤ γmi, ∀k = 1, . . . , d, ∀vi,ℓ ∈ vert(R̃i), (5.41)

which is precisely the same as in (5.36d).

Remark 5.5.3 Note that mi in (5.37) can be computed analytically once the ver-

tices of R̃i are known.

For each region R̃i, (5.36) is a QP for the objective function (5.36a) is quadratic

and all constraints in (5.36) are linear functions of F̃i and g̃i. Hence the search for

parameters F̃i, g̃i of a stabilizing simpler feedback ũ(x) of (5.3) can be formulated

as a series of M̃ quadratic programs, as captured by the following theorem.

Theorem 5.5.4 Suppose that the quadratic programs in (5.36) are feasible for all

regions R̃i, i = 1, . . . , M̃ and for a selected γ ∈ [0, 1). Then the refined simpler
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feedback ũ(x) of (5.3) provides recursive satisfaction of state and input constraints

in (5.1d) and (5.1c), attains asymptotic stability of the closed-loop system in (5.4),

and minimizes the integrated squared error in (5.5).

Proof. The first two constraints in (5.36) are the same as in (5.28) and enforce

recursive feasibility according to Theorem 5.4.4. Similarly, minimization of the

integrated squared error is the same as in (5.36a). Finally, feasibility of (5.36)

implies that there exist parameters F̃i, g̃i of ũ(x) which enforces a given decay of

the Lyapunov function by (5.34) and by Lemma 5.5.2.

Unlike Theorem 5.4.4 which provides necessary and sufficient conditions, fea-

sibility of QPs (5.36) is merely sufficient for existence of ũ(·) that renders the

closed-loop system asymptotically stable. If the QPs are infeasible, one can en-

large the value of γ, provided it fulfills γ ∈ [0, 1), or alternatively employ a new

partition {R̃i}M̃i obtained for a different value of N̂ in Lemma 5.3.3.

5.6 Complete Procedure

Here we can summarize the complete procedure, which we have defined in Sec-

tion 5.3, Section 5.4 and Section 5.5 respectively. Therefore, if one is interested in

a simpler control law ũ(x) that satisfies all criterions stated in Problem 5.2.1, we

suggest to proceed the Algorithm 7.

We note that complex optimizer is defined over polytopic partition Ω, which is

composed ofM regions Rj , thus j = 1, . . . ,M . Furthermore in steps 5 and in 7-10,

(11-14 respectively) of the Algorithm 7, we consider only the non-empty intersection

Qi,j , which are denoted by Ji as in (5.15). Obtaining the polytopes R̃i in step 1 by

solving (5.1) explicitly can be performed e.g. by the MPT Toolbox (Herceg et al.,

2013a) or by the Hybrid Toolbox (Bemporad, 2003). Computation of intersections,

tessellation (via Delaunay triangulation), and enumeration of vertices in steps 4

and 5 can also be done by MPT. Finally, the optimization problem (5.28) can be

formulated by YALMIP (Löfberg, 2004) and solved using off-the-shelf software,

e.g., by GUROBI (Gurobi Optimization, 2014) or quadprog of MATLAB.

Recalling that the feasibility of Algorithm 7 depends on the selection of poly-

topic partition Ω̃ and the stability parameter γ. Moreover, we need to keep in

mind that by varying of the parameter γ or the partition Ω̃, we can adjust the

performance of ũ(x) as well.
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Algorithm 7: Complete procedure of complexity reduction.

Input : Complex optimizer µ(x)

Output: Derived optimizer ũ(x)

1 Solve (5.1) with N̂ < N to obtain Ω̃ composed of M̃ regions R̃i;

2 Select γ ∈ [0, 1) (if closed-loop stability is desired);

3 for i = 1, . . . , M̃ do

4 Compute Qi,j from (5.14) for each j = 1, . . . ,M ;

5 Triangulate each intersection Qi,j into n-simplices ∆i,j,1, . . . ,∆i,j,K and

enumerate their respective vertices s1, . . . , sn+1;

6 Enumerate vertices Vi = {vi,1, . . . , vi,nv,i
} of R̃i;

7 if only recursive feasibility is desired then

8 Obtain the analytic expression of the integrals in (5.28a);

9 Solve QP (5.28) to obtain parameters F̃i and g̃i;

10 end

11 if closed-loop stability is desired then

12 Obtain the analytic expression of the integrals in (5.36a) by (5.17);

13 Solve QP (5.36) to obtain parameters F̃i and g̃i;

14 end

15 end

16 return ũ(x) = F̃ix+ g̃i, i = 1, . . . , M̃ ;

5.7 Case Studies

In this section we demonstrate effectiveness of the presented explicit MPC com-

plexity reduction method on two examples with different number of states. Fur-

thermore, we provide an additional example, where two different QP formulations

of (5.28) and (5.31) are compared.

5.7.1 Two-Dimensional Example

Consider the second order, discrete-time, linear time-invariant system

x(t + 1) =

[
0.9539 −0.3440
−0.4833 −0.5325

]
x(t) +

[
−0.4817
−0.5918

]
u(t), (5.42)
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-5 0 5
-10

-5

0

5

10

x
1

x 2

(b) 5 regions of ũ(x).

Figure 5.2: Regions of the complex controller µ(x) and of the approximate feedback

ũ(x).

which is subject to state constraints −10 ≤ xi ≤ 10, i = 1, 2 and input bounds

−0.5 ≤ u ≤ 0.5. We remark that the system is open-loop unstable with eigenvalues

λ1 = 1.0584 and λ2 = −0.6370. The complex explicit MPC controller µ(x) in (5.2)

was obtained by solving (5.11) for Qx = I2, Qu = 2 and N = 20. Its explicit

representation was defined overM = 127 polytopic regions Ri ⊂ R
2, shown in Fig-

ure 5.2(a). All computations were carried out on a 2.7 GHz CPU using MATLAB

and the MPT Toolbox.

To derive a simple representation of the MPC feedback as in (5.3), we have

proceeded as outlined in Section 5.6. First, we have solved (5.11) with shorter

prediction horizons N̂ ∈ {1, 2, 3, 4}. This provided us with simple feedbacks µ̂(x)

as in (5.8) with lower performances. The domains of these feedbacks were defined,

respectively, by M̃ = {3, 5, 11, 17} regions R̃i. These regions were then employed

in (5.36) to optimize the parameters F̃i, g̃i of the improved simple feedbacks ũ(x)

in (5.3) while guaranteeing closed-loop stability. The fitting problems (5.36) were

formulated by YALMIP and solved by quadprog.

Remark 5.7.1 In practice, to get the least complex approximate controller ũ(x)

one would only consider the case with the smallest number of regions. We only

consider various values of M̃ to assess the suboptimality of ũ(x) with respect to

µ(x) as a function of the number of regions, M̃ .

Next, we have assessed the degradation of performance induced by employing
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Pred. horizon # of regions
Suboptimality w.r.t. µ(x) in (5.2)

µ̂(x) from Lemma 5.3.3 ũ(x) from (5.36)

1 3 60.8% 25.1%

2 5 32.9% 18.0%

3 11 11.4% 8.3%

4 17 6.9% 1.7%

Table 5.1: Complexity and suboptimality comparison for the example in Sec-

tion 5.7.1. The (complex) optimal controller consisted of 127 regions.

simpler feedbacks µ̂(x) and ũ(x) instead of the optimal controller µ(x). To do so,

for each suboptimal controller we have performed closed-loop simulations for 10000

equidistantly spaced initial conditions from the domain of µ(x). In each simula-

tion we have evaluated the performance criterion Jsim =
∑Nsim

i=1 xTi Qxxi + uTi Quui

for Nsim = 100. For each investigated controller we have subsequently computed

mean values of this criterion over all investigated starting points. This “average”

performance indicators are denoted in the sequel as Jopt for the optimal feedback

µ(x), Jsimple for the simple, but suboptimal controller µ̂(x), and Jimproved for ũ(x),

whose parameters were optimized in (5.36). Then we can express the average sub-

optimality of ũ(x) by Jsimple/Jopt, and the suboptimality of ũ(x) by Jimproved/Jopt.

The higher the value, the larger the suboptimality of the corresponding controller

is with respect to the optimal feedback µ(x).

Concrete numbers are reported in Table 5.1. As can be observed, lowering

the prediction horizon significantly reduces complexity. However suboptimality

is inverse-proportional to complexity. For instance, solving (5.11) with N = 1

gives µ̂(x) that performs by 60% worse compared to the optimal feedback µ(x)

obtained for N = 20. Improving parameters of the feedback function via (5.36)

resulted in an improved controller ũ(x) whose average suboptimality is only 25%.

The amount of suboptimality can be further reduced by considering more complex

partition of the feedback function. In all cases reported in Table 5.1 the simpler

feedback ũ(x) with mitigated suboptimality guarantees closed-loop stability since

the corresponding fitting problems (5.36) were feasible for γ < 1.
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5.7.2 Inverted Pendulum on a Cart

Next we consider an inverted pendulum mounted on a moving cart, shown in Fig-

ure 5.3. Linearizing the nonlinear dynamics around the upright, marginally stable

position leads to the following linear model:




ṗ(t)

p̈(t)

φ̇(t)

φ̈(t)



=




0 1 0 0

0 −0.182 2.673 0

0 0 0 1

0 −0.455 31.182 0







p(t)

ṗ(t)

φ(t)

φ̇(t)



+




0

1.818

0

4.546



u(t), (5.43)

where p(t) is the position of the cart, ṗ(t) is the cart’s velocity, φ(t) is the pendu-

lum’s angle from the upright position, and φ̇(t) denotes the angular velocity. The

control input u(t) is proportional to the force applied to the cart. System (5.43) is

then discretized by assuming sampling time 0.1 seconds.

u

p

φ

Figure 5.3: Inverted pendulum on a cart.

The optimal (complex) controller µ(x) in (5.2) was then constructed by solv-

ing (5.11) with prediction horizon N = 8, penalties Qx = diag(10, 1, 10, 1), Qu =

0.1, and constraints |p(t)| ≤ 1, |ṗ(t)| ≤ 1.5, |φ|(t) ≤ 0.35, |φ̇(t)| ≤ 1, |u(t)| ≤ 1.

Using the MPT toolbox we have obtained µ(x) defined over 943 polytopes of the

4-dimensional state-space.

Subsequently we have constructed simple feedback controllers µ̂(x) according to

Lemma 5.3.3 for prediction horizons N̂ ∈ {1, 2, 3}. This provided us with polytopic

partitions {R̃i} defined, respectively, by 35 polytopes for N̂ = 1, 117 regions N̂ = 2,

and 273 polytopes in case of N̂ = 3. For each partition we have then optimized



134 CHAPTER 5. MEMORY REDUCTION IN EXPLICIT MPC

Prediction Number of µ̂(x) from Lemma 5.3.3 ũ(x) from (5.36)

horizon regions AST Suboptimality AST Suboptimality

1 35 8.3 s 159.4% 5.1 s 59.4%

2 117 4.6 s 43.8% 3.7 s 15.6%

3 273 3.5 s 9.4% 3.4 s 6.3%

Table 5.2: Complexity and suboptimality comparison for the example in Sec-

tion 5.7.2. The (complex) optimal controller consisted of 943 regions.

the gains F̃i, g̃i of ũ(x) in (5.3) by solving (5.28).

To assess the degradation of performance induced by employing the simpler

controllers instead of the optimal feedback, we have performed 100 closed-loop sim-

ulations for various values of the initial cart’s position p. Then we have measured

the number of simulation steps in which a particular controller drives all states into

the ±0.01 neighborhood of the origin. In other words, our performance-evaluation

criterion measures liveness properties of a particular controller. The average set-

tling time for the optimal (complex) feedback µ(x) was 32 sampling times (which

corresponds to 3.2 seconds). The aggregated results showing performance of the

two simple feedbacks µ̂(x) and ũ(x) are reported in Table 5.2. The columns of the

table represent, respectively, the prediction horizon N̂ , number of polytopes over

which both simple controllers are defined, as well as performance of the simple

feedback µ̂(x) in (5.8). Here, AST stands for Average Settling Time, and the sub-

optimality percentage represents the relative increase of the settling time compared

to AST = 3.2 seconds for the optimal (complex) feedback. The final two columns

show performance of ũ(x), whose gains were optimized by (5.28). As it can be

seen, refining the gains F̃i, g̃i via (5.28) significantly mitigates the degradation of

performance.

To illustrate the differences in performance of the three controllers, Figure 5.4

shows closed-loop profiles of states and inputs under µ(x), µ̂(x), and ũ(x) for the

initial conditions p(0) = 0.525, ṗ(0) = 0, φ(0) = 0, φ̇(0) = 0. Here, we have

employed the second case of Table 5.2 where µ̂(x) and ũ(x) were both defined over

117 polytopes. Comparing the state profiles in Figures 5.4(a), 5.4(c), and 5.4(e)

we can clearly see the benefit of refining the gains of ũ(x) via (5.28). In particular,

the performance of ũ(x) derived according to Section 5.4 is nearly identical to the
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performance of the optimal (complex) feedback µ(x). The simple feedback µ̂(x),

on the other hand, performs significantly worse. We remind that in all cases shown

in Table 5.2, the complexity of ũ(x) is significantly smaller than the number of

regions of the optimal feedback (which was defined over 943 polytopes).

5.7.3 Comparation Example

In this section we show the comparision of two different approaches of the crite-

rion (5.5) in Problem 5.2.1. The first one (5.28) exploids the integral as in (5.17),

while the other one (5.4.1) applies only the sum of squares (5.29) in all intersected

vertices W , in order to minimize the suboptimality of such derived optimizer ũ.

For this purpose we have employed the oscillating system, with the same setup as

in Holaza et al. (2013), that is depicted in Figure 5.5. Thus, we have the second

order, discrete-time, linear time-invariant system

x(t+ 1) =

[
0.5403 −0.8415
0.8415 0.5403

]
x(t) +

[
−0.4597
0.8415

]
u(t), (5.44)

where for the first state we require −10 ≤ x1 ≤ 10, and the input is bounded by

−1 ≤ u ≤ 1. The complex optimizer µ(x) in (5.2) was obtained by solving (5.11)

for Qx = I2, Qu = 1 and N = 10. Its explicit representation was defined over

M = 159 polytopic regions Ri ⊂ R
2 as shows Figure 5.6(a).

Since the procedure of deriving the simpler polytopic partition in 5.3 is the same

for both approaches, we proceeded as it is here specified and solved the same opti-

mization problem (5.11) but with shorter prediction horizon N̂ ∈ {2, 3, 5, 7, 9}. This
resulted in a new partitioning of the original domain into M̃ = {7, 13, 33, 77, 131}
regions (e.g. the polytopic partition composed of 7 regions is depicted in Fig-

ure 5.6(b)) over which the explicit feedback û(x) was defined. Note that for each

choice of N̂ we have M̃ < M . Subsequently, for each of these partitions we have

optimized parameters F̃i, g̃i of ũ(x) in (5.2) via solving the fitting problem (5.28)

and (5.31) respectively. Since, two different approach are used to obtain ũ(x),

denote ũI(x) as the solution of problem (5.28), while ũV (x) the solution of prob-

lem (5.31).

The performance degradation is here also induced by means of substituting

simpler optimizers, instead of µ(x), into (5.44) and performing closed-loop sim-

ulations over Nsim = 100 simulation steps for 10000 equidistantly spaced feasi-

ble initial conditions x(0) ∈ dom(ũ). All respective closed-loop profiles of states
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Figure 5.4: Simulated closed-loop profiles of pendulum’s states and inputs under

the (complex) optimal feedback µ(x), under the simple controller µ̂(x)

in (5.8), and under its optimized version ũ(x) obtained from (5.28).
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Figure 5.5: Illustration of a pendulum system.
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Figure 5.6: Regions of the complex optimizer and of the least complex approximate

optimizer.
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Pred. horizon # of regions
Suboptimality w.r.t. µ(x) in (5.2)

ũI(x) from (5.31) ũV (x) from (5.28) ∆ũ(x)

1 3 85.83% 85.71% 0.12%

2 7 0.39% 0.39% 0.00%

3 13 0.19% 0.30% −0.11%
4 23 0.19% 0.34% −0.15%
5 33 0.09% 0.19% −0.10%
6 53 0.04% 0.09% −0.05%
7 77 0.03% 0.09% −0.06%

Table 5.3: Complexity and suboptimality comparison for the example in Sec-

tion 5.7.3. The (complex) optimal controller consisted of 159 regions.

Here the degree of the difference is expressed by ∆ũ(x) = ũI(x)− ũV (x).

and control inputs were then employed to access the performance criterion Jsim =
∑Nsim

i=1 xTi Qxxi+u
T
i Quui. By computing the mean values of Jsim for all investigated

initial conditions, we have obtained the overall (average) performance of Jopt for

the optimal feedback µ(x), Jsimple for µ̂(x), Jimproved,I for ũI(x), and Jimproved,V

for ũV (x).

The results are reported in Table 5.3. Here we have proven the efficacy of the

proposed method once again, since the complexity of both approximated optimizers

are significantly reduced while the suboptimality is still preserved at a reasonable

level. The Table 5.3 however mainly shows the difference of two distinguish ap-

proximation formulations. As can be seen the rendered optimizer ũI(x) emerged

as a winner from the given comparison, since in all scenarios (except of one with

N = 1) has shown better performance in respect to in respect to ũV (x). This fact

is emphasized in the Table 5.3 by a negative value of ∆ũ(x). Thus, we have that

the employed integral formulation (5.31) and (5.36) respectively are more suitable

when one wants to reduce the complexity of a given complex explicit optimizer

µ(x).



5.8. CONCLUSIONS 139

5.8 Conclusions

In this chapter, we have addressed the problem of reducing complexity of explicit

MPC controllers. Particularly, we have sugested a novel memory reduction tech-

nique that is based on replacing the complex explicit feedback law µ(x) by its

simpler, yet suboptimal, representation ũ(x). We have proposed to approach the

given problem via construction a new polytopic partition Ω̃ such that (5.7) was

satisfied. To achieve this, the same optimization problem (5.11), which was used

to obtain complex optimizer µ(x), was solved once again with a shorter prediction

horizon N̂ . Even though that we have already obtain a simpler control feedback

µ̂(x), which provided recursive satisfaction of original state and input constraints,

we were forced to discard it as it exhibited a great performance deterioration, com-

pared to µ(x). This problem was addressed in Section 5.4 and Section 5.4.1, re-

spectively, where we have suggested how one can significantly reduce the amount of

suboptimality. Here we have shown, that the search for new local affine expressions

of ũ(x) can be formulated as a quadratic optimization problem that entails condi-

tions of recursive feasibility and closed-loop stability, as proposed in Section 5.5.

The complete procedure, was summarized in Section 5.6. Here, it was discussed

that Algorithm 7 is always feasible if maximal control invariant set is employed

in (5.11d). On the other hand, if closed-loop stability was required, then the

feasibility depends on the selection of parameter γ ∈ [0, 1).

Finally, the efficiency of the proposed technique has been demonstrated on three

illustrative examples. Here we have chosen several prediction horizons N̂ in order

to vary the polytopic partition Ω̃, hence to obtain different ũ(x). All results have

been saved in Tables 5.1, 5.2 and 5.3, where one can easily observe the potential of

this technique.





Chapter 6

Verification Techniques in Model

Predictive Control

It is well known that MPC is one of the most advanced control strategies, which

nowadays represents an accepted standard in the industries. Its popularity was

raised from the natural capability of designing control feedbacks for the multivari-

able systems and embedding all of its constraints into the optimization problem.

Yet, in practice, we might come into contact with systems which are tangled with

non-trivial limitations or performance requirements, and in order to devise a suit-

able controller, one need to impose all of these specifications into the optimization

problem. This, however, results in too complex mathematical formulation what

makes MPC often prohibitive for application on simple industrial hardware which

possesses only limited computational resources.

This obstacle can be overcome e.g. via convex relaxations or by simply neglect-

ing certain constraints, the consequence of which however leads to controllers that

do not posses a-priori guarantees all of desired properties, yet some of them can

be evoked by e.g. a proper tuning (Section 3.3.2). Needless to say, such simplified

control policies might represent a risk and danger not only for company profit or

environment but also for a human life. It is, therefore, essential to firstly certify

these control laws, whether they provide all necessary properties before they are

applied to a process. This issue is referred as a certification problem and in this

section we will enrich this field by two novel methods.

141
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In the first proposed method we investigate how the performance of explicit

MPC feedback laws is affected by rounding-based quantization. Specifically, we

address the problem of providing a rigorous certificate that a given piecewise affine

explicit MPC feedback is bounded from below and from above by specific functions.

These functions are constructed as to reflect typical control requirements, such as

recursive feasibility, closed-loop stability, or bounded deterioration of performance.

We show how to obtain an analytical form of the quantized MPC feedback and

how to provide the certificate by solving a set of linear programs.

In the second method we show for a closed-loop system composed of a lin-

ear controlled plant and an MPC feedback strategy how to verify that closed-loop

state trajectories either enter or avoid a given set of unsafe states. The search for

the safety certificate is formulated as a mixed-integer linear programming prob-

lem which yields non-conservative certificates. The optimal control commands

generated by the MPC policy are represented by Karush-Kuhn-Tucker optimality

conditions, which allow to perform the verification without the need to explicitly

compute reachable sets.

6.1 Verification of A-Posteriori Quantized Explicit

MPC Feedback Laws

Control under quantized feedbacks is an important research field since a majority

of control policies is nowadays implemented on digital platforms, which inherently

induce quantization effects due to finite-precision arithmetics and employment of

analog-to-digital and digital-to-analog conversions. Numerous techniques for de-

signing quantized feedback strategies which provide desired properties (e.g., closed-

loop stability and/or performance) were proposed recently, see e.g. (Goodwin and

Quevedo, 2003; Nair et al., 2007) and references therein. Typically, the approaches

consider the control of linear time-invariant systems by a linear feedback, quan-

tized by memory-less static quantizers. When such a setup is considered, (Huijun

and Tongwen, 2008) have shown how to derive maximum sectors bounds for which

the quantized linear feedback attains closed-loop stability. In (Fu and Xie, 2009)

the authors have studied which number of quantization levels is required to attain

stability. If the feedback law is PWA, and the system to be controlled contains just

one state and one input, (Fagnani and Zampieri, 2003) have developed conditions
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under which the quantized feedback attains practical stability in the sense of pro-

viding guarantees that the closed-loop trajectories converge to certain intervals. A

common deficiency of the aforementioned approaches, though, is that they do not

consider constraints on system’s states and inputs.

On the other hand, explicit MPC excels at providing optimal performance while

rigorously enforcing constraint satisfaction (cf. Chapter 4). The limitation of tradi-

tional explicit MPC techniques for quantized systems is in the inherent complexity

of the off-line optimization (Kvasnica, 2009). In particular, the MPC piecewise

affine feedback needs to be obtained by solving a parametric mixed-integer opti-

mization problem, where the individual quantization levels are modeled by binary

(or integer) variables. The total number of such discrete components is then pro-

portional to the prediction horizon. As the horizon or the number of states increase,

the problems become very challenging to solve. One notable exception is the work

of (Quevedo et al., 2002), in which the explicit representation of the quantized

feedback is developed directly by employing Voronoi diagrams. The limitation,

however, is that the resulting quantized control law does not posses a-priori guar-

antees of recursive feasibility and closed-loop stability.

Instead of attempting to devise a quantized explicit MPC feedback directly,

in this method we propose to employ the real-valued MPC feedback, synthesized

for a linear system subject to real-valued control inputs. The optimal real-valued

feedback is then quantized, a-posteriori, by a static memory-less quantizer with a

finite number of quantization levels. The main objective is to certify that such an

a-posteriori quantized feedback achieves desired properties. If a positive certificate

is obtained, one can safely apply the real-valued feedback, whose construction is

much simpler compared to designing a quantized feedback directly. To provide a

meaningful certificate, we first develop the analytical form of the a-posteriori quan-

tized PWA feedback law in Section 6.1.2. Subsequently, in Section 11 we show how

to certify whether the quantized PWA function is bounded from above and from

below by given PWA functions by solving a finite number of linear programs. The

certification procedure is non-conservative. Then, in Section 6.1.3 we illustrate how

suitable bounding functions are constructed as to reflect requirements of recursive

satisfaction of state and input constraints, or achievement of closed-loop stability

and bounded deterioration of performance.
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6.1.1 Problem Statement

We aim at controlling linear time-invariant systems in the discrete-time domain

described by the state-update equation

x(t+ 1) = Ax(t) +Bu(t), (6.1)

where x(t) ∈ R
n are the states and u(t) ∈ R

m are the control inputs, with A ∈
R

n×n, B ∈ R
n×m, and the pair (A,B) controllable. The system in (6.1) is subject

to constraints

x(t) ∈ X , u(t) ∈ U , (6.2)

where X ⊆ R
n and U ⊆ R

m are non-empty polyhedra that contain the origin in

their respective interiors.

For the system (6.1), the finite-horizon MPC problem can be formulated as

min
u0,...,uN−1

xTNQNxN +

N−1∑

k=0

xTk
(
Qxxk + uTkQuuk

)
(6.3a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1, (6.3b)

xk ∈ X , k = 0, . . . , N − 1, (6.3c)

uk ∈ U , k = 0, . . . , N − 1, (6.3d)

xN ∈ Xf , (6.3e)

where xk and uk denote, respectively, the state and input predictions at the k-th

step. QN is the terminal penalty, Qx and Qu are stage penalties, and Xf ⊂ R
n is

the polytopic terminal set.

It is well known (see Section 4.1.4) that by applying multiparametric program-

ming, the MPC feedback law1

u = µ(x), (6.4)

with µ : Rn → R
m can be obtained by solving (6.3) as a mp-QP. Then µ(·) is a

PWA function of the state, given as

µ(x) :=





F1x+ g1 if x ∈ R1,

...

FMx+ gM if x ∈ RM ,

(6.5)

1To simplify the notation, we will henceforth assume u = u(t) and x = x(t).
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where Fi ∈ R
m×n, gi ∈ R

m, Ri ⊆ R
n, i = 1, . . . ,M , and the polyhedra Ri do not

overlap.

Assume now that we are given a total of d quantization levels q1, . . . , qd, qi 6= qj

∀i 6= j. Then the rounding-based quantized version of (6.4) is

u = µq(x) :=





q1 if x ∈ Pi,

...

qd if x ∈ Pd,

(6.6)

where

Pi = {x | ‖µ(x)− qi‖2 ≤ ‖µ(x)− qj‖2, ∀j 6= i}, (6.7)

denotes the region of the state space where the control command generated by the

real-valued feedback (6.4) is closer to the i-th quantization level than to any other

level. In other words, (6.6) rounds the value of (6.4) to the nearest quantization

level. Note that each region Pi in (6.7) can, in general, be a non-convex and

disconnected set. However, the regions can be decomposed into a finite number

D of connected sets. If µ(·) in (6.4) is a linear function, then D = d. Otherwise,

D ≥ d.
The objective of the proposed method is illustrated in Figure 6.1 and can be

formally stated as follows:

Problem 6.1.1 Given are: the real-valued explicit MPC feedback µ(·) in (6.4)

and (6.5), performance bounds V : Rn → R
m, V : Rn → R

m with dom(V ) =

dom(V ) = dom(µq) = Ω, and the quantization levels q1, . . . , qd. Determine whether

the quantized feedback (6.6) satisfies performance bounds

V (x) ≤ µq(x) ≤ V (x), ∀x ∈ Ω. (6.8)

In Section 6.1.3 we will show how to design the bounds V (·), V (·) as to cap-

ture various performance and safety criteria, including bounded deterioration of

performance, satisfaction of constraints or closed-loop stability.

The difficulty of solving Problem 6.1.1 stems from the fact that (6.8) has to hold

for all points from the domain Ω. A further complication is that the quantized

feedback µq(·) is a nonlinear function (cf. (6.6) and notice that the function is

nonlinear due to presence of IF-THEN logic rules), and V (·) with V (·) can be

nonlinear functions as well.
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q1

q2

q3

x

u

µ(x)

µq(x)

V

V

Figure 6.1: Illustrative example for the Problem 6.1.1. Here qi (black dashed line)

denotes quantization levels, µ(x) (blue dashed line) is the real-valued

function and µq(x) (black line) is its quantized version. Boundaries

V /V (red dashed lines) restrict the admissible area denoted by yellow

color.

The condition under which we will provide an answer to Problem 6.1.1 in a

non-conservative manner is summarized next.

Assumption 6.1.2 We assume that the performance bounds V (·) and V (·) are

piecewise affine functions

V (x) := αi,1x+ αi,0 if x ∈ Ri, (6.9a)

V (x) := αi,1x+ αi,0 if x ∈ Ri, (6.9b)

with αi,1 ∈ R
m×n, αi,0 ∈ R

m, and the polyhedra Ri, i = 1, . . . ,M are the same as

in (6.5).

Remark 6.1.3 The assumption that polyhedra over which (6.9) is defined are iden-

tical to those of µ(·) in (6.5) is not restrictive as long as dom(V ) = dom(V ) =

dom(µ) is assumed. If V (·) of (6.9) is defined over polyhedra R1, . . . ,RM , and

the feedback µ(·) is piecewise affine over R̃1, . . . , R̃M̃
with M 6= M̃ , then one can
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always redefine both functions over a new set of polyhedra Ri,j = Ri ∩ R̃j for all

i−j combinations which lead to a non-empty intersection. The same procedure can

be applied in the situation where V (·), V (·) are defined over different polyhedra.

Remark 6.1.4 Although the procedures of this method are applicable to multivari-

able systems with multiple inputs (m > 1), to simplify the presentation we will

henceforth assume that all functions in (6.8) are scalar-valued. Note that with

m > 1, (6.8) can be split into a set of m relations where each of them has to be

satisfied to certify that a vector-valued quantized feedback µq(·) meets the prescribed

performance bounds.

6.1.2 Certification of Quantized Feedbacks

In this section we show how to compute a true/false answer to Problem 6.1.1,

provided that the bounding functions V (·) and V (·) satisfy the condition in As-

sumption 6.1.2.

Analytical Form of the Quantized Feedback

We start by developing an analytical form of the quantized feedback µq(·) in (6.6),

provided we know the analytic expression for the real-valued explicit MPC control

law µ(·) in (6.5). In particular, we devise regions P1, . . . ,PD, along with the

quantization level active in each region, such that µq(·) is given as a piecewise

affine constant function of the form

µq(x) :=





c1 if x ∈ P1,

...

cD if x ∈ PD.

(6.10)

where ci ∈ {q1, . . . , qd} for i = 1, . . . , D, and Pi are polyhedra in R
n.

Consider the k-th polyhedron Rk of the real-valued feedback µ(·) where µ(x) =
Fkx+ gk is the local feedback law. Then the subset of Rk where the control action

u = µ(x) is rounded towards the i-th quantization level qi is given by

Pk,i = {x ∈ Rk | ‖µ(x)− qi‖2 ≤ ‖µ(x)− qj‖2, ∀j 6= i}. (6.11)

Recall thatRk is assumed to be a polyhedron and µ(x) is an affine function ∀x ∈ Rk

by (6.5). Then Pk,i is a polyhedron. To see this, note that the inequalities that
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constitute Pk,i involve non-negative functions. Hence squaring both sides does not

change the sign and we obtain

(µ(x)− qi)T (µ(x)− qi) ≤ (µ(x) − qj)T (µ(x)− qj), (6.12)

which simplifies to

2µ(x)T (qj − qi) ≤ qTj qj − qTi qi. (6.13)

Note that (6.13) has to hold ∀j 6= i. Finally, since µ(x) = Fkx+ gk for all x ∈ Rk

per (6.5), and because q1, . . . , qd are known and fixed, expressions in (6.13) become

2(Fkx+ gk)
T (qj − qi) ≤ qTj qj − qTi qi, ∀j 6= i, (6.14)

which are d− 1 linear inequalities in x. Then Pk,i is given by

Pk,i = {x | 2(Fkx+ gk)
T (qj − qi) ≤ qTj qj − qTi qi, ∀j 6= i}, (6.15)

which furthermore needs to be intersected with Rk. More generally, Pk,i is the i-th

cell of the Voronoi diagram (Aurenhammer, 1991) of the points q1, . . . , qd, where

each cell is intersected with Rk. It follows directly from properties of Voronoi

diagrams that, for a fixed k, int(Pk,i) ∩ int(Pk,j) = ∅ and ∪iPk,i = Rk. Naturally,

the sets Pk,i can be empty for some i ∈ {1, . . . , d}. However, there always exists at
least one index i for which Pk,i is not empty.

The analytic representation of the quantized feedback in (6.6) can be obtained

per Algorithm 8. The algorithm iterates over polyhedra Rk which define the real-

valued feedback µ(·) in (6.5). Next, for eachRk the i-th cell of the Voronoi diagram

is computed in Step 4. If the intersection of the cell with Rk is non-empty, it is

added to the set of polyhedra P , the counter is updated, and the “active” quan-

tization level associated to Pk,i is recorder. Upon exit, the algorithm generates

polyhedra P1, . . . ,PD of µq(·), along with information of which quantization level

is active in each region. We remark that the upper bound on the total number of

regions generated by Algorithm 8 is D = dM .

Certification of Bounded Performance

With the analytic form of the quantized feedback (6.10) in hand, we will next show

how to formulate the certification problem (6.8). To derive the main result, we will

make use of the following two intermediate statements.
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Algorithm 8: Construction of the quantized feedback in (6.6).

Input: Real-valued feedback: µ(x) := Fkx+ gk if x ∈ Rk, k = 1, . . . ,M ,

Quantization levels: qi, i = 1, . . . , d

Output: Quantized feedback: µq(x) := ci if x ∈ Pi, i = 1, . . . , D

1 Initialization: D ← 0, P ← {}, c← {};
2 for k = 1, . . . ,M do

3 for i = 1, . . . , d do

4 Compute Pk,i per (6.15);

5 if Pk,i ∩Rk 6= ∅ then
6 D ← D + 1;

7 P ← P ∪ {Pk,i ∩Rk};
8 c← c ∪ {qi};
9 end

10 end

11 end

Proposition 6.1.5 Let h(x) be an arbitrary function of x and let D be a non-

empty set with D ⊆ dom(h). Then

h(x) ≥ 0 ∀x ∈ D (6.16)

if and only if

min
x∈D

h(x) ≥ 0. (6.17)

Proof. (6.17) ⇒ (6.16): Since D is assumed to be non-empty, the minimum of

minx∈D h(x) is always attained. Denote by x⋆ the minimizer. Then, for any x ∈ D,
we have h(x) ≥ h(x⋆) by definition of minimum. Since h(x⋆) ≥ 0 is assumed, it

follows directly that h(x) ≥ 0 ∀x ∈ D.
(6.16) ⇒ (6.17): Assume by contradiction that (6.16) is satisfied, but (6.17)

is not, i.e., we have h(x) ≥ 0 ∀x ∈ D and h(x⋆) < 0 where x⋆ is the minimizer

of (6.17). Since x⋆ ∈ D because D is non-empty, from (6.16) we have h(x⋆) ≥ 0, a

contradiction.

Proposition 6.1.6 h(x) ≤ 0 ∀x ∈ D if and only if

max
x∈D

h(x) ≤ 0. (6.18)



150 CHAPTER 6. VERIFICATION TECHNIQUES IN MPC

Proof. Follows directly from Proposition 6.1.5 since max(h) = −min(−h).
Our first main result is that the certification of performance bounds in (6.8)

can be approached by investigating the minima/maxima of the performance bound

functions V (·) and V (·) when x is restricted to all non-empty intersections Pi∩Rj ,

where Pi is a particular polyhedron of the piecewise constant quantized feedback

µq(·) in (6.10), and Rj is a region of the piecewise affine performance bounds

in (6.9).

Theorem 6.1.7 Let the quantized feedback µq(·) in (6.10) be given, along with

piecewise affine performance bounds V (·), V (·) of (6.9). Furthermore, denote

v(x, αj) = αj,1x + αj,0 and v(x, αj) = αj,1x + αj,0 for j = 1, . . . ,M . Then

V (x) ≤ µq(x) ≤ V (x) for all x ∈ Ω, i.e., (6.8) holds, if and only if

max
x∈Pi∩Rj

(ci − v(x, αj)) ≤ 0 ≤ min
x∈Pi∩Rj

(ci − v(x, αj)) (6.19)

is satisfied for all i = 1, . . . , D, j = 1, . . . ,M for which Pi ∩Rj 6= ∅.

Proof. Consider an arbitrary combination of indices i and j for which Qi,j =

Pi∩Rj is non-empty and note that Qi,j is a polyhedron, for it is an intersection of

two polyhedra. For all x restricted to Qi,j we have µq(x) := ci, V (x) := v(x, αj),

and V (x) := v(x, αj). Then V (x) ≤ µq(x) for all x ∈ Qi,j if and only if

ci − v(x, αj) ≥ 0, ∀x ∈ Qi,j , (6.20)

which is equivalent, by Proposition 6.1.5, to

min
x∈Qi,j

(
ci − v(x, αj)

)
≥ 0, (6.21)

and the right-hand-side of (6.19) follows. Similarly, µq(x) ≤ V (x) for all x ∈ Qi,j

if and only if

ci − v(x, αj) ≤ 0, ∀x ∈ Qi,j , (6.22)

which, by Proposition 6.1.6, holds if and only if

max
x∈Qi,j

(
ci − v(x, αj)

)
≤ 0, (6.23)

and we get the left-hand-side of (6.19). Repeating the argument for all i = 1, . . . , D

(i.e., for all regions of the piecewise constant quantized feedback in (6.10)) and

j = 1, . . . ,M (where M is the number of regions of V (·) and V (·)) yields the
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theorem. Note that ∪i,j(Ri∩Pj) = ∪i∪j (Ri∩Pj) = (∪iRi)∩(∪jPj) = Ω∩Ω = Ω,

therefore the procedure covers all x ∈ Ω where Ω is the domain of V (·), V (·) and
µq(·).

Remark 6.1.8 Note that the optimization problems in (6.19) are always feasible

since we assume that x is constrained to belong to a non-empty set Pi ∩Rj.

To exploit Theorem 6.1.7 to certify satisfaction of (6.8) for all x ∈ Ω we thus

need to solve up to DM problems (6.19), each of which involves solving two op-

timization problems. In practice, the number will be less, since only non-empty

intersections Pi∩Rj need to be considered. The complete certification procedure is

reported as Algorithm 9. Checking whether Pi∩Rj = ∅ in Step 3 can be performed

at the cost of solving one linear program, see e.g. (Borrelli, 2003a).

Algorithm 9: Certification of performance bounds in (6.8).

Input: µq(·), V (·), V (·)
Output: true/fasle answer for (6.8)

1 for i = 1, . . . , D do

2 for j = 1, . . . ,M do

3 if Pi ∩Rj 6= ∅ then
4 Solve the maximization/minimization problems in (6.19);

5 if (6.19) is not satisfied then

6 return (6.8) not satisfied;

7 end

8 end

9 end

10 end

11 return (6.8) satisfied ∀x ∈ dom(µq);

In a more general sense, Theorem 6.1.7 provides necessary and sufficient condi-

tions for satisfaction of (6.8) for arbitrary bounding functions V (·), V (·), e.g. for

piecewise quadratic or piecewise polynomial functions. Then, however, the main

difficulty there is that the optimization problems in (6.19) can be non-convex. De-

termining globally optimal solutions to non-convex problems is computationally

challenging. With V (·), V (·) restricted to piecewise affine functions, on the other
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hand, the problems in (6.19) are linear programs that can be solved in polynomial

time. To see this, note that the objective functions are linear in x, and the con-

straints are linear as well, since Pi ∩ Rj are polyhedra. Therefore the problems

in (6.19) can be solved even in large dimensions with off-the-shelf optimization

packages, such as CPLEX or GUROBI, or even with open-source alternatives such

as GLPK or CDD.

6.1.3 Construction of Performance Bounds

In this section we present construction of performance bounds V (·), V (·) in (6.8)

that reflect typical control requirements, such as recursive satisfaction of state/input

constraints, closed-loop stability or bounded deterioration of control performance.

We focus on construction of piecewise affine bounds V (·), V (·) for which validity

of (6.8) can be certified in a non-conservative manner by solving a series of linear

programs in (6.19). The development will be based on the assumption that the

constraints in (6.2) are polytopic.

Recursive Satisfaction of State and Input Constraints

For the system in (6.1) with constraints as in (6.2), the positive control invariant

set is given by

C = {x0 ∈ X | ∃κ : Axk +Bκ(xk) ∈ X , κ(xk) ∈ U , ∀k ∈ N}, (6.24)

where κ : Rn → R
m is a feedback strategy, and xk and uk are the states and inputs

at the discrete time step k. Under mild conditions, the set C is a polytope and

can be computed for instance by Multi-Parametric Toolbox (Herceg et al., 2013a).

The important property of the control invariant set is that for any x ∈ C there

always exist a control action u ∈ U that keeps the state update inside of the state

constraints, i.e., Ax+Bu ∈ X for all time. Let us denote by

Cxu = {(x, u) | x ∈ C, u ∈ U , Ax+Bu ∈ C} (6.25)

the set of all state-input pairs for which the state update Ax+Bu ∈ C. Therefore
for any x and u satisfying (x, u) ∈ Cxu we have that: 1) x ∈ X , 2) u ∈ U , and
3) Ax + Bu ∈ X . Therefore if u is selected such that (x, u) ∈ Cxu, recursive

satisfaction of state and input constraints is enforced. Since Cxu is a polytope, it
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can be represented by

Cxu = {(x, u) | Gx+Hu ≤ h}. (6.26)

Then the bounds V (·), V (·) that reflect recursive satisfaction of state and input

constraints can be computed as follows:

V (x) = {minu | Gx+Hu ≤ h}, (6.27a)

V (x) = {maxu | Gx+Hu ≤ h}. (6.27b)

The problems in (6.27) are parametric linear programs with optimization variables

u ∈ R
m and parameters x ∈ R

n:

Lemma 6.1.9 (Borrelli (2003b)) The solution to (6.27) are PWA functions

V (x) := αi,1x+ αi,0 if x ∈ Ri, (6.28a)

V (x) := αi,1x+ αi,0 if x ∈ Ri, (6.28b)

where Ri are non-overlapping polytopes2 in R
n.

To construct V (·), V (·) in (6.28), one needs to solve the parametric linear

programs (6.27). This can be achieved e.g. by the Multi-Parametric Toolbox.

Remark 6.1.10 The worst-case complexity of parametric linear programs in (6.27),

i.e., the upper bound on the number of polytopes Ri in (6.28), is exponential in the

number of constraints, which in turn depends on dimensions of u and x. However,

recent development (Gupta et al., 2011) in the theory of parametric optimization al-

lows to solve such problems even in large dimensions, say over 50 (cf. Section 4.2).

Closed-Loop Stability

Let a piecewise linear convex Lyapunov function V : R
n → R for the system

in (6.1), i.e.,

V (x) := max
i

wT
i x (6.29)

with wi ∈ R
n, i = 1, . . . ,W be given. Then any feedback policy κ(x) that guaran-

tees

V (Ax +Bκ(x)) ≤ γV (x), ∀x ∈ dom(κ), (6.30)

2The polytopes in (6.28a) and (6.28b) are the same since both problems in (6.27) have identical

constraints.
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for some 0 ≤ γ < 1 trivially provides closed-loop stability as it forces the Lyapunov

function to decrease along the state trajectories, see e.g. Lazar et al. (2008). The

minimal and maximal control actions, as a function of the states x, which render

the closed-loop stable in the sense of (6.30) can thus be obtained by

V (x) = {minu | V (Ax+Bu) ≤ γV (x), u ∈ U}, (6.31a)

V (x) = {maxu | V (Ax+Bu) ≤ γV (x), u ∈ U}. (6.31b)

With V (·) as in (6.29), problems (6.31) can be formulated and solved as para-

metric mixed-integer linear programs in decision variables u and parameters x by

introducing additional binary variables to model the maxima in (6.29) as follows:

Proposition 6.1.11 (Kvasnica et al. (2012)) The maximum among linear func-

tions of x, i.e., t = maxiw
T
i x, is modeled by

−M(1− δi) ≤ t− wT
i x ≤M(1− δi), (6.32a)

wT
j x ≤ wT

i x+M(1− δi), ∀j 6= i, (6.32b)
∑V

i=1 δi = 1, (6.32c)

where δi ∈ {0, 1}, i = 1, . . . ,W are binary variables, M is a sufficiently large

positive constant, and (6.32a)−(6.32b) are enforced for all i = 1, . . . ,W .

With the help of Proposition 6.1.11, problem (6.31a) can be rewritten as

V (x) = {minu | y ≤ γt, u ∈ U}, (6.33)

where t is related to maxiw
T
i x via (6.32), and y models maxiw

T
i (Ax+Bu) via the

same relations. Note that when V (·) in (6.29) is a piecewise linear function of x,

V (Ax +Bu) is a piecewise linear function of x and u.

As shown in (Borrelli, 2003a), the solutions V (x) and V (x) to (6.31) are piece-

wise affine functions of x as in (6.28). The local affine expressions, as well as the

associated regions of validity, can be obtained by the Multi-Parametric Toolbox.

Remark 6.1.12 One straightforward way to obtain a piecewise linear Lyapunov

function in (6.29) is to consider the Minkowski function of a polytopic contractive

set C. Let the normalized3 half-space representation of C be given by C = {x | wT
1 x ≤

1, . . . , wT
Wx ≤ 1}, where W is the number of facets of C. Then V (·) of (6.29) is a

Lyapunov function (Blanchini and Miani, 2008).

3Every polyhedron that contains the origin in its interior can be normalized by P = {x | Lx ≤

1} where 1 = (1, . . . , 1).
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Bounded Performance Deterioration

Assume a performance measure J : Rn → R, J(x) ≥ 0 ∀x ∈ dom(J), given by

Jκ(x) := ‖Ax+Bκ(x)‖∞, (6.34)

which measures how close, in the ∞-norm, to the origin a particular state x can be

pushed by the feedback u = κ(x). Then one of the possible performance bounds

that we might require the quantized feedback µq(·) to satisfy is given by

Jµq
(x) ≤ ωJµ(x), ∀x ∈ dom(µ), (6.35)

where µ(·) is the real-valued explicit MPC feedback in (6.5), and ω > 1 is given.

Put simply, we want to verify that the performance of the quantized feedback µq(·)
is by at most a ω factor worse than the performance of the real-valued policy µ(·).
To translate (6.35) into (6.8), we proceed as follows. Denote by Sxu the set of (x, u)

vectors for which (6.35) holds, i.e.,

Sxu = {(x, u) | ‖Ax+Bu‖∞ ≤ ω(‖Ax+Bµ(x)‖∞, u ∈ U}. (6.36)

Then the performance bounds V (·) V (·) that entail (6.35) are

V (x) = {minu | (x, u) ∈ Sxu}, (6.37a)

V (x) = {maxu | (x, u) ∈ Sxu}. (6.37b)

Since ‖t‖∞ = maxi |ti|, and because µ(·) is assumed to be a piecewise affine function

(cf. (6.5)), the set Sxu in (6.36) can be rewritten into a set of inequalities using extra

binary variables as in (6.32). Hence problems (6.37) are parametric mixed integer

linear programs for which the optimal solution (the lower and upper bounds V (·)
and V (·)) can be obtained by parametric optimization, similarly to the procedure

of Section 6.1.3.

Remark 6.1.13 We should note, that the verification of µq(·), can be done se-

quentially. To proceed, for a particular Rj ∈ dom(µ(·)) one can compute V Rj
(·)

and V Rj
(·), respectively, and apply the Algorithm 9 for all j = 1, . . . ,M . In an-

other words, boundaries in (6.37) can be constructed per each affine part Fjx+ gj

of µ(x) in (6.36).
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6.1.4 Examples

Illustrative 1D Example

To illustrate the procedure, consider the system x(t + 1) = Ax(t) + Bu(t) with

A = 0.9, B = 1, X = {x | − 5 ≤ x ≤ 5}, U = {u | − 1 ≤ u ≤ 1}. The system

is controlled by the state-feedback regulator u = Kx with K = −0.2. It is easy

to verify that such a feedback achieves recursive satisfaction of input and state

constraints and attains closed-loop stability.

Next, we investigate whether constraint satisfaction, closed-loop stability, and

bounded performance deterioration are achieved by a-posteriori quantizing the real-

valued feedback µ(x) := Kx using three quantization levels: q1 = −0.9, q2 = 0,

q3 = 0.8. To do so, we have first derived the analytical form of µq(·) in (6.10). This

was achieved by applying Algorithm 8, which produced

µq(x) :=





0.8 if − 5 ≤ x ≤ −2,
0 if − 2 ≤ x ≤ 2.25,

−0.9 if 2.25 ≤ x ≤ 5

(6.38)

after 0.02 seconds4 . The real-valued feedback µ(·), as well as its quantized ver-

sion (6.38), are shown in Figure 6.2.

To verify whether µq(·) of (6.38) maintains recursive satisfaction of input and

state constraints, we have proceed as in Section 6.1.3. First, the control invariant

set C = {x | − 5 ≤ x ≤ 5} was calculated by (6.24). Subsequently, the set Cxu
in (6.26) was constructed and represented as a polyhedron per (6.27) with

Cxu =




(x, u)




Hc

0

HcA


 x+




0

Hu

HcB


u ≤




hc

hu

hc







, (6.39)

where Hc = [1, 1]T , hc = [5, 5]T is the half-space representation of C = {x |Hcx ≤
hc}, and Hu = [1, 1]T , hu = [1, 1]T is the half-space representation of U =

{u |Huu ≤ hu}. Finally, the bounding functions V (·), V (·) were computed by

4All calculations in this section were performed on a 1.7 GHz CPU using the Multi-Parametric

Toolbox 3.1.2.
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Figure 6.2: Real-valued feedback u = Kx (dashed red line) and its quantized ver-

sion u = µq(x) in (6.38) (solid black function) for the example in Sec-

tion 6.1.4.

solving (6.27) as parametric linear programs. After 0.57 seconds we have obtained

V (x) :=




−0.9x− 5 if − 5 ≤ x ≤ −4.444,
−1 if − 4.444x ≤ x ≤ 5,

(6.40a)

V (x) :=





1 if − 5 ≤ x ≤ 4.444,

−0.9x+ 5 if 4.444 ≤ x ≤ 5.
(6.40b)

The set Cxu, along with functions V (·), V (·), and µq(·), are shown in Figure 6.3.

As can be observed, the value of µq(x) is always between V (x) and V (x) for all

x ∈ C. Hence µq(·) of (6.38) provides recursive satisfaction of state and input

constraints. To give a rigorous certificate that such an observation is indeed true,

we have applied Algorithm 9 to µq(·), V (·) and V (·). By solving a total of 8 linear

programs in (6.19), which took 0.04 seconds, a positive certificate for Problem 6.1.1

was indeed obtained.

Then we have investigated whether µq(·) in (6.38) provides closed-loop stabil-

ity. To do so, we have first constructed functions V (·) and V (·) by solving para-

metric mixed-integer problems in (6.31) with the Lyapunov function given as the

Minkowski function of the control invariant set C. The piecewise affine functions

were constructed in 0.81 seconds and each of them was defined over 4 polyhedra.
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Figure 6.3: Results for feasibility verification in Section 6.1.4: the set Cxu
from (6.39) in gray, V (·) in (6.40a) as the blue dashed function, V (·)
from (6.40b) as the red dash-dotted function, and the quantized feed-

back in (6.38) as the black function.

The resulting bounding functions, along with µq(·), are shown in Figure 6.4. As

can be observed from the figure, all values of µq(x) are always bounded by V (x)

and V (x), hence the quantized feedback (6.38) provides closed-loop stability. A rig-

orous certificate of such a property was obtained by applying Algorithm 9, which

required solving 12 linear programs for 12 non-empty intersections Pi ∩Rj .

Finally, to verify whether or not the a-posterior quantized feedback (6.38) pro-

vides bounded deterioration of performance, we have constructed the bounding

functions V (·), V (·) per Section 6.1.3 with ω = 1.05 in (6.36). This setting corre-

sponds to verifying that µq(·) performs by at most 5% worse than the real-valued

controller µ(·). The corresponding piecewise affine bounding functions were con-

structed by solving the parametric mixed integer linear programs in (6.37), which

took 0.80 seconds. The results are plotted in Figure 6.5. As can be observed, µq(·)
is not always between V (·) and V (·). Since Theorem 6.1.7 is non-conservative for

piecewise affine bounds, we conclude that µq(·) does not provide ω-deterioration

of closed-loop performance. Such a conclusion was verified by Algorithm 9, which

has found a violation of (6.19) for the middle region of µq(·) where u = 0. As an

example, consider x = 3, for which µ(x) = −0.6. Then Ax+Bµ(x) = 2.1. With the
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Figure 6.4: Results for stability verification in Section 6.1.4: functions V (·) (blue

dashed), V (·) (red dash-dotted) from (6.31), and the quantized feed-

back µq(·) in (6.38).

quantized feedback, µq(x) = −0.9, which gives Ax+Bµq(x) = 1.8, which is within

ω-factor increase of ‖2.1‖∞. However, for x = 1 we have Ax + Bµ(x) = 0.7, and

Ax+Bµq(x) = 0.9. Here, 0.9 6≤ ω0.7 with ω = 1.05. All results of the verification

are compactly reported in Table 6.1.
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Figure 6.5: Results for performance verification in Section 6.1.4: functions V (·)
(blue dashed), V (·) (red dash-dotted) from (6.37), and the quantized

feedback µq(·) in (6.38).
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Operation Time [s] Complexity Result

Quantization
µ(x) 0.02 1 region

µq(x) 0.02 3 regions

Feasibility
V /V 0.57 2 regions

Passed
Certification 0.04 8 LPs

Stability
V /V 0.81 4 regions

Passed
Certification 0.07 12 LPs

Performance
V /V 0.80 4 regions

Failed
Certification 0.03 5 LPs

Table 6.1: Results of the verification for 1D example.

Ball and the Beam

Next we consider a system of ball on the beam, described in Figure 6.6. The

nonlinear dynamics was linearized around the beam’s angle α = 0, what yielded

the linear model in the form:
[
ṙ

r̈

]
=

[
0 1

0 0

][
r

ṙ

]
+

[
0

−0.21

]
θ, (6.41)

where |r| ≤ 0.5 is the position of the ball, |ṙ| ≤ 1 is the speed of the ball and with

the servo gear angle |θ| ≤ 1.5 representing the control input to the system.

To obtain model as in (6.1), we have discretized the system (6.41) with sampling

time equal to 0.1 seconds. Then, the MPC problem in (6.3) was formulated with

N = 5, weighting matricesQx = diag(1, 0, 1), Qu = 0.3, QN equal to the solution of

the algebraic Riccati equation, and Xf being the constraint LQR terminal set. By

solving the given problem for all feasible initial conditions resulted in the explicit

MPC policy µ(·) defined over 37 regions.

To analyze the performance of µ(·) under the rounding-based quantizer with

13 equidistantly distributed quantization levels, i.e. {−1.5,−1.25,−1,−0.75,−0.5,
−0.25, 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5}, we have devised the µq(·) as in (6.10) per Al-

gorithm 8. After 1.33 seconds, this resulted in a piecewise constant feedback law

µq(·) defined over 55 regions.

Firstly, we have verified, whether the a-posteriori quantized controller µq(·)
provides the recursive feasibility for an arbitrary controllable initial condition. To
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Figure 6.6: Ball and the beam.

proceed, we have constructed performance boundaries V (·) and V (·) as described in

Section 6.1.3. The computation of both functions, along with C, took 2.92 seconds

and their polytopic partition dom(V (·)) and dom(V (·)) were composed of 7 regions

each. Then, the Algorithm 9 was employed to determine validity of (6.8). In 2.45

seconds a positive certificate was obtained, thus we have that µq(·) satisfies the

input and state constraints.

Subsequently, we have investigated if µq(·) exhibits property of closed-loop

asymptotic stability. For this, boundaries in (6.31) were devised in 12.84 seconds

and employed in Algorithm 4, which (after 0.25 seconds) yielded a negative certifi-

cate. To see this, in Figure 6.7, we have shown closed-loop simulation of µ(·) and
its quantized version µq(·), for the initial condition x = [0.1 0]T . Here, one can

see that the a-posteriori quantized controller µq(·) does not steer all states to the

origin. This is due to the fact that, at the time t = 4.2 seconds, the control input

from the MPC policy µ(·) was rounded to the nearest quantization level q6 = 0.

By plugging µq(·) = 0 into the systems dynamics in (6.1), we have x(t+1) = x(t),

and this applies for all further time steps t > 4.2. Finally, since limt→∞ x(t) 6= 0,

we have that µ(·) does not exhibit closed-loop asymptotic stability5, what proofs

the result of the obtained certificate.

In the end, we have determined whether performance decadency of µq(·) is not
5Thought it provides bounded-input bounded-output (BIBO) stability



162 CHAPTER 6. VERIFICATION TECHNIQUES IN MPC

0 5 10 15
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

 

 

S
ta
te
s

Time [s]

r

ṙ
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(d) Input profiles under µq(·).

Figure 6.7: Simulation results for the system ball and the beam. Left column

shows state and input profiles when the system is controlled by the

real-valued MPC feedback. The column on the right corresponds to

profiles obtained by controlling the system by the quantized feedback.

The initial condition was r = 0.45, ṙ = 0.

larger then 30%, compared to the real-valued controller µ(·). Here, a sequential

approach was applied, where (6.8) was iteratively verified with boundary functions

V j(·) and V j(·) constructed for each region j = 1, . . . ,M . Since, after 111 seconds

no violation was detected, we have that µq(·) provides bounded deterioration of

performance for γ = 1.3.

Results of all certification procedures are reported in Table 6.2.
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Operation Time [s] Complexity Result

Quantization
µ(x) 3.38 37 regions

µq(x) 1.33 55 regions

Feasibility
V /V 2.92 7 regions

Passed
Certification 2.45 120 LPs

Stability
V /V 12.84 57 regions

Failed
Certification 0.25 19 LPs

Performance
V /V 86.35 74 regions6

Passed
Certification 23.71 284 LPs

Table 6.2: Results of the verification for ball and the beam.

Inverted Pendulum on a Cart

As the last example we will use an inverted pendulum mounted on a moving cart,

shown in Figure 5.3 in Section 5.7.2. Linearizing the nonlinear dynamics around

the upright, marginally stable position leads to the following linear model:




ṗ

p̈

φ̇

φ̈



=




0 1 0 0

0 −0.182 2.673 0

0 0 0 1

0 −0.455 31.182 0







p

ṗ

φ

φ̇



+




0

1.818

0

4.546



u, (6.42)

where p is the position of the cart (constrained by |p| ≤ 1), ṗ is the cart’s velocity

(with |ṗ| ≤ 1), φ is the pendulum’s angle from the upright position (with |φ| ≤
0.35), and φ̇ denotes the angular velocity (restricted to |φ̇| ≤ 1). The control

input u, constrained to |u| ≤ 1, is proportional to the force applied to the cart.

System (6.42) was converted to (6.1) by assuming sampling time 0.1 seconds. For

the discrete-time system we have first constructed the real-valued feedback in (6.5)

by solving the MPC problem in (6.3) with the prediction horizon N = 4, and

penalties Qx = diag(10, 1, 10, 1), Qu = 0.1. Moreover, the terminal penalty QN

was selected as the solution to the algebraic Riccati equation, while Xf is the LQR

terminal set. By solving (6.3) parametrically, the feedback µ(x) was obtained as a

piecewise affine function defined over 187 polytopes in R
4.

Then we have investigated the properties of the quantized version of µ(·) by as-

suming quantization levels {−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1}. Here, the
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quantized controller µq(·) in (6.10) was first obtained by applying Algorithm 8 to

µ(·). After 3.97 seconds we have obtained the quantized feedback in (6.10) which

was defined over 557 polytopes. A comparison of closed-loop performance of the

real-valued MPC feedback µ(·) versus its a-posteriori quantized version µq(·) is

shown in Figure 6.8.

Subsequently, we have applied the procedure of Section 6.1.3 to check whether

µq(·) achieves recursive satisfaction of state and input constraints for an arbitrary

controllable initial condition. The computation of the invariant set C in (6.24),

along with construction of the performance bounds per (6.28), took 39.51 sec-

onds in total. Here, the functions V (·), V (·) were both defined over 36 regions.

Finally, Algorithm 9 was executed to check validity of (6.8). A negative certifi-

cate was obtained in 0.46 seconds after 29 LPs (out of 2864 candidates). There-

fore we deduce that the a-posteriori quantized feedback µq(·) does not exhibit

state/input constraint satisfaction. To see this we can exploit result of the certifi-

cation that reports that the first violation has occurred in the intersection of the

4-th partition of µq(x) = −0.25 with the 22-th partition of V (x) = −0.27, where
x = [−0.5108, 1.0000, 0.2907,−1.0000]T. Since V (x) < µq(x) we have that µq(x)

violates the upper boundary at least in this particular state.

As can be observed from Figure 6.8(b), for at least one initial condition the

quantized feedback does not push all system’s states asymptotically to the origin.

Therefore µq(·) does not provide guarantees of asymptotic closed-loop stability .

This conclusion was verified per the procedure of Section 6.1.3. Here, we have first

constructed the bounding functions by solving the parametric mixed-integer linear

programs in (6.31). After 761 seconds we have obtained piecewise affine functions

V (·) and V (·) defined over 714 polytopes in R
4. The subsequent execution of

Algorithm 9 took 0.06 seconds to find a violation of (6.19), hence certifying a

negative answer to verification of closed-loop stability properties.

Finally, we have verified whether µq(·) provides bounded deterioration of per-

formance for γ = 1.3, what corresponds to determining, whether the performance

decay of µq(·) is not worse than 30% compared to µ(·). To proceed, we have em-

ployed sequential verification (cf. Remark 6.1.13), which after 13 seconds yielded

the negative certificate. Particularly, the violation was found in the first investi-

gated region of µ(·), where the construction of V (·) and V (·) took 12.6 seconds,

and by examining 34 non-empty intersections in Algorithm 9. All results of the

verification are compactly reported in Table 6.3.
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Figure 6.8: Simulation results for the example inverted pendulum on a cart. Left

column shows state and input profiles when the system is controlled by

the real-valued MPC feedback. The column on the right corresponds to

profiles obtained by controlling the system by the quantized feedback.

The initial condition was p = 0.4, ṗ = φ = φ̇ = 0.

6.2 Safety Verification of Implicitly Defined MPC

Feedback Laws

It is well known that Model Predictive Control (MPC) feedback strategies can

provide an optimal operation of the plant while taking constraints into account (cf.

Chapter 3). However, certain safety specifications such as performance constraints

(e.g., limits on overshoots and settling time) or obstacle avoidance constraints are

difficult to impose in the standard context of convex MPC because they lead to
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Operation Time [s] Complexity Result

Quantization
µ(x) 16.2 187 regions

µq(x) 4.0 557 regions

Feasibility
V /V 39.5 36 regions

Failed
Certification 0.5 29 LPs

Stability
V /V 761.0 714 regions

Failed
Certification 0.06 3 LPs

Performance
V /V 12.6 8 regions (for R1)

Failed
Certification 0.4 34 LPs

Table 6.3: Results of the verification for inverted pendulum on a cart.

non-convex formulations which are computationally expensive to implement in real

time. If satisfaction of such safety bounds can be verified off-line, then the controller

can be much simpler.

Given a model of the controlled plant x(t+1) = f(x(t), u(t)) and the MPC feed-

back strategy u(t) = κ(x(t)), the objective of this section is to provide a rigorous

certificate that the closed-loop system f(x(t), κ(x(t))) is safe in the following sense:

Given a set of initial conditions I and a set of unsafe states Z, determine whether

there exists an initial condition x(0) ∈ I such that the MPC controller forces the

closed-loop states to enter Z. If such an initial condition exists, the controller is not

safe as it eventually forces the closed-loop system to violate design specifications.

On the other hand, if no such x(0) ∈ I exists, the controller is deemed safe since

the set of unsafe states will never be entered by the closed-loop system.

Such a safety verification task can be tackled mainly in two ways. The first

set of approaches is based on so-called barrier certificates (Prajna and Jadbabaie,

2004; Prajna et al., 2007; Wieland and Allgöwer, 2007), which are closely related

to the concept of Lyapunov functions used for stability analysis. The downside of

such approaches is that construction of the barrier certificates is usually achieved

via convex relaxations to obtain a computationally tractable problem, and is thus

conservative. Therefore such approaches might fail at finding the desired safety

certificate even if one exists.

The second set of methods is based on reachability analysis where one investi-

gates whether the set Z is reachable by the closed-loop system from a given set of
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initial conditions I (Asarin et al., 2002; Bemporad et al., 2000a; Henzinger et al.,

1997; Silva et al., 2000; Stursberg and Krogh, 2003). The reachability analysis is

typically performed by computing forward reachable sets, followed by determining

whether the intersection between such reachable sets and the set of unsafe states

is empty or not. The reachability-based procedure has several limitations, though.

First, and most importantly, it assumes that the analytic description of the closed-

loop dynamics is known. MPC strategies, however, only describe the optimal con-

trol inputs implicitly as the optimal solution to an optimal control problem. Hence

the analytic form of the closed-loop dynamics is not directly available. One way

around this issue is to derive the explicit solution of MPC (Bemporad et al., 2000b,

2002b) by employing parametric optimization (Borrelli, 2003b; Gal and Nedoma,

1972; Willner, 1967). Such solutions, however, are often very complex and difficult

to construct especially for problems of large dimensionality.

In this work we take a different route which allows to investigate closed-loop

systems without the need to compute the underlying explicit solution. Specifically,

we show how to represent the closed-loop evolution of the feedback system by

the KKT conditions (Boyd and Vandenberghe, 2004) of the MPC optimization

problem. However, even for MPC problems based on linear prediction models and

with all constraints being linear, the KKT conditions are nonlinear. Therefore we

show how to convert such nonlinearities, in a non-conservative manner, to linear

inequalities which involve continuous and binary decision variables. This allows us

to provide a non-conservative answer to the safety verification problem.

The second limitation of reachability-based approaches to safety verification

is that they require computing either exact or approximate reachable sets (Tor-

risi, 2003). Computation of exact reachable sets is expensive in large dimensions.

Approximate sets (Stursberg and Krogh, 2003) are easier to construct, but may

lead to conservative safety certificates. In our proposed method the construction

of reachable sets is avoided altogether. Instead, the safety verification problem is

posed as a series of MILP of tractable size.

Finally, the common drawback of reachability-based approaches is that they

only provide a certificate of safety for a finite number of time steps. In this section

we show that under mild assumptions on the terminal set included in the MPC

problem, safety can be verified ad infinitum, i.e., for an infinite number of time

steps.
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6.2.1 Problem Statement

Let us consider the same setup as in Section 6.1.1, i.e. the discrete-time LTI systems

of the form (6.1), subjected to (6.2). The constrained finite-time optimal control

problem for the prediction model in (6.1) is given by

U
⋆
ol = arg min x

T
NQNxN +

N−1
∑

k=0

x
T
k Qxxk + u

T
kQuuk (6.43a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1, (6.43b)

xk ∈ X , k = 0, . . . , N − 1, (6.43c)

uk ∈ U , k = 0, . . . , N − 1, (6.43d)

xN ∈ Xf , (6.43e)

where xk and uk are, respectively, predictions of states and inputs at the k-th step

of the prediction horizon (denoted by N), initialized by x0, the measurement (or

estimate) of the current state. Moreover, QN = QT
N � 0, Qx = QT

x � 0 and

Qu = QT
u ≻ 0 denote weighting matrices, and Xf ⊆ X is a polyhedral terminal set.

Finally, U⋆
ol denotes the open-loop sequence of optimal control moves, i.e., U⋆

ol =

[u⋆0
T , . . . , u⋆N−1

T ]T , obtained by solving (6.43) for a particular initial condition x0.

The receding-horizon implementation of the MPC feedback law is obtained by

calculating the open-loop sequence U⋆
ol for a particular initial condition x0 = x(t) at

each sampling step, but only employing its first element, i.e., u⋆0, as the closed-loop

control action. Hence, the RHC feedback law κ : Rn → R
m is given by

κ(x(t)) =
[
Im×m 0m×m · · · 0m×m

]

︸ ︷︷ ︸
Φ

U⋆
ol(x(t)). (6.44)

Since U⋆
ol(x(t)) in (6.44) is implicitly defined as the solution of the numerical opti-

mization problem (6.43), we refer to (6.44) as the implicitly defined MPC feedback

law.

The closed-loop evolution of (6.1) subject to the MPC feedback in (6.44) is

defined by

xcl(t+ 1) = Axcl(t) +Bκ(xcl(t)). (6.45)

When initialized from x(0), , the closed-loop state at any t > 0 is

xcl(t) = Atx(0) +
t−1∑

i=0

At−i−1Bκ(x(i)). (6.46)
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The problem we aim at solving is to verify whether the parameters of (6.43)

have been chosen such that the implicitly defined feedback law (6.44) forces the

closed-loop state trajectory (6.46) to avoid a known set of unsafe states. If a

trajectory entering the unsafe set exists, the controller is poorly designed as it does

not exhibit required safety properties. Moreover, existence of such a unsafe closed-

loop trajectory serves as a certificate of lack of safety. If no such trajectory entering

the unsafe set exists, the controller is deemed safe. Such problem is illustrated in

Figure 6.9.

We distinguish between two versions of such a problem. One verifies whether

the set of unsafe states can be reached from a given set of initial conditions in finite

time:

Problem 6.2.1 (Finite-time safety verification) Let the LTI system (6.1), the

implicitly defined MPC feedback law (6.44), the set of investigated initial conditions

I ⊆ R
n and the set of unsafe states Z ⊆ R

n be given. Moreover, let the integer

P < ∞ be given. Provide a certificate that xcl(t) 6∈ Z for all t ≤ P with xcl(t) as

in (6.46).

Note that Problem 6.2.1 can only certify safety of the MPC controller up to

t = P , but not for t > P . Therefore, the second more general and more useful

version certifies safety ad infinitum, i.e., that the set of unsafe states cannot be

reached in a possibly infinite number of time steps:

Problem 6.2.2 (Infinite-time safety verification) With the same inputs as in

Problem 6.2.1, provide a certificate that xcl(t) 6∈ Z for all t ≤ ∞.

Two choices of the set of initial conditions I are typically considered. One op-

tion is to choose I = dom(κ) where dom(κ) is the feasibility set of (6.43). In such a

settings we verify the safety and properties for all feasible initial conditions. Alter-

natively, I ⊆ dom(κ), in which case only a subset of the feasible initial conditions

is investigated (for instance the typical process operating conditions).

Remark 6.2.3 The MPC problem (6.43) could be formulated to directly include

the safety constraint xk 6∈ Z by imposing xk ∈ X \Z where “\” is the set difference

operator. However, such constraints are, in general, non-convex and would make

the MPC computationally impossible to solve, especially in real time. Moreover,

unless additional conditions are also employed, the avoidance of the set of unsafe
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Figure 6.9: Illustrative example of the safety verification. Black borders of the pic-

ture represent the feasible domain X of MPC. The set of all unsafe

states Z is denoted by blue color, green set is the set of all possible

initial conditions I, pink square is the reference and squared-dashed

lines represent randomly chosen samples of the closed-loop state pro-

files. The state that violations safety property is denoted by the red

square and the corresponding trajectory is emphasized by black color.

states would not be guaranteed ad infinitum. Finally, in this work we only aim at

verifying whether xcl(t) 6∈ Z for a specific range of initial conditions I, not for any
x(0) ∈ X .

6.2.2 Safety Verification

In this section we propose a non-conservative procedure for solving Problems 6.2.1

and 6.2.2. The presented technical solution is based on the following assumptions:

Assumption 6.2.4 The set of initial conditions I contains at least one point x0 ∈
I which is a feasible initial condition for (6.43).

Assumption 6.2.5 The set of unsafe states Z is a convex polyhedron represented

by Z = {x ∈ R
n |Sx ≤ s}. Moreover, I is also a polyhedron.

Assumption 6.2.6 The set of unsafe states Z does not intersect the set of initial

conditions I, i.e., Z ∩ I = ∅.
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Assumption 6.2.4 is non-restrictive and merely requires the user to choose the ini-

tial set which is consistent with constraints of the MPC problem (6.43). Assump-

tion 6.2.5 is required to obtain a computationally tractable and non-conservative

solution to the safety verification problems. Finally, Assumption 6.2.6 is quite nat-

ural and not restrictive as it merely excludes inconsistent scenarios where the MPC

problem (6.43) is set up in such a way that it forces violation of safety bounds by

starting from the unsafe set directly.

We start by converting the optimal control problem (6.43) into a quadratic

program. With the substitution

xk = Akx0 +

k−1∑

i=0

Ak−i−1Bui, (6.47)

the open-loop profile of predicted states in (6.43), i.e., Xol = [x0
T , . . . , xN

T ]T can

be compactly written as

Xol = Γx0 +ΨUol, (6.48)

with

Γ =





















I

A

A2

...

AN





















,Ψ =























0 0 . . . 0

B 0 . . . 0

AB B
. . .

...
...

...
. . . 0

AN−1B AN−2B . . . B























. (6.49)

With the substitution (6.48), the open-loop optimal control problem (6.43) can be

rewritten, after straightforward algebraic manipulations (see Section 3.2.6), into

U⋆
ol(x0) = arg minUol

1/2UT
olHUol + xT0 FUol (6.50a)

s.t. GUol ≤ w + Ex0, (6.50b)

which is a strictly convex parametric quadratic program due to the assumption

that Qu ≻ 0, QN � 0, and Qx � 0. Moreover, we define

XP
cl = [xcl(0)

T , . . . , xcl(P )
T ]T (6.51)

as the closed-loop trajectory of (6.1) subject to the MPC feedback law (6.44) over

P discrete time steps, with xcl(0) = x(0), and xcl(j) is given by (6.46) for each

j = 1, . . . , P .
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In what follows we show how to solve Problems 6.2.1 and 6.2.2 based on the

assumption that the open-loop profile Xol from (6.48) is equal to the closed-loop

trajectory XN
cl from (6.51), and N = P in Problem 6.2.1.

Remark 6.2.7 Conditions under which Xol = XN
cl are elaborated in Mayne et al.

(2000). One such a condition is that the terminal penalty QN , the terminal set Xf ,

and the prediction horizon N are chosen such that the value function in (6.43a)

is equal to the infinite-horizon value function. As shown, e.g., in (Grieder et al.,

2005), such a condition is satisfied if QN is the solution to the discrete-time alge-

braic Riccati equation, Xf is the positively invariant set where the LQR controller

satisfies the constraints, and the prediction horizon is sufficiently large.

Scenario 1: Open-Loop Equals Closed-Loop

Assume that QN , Xf and N have been chosen such that the equivalence between

Xol and XN
cl is established per Remark 6.2.7. Since Xol = XN

cl is assumed, the

closed-loop state profile XN
cl in (6.51) is equal to Xol from (6.48) where the optimal

open-loop sequence of control inputs, i.e., U⋆
ol, is employed. IntroduceMj ∈ R

n×Nn

as

Mj =
[
0n×(j−1)n In×n 0n×(N−j)n

]
. (6.52)

ThenMjX
N
cl = x(j). In other words, the matrixMj extracts from the closed-loop

state trajectory in (6.51) its j-th element. Reachability/unreachability of the set

of unsafe states Z in exactly j steps with 0 ≤ j ≤ N can then be stated as

find x(0) (6.53a)

s.t. x(0) ∈ I, (6.53b)

Mj(Γx(0) + ΨU⋆
ol) ∈ Z, (6.53c)

U⋆
ol = arg minUol

1/2UT
olHUol + x(0)TFUol (6.53d)

GUol ≤ w + Ex(0), (6.53e)

x(0) ∈ I, (6.53f)

where (6.53c) translates to x(j) ∈ Z via (6.48) and (6.52).

Problem (6.53) is a bilevel optimization problem where U⋆
ol in (6.53c) is the

optimal solution of the lower-level problem (6.53d)−(6.53f). This lower-level opti-
mization problem implicitly defines the open-loop sequence of control inputs which
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are optimal for a particular value of the initial condition x(0), which is investi-

gated in the higher-level problem. Note that the higher-level problem, represented

by (6.53a)−(6.53c), is related to the lower-level problem via x(0). Therefore as

x(0) changes in the higher-level problem, a different U⋆
ol will be generated by the

lower-level problem and vice versa.

Our first two results provide conditions under which a positive or a negative

answer to Problem 6.2.1 exists.

Theorem 6.2.8 Let the sets I and Z satisfy Assumptions 6.2.4 and 6.2.6, respec-

tively. If the bilevel problem (6.53) is feasible for some j ∈ [1, . . . , N ] then there

exists x(0) ∈ I such that xcl(j) ∈ Z for some 0 < j ≤ N (i.e., the set Z is reachable

from I in, at most, N steps).

Proof. First note that constraints (6.53b) and (6.53d)−(6.53f) can always be

satisfied by a suitable choice of x(0) due to Assumption 6.2.4. Therefore feasibility

of (6.53) depends only on feasibility of (6.53c). Since Xol = XN
cl is assumed, the

j-th open-loop predicted state xj is equal to the actual closed-loop state xcl(j).

Thus (6.53c) translates to xcl(j) ∈ Z due to (6.52). Therefore if (6.53) is feasible

for some value of j, we have that x(0) ∈ I and xcl(j) ∈ Z, which shows that

feasibility of (6.53) implies reachability of Z from I.
Theorem 6.2.8 provides a way for finding the counter-example for the safety

properties investigated in Problem 6.2.1. Such a counter-example is represented by

the existence of the initial condition x(0), along with the number of time steps j

the closed-loop system takes to reach the set of unsafe states.

The following result is a direct corollary of Theorem 6.2.8 and establishes con-

ditions under which Z cannot be reached from I in, at least, N steps, and thus

provides a positive certificate of controller’s safety according to Problem 6.2.1:

Corollary 6.2.9 If the bilevel problems (6.53) is infeasible for j = 1, . . . , N , then

there does not exist any x(0) ∈ I for which xcl(t) ∈ Z for some t ≤ N , i.e., the set

Z is not reachable from I in, at least, N steps, thus xcl(t) 6∈ Z for t ≤ N .

Next, we show that the infinite-time safety verification task of Problem 6.2.2

can be answered in finite time providing the following assumption hold:

Assumption 6.2.10 The terminal set Xf in (6.43e) is a positively invariant set

with Z ∩ Xf = ∅.
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Existence of a positive invariant terminal set is a standard assumption in MPC

to obtain closed-loop stability guarantees (see Section 3.3.2). Here, in addition we

required that the terminal set is chosen not to intersect the unsafe set, i.e., the

terminal set is guaranteed to be safe.

Theorem 6.2.11 Let the sets I and Z satisfy Assumptions 6.2.4 and 6.2.6, and

let Xf in (6.43e) fullfil the conditions of Assumption 6.2.10. If the bilevel prob-

lems (6.53) are infeasible for each j = 1, . . . , N , then the set Z is not reachable

from I in any number (including infinity) of steps, i.e., xcl(t) 6∈ Z for all t > 0.

Proof. If (6.53) is infeasible for all j = 1, . . . , N , then either Z is unreachable in

at least N steps, or it could be reached with more than N steps. The former case

is already covered by Corollary 6.2.9 and thus xcl(t) 6∈ Z for t = 1, . . . , N . The

latter case is impossible under Assumption 6.2.10. To see this, note that positive

invariance of Xf means that xcl(t+ k) ∈ Xf for any k > 0 once xcl(t) ∈ Xf . Since

Xol = XN
cl is assumed, xN (which is equal to xcl(N)) will be contained in the

terminal set Xf via (6.43e). Thus from positive invariance of the terminal set we

have xcl(N+k) ∈ Xf for any k > 0. Finally, since Z∩Xf = ∅ by Assumption 6.2.10,

we have that xcl(N + k) 6∈ Z for all k > 0. Therefore xcl(t) 6∈ Z for all t > 0.

The safety verification taks of Problems 6.2.1 and 6.2.2 for the scenario discussed

here can thus be solved by determining the feasibility of the bilevel optimization

problem (6.53) for j = 1, . . . , N , where N is the prediction horizon in (6.43). If the

problem is feasible for a particular j, the answer to Problems 6.2.1 and 6.2.2 is that

the set Z of unsafe states is reachable from some x(0) ∈ I, and the controller is

thus not safe. In such a case further values of j need not be considered. Moreover,

a feasible solution to the bilevel optimization problem also provides the initial

condition which serves as a counter-example to safety verification.

On the other hand, if the bilevel problem (6.53) are infeasible for all j =

1, . . . , N , then the answer to Problem 6.2.1 is that Z is not reachable, and the

controller is thus safe for at least N steps. Answering Problem 6.2.2 requires that

the terminal set satisfies Assumption 6.2.10. In such a case the infinite-dimensional

problem reduces to a finite-dimensional one.

In the sequel we show how to determine feasibility of (6.53) in a non-conservative

fashion by converting it to a mixed-integer linear program. To do so, we first
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formulate the KKT conditions of the lower-level problem in (6.53d)−(6.53f):

HU⋆
ol + FTx(0) +GTλ⋆ = 0, (6.54a)

GU⋆
ol ≤ w + Ex(0), (6.54b)

λ⋆ ≥ 0, (6.54c)

λ⋆k(GkU
⋆
ol − wk − Ekx(0)) = 0, (6.54d)

where (6.54a) is the stationarity condition, (6.54b) represents primal feasibility,

(6.54c) is the dual feasibility, and (6.54d) stands for the complementary slackness

condition, which is imposed for k = 1, . . . , nc, where nc is the number of rows of G.

Moreover, Gk, wk, Ek denote the k-th row of the corresponding matrix. Since the

lower-level problem is a strictly convex parametric QP, the KKT conditions (6.54)

are necessary and sufficient (Boyd and Vandenberghe, 2004). However, they are

nonlinear due to product between the Lagrange multipliers λ⋆ and the decision

variables U⋆
ol in (6.54d).

Such a nonlinearity can be worked around by realizing that for (6.54d) to hold,

either λ⋆k = 0 or GkU
⋆
ol −wk −Ekx(0) = 0 for all k = 1, . . . , nc. One can introduce

binary indicators δk ∈ {0, 1} and γk ∈ {0, 1} such that

(δk = 1) ⇔ (λ⋆k = 0) (6.55a)

(γk = 1) ⇔ (GkU
⋆
ol − wk − Ekx(0) = 0). (6.55b)

By applying standard rules of propositional logic Williams (1993), also known as

the big-M technique, the equivalences in (6.55) can be furthermore rewritten into

a set of inequalities that are linear in the decision variables λ⋆k, U
⋆
ol, δk, and γk,

− Z(1− δk) ≤ λ⋆k ≤ Z(1− δk), (6.56a)

− Z(1− γk) ≤ GkU
⋆
ol − wk − Ekx(0) ≤ Z(1− γk), (6.56b)

where Z is a sufficiently large constant. It is trivial to verify that if δk = 1 in (6.56a),

then λ⋆k = 0 is the only feasible value. If δk = 0, then (6.56a) is inactive. Similar

reasoning holds for (6.56b). Then the complementarity slackness condition (6.54d)

can be equivalently written as the propositional logic statement of the form δk ∨γk
(i.e., either the k-th Lagrange multiplier is zero, or the k-th constraint is active),

or, equivalently, be written as δk + γk ≥ 1. Therefore the KKT conditions (6.54)
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can be equivalently written as

HU⋆
ol + FTx(0) +GTλ⋆ = 0, (6.57a)

GU⋆
ol ≤ w + Ex(0), (6.57b)

λ⋆ ≥ 0, (6.57c)

− Z(1− δk) ≤ λ⋆k ≤ Z(1− δk), (6.57d)

− Z(1− γk) ≤ GkU
⋆
ol − wk − Ekx(0) ≤ Z(1− γk), (6.57e)

δk + γk ≥ 1, (6.57f)

where (6.57d)−(6.57f) are imposed for k = 1, . . . , nc.

In what follows we will abbreviate (6.57) by KKT(x(0), U⋆
ol, λ

⋆, δ, γ) ≤ 0. Ac-

cordingly, the bilevel optimization problem (6.53) can be equivalently written as

find x(0) (6.58a)

s.t. x(0) ∈ I, (6.58b)

S(Mj(Γx(0) + ΨU⋆
ol)) ≤ s, (6.58c)

KKT(x(0), U⋆
ol, λ

⋆, δ, γ) ≤ 0, (6.58d)

where (6.58c) is equivalent to (6.53c) and Z is assumed to be a polyhedron, cf.

Assumption 6.2.5. Since all constraints are linear (cf., (6.57)), problem (6.58) is

a mixed-integer feasibility problem with continuous decision variables x(0) ∈ R
n,

U⋆
ol ∈ R

Nm, λ⋆ ∈ R
nc , and binary decision variables δ ∈ {0, 1}nc and γ ∈ {0, 1}nc,

where nc is the number of constraints of the pQP formulation of the MPC problem

in (6.50).

Remark 6.2.12 Note that showing safety of the MPC feedback per Corollary 6.2.9

and Theorem 6.2.11 relies on infeasibility of (6.58) for each j ∈ [1, . . . , N ]. To

prevent numerical problems which might lead to false indication of infeasibility, we

propose to soften the hard constraints (6.58c) by

S(Mj(Γx(0) + ΨU⋆
ol)) ≤ s+ ω, (6.59a)

ω ≥ 0, (6.59b)

where ω ∈ R
nS are the slack variables (here, nS is the number of rows of S in

Assumption 6.2.5). Moreover, the objective (6.58a) should be replaced by min ‖ω‖1.
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Such a modified problem is always feasible. If ω = 0 in the modified problem, (6.58)

is feasible by Assumption 6.2.4. If ωi > 0 for at least one component of ω in the

modified problem, then (6.58) is infeasible.

Finally, we remark that even though the MILP problem (6.58) is non-convex

due to presence of binary decision variables, its feasibility can always be determined

in finite time, and the optimal solution of the modified problem per Remark 6.2.12

can always be found in finite time, e.g. by branch-and-bound methods.

Scenario 2: Open-Loop not Equal to Closed-Loop

If a mismatch between the predicted open-loop state profile Xol and the actual

closed-loop response XP
cl is assumed, the closed-loop control action at the j-th

step, i.e., u(j)⋆ = κ(xcl(j)) is not necessarily equal to the j-th element of U⋆
ol(x(0)).

Therefore x(1) = Ax(0)+Bκ(x(0)), where κ(x(0)) = ΦU⋆
ol(x(0)), Φ is as in (6.44),

and U⋆
ol(x(0)) is the open-loop optimal control sequence corresponding to the initial

condition x0 = x(0) in (6.43). To simplify the notation, we will abbreviate U⋆
ol(x(0))

by U⋆
ol(0). As elaborated in Section 6.2.2, U⋆

ol(0) will be the optimal open-loop

sequence for the initial condition x(0) if and only if there exist associated Lagrange

multipliers λ⋆(0), along with binary vectors δ(0) and γ(0), such that the KKT

system (6.58) holds. For j = 2, we have xcl(2) = Axcl(1) + Bκ(xcl(1)), where

κ(xcl(1)) = ΦU⋆
ol(xcl(1)) = ΦU⋆

ol(1). The corresponding optimizer U⋆
ol(1) is, again,

implicitly given as the feasible solution to the KKT system (6.58) for x0 = xcl(1),

i.e., U⋆
ol(1) is optimal if and only if KKT(xcl(1), U

⋆
ol(1), λ

⋆(1), δ(1), γ(1)) ≤ 0 holds.

The same argument applies for j = 3, . . . , P .

Therefore, to determine whether Z is reachable from I, we need to determine

existence of a whole set of open-loop sequences {U⋆
ol(0), U

⋆
ol(1), . . . , U

⋆
ol(j − 1)}:

find x(0) (6.60a)

s.t. x(0) ∈ I, (6.60b)

xcl(j) ∈ Z, (6.60c)

xcl(p+ 1) = Axcl(p) +BΦU⋆
ol(p), (6.60d)

KKT(xcl(p), U
⋆
ol(p), λ

⋆(p), δ(p), γ(p)) ≤ 0, (6.60e)

where constraints (6.60d) and (6.60e) are imposed for p = 0, . . . , j − 1 together

with the substitution x(0) = xcl(0) to enable the recursion in (6.60d). Since I
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and Z are assumed to be polyhedra, and because (6.60e) can be cast as a set of

mixed-integer inequalities per (6.57), problem (6.60) for a finite j is a mixed-integer

feasibility problem in decision variables x(0), xcl(1), . . . , xcl(j) with xcl(p) ∈ R
n,

U⋆
ol(0), . . . , U

⋆
ol(j−1) with U⋆

ol(p) ∈ R
Nm, λ⋆(0), . . . , λ⋆(j−1) with λ⋆(p) ∈ R

nc , and

binary decision variables δ(0), . . . , δ(j−1) with δ(p) ∈ {0, 1}nc and γ(0), . . . , γ(j−1)
with γ(p) ∈ {0, 1}nc, where p = 0, . . . , j − 1.

The following theorem is a direct extension of Theorem 6.2.8 and Corollary 6.2.9

and provides a technical solution to the finite-time safety verification task of Prob-

lem 6.2.1 for the Xol 6= Xcl scenario:

Theorem 6.2.13 Let the sets I and Z satisfying Assumptions 6.2.4 and 6.2.6 be

given, and let P <∞. If the mixed-integer feasibility problem (6.60) is feasible for

some j ∈ [1, . . . , P ], then Z is reachable from I under the MPC feedback (6.44) in

exactly j steps. If (6.60) is infeasible for all j = 1, . . . , P , then Z is unreachable

from I in, at least, P steps.

Proof. Directly by Theorem 6.2.8 and Corollary 6.2.9.

To provide a technical solution to the infinite-time safety verification Prob-

lem 6.2.2, we require the following technical assumption:

Assumption 6.2.14 The terminal set Xf in (6.43e) is a positively invariant set,

Z ∩ Xf = ∅, and the parameters N , QN , Qx, Qu of the MPC optimal control

problem (6.43) are chosen such that the controller forces the state of the closed-loop

system (6.45) to enter Xf in, at most, P steps.

Theorem 6.2.15 Let I, Z, and Xf satisfy, respectively, Assumptions 6.2.4, 6.2.6,

and 6.2.14. If (6.60) are infeasible for each j = 1, . . . , P , then Z is unreachable

from I in any number of steps, i.e., xcl(t) 6∈ Z for any t > 0.

Proof. First, per Theorem 6.2.13, infeasibility of (6.60) for each j = 1, . . . , P

implies Z cannot be reached in P steps, i.e., xcl(t) 6∈ Z for t = 1, . . . , P . Second,

under Assumption 6.2.14 we have that xcl(P ) ∈ Xf . Since Xf is positively invariant,

then xcl(P + p) ∈ Xf for any k > 0. Finally, since Z ∩ Xf = ∅, it follows that

xcl(P + p) 6∈ Z for any k > 0. Combining both statements gives xcl(t) 6∈ Z for any

t > 0.

Complexity of the decision problem (6.60) is larger than that of (6.58). Specifi-

cally, (6.60) has j-times the number of binary variables compared to (6.58). In the
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worst case, one needs to solve (6.60) a total of P times, each time introducing a

new set of decision variables (U⋆
ol(j), λ

⋆(j), δ(j), γ(j)).

Remark 6.2.16 In practice, it may be difficult to derive (or even to estimate) P

directly from parameters of the open-loop MPC problem in (6.43). One option is to

choose a conservatively large value of P , followed by using bisection. Alternatively,

an a-priori upper bound on P can be set and be interpreted as the worst acceptable

liveness of the controller. Then infeasibility of (6.60) implies that the MPC con-

troller either does not force the closed-loop states to enter Z, or that Z could be

reached, but after an unacceptably long time.

Remark 6.2.17 The scenario discussed here can even be extended to cover cases

where the MPC controller is synthesized based on the prediction model x(t + 1) =

Ax(t) + Bu(t), but its safety properties are verified under the assumption that

the calculated control actions are applied to a different system, say x̃(t + 1) =

Ãx̃(t) + B̃u(t). The extended case can be recovered by replacing A by Ã and B by

B̃ throughout the reported results.

Scenario 3: Verification of a Quantized Feedback

Next we will elaborate scenario where actuators, can operate only with a finite

number of control levels. In other words, assume that the control actions u(t) are

subjected to a quantizer that disposes of D quantization levels q = [q1, . . . , qd]
T ,

qi 6= qj , ∀i 6= j. Let us now denote uq(t) ∈ R
m to be a quantized counterpart to a

real-valued control input u(t) ∈ R
m, then the rounding-based rule fq : Rm → R

m

can be given by

uq(t) := qi if u(t) ∈ Pi, (6.61)

where

Pi = {u(t) | ||u(t)− qi||2 ≤ ||u(t)− qj ||2, ∀j 6= i}, (6.62)

represents the input-space polydedral region in which the rounding-based rule

in (6.61) maps each real-valued control input into the nearest quantization level

qi. Denote next U⋆
ol,q to be a quantized open-loop sequence of optimal control in-

puts, i.e. , U⋆
ol,q = [uTq,1, . . . , u

T
q,N−1]

T and κq(xq(t)) = ΦU⋆
ol,q(xq(t)) to be the RHC

feedback of (6.43) w.r.t. (6.61), where the matrix Φ is the same as in (6.44), then

the closed-loop state profile of (6.1) is given by

xq(t+ 1) = Axq(t) +Bκq(xq(t)), (6.63)
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and the state evolution xq(t), initialized from x(0), can be expressed as

xq(t) = Atx(0) +
t−1∑

i=0

At−i−1Bκq(xq(i)). (6.64)

Now, the objective is to provide a rigorous certificate, that will determine

whether there does not exists any initial condition x(0) ∈ I for which the MPC

policy (6.43) will generate control actions uq(t) ∈ {q1, . . . , qd} such that xq(t) ∈ Z,
where xq(t) is given by (6.64). In sequel we will show how to rewrite the quan-

tization law in (6.61) into series of linear expressions that will be subsequently

employed to the verification problem.

We start by devise polyhedral regions Pi ∈ R
m, each of which represents a

domain of real-valued control inputs u(t) where a particular quantization level

uq(t) ∈ {q1, . . . , qd}, qi 6= qj , ∀i 6= j is active. As we have already know from

Section 6.1.2, the Voronoi diagram can be employed to determine the closest quan-

tization level qi for a given value of u(t). Let us therefore rewrite (6.13) into a

polyhedron

Pi = {u(t) | PA,iu(t) ≤ PB,i}, (6.65)

where

PA,i =




2(q1 − qi)T
...

2(qi−1 − qi)T
2(qi+1 − qi)T

...

2(qd − qi)T




, PB,i =




qT1 q1 − qTi qi
...

qTi−1qi−1 − qTi qi
qTi+1qi+1 − qTi qi

...

qTd qd − qTi qi




,

which needs to be furthermore intersected with U . Furthermore, from the property

of Voronoi diagram, we have that int(Pi) ∩ int(Pi) = ∅ and ∪iPi = dom(κq) are

provided. To define in which region Pi the current real-valued control input u(t)

belongs to, one can introduce binary variables ψ ∈ {0, 1}d such that

(ψi = 1) ⇔ (PA,iu(t)− PB,i ≤ 0). (6.66)

Subsequently, inequalities in (6.66) can be rewritten by applying the big-M tech-

nique as

PA,iu(t)− PB,i ≤ T (1− ψi), (6.67)
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where PA,i ∈ R
d−1×m, PB,i ∈ R

d−1, and T ∈ R
d−1 is a vector of a sufficiently large

scalar Z, i.e. T = 1d−1Z. It can be easily shown that inequality in (6.66) holds

if and only if ψi = 1, otherwise if ψi = 0 then region Pi is inactive. Finally, the

rounding-base rule in (6.61) can by stated as

PA,iu(t)− PB,i ≤ T (1− ψi), ∀i = 1, . . . , d, (6.68a)

d∑

i=1

ψi = 1, (6.68b)

uq(t) =

d∑

i=1

ψiqi. (6.68c)

In (6.68) we have provided a quantization formula, which maps one real-valued

control input u(t) into its quantized part uq(t). However, the MPC policy (6.43)

optimizes the control inputs along the entire prediction horizon N . Therefore,

in order to enforce a finite precision arithmetics into (6.43), i.e. u ∈ q, let us

extend (6.68) for the full sequence of control moves Uol. In other words, we need

to repeat (6.68) N times for each predicted control input uk, i.e.

uq,k = qi if uk ∈ Pi, k = 0, . . . , N − 1,

to retain Uol,q = [uTq,0, . . . , u
T
q,N−1]

T . Therefore, the search for the entire quantized

open-loop sequence of control inputs Uol,q can be compactly stated as

PA,iuk − PB,i ≤ T (1− ψi,k), ∀i = 1, . . . , d, (6.69a)

d∑

i=1

ψi,k = 1, (6.69b)

uq,k =

d∑

i=1

ψi,kqi, (6.69c)

where (6.69a)-(6.69c) are imposed for all k = 0, . . . , N − 1, ψ ∈ {0, 1}Nd, PA,i ∈
R

d−1×m, PB,i ∈ R
d−1, T = 1d−1Z with sufficiently large scalar Z. For simplicity,

equations in (6.69), which translate real-valued control inputs Uol(p) into quantized

control actions Uol,q(p) at a given verification time step p will be compactly denoted

by fq(Uol(p), Uol,q(p), ψ(p)) ≤ 0.

Finally, with the derived quantization formula (6.69) in hand, we are able to

enforce MPC policy in (6.43) to generate the optimal quantized control actions

U⋆
ol,q. By realizing that the conditions under which Xol = Xcl (cf. Remark 6.2.7)
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do not hold due to the presence of the quantization effect fq(·), we are forced to

apply the results derived in the previous Scenario 2. Particularly, by taking (6.60)

and enforcing (6.69), then the verification problem which determines whether the

MPC policy (6.43) subjected to the rounding-based law (6.61) forces xq(t) to enter

Z from I can be stated as

find x(0) (6.70a)

s.t. x(0) ∈ I, (6.70b)

xq(j) ∈ Z, (6.70c)

xq(p+ 1) = Axq(p) +Bκq(xq(p)), (6.70d)

fq(U
⋆
ol(p), U

⋆
ol,q(p), ψ(p)) ≤ 0, (6.70e)

KKT(xcl(p), U
⋆
ol(p), λ

⋆(p), δ(p), γ(p)) ≤ 0, (6.70f)

where constraints (6.70d)-(6.70f) are imposed for p = 0, . . . , j− 1 and x(0) = xq(0)

is an initialization for the recursion in (6.70d). Note that each real-valued control

input U⋆
ol(p) in (6.70f) is linked with the quantization law (6.61) via (6.70e), the con-

sequence of which is that (6.70) directly operates with U⋆
ol,q(p). Moreover, with I

and U being polyhedra (see Assumption 6.2.5), and (6.70f) written as a set of mixed-

integer inequalities per (6.57) and (6.69), respectively, problem (6.70) for a finite j

is a mixed-integer feasibility problem in decision variables xq(0), xq(1), . . . , xq(j−1)
with xq(p) ∈ R

n, U⋆
ol(0), . . . , U

⋆
ol(j−1) with U⋆

ol(p) ∈ R
Nm, U⋆

ol,q(0), . . . , U
⋆
ol,q(j−1)

with U⋆
ol,q(p) ∈ R

Nm, λ(0), . . . , λ(j − 1) with λ(p) ∈ R
nc , and binary decision vari-

ables δ(0), . . . , δ(j−1) with δ(k) ∈ {0, 1}nc, γ(0), . . . , γ(j−1) with γ(k) ∈ {0, 1}nc,

and ψ(0), . . . , ψ(j − 1) with ψ(k) ∈ {0, 1}Nd, where k = 0, . . . , j − 1.

In sequel, the solution for the finite-time verification Problem 6.2.1 and for the

infinite-time verification task of Problem 6.2.2, when the feedback law of (6.43)

respects the rounding-based quantization rule (6.61), are reported next:

Theorem 6.2.18 Let the sets I and Z satisfying Assumptions 6.2.4 and 6.2.6 be

given, and let P <∞. If the mixed-integer feasibility problem (6.70) is feasible for

some j ∈ [1, . . . , P ], then Z is reachable from I under the MPC feedback (6.44) in

exactly j steps. If (6.70) is infeasible for all j = 1, . . . , P , then Z is unreachable

from I in, at least, P steps.

Proof. Follows from Theorem 6.2.8 and Corollary 6.2.9.
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Assumption 6.2.19 Let Xf in (6.43e) be a positive invariant terminal set with re-

spect to quantization levels q = [q1, . . . , qd]
T , i.e. Xf = {xq(t) | ∃uq(t) ∈ {q1, . . . , qd}, Axq(t)+

Buq(t) ∈ Xf , ∀t > 0}. Moreover, assume Z ∩ Xf = ∅ and that the parameters N ,

QN , Qx, Qu of the MPC policy (6.43) are chosen such that the closed-loop sys-

tem (6.63) enters Xf in, at most, P steps.

Theorem 6.2.20 Let I, Z, and Xf satisfy, respectively, Assumptions 6.2.4, 6.2.6,

and 6.2.19. If (6.70) is infeasible for each j = 1, . . . , P , then Z is unreachable from

I in any number of steps, i.e., xq(t) 6∈ Z for any t > 0.

Proof. Analogical to Theorem (6.2.15).

6.2.3 Case Study: Safety Verification of MPC

Four Tanks System

We apply the procedure of Section 6.2.2 to verify safety properties of an MPC

controller which governs inflows into a four tank system depicted in Figure 6.10.

The dynamical behavior of such a system is represented by (Drca, 2007)

ḣ1(t) = −
k1
F1

√
2gh1(t) +

k3
F3

√
2gh3(t) +

γ1
F1
qa(t), (6.71a)

ḣ2(t) = −
k2
F2

√
2gh2(t) +

k4
F2

√
2gh4(t) +

γ2
F2
qb(t), (6.71b)

ḣ3(t) = −
k3
F3

√
2gh3(t) +

(1− γ2)
F3

qb(t), (6.71c)

ḣ4(t) = −
k4
F4

√
2gh4(t) +

(1− γ1)
F4

qa(t), (6.71d)

where hi(t), i = 1, . . . , 4 are the liquid levels in corresponding tanks, qa(t) and

qb(t) are the manipulated inflows, g is the gravitational constant, ki, i = 1, . . . , 4

are the valve constants, Fi, i = 1, . . . , 4 represents areas of the tanks’ cross-sections.

Finally, γ1 and γ2 are constants which govern the split of inflows into the lower

and upper level tanks (i.e., q1(t) = γ1qa(t), q4(t) = (1 − γ1)qa(t), q2(t) = γ2qb(t),

q3(t) = γ2qb(t)).

Linearization of (6.71) by first-order Taylor expansion (see Section 3.2.2) yields

ẋ(t) =













−
1
T1

0 F3

(F1T3)
0

0 −
1
T2

0 F4

(F2T4)

0 0 −
1
T3

0

0 0 0 −
1
T4













x(t) +













γ1
F1

0

0 γ2
F2

0 (1−γ2)
F3

(1−γ1)
F4

0













u(t), (6.72)
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Figure 6.10: The four tanks system.

with

Ti =
Fi

ki

√
2hsi
g
, (6.73)

where x(t) = (h(t) − hs), u(t) = (q(t)− qs) are the deviations of states and inputs

from the respective steady-state values. In this case study we use hsi = 0.2m,

i = 1, . . . , 4, qsa = qsb = 1 ·10−4m3s−1, Fi = 0.06m2, i = 1, . . . , 4, k1 = 8.7932 ·10−4,

k2 = 7.3772 · 10−4, k3 = 6.3495 · 10−4, k4 = 4.3567 · 10−4, g = 9.81ms−2, γ1 = 0.2,

γ2 = 0.4, and discretization of (6.72) with sampling time of 5 seconds.

Control Objective

The control objective is to manipulate the liquid levels in all four tanks to their re-

spective steady-state values (i.e., for the deviation states xi(t) to reach zero levels),

while satisfying state constraints −0.2 ≤ xi(t) ≤ 0.2, i = 1, . . . , 4 (which corre-

sponds to 0m ≤ hi(t) ≤ 0.4m) and input constraints −1 · 10−4 ≤ uj(t) ≤ 1 · 10−4

(which translate to 0m3s−1 ≤ qj(t) ≤ 2 · 10−4m3s−1). This is achieved by de-

vising an MPC feedback strategy which solves (6.43) with Qx = diag(1, 1, 1, 1),

Qu = diag(1, 1), QN equal to the solution of the algebraic Riccati equation, Xf

being the constraint admissible set of the plant in closed-loop with the LQR con-
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(a) Closed-loop profile of tanks’ states.
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(b) Closed-loop control actions.

Figure 6.11: Closed-loop regulation of the four tanks system from the initial con-

dition x0 = [0, 0, 0.15, −0.15]T . Red dashed lines represent corre-

sponding constraints.

troller, obtained for the same cost function of the MPC. Finally, N = 8. The

closed-loop trajectory of the system in (6.72) subject to the MPC policy (6.44) is

provided in Figure 6.11. As can be seen, the response of x1(t) and x2(t) (which rep-

resent levels in the bottom tanks) exhibits a non-minimum phase behavior, which

is a consequence of γ1 < 0.5 and γ2 < 0.5.

Safety Verification

We wish to verify that the MPC policy provides that the overshoots and under-

shoots in lower tanks due to the non-minimum phase behavior do not exceed pre-

scribed bounds. Specifically, for the set of initial conditions I = {x(t) | − 0.2 ≤
x3,4(t) ≤ 0.2, x1,2(t) = 0} (i.e., bottom tanks at their steady-state levels with

upper tanks being filled up to arbitrary levels within constraints) we aim at veri-

fying that the closed-loop system avoids the sets Z1 = {x(t) |x1(t) ≥ 0.05}, Z2 =

{x(t) |x1(t) ≤ −0.05}, Z3 = {x(t) |x2(t) ≥ 0.05}, and Z4 = {x(t) |x2(t) ≤ −0.05}.
The reasoning behind such a choice is verifying whether the MPC controller rejects

disturbances in the upper tanks without large changes of the levels in the bottom

tanks.

Remark 6.2.21 It may not be desirable to include −0.05 ≤ x1,2(t) ≤ 0.05 as hard

constraints in (6.43) since it would render the MPC problem infeasible for several

initial conditions. The objective here is to verify whether the MPC policy is tuned
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Figure 6.12: Example of an unsafe trajectory of lower tanks which starts from

x(0) = [0, 0, 0.18, −0.02]T and violates the limits of maximal

under/over-shoots, represented by the dotted black lines.

in such a way that it “voluntarily” maintains these limits for a specific range of

initial conditions.

Since the conditions of Remark 6.2.7 are satisfied, the open-loop predicted

sequence is equal to the actual closed-loop response, thus we can use the pro-

posed procedures to solve the infinite-time verification task of Problem 6.2.2 by

employing Theorems 6.2.8 and 6.2.11. Specifically, we have formulated (6.58) us-

ing YALMIP (Löfberg, 2004) and solved the resulting MILPs by CPLEX. After 0.8

seconds7 a feasible solution to (6.58) was found which, according to Theorem 6.2.8

means that the safety specifications are violated. The associated counter-example

is represented by the initial condition x(0) = [0, 0, 0.18, −0.02]T , for which the

MPC feedback forces x1(t) to exceed 0.05, as can be seen in Figure 6.12

Finding the Largest Bound for the Initial Conditions

Next, we have applied the safety verification procedure to find out the largest

bound a in I = {x(0) | − a ≤ x3,4(0) ≤ a, x1,2(0) = 0} for which the safety

criteria would be satisfied ad infinitum. To do so, we have applied bisection when

solving problem (6.58) for various values of a (increasing a if safety can be shown,

7On a 1.7 GHz CPU running Matlab R2013a.
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Figure 6.13: Safe closed-loop trajectories generated for randomly selected initial

conditions from the set I = {x(0) | − a⋆ ≤ x3,4(0) ≤ a⋆, x1,2(0) = 0}
for a⋆ = 0.169 (solid blue lines represent x1(t), green dashed lines

depict x2(t), black dotted lines are the safety limits).

decreasing it otherwise). After 12 seconds and 7 bisection steps we have found

out that for a⋆ = 0.169 the MPC controller avoids the unsafe sets Zi for any

x(0) ∈ I with I = {x(0) | − a⋆ ≤ x3,4(0) ≤ a⋆, x1,2(0) = 0}. Several examples

of safe closed-loop trajectories are depicted in Figure 6.13. As expected from the

theoretical results, all such safe trajectories avoid the unsafe sets.

Plant-Model Mismatch

Furthermore, we wish to verify whether the MPC controller, which uses (6.72) as

the prediction model with k1 = 8.7932 ·10−4 and k2 = 7.3772 ·10−4, provides safety

guarantees even when it’s control actions are applied to a system with k2 = k̃2 = k1

(e.g. the second valve is damaged and exchanged for a valve that is identical with

the first one). As discussed in Remark 6.2.17, in such a case, the open-loop sequence

is no longer equal to the closed-loop one, thus the approach of Section 6.2.2 needs

to be used. Specifically, we have solved (6.60) where in (6.60d) we have used the

dynamics obtained for k̃2, while the KKT conditions in (6.60e) were formulated

using the original prediction model. The investigated set of initial conditions was

I = {x(0) | −0.16,≤ x3,4(0) ≤ 0.16, x1,2(0) = 0}, the sets of unsafe states was the
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same as in the previous section and the number of examined steps P = 20. After

16 seconds we obtained a negative certificate. This means that the MPC controller

will still preserve all of the performance requirements ad infinitum, even when a

new valve will be embedded into the system. On the other hand, if k̃1 = k2 is

considered, then the MPC violates the performance boundaries at least from one

initial condition x(0) = [0, 0, 0.153, −0.04]T . Both results are investigated in

Figure 6.14 for several randomly selected initial conditions, as well as for the one

obtained from the verification.
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(a) Verification with k̃2 = k1.
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(b) Verification with k̃1 = k2.

Figure 6.14: Safety verification of MPC policy with plant-model mismatch. Simu-

lations are performed for several randomly selected initial conditions,

identical for both scenarios. Closed-loop feedback from the initial con-

dition x(0) = [0, 0, 0.153, −0.04]T , obtained by the verification, is

emphasized by the black color.

Verification of Quantized Feedback

Finally, a case study for the last scenario 3 is elaborated next. Here, our objective is

to verify if MPC feedback law in (6.43) forces closed-loop state profiles to avoid each

set of unsafe states Zi, i = 1, . . . , 4 from I = {x(t) | −0.2 ≤ x3,4(t) ≤ 0.2, x1,2(t) =

0}, while assuming that both pumps of the four tank system can change the flow

rate only by 50%, i.e. their operating levels are uq ∈ {−1, 0, 1} (what corresponds
to 0, 10−4 or 3 · 10−4 m3s−1).

To proceed, we have constructed MPC policy (6.43) with the original setup, yet

with the prediction horizon N = 6 to decrease the computational burden. Next,
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quantization function fq(·) as in (6.61) was devised. Specifically, we have com-

puted quantization levels as all possible combinations of available pump positions

q = [(−1,−1) , (−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0), (1, 1)] and sub-

sequently for each combination qi we synthesized domain Pi over which qi is active

as in (6.65). Then, we have imposed this quantization law for entire open-loop

profile (6.69), formulated MILP in (6.70) in YALMIP for 5 verification steps and

solved it iteratively (for each Zi, i = 1, . . . , 4) by using GUROBI. After the first

iteration, which took 49 seconds8 to compute, we have received a positive answer

for initial condition x(0) = [0, 0, 0.176, −0.170]T , what indicates that the MPC

policy is not safe as it forces the level in the first tank to violate the prescribed

constraint Z1. The example is graphically illustrated in Fig. 6.15.
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(a) Closed-loop state profiles of lower tanks.
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(b) Control inputs to pumps.

Figure 6.15: Safety verification of MPC policy with quantized feedback law is pre-

sented. Violation of the prescribed safety constrains is shown in Fig-

ure 6.15(a), from the initial condition x(0) = [0, 0, 0.176, −0.170]T .
The associated quantized control inputs are depicted in Figure 6.15(b).

Remark 6.2.22 The same procedure was then applied also with the largest safe

bound of initialization states (for the real-valued control inputs) I = {x(t) | −
0.169 ≤ x3,4(t) ≤ 0.169, x1,2(t) = 0} for which a negative certificate was obtained.

Thus, we have that the aforementioned initial set I is still the largest safe bound

even when quantized control law comes into play.

8On a 1.7 GHz CPU running Matlab R2013a.
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6.3 Application to Memory Reduction Techniques

in Explicit MPC

In this section we show how the proposed verification method can be used to reduce

the memory consumption of explicit MPC strategies. The main idea of this memory

reduction technique is to exploit the fact that if the controlled system is assumed to

be initialized only from a particular initial set I, then storing of the entire polytopic

partition is not needed since the explicit MPC policy might never employ specific

regions. In another words, if region Ri will never be reached from the set of all

initial conditions I, then we have that it is redundant and it can be removed from

the polytopic partition Ω.

6.3.1 Problem Statement

Let I ⊆ R
n denote a set of all investigated initial conditions. Assume µ : Rn → R

m

to be a multiparametric solution of (6.43) in a form of

µi(x) = Fix+ gi if x ∈ Ri, i ∈ S, (6.74)

with local expressions Fi ∈ R
m×n and gi ∈ R

m, set of indexes S = {1, . . . ,M} and a

polytopic partition Ω = ∪iRi, i ∈ S. We aim at reducing the memory consumption

of (6.74) by means of replacing it by a new optimizer µ̃ : Rn → R
m defined as

µ̃i(x) = Fix+ gi if x ∈ Ri, i ∈ S̃, (6.75)

with a set of indices S̃ ∈ R
M̃ , such that following conditions are met:

R1: M̃ ≤M ,

R2: ∀x(0) ∈ I, xcl(t) /∈ Ri for all i ∈ S\S̃ and for all t > 0.

6.3.2 Memory Reduction Algorithm

Note that both optimizers (6.74) and (6.75) have their local expressions Fi and

gi, as well as regions Ri, identical. The only difference is in the set of indexes

denoting their domains, i.e. S̃ ⊆ S. Therefore, to devise a new controller µ̃(x) we

need to determine the set S̃ that indicates only regions that are essential during

the control.
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To proceed, we define a set of all unsafe states as Z = Ri with some i ∈ S. Now,
to satisfy the problem R2, we need to determine whether the MPC policy (6.43),

initialized from I, forces the closed-loop trajectory xcl(t) to enter the set Z for

any further time instants t > 0. We know that the optimization problems (6.58)

or (6.60), respectively, provide us the certificate for problem R2 (cf. Theorem 6.2.11

and Theorem 6.2.15), where the result may be twofold. If a negative certificate is

obtained, then we have that xcl(t) /∈ Z for any t > 0. This indicates that the

region Ri is redundant as the control law µi(x) = Fix + gi if x ∈ Ri will never

be employed. Thus, the index i ∈ S will not be incorporated into the set of all

essential regions i /∈ S̃. In another words, the regions Ri with control law µi(x)

are not included in µ̃(x). On the other hand, if a positive certificate is obtained,

then Ri is essential as µi(x) might be used during the feedback. Hence, i ∈ S̃.
The procedure then updates the unsafe set Z by e.g. a next region Ri+1 and

performs another certification. The algorithm terminates when all regions i ∈ S
are examined and a set of all essential regions S̃ is yielded. Finally, the µ̃(x) is

constructed via set of indexes S̃. The entire procedure, which provides answer for

problem R1 and R2, is described in Algorithm 10 and its efficiency will be reported

in a sequel.

Algorithm 10: Memory reduction based on reachability verification.

Input: µ(x) as in (6.74), I
Output: µ̃(x) as in (6.75)

1 Initialization: S̃ ← ∅;
2 for i = 1, . . . ,M do

3 Z ← Ri;

4 Solve (6.58)/(6.60);

5 if Certification is positive then

6 S̃ ← S̃ ∪ i;
7 end

8 end

9 return µ̃i(x) = Fix+ gi if x ∈ Ri, ∀i ∈ S̃;

Remark 6.3.1 Obviously, since the objective is to reduce the memory of µ(x), we

would like to problem R1 to be be given be a strict inequality, i.e. M̃ < M . Yet,

the proposed reduction technique can not enforce such criteria as all of the regions

Ri, i ∈ S may be reachable from I, thus M̃ =M .
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6.3.3 Illustrative Example (Double Integrator)

To provide an illustrative example that demonstrates the efficiency of the proposed

memory reduction technique, we will consider a car which dynamics are described

by a following LTI system in discrete-time domain

x(t+ 1) =

[
1 1

0 1

]
x(t) +

[
1

0.5

]
u(t), (6.76)

where x1(t), x2(t) and u(t) denote the cars position, speed and acceleration, re-

spectively. Consider (6.76) be subjected to

−10 ≤x(t) ≤ 10, (6.77a)

− 1 ≤u(t) ≤ 1. (6.77b)

The control objective is to drive the car to the origin while satisfying all of

the aforementioned constraints. To proceed we have constructed MPC strategy as

in (6.43) with model (6.76), constraints (6.77), N = 5, Qx = diag(1, 1), Qu = 1,

QN being the solution of the algebraic Riccati equation, Xf being the constraint

admissible set of the plant in closed-loop with the LQR controller, obtained for

the same cost function of the MPC. Subsequently, we have solved this problem

via mp-QP what after 3 seconds yielded an explicit MPC as in (6.74) defined over

polytopic partition Ω = ∪iRi, i = 1, . . . ,M which consisted ofM = 65 regions. The

polytopic partition is depicted in Figure 6.16. We have assumed that the system

can be initialized only from the set I = {x(0) | −10 ≤ x1(0) ≤ 10, x2(0) = 0} what
corresponds to the scenario when the car is stationary and may attain an arbitrary

position (e.g. car is parked anywhere in the parking spot).

In order to reduce the memory of (6.74), we have applied Algorithm 10. Since

the MPC policy have been devised to satisfy Xol = XN
cl per Remark 6.2.7, thus

the algorithm has employed verification procedure in (6.58). After 59 seconds all

essential regions were determined and a new explicit MPC optimizer µ̃(x), defined

over 25 regions, was constructed. In another words, we have that only 25 regions

are essential and other 40 regions are redundant as they will never be used during

the control. Thus, by removing these regions we have reduced the complexity of

µ(x) by a factor of △ = 65/25 = 2.6.

This procedure is illustrated in Figure 6.16. Here, Figure 6.16(a) shows the

complex polytopic partition of µ(x), composed of 65 regions. Figure 6.16(b) de-

picts the case where the verification technique (6.58) determined that the region
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R9 (blue polytope) is reachable from I (green polytope) within 3 steps. Next,

Figure 6.16(d) illustrates the verification of 20 equidistant initial conditions from

I and Figure 6.16(c) shows the polytopic partition of the reduced optimizer µ̃(x).

(a) Complex polytopic partition of µ(x). (b) Verification of one region.

(c) Reduced polytopic partition of µ̃(x). (d) Closed-loop dynamics.

Figure 6.16: Illustration of memory reduction technique.

Moreover, we have applied the proposed memory reduction technique for various

predictions horizons N = 1, . . . , 10. Results are compactly reported in Table 6.4.

The reduction factor is defined by △ = |S̃|
|S| , where | · | denotes the cardinality. Here,

an interesting observation can be made. Even thought that the prediction horizon

increases N > 5, the number of regions |S̃| remains the same. This is due to the

fact that further generated regions are not reachable from I.

Remark 6.3.2 It should be noted that the main advantage of the proposed verifi-
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N |S| |S̃| △ Time [sec]

1 9 3 3.00 6.89

2 19 5 3.80 12.83

3 33 17 1.94 23.32

4 45 23 1.96 36.48

5 65 25 2.60 59.42

8 97 25 3.88 125.73

10 109 25 4.36 176.79

Table 6.4: Results of the memory reduction technique.

cation method is that the reachability/unreachability status of a particular critical

region can be determined without having to know the full explicit solution. This

opens up the possibility to combine the proposed method with a parametric program-

ming solver to directly generate a simple solution, without the need to construct the

full (complex) explicit optimizer first.

6.4 Conclusions

In this Chapter, we have introduced two methods that verify properties of MPC

strategies. The first approach exploited parametric programming to construct ex-

plicit solution of MPC and to derive performance boundaries, each of which repre-

sented certain control property. Namely, recursive constraint satisfaction, closed-

loop stability and deterioration of performance. Associated quantized version of

the PWA feedback law was then found by applying Voronoi diagram technique.

Eventually, certification algorithm was proposed, which was used determined if

the quantized controller violates performance bounds. The second approach has

taken different road. Here, KKT conditions were employed to characterize optimal

control inputs, hence explicit solution was no longer needed. The certification prob-

lem was formulated as MILP, where reachability of unsafe states have been verified.

Application of both methods was demonstrated on several examples. Results are

illustrated and documented in tables.
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Chapter 7

pH Control in Chemical Vessel

Maintaining a specific value of pH in chemical and technological processes is vital

in order to satisfy quality requirements of final products. This is important in

water treatment facilities where value of pH greatly effects the quality of water

purification (Qian et al., 2014). It has been reported, that bad pH conditions result

in production of bacteria dangerous to human health. (Qin et al., 2006) describe

how pH condition affects the coagulation process in the treatment of reservoir water

which has then impact on purity of the water. Biochemical experiments are another

application where regulation of a specific value of pH is needed. Here, unfavorable

pH conditions negatively effect entire experiments (Misiewicz et al., 2015). pH plays

a vital role in medical research and medicine preparation since vast majority of all

drug preparation requires specific pH conditions (Georgiev et al., 2013). Several

scientific papers are dealing with a pH control or with a neutralization control.

Since the behavior of the neutralization process is highly non-linear, controller

design via conventional means has been proven to be insufficient (Ibrahim, 2008)

in several cases. Despite the fact, a simple PID controller is often used in order to

control the pH value.

In this thesis, we aim to improve the behavior of the PID controller by intro-

ducing another layer of control based on an optimization. Such an approach is

often used in chemical and petrochemical industry with the goal of increasing the

overall production. The optimization layer consist of a model prediction controller,

which serves as a supervisor controller to the PID controller. In such a setup the

197
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MPC shapes the setpoint for PID controllers in optimal fashion. The advantage

of introducing the MPC to the control scheme is that we will achieve optimal per-

formance of the plant, i.e., technological constraints are satisfied while a specific

performance criterion is minimized. In literature, this relation of MPC and PID

controller are called a reference governor control (Bemporad, 1998; Borrelli et al.,

2009).

7.1 Experimental Process

7.1.1 Process Equipment

The process consists of a continuously stirred tank which is fed with two streams

of solutes. The first stream is an acid solution with flow rate FA and concentration

of cA and the second stream is a base solution with flow rate FB and concentration

of cB. Transfer of these solutions, from the storage tanks to the stirred tank, is

ensured by two identical pumps PA for acid and PB for base. Finally, the output

signal is detected via pH probe. The scheme of the process is depicted in Figure 7.1

and parameters of each component are given by:

• Stirred tank with volume of 1.5 dm3.

• Two peristaltic pumps (PA, PB) each of which admits voltage of (UA,UB)

in range of [0, 5]V, what corresponds to the flow rate (FA, FB) between

[0, 12]ml s−1.

• Two tanks each of which can store up to 100 dm3 of solution.

• pH probe which returns signal in range of [0, 5]V.

7.1.2 Chemical Experimental Setup

Chemicals which will be considered in this work are the acetic acid (CH3COOH)

and the sodium hydroxide (NaOH). Both solutes are used to create their solutions

with concentration of cA = 0.01M and cB = 0.01M, respectively. Since the molar

mass of NaOH is equal to 40 g and CH3COOH to 60 g, this means that in order to

prepare the base solution one need to dissolve 40 g of NaOH in 100 dm3 of H2O,

and for the acid solution we need 60 g of CH3COOH in 100 dm3 of H2O.
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Figure 7.1: Illustration of neutralization reaction vessel

The dissociation reaction of used solutes in water is given by

NaOH
H2O−−−→ Na+ +OH−, (7.1a)

CH3COOH
H2O−−−⇀↽−−− H+ +CH3COO−. (7.1b)

Here, one can notice that since the sodium hydroxide is strong base it dissociates in

water completly (7.1a), contrary to the acetic acid, which is a weak acid, dissociates

only partially (7.1b). This means that in the water solution there exists both HAc

molecules as well as CH3COO– molecules. The pH of the base solution is thus

pH = 12 and by introducing dissociation constant of the acetic acid ka ≈ 10−5 the

pH value of the acid solution is pH = 3.5.

By feeding both solutions into the reaction vessel the following chemical reaction

takes place

NaOH+ CH3COOH
H2O−−−⇀↽−−− NaCH3COO+H2O. (7.2)

Since the final product has no electrical charge, as well as reactants, electro-

neutrality equation has to be considered, which can be written as follows1

[Na+] + [H+] = [OH−] + [CH3COO−]. (7.3)

1We note that in all chemical equations, [·] denotes concentration, e.g. [H+] stands for the

concentration of hydrogen ions, which is expressed in mol/m3 or simply M.
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The value of pH in the mixing tank can be then detected by the concentration of

hydroxide cations as

pH = − log10
(
[H+]

)
. (7.4)

Remark 7.1.1 To compute pH analytically is not an easy task. This problem boils

down to following cubic algebraic equation

[H+]3 + (xB + ka) [H
+]2 + (xBka − xAka) [H+]− kwka = 0,

where kw ≈ 10−14 and ka ≈ 10−5 are dissociation constants of the water and the

acetic acid respectively, xA = [CH3COOH]+[CH3COO−] is the acetic acid concen-

tration (in the mixing tank) and xB = [Na+] is concentration of the sodium cation

(in the mixing tank). Moreover, by incorporating to the previous cubic equation

also material balance of the system

V
dxA
dt

= FAcA − (FA + FB)xA,

V
dxB
dt

= FBcB − (FA + FB)xB,

one obtains a mathematical model of the process. Yet, for the purposes of this

work we will consider much simpler experimental model that will be derived in

Section 7.2.

7.1.3 Control Setup

Assume that both (the acid solution and the base solution) streams are pumped

into the tank, where are continuously mixed by the stirrer. The final product is

taken from the top of the vessel, such that the volume of the mixture remains the

same. The measuring probe is placed directly next to the product outlet and the

flow rate of the acid solution is maintained constant, i.e. ḞA = U̇A = 0. The control

objective is to manipulate the voltage UB of the pump PB such that pH value will

track the desired reference. Considered variables are summarized next:

1. The controlled output is pH value in the stirring tank, ȳ ∈ R, where ȳ ∈
[0, 14]pH.

2. The control input is voltage in the pump PB, ū := UB ∈ R, with ū ∈ [0, 5]V.

3. Constants are:
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- Voltage in the pump PA, UA = 2.5V (FA ≈ 6ml s−1).

- Concentration of the acetic acid solution: cA = 0.01M.

- Concentration of the sodium hydroxide solution: cB = 0.01M.

7.2 Model of the Process

In Section 3.2.2 we have stated that a good mathematical model is a cornerstone of

MPC. This is due to the fact that if the mathematical model does not resemble the

controlled plant, then the predictions of MPC would be incorrect, what eventually

results in a poor control performance (see e.g. Figure 3.2). However, we need to

keep in mind, that the accuracy comes hand in hand with the complexity of the

prediction model. It is therefore important to derive such model, which on the one

hand tracks the real-process, but on the other hand keeps its description simple.

Or in other words, we need to find the best trade-off between the complexity and

the precision of the model.

Calibration Function for the pH probe

In order to have a better indication of the pH signal from the probe, one need to

create a calibration function fpH(·) : R → R, which maps voltage into pH value.

This can be done e.g. by comparing the voltage signal of the pH probe with the

prescribed pH values of buffers. In our experiment, we have used buffers with

pH equal to {4, 7, 10} for which the probe showed corresponding signals UpH =

{1.340, 2.615, 3.825}V. By approximating these points with polynomial of the first

degree, based on the least square criteria, we have obtained the probe’s calibration

function defined as

fpH(UpH) = 2.41UpH + 0.739,

where UpH is signal from the pH probe (in volts). From now on we define ȳ :=

fpH(UpH). The same procedure could be also applied to each peristaltic pump

(i.e. to determine the relationship between FA and UA, or FB and UB). Yet, in this

work we decided to operate with the voltage signal instead.

Step Responses

The identification task has been approach by a black box technique (see Re-

mark 3.2.2), hence we have assumed that we have knowledge of the process dynam-
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ics and that this information can be determined via relations between the input

and output signals, i.e. via step responses. To achieve this goal, we have firstly

steered the system to the steady state by using setup described in Section 7.1.3

and by applying control input ūs = 2.5V. The associated steady-state output was

ȳs ≈ 7. Subsequently, we have performed 6 step responses on the input signal

ūi = {3.0, 3.5, 2.5, 2.0, 1.5, 2.5} volts, where the frequency of steps was set to 1500

seconds. The corresponding state and input profiles are depicted in Figure 7.2 and

are denoted by blue and green color respectively.

0 2000 4000 6000 8000 10000
5

6

7

8

9

10

 

 

0 2000 4000 6000 8000 10000
1.5

2

2.5

3

3.5

ȳ
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Figure 7.2: Identification data of the process.

Model Identification

With the measured data in hand, our next objective is to derive a simple mathe-

matical model which will describe systems dynamics with an acceptable accuracy.

To proceed, we have performed normalization of the measured data, i.e. we have

separated all step responses, divide each of them by the corresponding step change

△ui = ūi− ūs, summarize these steps and dividing them with their quantity. This

led to the normalized step response, which gave us a better insight into the process
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dynamics. Subsequently, based on this normalized step response, we have identi-

fied the process as the system of the fist order. The corresponding continuous-time

dynamics is

105ẏ(t) + y(t) = 2.803u(t), (7.6)

where y and u are output and input values in the deviation form, i.e. ȳ = y + ȳs

and ū = u+ ūs.

To determine the accuracy of the model (7.6), we have taken the same sequence

of the control inputs as in Figure 7.2 and passed it by the identified dynamics (7.6).

The corresponding output profile is denoted by the red color in Figure 7.2. We can

observe that the controlled process is nonlinear as it exhibits non-symmetrical step

responses. Due to this nonlinear nature of the system, our identified (linear) model

does not accurately capture dynamics, when the product attains alkaline values,

i.e. above pH = 7. However, this differences can be compensated by the designed

controller.

Finally, the model in (7.6) has been discretized, what led into differential equa-

tions in form of

y(t) = m1u(t) +m2u(t− 1) +m3y(t− 1), (7.7)

where u(t− 1) represents the control input from the previous sampling instant.

7.3 PID Controller

Nowadays, PID controllers are the most commonly used control algorithms in the

industry, where this control strategy utilizes more than 90% of all applied feedback

loops (Desborough and Miller, 2002). This is mainly due to their structural sim-

plicity, robustness, low computational demands, easy design and straightforward

tuning. An exhausting PID theory can be find in (ström and Hägglund, 1995).

It is well know that there are several PID implementation schemes (e.g. parallel,

standard, or serial formulation) and multiple techniques how to translate PID con-

troller in continuous domain into discrete one (see for example (Bobál et al., 2006)).

In our work, we consider PID controller in the standard decomposition, depicted

in Figure 7.3, in form

u(t) =u(t− 1) +K

(
1 +

Ts
2Ti

+
Td
Ts

)
e(t)+

K

(
−1 + Ts

2Ti
− 2

Td
Ts

)
e(t− 1) +K

(
Td
Ts

)
e(t− 2),

(7.8)
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ȳ ȳs

P I

D

Process

PID

Figure 7.3: Closed-loop with PID controller.

with parameters K, Ti and Td denoting PID gain, integral time constant and

derivative time constant, respectively, which are associated with P , I and D part

of PID structure. Moreover, Ts is the sampling time and e.g. e(t−1) denotes value

of the control error in the previous time instant t− Ts.
To design a PID controller we need to determine parameters K, Ti and Td

in (7.8). There are numerous techniques which suggest how one can synthesize and

tune a PID controller (O’Dwyer, 2009), majority of which is already embedded in

various toolboxes (Oravec and Bakošová, 2012; The MathWorks, 2016b). In this

work we have used an interactive toolbox for PID design called pidtuner (The Math-

Works, 2016a). The parameters K, Ti and Td have been chosen such that the

closed-loop feedback, with identified model (7.7), was fast and robust. The final

values of all parameters of the PID controller were chosen as follows

K = 1.5, Ti = 21, Td = 0. (7.9)

By plugging parameters (7.9) into (7.8) the differential equation of the design con-

troller is

u(t) = u(t− 1) + 1.536e(t)− 1.464e(t− 1). (7.10)

Moreover, since the D-part of the PID controller is turned off, by Td = 0, we

have that (7.10) is a PI controller. For brevity, let us abbreviate (7.10) as u(t) =

p1u(t− 1) + p2e(t) + p3e(t− 1).

7.4 MPC Reference Governor

With the PI controller in had, we will show that one can enhance its performance

even further. It is known that PID controllers generate control inputs only based on
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their formula e.g. as in (7.8),i.e. without taking (a-priori) into account any type

of constraints. This problem is usually handled via imposing additional blocks

into control schemes e.g. such as subsequent saturation of the generated control

inputs. However, terms like minimization of power consumption or specific safety

conditions are not an easy task to include (if even possible) into the control design.

On the other hand, MPC excels in providing the aforementioned requirements.

The concept of MPC strategy was introduced in Section 3. In this work, the MPC

policy will be exploited as a reference governor to the PI controller, which was

designed in the previous Section 7.3, i.e. as to shape the reference w such that

the inner PID-loop will satisfy all of the prescribed constraints and the outflow

pH value from the process ȳ will track the targeted reference r. Such reference

governor control scheme is depicted in Figure 7.4.
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Figure 7.4: Scheme of the reference governor.
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7.4.1 MPC Formulation

In this work, we consider MPC to be given as a following optimization problem

min
w0,...,wN−1

Qss
2 +

N−1∑

k=0

(
Qr (wk − yk)2 +Qw∆w

2
k +Qy (yk − r)2

)
(7.11a)

s.t. uk = p1uk−1 + p2(wk − yk) + p3(wk−1 − yk−1), (7.11b)

yk = m1uk +m2uk−1 +m3yk−1, (7.11c)

∆wk = wk − wk−1, (7.11d)

umin ≤ uk ≤ umax, (7.11e)

wmin ≤ wk ≤ wmax, (7.11f)

ymin − s ≤ yk ≤ ymax + s, (7.11g)

s ≥ 0, (7.11h)

with constraints (7.11b)-(7.11g) enforced for all k = 0, . . . , N − 1, where N is the

prediction horizon. Denote wk the shaped reference, yk ∈ R the output from the

process and uk ∈ R the control input from the PID controller at the k-th predicted

step. Moreover, r ∈ R is the desired reference, s ∈ R is a slack variable and Qs, Qy,

Qw, Qr are positive definite weighting coefficients. Optimization problem in (7.11)

is initialized by the vector of parameters θ(t) := [y(t− 1), y(t− 2), w(t− 1), w(t−
2), u(t − 1), r(t)]T ∈ R

6, where e.g. y(t − 1) and y(t − 2) is the output from the

process delayed by one and two sampling instants Ts, respectively. The vector of

optimized variables is given by z := [w0, . . . , wN−1, s]
T ∈ R

N+1.

Each part of the objective function and every constraint in (7.11a) has following

impact on the optimization problem. The first term penalizes a violation of the

output constraints in (7.11g), the second term provides the convergence of the

process output to the shaped reference, the third term penalizes the fluctuation of

the shaped reference, which is in the last term forced to track the real reference.

The first constraint (7.11b) represents the dynamics of the PI controller (7.10)

and (7.11c) simulates evolution of the controlled process as in (7.7). Next (7.11d)

defines fluctuation of shaped reference, positiveness of slacks is given by (7.11h)

and finally (7.11e)-(7.11g) restrict values of predicted inputs, shaped references

and outputs, respectively.
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Parameters of MPC

Here, we will define all parameters of the MPC optimization problem in (7.11). Let

us start from the objective function. The weighting matrices in (7.11a) have been

firstly chosen based on the simulation control performance, while the a-posteriori

tuning has taken place during real experiments. The final values of weighting

matrices are

Qs = 104, Qr = 1, Qw = 10, Qy = 20.

Next, dynamics of the PID controller (7.11b) and the model (7.11c) are given

by (7.10) and (7.7), respectively. In order to allow MPC policy to operate only with

the admissible voltage range ū ∈ [0, 5]V, we have defined constraints in (7.11e) with

umin = −2.5 and umax = 2.5. The shaped reference w in (7.11f) was allowed to

attain all possible values of the pH, i.e. wmin = −7 and wmax = 7, what corresponds

to pH ∈ [0, 14]. Similarly, the output values in (7.11g) have been subjected to

ymin = −7 and ymax = 7, yet soften by the slack variable s, since the identified

model in (7.7) only approximates the real (nonlinear) process dynamics. The chosen

prediction horizon, which still showed good control performance, was N = 3.

Explicit Representation of MPC

Since the optimization problem in (7.11) has quadratic objective function and lin-

ear constrains, it can be rewritten into a standard QP formulation as in (4.20).

As shown in Section 4.1.3, the parametric solution of (4.20) leads to an explicit

optimizer (4.33) in a form of a continuous polytopic PWA function with parti-

tion Ω = ∪iRi consisting of i = 1, . . . ,M polyhedral regions Ri as in (4.32) (cf.

Theorem 4.1.8).

In our case, by solving (7.11) via parametric programming in MPT3 toolbox,

we have obtained explicit MPC policy defined over Ω ⊂ R
6, formed by M = 241

regions. This, relatively large number of regions, is caused due to the fact that

unnecessary large parameter space has been explored. To see this, we have to

firstly realize that in the optimization problem (7.11) there are no restriction to

any parameter of θ. However, e.g. the first parameter θ1 = y(t− 1), corresponding

to the process output (pH) that is delayed by one sampling instant, can attain

values only from the interval [−7, 7] (deviation values). And the same principle

applies even for all other parameters in θ. Therefore, we have attached additional

constraints −α ≤ θ ≤ α, with α = [7, 7, 7, 7, 2.5, 7], to (7.11). This eventually led
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to reduction of the parameter space, where the polytopic partition was composed

only by 47 regions. Finally, this simple explicit MPC controller was then exported

to a self-contained file, where the sequential search point location problem (see

Algorithm 4) was applied to allocate the active region, and used as a reference

governor in the real experiment.

7.5 Experimental Results

In the sequel, we show experimental results of pH control in mixing vessel, where

chemical reaction between strong base (solution of sodium hydroxide) and weak

acid (solution of acetic acid) took place (7.2). We recall that their solutions (7.1)

were prepared by the table values to attain concentration of 0.01 M, as discussed

in Section (7.1.2). The controlled variable was the voltage to the pump PB, which

influenced the inflow of base solution, while the inflow of acidic acid solution was

kept constant with PA pump voltage of 2.5 V.
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Figure 7.5: Control performance of reference governor MPC.
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In Figure 7.5 is depicted performance of pH control with PI controller2 (7.10),

which was supervised by MPC-based reference governor (7.11) as it is shown in

Figure 7.4.The process was initialized from the steady state ȳs = 7pH, given by

control input ūs = 2.5 V. The first reference step change was performed to pH =

8. Here, we can observe that MPC policy, based on the given step, has shaped

references to PI controller (green line), in such way that controlled variable nearly

did not exceeded reference, i.e. overshoot was almost eliminated. The same control

performance can be seen also in the opposite direction. Next, four changes on the

reference follows from pH = 7 to pH = 9 and vise versa. The increased gain of

steps had a direct consequence on control performance. Particularly, to longer

settling time and greater overshoots/undershoots. To see how w influenced the

controlled variable, we can notice the first negative step change, which occurred

at time 1080 seconds. Here, the shaped references w firstly followed the desired

reference r (denoted by red color) in order to converge to the set point as fast as

possible. The slope has changed, however, when controlled output reached pH = 8

and from this point forward, references w were used to mitigate undershoot and

subsequent overshoot. The last step was performed to pH = 6, where the settling

time was twice as large as in the reversed step direction. Generally, control below

pH = 7 is much slower and requires more time to reach the reference. The reason

behind this stems from the nonlinear nature of the controlled system. To see this,

notice that more acidic values are associated with smaller gain of the processes, as

is shown in Figure 7.2.

Figure 7.6 shows comparison between two control schemes. The first one rep-

resents standard closed-loop with PI controller (solid blue line) depicted in Fig-

ure 7.3. The second one is the reference governor scheme (solid green line), the

performance of which we have already elaborated in the previous Figure 7.5. We

note that both experiments were carried out in a row, with the same solutions

and with step frequency 400 seconds. For illustrative purposes, shaped references

w is excluded from the figure as its influence was already demonstrated. In Fig-

ure 7.6 we can observe that reference governor shaped references to PI controller,

what led to less aggressive control behavior, and eventually to constraints satisfac-

tion and smaller overshoots/undershoots, compared to standard closed-loop with

PI controller. Particularly, in the first step change, PI controller had overshoot

2We would like to note that anti-windup technique was not applied.
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21%, while MPC policy had only 10%. Moreover, to demonstrate consumption of

the control medium (solution of sodium hydroxide), we have used integral squared

error (ISE). Based on this quality indicator, reference governor scheme was able

to decrease medium (also energy) consumption by 1%. However, the cost of this

improvement is increased settling time, which was 20 seconds3 longer (in the first

step changes) as with PI closed-loop. From the aplication point of view, we can

make another interesting observation. In the last step, MPC reached desired ref-

erence much quicker then PI closed-loop. Here, disturbance occurred, which was

3The settling radius, around the desired reference, was considered 0.1pH.
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caused due to reaction sediment inside of the base tank.

7.6 Conclusions

In this chapter, we have aimed to control value of pH in mixing vessel, where

reaction between acidic acid and sodium hydroxide occurred. Our objective was

to design a control strategy, which will improve performance of commonly used

PI controllers. To achieve this goal, we have proposed reference governor scheme,

where MPC policy provided references to PI controller. This solution was given

in explicit form, thus computational burden were minimized and the requirement

of optimization solver was removed. Based on the experimental results, we have

shown that this way we are able to influence the control performance of PI in such

manner that overshoots and undershoots are mitigated and input constraints are

preserved. Therefore, by using this approach we can not only to decrease stress of

the control pumps, hence to prolong their life cycle and maintain continuity of the

process, but also to increase overall production.

We would like to note, that this work represents a cornerstone for our future

research, where we would like to implement various advanced control strategies

(e.g. disturbance modeling, anti-windup, prediction of references). From the ex-

plicit MPC point of view, we will aim to exploit proposed memory reduction tech-

niques, presented in this thesis, which will help as to increase performance of MPC

controller. For example, we will be able to increase prediction horizon in (7.11)

and subsequently mitigate memory footprint of explicit solution. Subsequently, we

would like to implement these simple controllers into standard industrial hardware

e.g. PLC.





Chapter 8

MPC Application to Wind Turbine

Generator

One of the leading problems of today society is increasing global energy consump-

tion, what inherently forces researchers to improve the efficiency and to search for

new possibilities of energy production. A remedy for this issue has been found in

renewable energy sources, which in the past two decades made a great economical

and political impact and revolutionized the world energy production. Its popular-

ity arises mainly from the struggle for reduction of fossil fuels dependency, creating

now economic opportunities and last, but not least, as an answer for addressing

climate changes. Nowadays, the nominal production of the green energy sources is

estimated to 22% of the overall world energy production (REN21, 2016) and this

trend has exponentially increasing character.

The most exploited energy source (among renewables) is the wind, what makes

wind turbines appealing to further research. During the last 20 years a lot of atten-

tion was dedicated to development of wind turbines, where the main goals were to

maximize energy production, improve energy quality and minimize costs of instal-

lation and maintenance (e.g. via prolonging life cycle). Wind turbines use blades

to convert wind flow into mechanical energy, which is then passed to the generator

and eventually transformed into electrical energy. The production of energy grows

with the power of wind of up to so-called rated operating point, which makes the

wind turbine a cost efficient system from the perspective of components dimen-

213
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sions and typical winds for a specific location. Modern wind turbines nowadays

have their rated power up to 8MW and are placed in various locations, e.g. with

high altitudes or offshore, in order to capture stronger wind, hence to maximize

production. Installations of wind turbines have ever increasing trend and today

world installed wind energy capacity has reached 432 GW (GWEC, 2016).

There are two operating modes of the wind turbine, which are related with the

wind power. The first mode denotes low wind region, where the aim is to capture

entire wind potential by keeping the wind turbine at the point of maximum power

conversion efficiency for given wind speed. In the second mode, high wind speed

region, the objective is to maintain rated power output constant while reducing

the aerodynamic torque to rated value and preserving nominal speed of the gen-

erator, i.e. to protect wind turbine system via sacrificing certain potential of wind

power (Johnson, 2004). First operation mode is achieved by generator control, and

second mode by blade pitching mechanism. This mode represents 98% of the overall

operation time of the wind turbine. However, if the wind speed is dangerously too

high (cut-out speed), than blades are pitched to breaking position (90 degrees) and

the system is shut down. On the other hand, if the wind speed is too low (cut-in

speed), then wind turbine is turned off as the insufficient to generate energy which

is required to maintain turbine operational.

Field Oriented Control (FOC) framework targets to control wind turbines from

the side of generator converter, where objective is to maintain its operation speed at

rated value. This way, efficient operation of wind turbine is achieved. In addition,

the basic idea is to decouple slow dynamics magnetizing flux and fast dynamics

torque building elements, such that each of them can be separately controlled with

the aim of very fast torque control. This allows one to design standard PID control

loops. More details about FOC can be found e.g. in Leonhard (2001).

In this work, we aim to control wind turbine process. Particularly, we will con-

struct MPC strategy for a rotor-flux-based FOC with voltage-controlled converter,

where control voltages are subjected to safety criteria. The main challenge behind

this work is that the voltage constraints have circular character and the controlled

system is fast dynamics, thus maintaining rapid sampling time of 0.4 millisecond

is crucial. We show that low complexity MPC policy which tracks desired refer-

ence and provides constraint satisfaction can be derived via combining offset free

tracking approach with move-blocking technique and by applying polyhedral ap-

proximation of circular voltage restrictions.
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8.1 Introduction to the Controlled Process

In this section we will introduce the experimental process. Particularly, we will

start by the process description, then we will derive a model of the wind turbine

and specify considered constraints of the system.

8.1.1 Process Setup

The wind turbine process is part of the laboratory equipment in the Faculty of

Electrical Engineering and Computing (FER) of the University of Zagreb, in Croa-

tia and, designed as part of the dissertation thesis (Lešić, 2014). Since, for the

purposes of this work, we will provide only an essential information about the ex-

perimental setup, we encourage interested readers to find more details in (Lešić,

2014, Appendix C).

Figure 8.1: Laboratory setup for the wind turbine experiment.

The Laboratory setup of the wind turbine is depicted in the Figure 8.1. The

wind turbine is here represented by two main parts. This first one is a squirrel-cage

induction machine (SCIM), which represents the actual generator of the energy.

The second part is a permanent magnet synchronous machine (PMSM), which acts

as an emulator of wind turbine aerodynamical torque. Both parts have coupled

shafts. The real-time controller is a dSPACE 1103 with 1 GHz processor and nu-

merous digital and analog input output interfaces (dSPACE, 2016), which directly

communicates with MATLAB via dSPACE ControlDesk software package. Next,

the control cabinet incorporates all machine connectors, sensors and motor protec-
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tion units. The breaking resistor, i.e. heater, is here basically used to consume the

generated power energy.

8.1.2 Model of the Wind Turbine Generator

Dynamics of the SCIM, i.e., the wind turbine generator, for the purposes of voltage

FOC, are described by two following ODEs:

usd(t) = ksisd(t) + Ll
disd(t)

dt
− 1

Tr

L2
m

Lr
imr(t)− ωe(t)Llisq(t), (8.1a)

usq(t) = Rsisq(t) + Ll
disq(t)

dt
+ ωe(t)

L2
m

Lr
imr(t) + ωe(t)Llisd(t), (8.1b)

with

ks = Rs +
L2
m

L2
r

Rr, Ll = Ls −
L2
m

Lr
,

where variables isd(t), isq(t), usd(t), usq(t) and ωe(t) represent stator direct cur-

rent, quadrature current, direct voltage, quadrature voltage and electrical angular

speed, respectively, and imr(t) is magnetizing current of squirrel-cage induction

machine. Next, constants Ll, Lm, Lr and Ls denote leakage, mutual, rotor and

stator inductances, Rs and Rr are stator and rotor resistance, respectively.

The real-time implementation of (8.1) might be jeopardized due to two reasons.

The first one is nonlinear nature of (8.1), e.g. multiplication between ωe(t) and

isq(t) in (8.1a). The second obstacle is rapid sampling rate of about 0.4 milliseconds,

which is crucial to maintain for the proper operation of SCIM. To tackle this issue

a linear model is derived next.

To proceed, let us introduce decoupling variables

γ1(t) =
1

Tr

L2
m

Lr
imr(t)− ωe(t)Llisq(t), (8.3a)

γ2(t) = −ωe(t)
L2
m

Lr
imr(t) + ωe(t)Llisd(t), (8.3b)

based on which we can rewrite (8.1) into

usd(t) + γ1(t) = ksisd(t) + Ll
disd(t)

dt
, (8.4a)

usq(t) + γ2(t) = Rsisq(t) + Ll
disq(t)

dt
. (8.4b)

By neglecting very slow variation of imr(t) and assuming that at each time instant

t the system nonlinearities are ideally compensated, i.e. γ1(ωe(t), isq(t), imr(t)) ≈
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constant and γ2(ωe(t), isd(t), isq(t), imr(t)) ≈ constant, then dynamics of the sys-

tem (8.1) can be defined by the following transfer functions

isd(t)

ucd(t)
=

1
ks

Ll

ks
s+ 1

, (8.5a)

isq(t)

ucd(t)
=

1
Rs

Ll

Rs
s+ 1

, (8.5b)

where s is the Laplace operator and control voltages are given by

ucd(t) = usd(t) + γ1(t), (8.6a)

ucq(t) = usq(t) + γ2(t). (8.6b)

By using the zero-order hold technique to discretize (8.5) with sampling time Ts,

we obtain

isd(t+ 1) = b1isd(t) + d1ucd(t), (8.7a)

isq(t+ 1) = b2isq(t) + d2ucq(t), (8.7b)

where

d1 =
(1− b1)
ks

, b1 = e
−ksTs

Ll ,

d2 =
(1− b2)
Rs

, b2 = e
−RsTs

Ll .

Finally, the discrete-time state-space model of the wind turbine is represented by

x(t+ 1) = Ax(t) +Bu(t), (8.9a)

y(t) = Cx(t), (8.9b)

where x(t) = [isd(t), isq(t)]
T ∈ R

2 is a state vector, u(t) = [ucd(t), ucq(t)]
T ∈ R

2 is

a control vector, y(t) = [isd(t), isq(t)]
T ∈ R

2 is a output vector and matrices are

given as

A =

[
b1 0

0 b2

]
, B =

[
d1 0

0 d2

]
, C =

[
1 0

0 1

]
.

8.1.3 Tracking Problem of MPC

Tracking of the reference represents one of the most important property of all feed-

back controllers, especially when regulating towards origin is no longer sufficient.
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In the concept of FOC, tracking of yref leads to optimal operation of the wind

turbine, thus to the efficient energy production. In order to achieve offset free

tracking, we essentially need to steer the system (8.9) to the steady state such that

the controlled outputs (or states) will attain values of the references, i.e.

[
A− I B

C 0

] [
xs

us

]
=

[
0

ys

]
, (8.11)

where ys = yref. In MPC, this can by done by penalizing the differences ‖yk− yref‖
and ‖uk−us‖ see (Muske, 1997; Shead et al., 2010). We need to keep in mind that

this approach provides offset free tracking only if the prediction model is identical

with the real process. However, in case of plant model mismatch (see Figure 3.2),

one needs to consider another technique to remove the tracking error e.g. as distur-

bance modeling. The main idea of disturbance modeling (Borrelli and Morari, 2007;

Muske and Badgwell, 2002; Pannocchia and Rawlings, 2003) is to enhance the sys-

tem model by disturbance model which predicts the mismatch between predicted

and measured output. Subsequently, inaccurate states and outputs of the model

are then corrected, what results in the offset free tracking. The model in (8.9) can

be augmented as follows

x(t+ 1) = Ax(t) +Bu(t) +Bdd(t), (8.12a)

d(t+ 1) = d(t), (8.12b)

y(t) = Cx(t) + Cdd(t), (8.12c)

where Bd and Cd denote disturbance matrices and d(t) ∈ R
2 is vector of distur-

bances. For the system in (8.12) the state and disturbance observer is given as:

[
x̂(t+ 1)

d̂(t+ 1)

]
=

[
A Bd

0 I

] [
x̂(t)

d̂(t)

]
+

[
B

0

]
u(t) +

[
K1

K2

](
yp(t)− Cx̂(t)− Cdd̂(t)

)
,

(8.13)

where x̂(t), d̂(t) denote estimated values of states and disturbances, yp is the mea-

sured (estimated) output from the process, gains K1 and K2 are chosen such that

the observer is stable and further tuned to achieve desirable dynamic for observer

convergence.

Remark 8.1.1 As reported in (Borrelli et al., 2016, Section 13.6) if dimensions of

disturbances d(t) and outputs y(t) are equivalent, (C,A) is observable and det(A−
I − BdC) 6= 0, then augmented model in (8.12) is observable and we can choose
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Cd = I. Moreover, if plant has no integrators, i.e. det(A − I) 6= 0, we can choose

Bd = 0.

8.1.4 Constraints

Electrical machines and generators are usually overdimensioned to cope with occa-

sional overshoots of rated values and short overloads during transients that occur in

normal operation. This potential problem is usually solved by introducing practi-

cal implementation aspects such as ramps applied to references, soft-starters during

start-up, or protection units. Solving these problems from the perspective of control

algorithms by imposing and respecting constraints may lead to cheaper generator

designs and unnecessary shut-down avoidance. Therefore, to keep the generator

within rated operation, we consider following constraints on the rated voltage

(u1(t)− γ1(t))2 + (u2(t)− γ2(t))2 ≤
(
udc√
3

)2

, (8.14)

where udc is power converter DC-link voltage (for more information about power

converter topology and operation, see e.g. (Leonhard, 2001)). Note that if volt-

age constraints are satisfied, currents are consequently kept below rated values.

Since the MPC is formulated as a tracking problem, currents constraints are also

entrusted to outer control loop that provides reference trajectories. We need to

emphasize, however, two difficulties of the aforementioned constraints. First one is

that constraints in (8.14) are circular, what leads to complex optimization prob-

lems. This issue is usually tackled by replacing (8.14) with a set of linear con-

straints, i.e. via (inner/outer) polyhedral approximation. The second problem is

that the center of this circle can change its coordinates via decoupling variables γ,

what has to be taken into account during the MPC design. This two important

facts are illustrated in Figure 8.2.

8.2 Control of the Wind Turbine Generator

This section provides information of the experimental setup from the control point

of view. We start by a short description of control scheme and clarifying what is

the control objective of this experiment Then we discuss approach which tackles

complexity obstacle of the MPC optimization problem. Finally, after we state the



220 CHAPTER 8. MPC APPLICATION TO WIND TURBINE GENERATOR

����

u1

u2

udc√
3

����

���
�
�
�
�

�
�
�
�
�

����
����
����
����

��������

�
�
�
�
�
�

�
�
�
�
�
�

u1

u2

γ1

γ2

Figure 8.2: Illustration of constraints. Red circle denotes process constraints, blue

polytope is inner approximation, dashed-black line represents radius of

the circle and the black circle denotes center of constrains that can be

shifted by γ.

experimental model and constraints, we introduce used MPC formulation for the

field-oriented control of SCIM.

8.2.1 Control Objective

Consider that at each sampling instant we are given the optimal values of i⋆sd (for

the most of time attains the rated value isdn = 4.8A) and i⋆sq (given from the

outer torque controller). Moreover, assume that Kalman filter (KF) (Lešić, 2014,

Chapter 10) is well tuned and embedded in the control loop. Our objective is to

design and implement an MPC policy, which will replace decoupled PID controllers,

such that constraints in (8.14) will be satisfied, the sampling period Ts = 4 · 10−4

will be preserved and given references yref := [i⋆sd, i
⋆
sq]

T will be tracked.

The MPC control scheme of SCIM is shown in Figure 8.3. Here, the optimal

control inputs u from the MPC feedback law are corrected by the decoupling pa-

rameters γ̂, what yields the optimal voltages u⋆sd and u⋆sq, which are transformed

into three phase u⋆abc sine voltages via current angle of the (d,q)-transformation

ρ. Finally, u⋆abc is then converted into associated current ia, ib, ic and fed to the

generator (SCIM), the consequence of which is the generator mechanical speed ωg,
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yref u u⋆sd
u⋆sq

(d, q)

(a, b, c)
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ic
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ρ

ωg
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uab, ubc
γ̂, ŷp

γ̂

(+LO)

MPC

KF

SCIM

Figure 8.3: Wind turbine generator tracking MPC control scheme.

torque Tg and thus power. Subsequently, KF estimates decoupling parameters γ̂

and outputs ŷp. Process outputs ŷp are then given to LO, where states x̂ and

disturbances d̂ are estimated. Finally, based on estimates from LO and references

yref (from outer controller), MPC computes new sequence of optimal control inputs

u, what completes the control scheme.

8.2.2 Complexity Problem

It is known (see Chapter 3) that the main implementation obstacle of MPC is

the computation burden since the based on the RHC the optimization problem

has to be coped within the duration of one sampling period, which in our case is

Ts = 4 · 10−4 seconds. To even more stress this issue we need to point out that in

the control scheme shown in Figure 8.3 we have various signal conversions, as well

as KF, which requires majority of the available computation time. Therefore, the

online evaluation of MPC feedback law has to be much faster. To achieve this rapid

control frequency, even with the modern control platform in hand, it usually takes

to employ state-of-the-art optimization solvers. Besides that these optimization

solvers are quite expensive and since we had not access to any of those, during

our experiments we have been forced to find a different way. The solution for this

problem was quite obvious and led to explicit MPC.

As we are already know from the Chapter 4, in explicit MPC we exploit para-

metric programming to offline precalculate the MPC optimization problem for all

feasible initial conditions what yields an explicit optimizer in form of a polytopic

PWA function the online evaluation of which can be efficiently handled only by

means of simple mathematical operations. Here, on the one side we do not longer
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need to employ any expensive optimization solver, but on the other side the re-

quested fast evaluation of control inputs is not yet guaranteed. To see this, let us

remind that online execution of explicit MPC feedback laws is essentially restricted

only to a point location problem. From Section 4.3.1 we know that there exists

multiple algorithms for this task, but all of them are directly related to the number

of regions of the explicit solution, thus to its complexity.

In this work, since the complexity of explicit optimizers has grown extremely

fast (e.g. for prediction horizon N = 3 we obtained explicit solution with more

then one thousand of regions), we have decided to decrease the online evaluation

of explicit MPC by directly reducing the complexity of the MPC optimization

problem. Particularly, by exploiting so-called move-blocking technique.

Move-blocking represents practical and widely used approach in MPC strategy,

which is used to reduce the complexity associated with finite-horizon control prob-

lems (Qin and Badgewell, 2003; Tøndel and Johansen, 2002). The concept of this

technique is to force the control inputs to remain the same along certain prediction

steps. In other words, let uk for k = 0, . . . , N − 1 to be the sequence of optimized

control moves over the prediction horizon N . Now, denote Nc to be the control

horizon, where Nc < N , through which move-blocking imposes

uk = uk−1, k = Nc, . . . , N. (8.15)

This way the degree of freedom is reduced exactly by N−Nc variables. To see this,

note that (8.15) introduces N−Nc equality constraints into the MPC optimization

problem, that can be subsequently eliminated via technique shown Section 2.2.4.

On the other hand, the price which comes with this complexity reduction is that

such design control policies do no longer guarantee stability or constraints satis-

faction. Yet, as it was shown in (Cagienard et al., 2007b) it is possible to provide

theses guarantees by using time-varying scheme called move window blocking.

Remark 8.2.1 As it was discussed in Section 4.3.1, online evaluation of explicit

MPC can be more efficient e.g. by employing binary search tree technique as the

algorithm for the point location problem. However, from the side of this experiment,

with model and constraints as in (8.12) and (8.20), we were not able to construct an

efficient tree structure, even though that multiple variations of MPC formulations

have been assumed. The acceleration of point location problem was approximately

20% (compared to the standard sequential search technique). Yet, this reduction was

not sufficient for the real-time application, if MPC had longer prediction horizons.
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Remark 8.2.2 Another approach how to decrease complexity of explicit controllers

is via applying memory reduction techniques e.g. such as is shown in Chapter 5.

This direction was not our primal choice since application of those techniques would

require additional computation time and majority of the MPC tuning had to be

performed directly in the real process.

8.2.3 Control Components of the Experiment

In Section 8.1.2 we have derived a general LTI model for the wind turbine. Now, by

applying parameters of our experimental process into (8.9) and with Ts = 4 · 10−4

we obtain matrices

A =

[
0.9679 0

0 0.9816

]
, B =

[
0.0294 0

0 0.0297

]
, C =

[
1 0

0 1

]
. (8.16a)

Now, since system has no integrator, (C,A) is observable and det(A−I−BdC) 6= 0

holds we can define disturbance model as

Bd =

[
0 0

0 0

]
, Cd =

[
1 0

0 1

]
, (8.17a)

and therefore the augmented model in (8.12) has following form

x(t+ 1) =

[
0.9679 0

0 0.9816

]
x(t) +

[
0.0294 0

0 0.0297

]
u(t), (8.18a)

d(t+ 1) = d(t), (8.18b)

y(t) =

[
1 0

0 1

]
x(t) +

[
1 0

0 1

]
d(t). (8.18c)

The Luenberger observer (LO) matrices K1 and K2 have been chosen such

that (8.13) would be stable:

K1 =

[
0.6710 0

0 0.6801

]
, K2 =

[
0.2979 0

0 0.2983

]
. (8.19)

Let us now specify constraints considered in this experiment. In order to provide

safe operation mode of the wind turbine we restrict the voltage signal u to attain

values only within a circle with radius of 260. To keep complexity low, we have

approximated (8.14) by a hexagon what led to following voltage constraints
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Gc (u(t) + γ(t)) ≤ Fc, (8.20)

with matrices

Gc =




0 1

−1.7321 1

−1.7321 −1
0 −1
1.7321 −1
1.7321 1




, Fc =




225.1666

450.3332

450.3332

225.1666

450.3332

450.3332




.

8.2.4 MPC Formulation

Now, with model (8.18) and constants (8.20) in hand, let us define MPC optimiza-

tion problem as follows

min
u0,...,uN−1

N−1∑

k=0

(
||Qy(yk − yref(t)))||22 + ||Qu(uk − us(t))||22

)
(8.22a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1, (8.22b)

yk = Cxk + Cdd̂(t), (8.22c)

x0 = x̂(t), (8.22d)

uk = uk−1, k = Nc, . . . , N − 1, (8.22e)

Gc(uk − γ̂(t)) ≤ Fc, k = 0, . . . , N − 1, (8.22f)

where the steady-state control input us(t) at sample time t is given by:

[
A− I B

C 0

] [
x̂s(t)

us(t)

]
=

[
0

yref(t)− Cdd̂(t)

]
. (8.23)

Denote xk ∈ R
2 and uk ∈ R

2 state and input vector, respectively, at prediction step

k, x̂(t) ∈ R
2 and d̂(t) ∈ R

2 are state and disturbance estimates (from LO), γ̂(t) ∈ R
2

is vector of decoupling voltages (from KF) and yref(t) is reference at sample time

t. Next, Qu and Qy are positive definite weighting matrices, N denotes prediction

horizon and Nc represents control horizon. The term || · ||22 denotes the squared

Euclidean norm, i.e. ||Qu (uk − us(t)) ||22 equals to (uk − us(t))T Qu (uk − us(t)).
Let us now closer explain optimization problem in (8.22). The first term in the

objective function (8.22a) penalizes the distance between the predicted outputs
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yk = Cxk + Cdd̂(t) and the reference yref(t), i.e. the tracking error. The second

term, on the other hand, penalizes predicted and steady-state control actions. The

constraint in (8.22b) denotes prediction model in (8.18) where (8.18b) is omitted

as it is constant during the entire prediction and (8.18c) is directly substituted

in optimization problem. The initial constraint (8.22d) enables the recursion from

estimated to predicted states, constraint in (8.22e) denotes the move-blocking tech-

nique and (8.22f) are the safety constraints as in (8.20).

Since objective function in (8.22a) is quadratic and all constraints (8.22b)-

(8.22f) are linear, we have that optimization problem in (8.22) is QP with opti-

mization variables1 z(t) := [u0, . . . , uN−1]
T ∈ R

N and parameter vector θ(t) :=

[x̂T (t), γ̂(t)T , (Cdd̂(t)− yref(t))T ]T ∈ R
6. Note that we have decreased the parame-

ter space via merging yref(t) and d̂(t) together. We were able to do this, as neither

of those values are present in constraints (8.22b)-(8.22f) and since steady-state con-

trol input us(t) is a function of this parameters, i.e. us(yref(t)−Cdd̂(t)), see (8.23).

However, if e.g. states of the system would be considered, which have to be cor-

rected by the disturbances to attain real values, i.e. Gx(xk + d̂(t)) ≤ Fx, then this

parametrization is not possible.

The MPC optimization problem (8.22) was tuned and the best performance,

with the respect of complexity, was obtained with:

Qy =

[
500 0

0 250

]
, Qu =

[
1 0

0 1

]
, N = 5, Nc = 1. (8.24)

Solving (8.22) with (8.24) in MPT3, led to explicit solution defined over 33 regions

in dimension of 6. This controller was then exported into self-contained function

and added to the control scheme depicted in Figure 8.3.

8.3 Experimental Results

In what follows, we will demonstrate experimental results, where two main scenarios

are considered. The first one illustrates the tracking performances of the controller

and the second one is aimed to verify if the safety control operation of generator is

provided, i.e. if constrains in (8.20) are satisfied. Results are also compared with

1The number of decision variables was actually z(t) := [u0, . . . , uNc−1]
T ∈ RNc as in MPT3,

where multiparametric solution was obtained, the constraint elimination technique is used, cf.

Section 2.2.4
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ŷ p
,1
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Figure 8.4: Control performance of MPC with respect to no-stochastic wind. Here,

references are denoted by red-dashed lines and black-dashed lines are

control voltage constraints.

the performance of typically used PID controller. Moreover, we would like to note

that in presented graphs we will not show directly control inputs of MPC (PID),

but we will instead show the real control voltages as in (8.6), i.e. usd = u1 − γ̂1
and usq = u2 − γ̂2.

We would like to recall that generator control is performed in the first control

mode of wind turbines, i.e. operation below rated wind speed, and during our ex-

periment i∗sd was set to i⋆sd = isdn = 4.8A. Particularly, wind turbine was affected

by simulated wind speed of [4, 5, 6, 5, 4, 5]m s−1 that was changing with frequency of

5 seconds. Figure 8.4 illustrates tracking performance of MPC. It may be observed

that while the first output ŷp,1 (stator direct current) had to track the constant

(rated) value isdn, the second state ŷp,2 (quadrature current) had to follow the

reference i⋆sq that was given by the outer torque controller. In the graph we can



8.3. EXPERIMENTAL RESULTS 227

0 5 10 15 20 25 30
4.7

4.8

4.9

5

5.1

0 5 10 15 20 25 30
2

4

6

8

0 5 10 15 20 25 30

-200

0

200

0 5 10 15 20 25 30

-200

0

200

time [s]
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Figure 8.5: Comparison of MPC (blue-dashed lines) and PID (red lines) control

performances. Black-dashed lines denote control voltage constraints.

observe that MPC has indeed achieved this goal. Moreover, offset free tracking

was provided due to disturbance modeling described in Section 8.1.3. Note that

tracking of the first reference is much harder to obtain than the second one. This

had an impact on selection of weighting matrix Qy. Next, we can see weak oscil-

lating behavior during the strongest wind speed within interval of 10-15 seconds.

This occurs due to edge operation between the two operating modes, where blade

pitching is occasionally taking over the wind turbine control.

Subsequently, with the same control setup, we have controlled process with

decoupled PID controllers and their comparison with MPC policy is depicted in

Figure 8.5.Here, the blue trajectories denote MPC policy performance and red ones

PID controllers. By comparing these two strategies we can come to conclusion that

both MPC and PID have good control performances. Moreover, in this case, MPC

was able to better compensate overshoots and undershoot of ŷp,1, but, the price
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which we have paid for it was worse tracking of yref,2. To be more exact, based on

ISE indicator, the tracking performance of MPC was 41% better w.r.t. ŷp,1, but

by 4% worse w.r.t. ŷp,2, when compared with PID. This is a direct consequence of

the weighting matrices in (8.24), where we have selected greater penalization on

the first controlled output.

In Figure 8.6, control performance of MPC was also evaluated with respect to

stochastic wind. Here, we can observe that MPC has also provided good control

performance in more dynamic and realistic operation.
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Figure 8.6: MPC control performance with respect to stochastic wind. References

are denoted by red-dashed lines and control voltage constraints by

black-dashed lines.

Finally, second scenario of this experiment is shown in Figure 8.7, where viola-

tion of constraints in (8.20) is evaluated. For illustrative purposes, we have used

value of Us(t) =
√
(u1(t)− γ̂1(t))2 + (u2(t)− γ̂2(t))2 ≤ udc√

3
, which represents sta-

tor voltage magnitude that has to be kept within specified radius udc√
3
(see (8.14)).
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Here, to demonstrate constraints satisfaction, we have done one short step change.

The difference, however, was that this step did not go the outer torque controller

(which essentially ’filtered’ this signal due to wind turbine moment of inertia and

slow system dynamics, as we have seen in previous figures), but directly to the

generator. In other words, we have performed step change on the second reference

yref,2 = i⋆sq. This scenario rarely occurs in wind turbine applications (basically only

during start up at cut-in speed) but is very common in other machine applications

such as servo drives, motion control etc. Here we used it to point out constrained

control outputs. From the presented graphs one can observe that aforementioned

step had an immediate response from the side of controllers. However, while PID

controllers have not respected control voltage constraints, MPC has provided con-

straints satisfaction due to (8.20) embedded in the optimization problem (8.22).

For convenience, we have also shown tracking performances of MPC and PI, which

are almost the same. Notice, however, that the second state converges slower in

case of MPC policy. This is caused due to the weighting matrices in (8.22a), where

the second output offset is less penalized (8.24). We remind that they have been

tuned with respect to the outer torque controller, which shapes (smoother) refer-

ences to MPC. Therefore, as we have seen in previous figures, it i more important

to penalize the first output offset. Moreover, performance of LO can be observed

in this figure. We can see that LO tracks ŷp well, thus provides to the MPC policy

relevant estimates of both model states x̂ and disturbances d̂.

8.4 Conclusions

In this chapter, we have proposed MPC strategy to wind turbine generator. To

provide good control performance we used several control concepts such as move-

blocking, disturbance modeling and parametric programming. Based on presented

figures we have seen that MPC has adopted to stochastic nature of wind, exhibited

offset free tracking and provided constraints satisfaction. On the other hand, even

thought that commonly used PID controllers have the same control performance,

they did not meet constraints. Therefore, we can conclude that proposed MPC pol-

icy represents better option how to provide additional protection to the generator,

what prolongs life cycle of the wind turbine and thus leads to greater profits. We

would like also to emphasize that we have achieved this without changing control

setup, i.e. optimization solver or more powerful control platform is not required.
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(a) Stator voltage magnitude of MPC.
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(b) Stator voltage magnitude of PID.
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(c) First output tracking performance of

MPC.
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(d) First output tracking performance of PID.
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(e) Second output tracking performance of

MPC.
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(f) Second output tracking performance of

PID.

Figure 8.7: Verification of constraints satisfaction. Step change was performed di-

rectly on the second reference yref,2. Here, black-dashed lines denote

constraints, red-dashed lines denote references and blue lines represent

estimated values of KF. Moreover, green lines denote estimated output

of LO, i.e. x̂+ d̂.



Chapter 9

Conclusions and Future Research

This thesis elaborated possibilities of MPC with the target of its fast and memory-

efficient implementation. Particularly, we have suggested two principal directions

with the same goal, yet with different approach, how to decrease complexity of MPC

feedback laws in order to ensure its successful implementation even into low-level

control platforms. Moreover, two real applications of MPC have been concerned in

this thesis.

In Chapter 5, we have addressed the problem of reducing complexity of ex-

plicit MPC controllers. Particularly, we have introduced a novel memory reduction

technique that is based on replacing the complex explicit feedback law by its sim-

pler, yet suboptimal, representation. We have shown that this substitution can

be achieved via two step procedure. In the first step, we have suggested that new

polytopic partition can be obtained by solving the same optimization problem, as

the complex explicit solution was constructed, but with shorter prediction horizon.

Even though, that this already led to a less complex explicit solution, we were

forced to discard it as it exhibited a great performance deterioration, compared to

the original controller. Only its polytopic partition was preserved. In the second

step, we have suggested how one can significantly reduce the amount of the subopti-

mality. Specifically, quadratic optimization problem was proposed to optimize new

local affine expressions such that error between the approximated and the complex

optimizer was minimized, while recursive feasibility and closed-loop stability were

provided.

231
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In Chapter 6.2, we have addressed the problem of verifying the performance of

MPC polices. Two different techniques were proposed. Their objective is to provide

a rigorous answer if all necessary control properties, that were not directly enforced

in the MPC formulation, are guaranteed. This way we are able to certificate these

simplified feedback controllers, thus to determine if their implementation is safe.

The first proposed approach investigated properties of explicit MPC policies

that were exposed to rounding-based quantization effect. This problem was ad-

dressed by a three step procedure. Firstly, we have shown how an a-posteriori

quantized MPC strategy can be devised, based on the knowledge of the given quan-

tizer and a PWA feedback law, via employing the technique of Voronoi diagram.

Secondly, construction of three types of bounding functions have been proposed,

as to reflect standard control properties. Namely, recursive feasibility, closed-loop

stability and bounded deterioration of performance. Finally, we have defined a rig-

orous certificate, that verified whether a-posteriori quantized explicit controller was

contained within constructed performance boundaries. Subsequently, if a positive

answer was obtained, then we had that examined PWA explicit optimizer provided

the considered control property, even under a finite precision arithmetic.

The second approach was devoted to safety verification of implicitly defined

MPC policies. Specifically, we have proposed non-conservative methods which al-

low one to verify whether a closed-loop system, composed of a linear controlled

plant and an MPC controller, avoids a certain set of unsafe states. The procedure

was based on exploiting the Karush-Kuhn-Tucker conditions, that characterized

the optimal control inputs. Three principal formulations were presented, each of

which led to mixed-integer feasibility problem, the solution of which then indicated

if the MPC policy exhibits all necessary safety properties. It was shown that under

a minor assumption (existence of a positive invariant terminal set) the verification

task can be answered ad infinitum, i.e., for an infinite number of time steps. More-

over, we have pointed out that the proposed verification can be also employed to

reduce the memory consumption of explicit MPC controllers.

The third part of this thesis was devoted to the implementation of MPC strategy

to real systems, where the main objective was to include safety constraints directly

to the control algorithm. Two different applications of MPC policy have been

proposed.

The pH control problem was addressed in Chapter 7. Here, PID controller was

designed to track the desired pH reference in the chemical vessel, where chemical
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reaction of acetic acid and the sodium hydroxide has taken place. Subsequently,

MPC reference governor technique was proposed in order to improve the control

performance of PID. It was shown that in such setup, MPC strategy is able to

shape references for the PID controller to compensate overshoots and undershoots

of the controlled output, while providing satisfaction of constraints.

In Chapter 8 wind turbine system has been controlled. The objective here was

to design fast MPC policy for FOC, which would take into account circular safety

input constraints and will track the reference. To achieve this goal, we have ex-

ploited several control techniques. The disturbance modeling was introduced to

attain offset free reference tracking. In order to mitigate the complexity of MPC

policy and provide good control performance, move-blocking technique was em-

ployed. Finally, circular constraints were transformed into set of linear inequalities

via inner approximated and explicit MPC was used to accelerate computation of

optimal control inputs. We have shown, that superiority of MPC, compared to

PID, was in satisfying aforementioned safety constraints.

Future Research

Nowadays, besides economical and environmental aspects, safety plays a crucial role

in control design. This, however, leads to more complex formulations of MPC what

induce the need of applying more expensive control platforms and last, but not least

state-of-the-art solvers. This motivates us to improve our proposed methods and

control approaches even further. Motivation for future work can be summarized in

following points:

• Memory reduction in explicit MPC: Proposed memory reduction technique in

Section 5 has proved to be a powerful tool how one can decrease complexity of

explicit controllers. This motivates us to exploit this technique even further.

We would like to merge it with different approaches to decrease memory

footprint of these controllers even more, e.g. modify it such that it will be able

to reduce memory of region-free explicit solutions, which we have proposed

in Kvasnica et al. (2015). Moreover, in Section 6.2 we have shown that

proposed verification technique can be used to reduce complexity of explicit

solutions. However, the main potential of this approach was not exploited,

since this method do not a-priori needs explicit solution in hand. We therefore

suggest to employ it directly in the explicit algorithms, such that we will
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be able to reduce memory footprint directly when explicit solution is being

constructed.

• Certification techniques: In verification technique of Section 6.1 we have

shown how to certify a-posteriori quantized MPC policy, by means of de-

termining whether quantized PWA feedback lays inside of PWA boundaries.

We would like to extend this method for even for richer types of bounding

functions, e.g. polynomial boundaries. Next, for the technique in Section 6.2

we will aim at extending it to a richer class of systems, in particular to hy-

brid linear systems. We will also investigate the inclusion of measured and

unmeasured disturbances and parametric uncertainties.

• Practical implementation of MPC: In our future research we are also inter-

ested to improve the control quality of both real applications. From the pH

process control perspective in Section 7, we would like to export proposed

MPC policy and control the systems via PLC. To achieve this, we can exploit

complexity reduction techniques that are proposed in this work. Moreover,

we would like also to elaborate other possibilities, how to deal with the strong

non-linearity. One direction how to tackle this issue was proposed e.g. in King

(2010). On the other hand, the control of wind turbine in Section 8 has quite

straight forward continuation. We would like to follow up the cooperation

between universities and improve our control performance via considering so-

called fault-tolerant control. Here, additional safety constrains are added to

the control policy in order to prevent further structural loads of the wind

turbine.

• Other implementation directions of MPC: Computer-based traffic fluency

control has been addressed in Kalúz et al. (2016). Particularly, a set of

cars was controlled as one distributed system. In this scenario the upper-

level control system is able to actively communicate with each vehicle, collect

the operational data from it, and provide it with the information how to

behave. In our future work, we would like to control of each vehicle as the

autonomous system.The challenge behind this approach is to design fast and

memory-efficient MPC policy which will be able to implement into microcon-

troller with available memory of less than 2 KBs.
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Resumé

Predkladaná dizertačná práca sa snaž́ı preskúmat’ možnosti rýchlej a pamät’ovo ne-

náročnej implementácii predikt́ıvneho riadenia za účelom rozš́ırenia tejto stratégie

aj do ńızkoúrovňových priemyselných riadiacich platforiem. Predikt́ıvne riadenie

predstavuje pokročilý pŕıstup k riadeniu, ktorého popularita neustále rastie a svoje

uplatnenie si nachádza v mnohých (najmä priemyselných) odvetviach. Medzi naj-

väčšie výhody danej metódy patŕı predikcia vývoja riadeného systému, na základe

zostrojeného matematického modelu, a teda možnost’ optimalizovat’ sekvenciu akč-

ných zásahov na celom predikčnom horizonte, čo výraznou mierou zlepšuje celkovú

kvalitu riadenia. Ďalej schopnost’ navrhovat’ spätnoväzbové regulátory pre mnoho

rozmerové systémy, pri súčasnom zohl’adneńı všetkých systémových a kvalitat́ıv-

nych obmedzeńı, ktoré sú explicitne zakomponované vo výslednom optimalizačnom

probléme. Tu by sme mohli zdôraznit’, že každý priemyselný proces ma svoje fyzi-

kálne limitácie, ktoré vychádzajú priamo z jeho konštrukcie. A čo viac, v súčasnej

dobe sa kladie vel’ký dôraz na splnenie výrobných noriem, ktoré predstavujú sériu

pŕısnych požiadaviek ako už na kvalitu produktu, tak aj na celkovú bezpečnost’ pri

výrobnom procese. V konečnom dôsledku, sú to práve zmienené prednosti predik-

t́ıvneho riadenia, ktoré umožňujú nielen zńıžit’ materiálovú a energetickú spotrebu,

ale taktiež minimalizovat’ negat́ıvne dopady na životné prostredie a zabezpečit’ bez-

pečnú prevádzku, pri súčasnej maximalizácii zisku.

Na druhej strane, ako sme aj uviedli v tabul’ke 3.1, najväčšou implementačnou

prekážkou predikt́ıvneho riadenia je vysoká výpočtová náročnost’, takto zostroje-

ných optimalizačných problémov, ktorá môže prevyšovat’ pŕıpustné prostriedky cie-

leného riadiaceho hardvéru. Pre bližšie spresnenie, za účelom poskytnutia garancie
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stability, optimality a dodržania všetkých ohraničeńı, celý optimalizačný problém

muśı byt’ vypoč́ıtaný do doby jednej periódy vzorkovania. Avšak dodržanie tejto

požiadavky môže byt’ ohrozené, ak cielený riadiaci hardvér má obmedzené výpoč-

tové prostriedky, alebo ak dynamika riadeného procesu si vyžaduje pŕılǐs rýchlu

frekvenciu vzorkovania. A preto, aby sme predǐsli tejto situácii, dodatočné opatre-

nia musia byt’ vykonané, ktoré zńıžia požiadavky predikt́ıvneho riadenia na takú

mieru, aby bola umožnená úspešná implementácia. Predkladaná práca sa zaoberá

touto problematikou a poukazuje na možné riešenia ako daný ciel’ docielit’.

Jednou z možnost́ı, ako zńıžit’ výpočtové nároky predikt́ıvneho riadenia je vy-

užitie konceptu explicitného predikt́ıvneho riadenia. Hlavnou myšlienkou uvede-

ného pŕıstupu je využitie parametrického programovania za ciel’om dopredného

vypoč́ıtania celého optimalizačného problému a to pre všetky pŕıpustné začiatočné

podmienky riadeného procesu. Výsledkom parametrického programovania je po

častiach af́ınna (PWA) funkcia, ktorá mapuje stavy systému na optimálne akčné

zásahy. Ilustračný pŕıklad PWA zákonu riadenia je zobrazený na obrázku 4.1(b) a

jeho polytopická part́ıcia (doména funkcie) je znázornená na obrázku 4.1(a). Ná-

slednou implementáciou explicitného riešenia do riadiaceho hardvéru, sú výpočtové

nároky zńıžené na jednoduché matematické operácie, ktoré môžu byt’ efekt́ıvne vy-

konané aj na ńızkoúrovňových riadiacich platformách. Avšak cena, ktorú muśıme

zaplatit’ za takéto rýchle vyhodnocovanie akčných vstupov, je zvýšená pamät’ová

zát’až, ktorá je priamo úmerná počtu regiónov tvoriacich polytopickú part́ıciu. Tu

by sme mali zdôraznit’, že zatial’ čo zložitost’ explicitných riešeńı (v zmysle po-

čtu regiónov) rastie exponencionálne s d́lžkou predikčného horizontu, tak dostupný

pamät’ový potenciál priemyselných hardvérov (akými sú napŕıklad mikročip a prog-

ramovatel’ný logický automat) je striktne limitovaný iba do niekol’kých kilobajtov.

Výhody vyplývajúce z explicitného predikt́ıvneho riadenia prilákalo mnohých vý-

skumńıkov, ktoŕı poukázali na viacero možnosti ako zńıžit’ počet regiónov a teda

ako zmiernit’ pamät’ové požiadavky tejto metodológie. V literatúre je tento prob-

lém vedený ako redukcia zložitosti explicitných predikt́ıvnych zákonov riadenia a

prvým pŕınosom dizertačnej práce je obohatenie tejto oblasti o jednu novú tech-

niku.

Navrhnutá metóda redukcie zložitosti explicitných predikt́ıvnych zákonov riade-

nia predpokladá, že zložité explicitné riešenie µ(x) je dostupné. Základnou myšlien-

kou je nahradit’ µ(x) za jej jednoduchšiu verziu ũ(·) pričom: 1.) ũ(·) bude garanto-

vat’ rekurźıvnu riešitel’nost’; 2.) ũ(·) zabezpečuje asymptotickú stabilitu uzavretého
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systému; 3.) chyba predstavujúca integrál štvorca odchyliek medzi funkciami µ(·)
a ũ(·) (respekt́ıve suboptimalita ũ(·) vzhl’adom na µ(·)) je minimalizovaná. Uve-

dený problém je ilustrovaný na obrázku 5.1. Na zostrojenie aproximovaného zákona

riadenia ũ(·) je potrebné najskôr zostrojit’ polytopické regióny, nad ktorými bude

ũ(·) definovaný, a následne zostrojit’ lokálne af́ınne členy pre každý jeden nový

región. K prvej úlohe sme pristúpili opätovným vyriešeńım rovnakého optimalizač-

ného problému (ktorým bol źıskaný µ(x)), avšak s nižš́ım predikčným horizontom.

Takto sme źıskali nový explicitný regulátor µ̂(·), ktorý bol definovaný nad jedno-

duchšou polytopickou part́ıciou. Avšak so zńıžeńım zložitosti sa výrazne zhoršila aj

výkonnost’ takto źıskaného regulátora µ̂(·), v porovnańı s µ(x). Preto, za účelom

zmiernenia straty na výkonnosti, sme si ponechali iba polytopickú part́ıciu µ̂(·) a

aproximovali sme nad ňou nové lokálne zákony riadenia funkcie ũ(·), ktoré mini-

malizovali integrál sumy odchyliek ũ(·) od µ(x). A čo viacej, pri aproximačnom

probléme sme si vynútili, aby nové explicitné riešenie ũ(·) sṕlňalo všetky pôvodné

ohraničenia a nútilo uzavretý systém asymptoticky klesat’ do počiatku. Účinnost’

metódy bola demonštrovaná na viacerých pŕıkladoch. Na základe výsledkov, kom-

paktne zdokumentovaných v tabul’kách 5.1, 5.2 a 5.3, môžeme pŕıst’ k záveru, že

navrhnutá technika dokáže efekt́ıvne zńıžit’ zložitost’ explicitných spätnoväzbových

zákonov riadenia, a to iba za cenu mierneho poklesu na ich výkonnosti.

Rýchla a jednoduchá (nie sú potrebné žiadne drahé matematické programy pre

riešenie optimalizačných problémov) implementácia nie je jedinou výhodou explicit-

ného predikt́ıvneho riadenia. Parametrické riešenie nám ponúka, prostredńıctvom

PWA funkcie, priamy prehl’ad nad závislost’ medzi nameranými stavmi a optimál-

nymi akčnými zásahmi, čo nám umožňuje podrobne analyzovat’ vlastnosti zostroje-

ného zákonu riadenia. Táto prednost’ bola využitá pri druhom pŕınose predkladanej

práce, kde sme preskúmavali vplyv kvantizátora, na vlastnosti riadenia.

Riadenie pod kvantizovanou spätnou väzbou je v súčasnosti vel’mi dôležitá ob-

last’, nakol’ko väčšina riadiacich algoritmov je implementovaná na digitálnych plat-

formách, ktoré sú (zo svojej podstaty) ovplyvnené kvantizačnému pravidlu vzhl’a-

dom na ich konečnú presnost’ a prevodmi medzi analógovými a digitálnymi sig-

nálmi. Zostrojenie predikt́ıvneho riadenia pre takéto systémy nie je vôbec l’ahké a

vo všeobecnosti vedie ku komplikovanej matematickej formulácíı optimalizačného

problému, čo zabraňuje ich následnú implementáciu do štandardných priemysel-

ných riadiacich platforiem. Preto sme v našom pŕıstupe navrhli vynechat’ infor-

máciu o kvantizovaných akčných zásahov z optimalizačného problému, č́ım sme
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zostrojili ovel’a jednoduchš́ı predikt́ıvny zákon riadenia. Následne sme poskytli ri-

gorózne certifikáty, ktoré overili, či takýto jednoduchý regulátor sṕlňa všetky dôle-

žité riadiace vlastnosti, a to aj s ohl’adom na zaokrúhl’ovacie kvantizačné pravidlo.

Takýmto spôsobom sme schopńı zistit’, či navrhnutý regulátor, ktorého výpočtové

nároky sú zńıžené, je možné (bezpečné) implementovat’ do uzavretého regulačného

obvodu. A teda prostredńıctvom takejto spätnej verifikácie sme schopńı zistit’, či

navrhnutý regulátor, ktorého výpočtové nároky sú zńıžené, je možné (bezpečné).

Pri zostrojovańı certifikátu sme postupovali nasledovne: 1.) Odvodili sme si expli-

citné riešenie predikt́ıvneho riadenia µ(x). 2.) Prostredńıctvom známych kvanti-

začných hodnôt qi a s použit́ım techniky voronojovho diagramu sme k pôvodnému

zákonu riadenia µ(x) našli jeho pŕıslušnú kvantizovanú verziu µ(·). 3.) S využit́ım

parametrického programovania sme zostrojili hornú V a spodnú V hranicu, ktoré

vymedzovali priestor stavov a akčných zásahov, kde určitá riadiaca vlastnost’ je

splnená. Konkrétne, v našej práci sme ukázali, ako zostrojit’ V a V pre overenie

rekurźıvnej riešitel’nosti, asymptotickej stability uzavretej slučky a dodržanie de-

gradácie výkonnosti regulátora. 4.) Predložili sme lineárny optimalizačný problém,

ktorý zist’uje, či µ(·) je ohraničený V a V . Ilustračný obrázok takejto certifikácie

je znázornený na obrázku 6.1. Aplikovatel’nost’ takéhoto pŕıstupu bolo preukázané

prostredńıctvom troch názorných pŕıkladov, pričom výsledky jednotlivých verifiká-

cii sú zdokumentované v tabul’kách 6.1, 6.2 alebo 6.3.

Certifikácia bezpečnosti predikt́ıvnych zákonov riadenia bolo objektom skúma-

nia aj v tret’om pŕınose predkladanej dizertačnej práci. Konkrétne sme sa zamerali

overit’, či predikt́ıvny regulátor je navrhnutý tak, aby prinútil riadený systém (ini-

cializovaný z vopred známych počiatočných podmienok) sa vyhnút’ všetkým nebez-

pečným stavom. Takýto problém dosiahnutel’nosti je znázornený na obrázku 6.9. Je

nutné ale pripomenút’, že predikt́ıvne riadenie dovol’uje zahrnút’ všetky obmedze-

nia požiadavky priamo do optimalizačného problému. Avšak niektoré bezpečnostné

špecifikácie (akými sú napŕıklad vyhýbanie sa prekážkam, či limitácie na preregu-

lovanie a čas ustálenia riadenej veličiny) je vel’mi t’ažké zakomponovat’, nakol’ko

vedú k zložitým (nekonvexným) matematickým, ktoré si vyžadujú zvýšené výpoč-

tové nároky. Preto, za účelom zńıženia implementačných požiadaviek, navrhujeme

tieto reštrikcie vynechat’ a spätne overit’ ich platnost’ prostredńıctvom certifiká-

tov. Na rozdiel od predchádzajúcej metódy poukazujeme, že takúto verifikáciu je

možné vykonat’ aj bez analytického riešenia optimalizačného problému (resp. bez

nutnosti použitia parametrického programovania). Naopak, Karush-Kuhn-Tucker
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(KKT) podmienky sú využite na charakterizáciu optimálnych akčných zásahov.

Boli prezentované tri principiálne formulácie, každá z nich v podobe celoč́ıselného

lineárneho programu, ktoré poskytovali jednoznačnú odpoved’ na otázku, či pred-

ikt́ıvne riadenie preukazuje všetky potrebné bezpečnostné vlastnosti. Uviedli sme

aj, že za predpokladu existencie pozit́ıvnej invariantnej terminálnej množiny mô-

žeme poskytnút’ certifikát pre nekonečne vel’a krokov. Systému štyroch zásobńıkov

kvapaĺın bol využitý na ilustráciu všetkých troch formulácíı navrhnutej metódy.

Výsledky jednotlivých certifikátom sú znázornené na obrázkoch 6.12 - 6.14. Po-

ukázali sme aj na alternat́ıvne využitie verifikačnej metódy, ktoré sme postavili

do poźıcie techniky redukcie zložitost’ explicitných predikt́ıvnych zákonov riadenia,

ktorej účinnost’ je zdokumentovaná v tabul’ke 6.4 a znázornená na obrázku 6.8.

Posledná čast’ predkladanej prace bola venovaná praktickej aplikácii predikt́ıv-

neho riadenia. Boli riadene dva odlǐsné procesy.

V prvom z nich sme sa zamerali na riadenie pH v chemickom reaktore, kde

prebiehala reakcia medzi kyselinou octovou a hydroxidom sodným. Našou úlohou

bolo navrhnút’ spätnoväzbový regulátor, ktorý by sa vysporiadal so silne neline-

árnou závislost’ou medzi pH a koncentráciami kyseliny a zásady v reaktore. Táto

relácia je známe širokej komunite titračnou krivkou, ktorá nadobúda zakrivený

tvar ’S’. Ďaľsou požiadavkou bolo poskytnutie garancii na dodržovanie stanove-

ných systémových ohraničeńı. Na dosiahnutie tohto ciel’a sme najskôr daný systém

identifikovali na základe vstupno-výstupných signálov. Následné sme zostrojili PID

regulátor, ktorý prostredńıctvom prietoku zásaditého roztoku ovplyvňoval pH v

chemickom reaktore. Ďalej, za účelom zlepšenia riadiacej výkonnosti, sme pridali k

pôvodnej spätnoväybovej slučke aj MPC regulátor. Jeho úlohou bolo poskytovat’

referencie PID regulátoru tak, aby všetky ohraničenia boli dodržané a preregulova-

nia bolo potlačené. Tieto vlastnosti boli aj ilustrovane prostredńıctvom priložených

grafov.

Druhým procesom, ktorému sme sa venovali v tejto praćı bola veterná turb́ına,

ktorá bola riadená priamo zo strany generátora, kde našou úlohou bolo (aby sme

dosiahli optimálnu produkciu energie) udržanie jeho operačnej rýchlosti na refe-

renčnej hodnote. Našou úlohou bolo navrhnút’ MPC regulátor pre FOC s napät’ovo

riadeńım prevodńıkom, pričom riadiace napätie bolo podmienené bezpečnostnými

ohraničeniam. Hlavnou výzvou tejto úlohy bolo vysporiadanie sa s kruhovými ohra-

ničeniami a udržat’ rýchlu periódu vzorkovania rovnú 0.4 milisekúnd. Ukázali sme,

že navrhnút’ takýto zákon riadenia nebolo vôbec jednoduché. Konkrétne, na od-
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stránenie trvalej regulačnej odchýlky sme zaviedli koncept modelovania odchýlky

medzi predikčným modelom a reálnou dynamikou systému. Kruhové obmedzenia

sme aproximovali sériou lineárnych ohraničeńı, resp. mnohostenom, a pre udržanie

ńızkej zložitosti optimalizačného problému sme zaviedli stratégiu move-blocking,

pomocou ktorého sme zńıžili počet optimalizovaných premenných. Prostredńıctvom

grafov sme ilustrovali, že takto navrhnute MPC riadenie dosahuje lepšie riadiace

výsledky ako konvenčný PID regulátor.

Pre d’aľsie pokračovanie tejto práce sme uvažovali prepojit’ navrhnutú metódu

redukcie zložitosti explicitných predikt́ıvnych regulátorov s d’aľśımi redukčnými

technikami, za účelom dosiahnutia ešte väčšieho zńıženia pamät’ovej stopy takýchto

zákonov riadenia. Pri prvej certifikačnej metóde sme sa zamerali na overovanie vý-

konnost́ı predikt́ıvnych regulátorov, ktoré boli charakterizované prostredńıctvom

PWA hrańıc. Túto techniku by sme chceli d’alej rozš́ırit’ aj na iné typy funkcíı

(napŕıklad polynomiálne). Rovnako aj druhý verifikačńı pŕıstup by sme chceli zo-

všeobecnit’. Konkrétne by sme chceli zahrnút’ do certifikácie aj vplyvy adit́ıvnych

porúch a parametrických neurčitost́ı, ktoré sú pŕıtomne pri každom reálnom spät-

novázbovom riadeńı. Ďalej by sme ešte chceli využit’ potenciál tejto metódy aj

z pohl’adu redukcie zložitosti predikt́ıvnych explicitných regulátorov. Ako sme si

mohli všimnút’, navrhnutá technika nepotrebuje poznat’ dopredu analytické rieše-

nie predikt́ıvneho optimalizačného problému k overeniu dosiahnutel’nosti stanove-

nej nebezpečnej množiny. Táto vlastnost’ by sa mohla využit’ už pri algoritmoch

generujúcich explicitné zákony riadenia, čo by nám priamo umožnilo zostrojovat’

jednoduchšie explicitné regulátory. Pri riadeńı pH procesu by sme chceli zahrnút’ aj

neurčitosti systému a adit́ıvne poruchy do návrhu predikt́ıvneho riadenia. Rovnako

by sme chceli zńıžit’ zložitost’ takto navrhnutého regulátora a implementovat’ ho

do programovatel’ných automatov (PLC). A nakoniec, z pohl’adu riadenia veternej

turb́ıny, by sme chceli pridat’ dodatočné bezpečné ohraničenia, ktoré by (v pŕıpade

už poškodenej turb́ıny) zabraňovali d’aľsiemu jej ničeniu. Týmto by sme dokázali

životnost’ veternej turb́ıny ešte d’alej predlžit’, čo by viedlo k efekt́ıvneǰsej produkcii

energie.
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