
2017 Bc. Jakub Jakabšic

SLOVAK UNIVERSITY OF TECHNOLOGY

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

REGISTRATION NUMBER: FCHPT-5414-70732

DEVELOPMENT OF GRAPHICAL USER INTERFACE FOR

INTELLIGENT ROOM

DIPLOMA THESIS

2017 Bc. Jakub Jakabšic

SLOVAK UNIVERSITY OF TECHNOLOGY

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

Registration number: FCHPT-5414-70732

DEVELOPMENT OF GRAPHICAL USER INTERFACE FOR

INTELLIGENT ROOM

DIPLOMA THESIS

Study programme: Automation and Information Engineering in Chemistry and Food Industry

Study field: 5.2.14. Automation

Workplace: Institute of Information Engineering, Automation and Mathematics

Supervisor: Ing. Martin Kalúz, PhD.

Acknowledgement

I would like to express sincere gratitude to my supervisor, Ing. Martin Kalúz, PhD. for

his guidance, help and overall positive attitude during the making of the project, and also

for his help with finishing the thesis.

Jakub Jakabšic

Abstract

The thesis focuses on creating data acquistion architecture for a so called “Intelligent room” and

the following creation of a Graphical User Interface (GUI) in the web environment for visualizing

the physical quantities measured in the room. The thesis consists of five chapters. In the first two

chapters, the thesis introduces the topic of Intelligent Environments and compares the produced

solution with similar projects. Third chapter describes the used methods of data acquisition. The

measuiring units are multiple types of sensors that measure temperature, air humidity and other

quantities. The sensors are connected to a network of Arduino Yún microcontrollers, which

contain an integrated computer with OpenWrt webserver. The data is saved into a MySQL

database in periodic intervals, and it can be displayed through the interactive web visualization.

The user interface is based on technologies such as PHP, SVG and JavaScript. Chapter no. four is

devoted to describing all functions of the GUI for displaying the time course of measured

information, and the basics of its source code. Fifth chapter briefly describes the possible

expansions of the Intelligent room project, and its benefits towards research of automatic control.

Key words: Intelligent room; Arduino; MySQL; GUI; JavaScript

Abstrakt

Práca sa zaoberá vytvorením architektúry zberu dát v tzv. „Inteligentnej miestnosti“ a následne

vytvorením grafického užívateľského rozhrania vo webovom prostredí na vizualizáciu

nameraných údajov. Práca pozostáva z piatich kapitol. V úvodných dvoch kapitolách sa práca

zaoberá témou inteligentných miestností a porovnáva vytvorené riešenie s podobnými

projektami. Tretia kapitola opisuje využité metódy zberu dát. Meracími členmi sú rôzne druhy

senzorov na meranie teploty, vlhkosti vzduchu a ďalších veličín. Senzory sú pripojené k sérii

mikroovládačov typu Arduino Yún s integrovaným počítačom s webserverom OpenWrt. Dáta sa

ukladajú v pravidelných intervaloch do MySQL databázy, a je ich možné zobraziť pomocou

interaktívnej webovej vizualizácie. Užívateľské rozhranie využíva hlavne technológie PHP, SVG

a JavaScript, a všetkým jeho funkciám na zobrazenie časového priebehu dát a zdrojovému kódu

je venovaná štvrtá kapitola. Pomocou aplikácie je tiež možné priamo ovládať termostaty oboch

radiátorov v miestnosti. V piatej kapiole sú stručne opísané možné budúce rozšírenia projektu

Inteligentná miestnosť, a jeho prínos v oblasti výskumu automatického riadenia.

Kľúčové slová: Inteligentná miestnosť; Arduino; MySQL; GUI; JavaScript

Table of Contents

Table of Figures .. 12

List of Abbreviations .. 13

Introduction ... 14

1 Intelligent Room .. 15

1.1 Optimal Room Environment ... 15

1.2 Data Acquisition ... 16

1.3 Output of Data – GUI ... 17

2 State of the Art ... 18

2.1 Internet of Things .. 18

3 Architecture of Data Acquisition ... 21

3.1 Sensors .. 21

3.1.1 Digital Temperature Sensor DS18B20 ... 22

3.1.2 Combined Air Temperature and Humidity Sensor 22

3.1.3 Photo Electric Counter (ER-SMS38491S) ... 23

3.1.4 Proximity Sensor (ER-SPGP2YIP) .. 24

3.2 Microcontrollers – Arduino Yún ... 25

3.3 Physical Location of Individual Units .. 27

3.4 Communication Interface .. 28

3.5 Wall Computer .. 28

4 User Interface .. 30

4.1 Application Structure .. 30

4.1.1 SVG Image ... 30

4.1.2 Main Page – HTML and PHP .. 32

4.1.3 Source Code – JavaScript ... 32

4.1.4 MySQL Database ... 33

4.2 Displaying Data from the Database .. 34

4.2.1 Creation of Modal Window.. 34

4.2.2 Selecting the Date Range - jQuery DatePicker .. 35

4.2.3 Displaying the Average Values Table .. 36

4.2.4 Small Image in the Modal Window ... 38

4.2.5 Graph Plotting - Flot .. 39

4.2.6 Current Values Table ... 42

4.3 Controlling the Heaters ... 44

5 Further Approach ... 46

6 Conclusion ... 47

7 Resumé .. 48

Bibliography ... 50

Attachments .. 51

12

Table of Figures

Figure 2.1 – Internet of Things schematic (Gubbi J. et al., 2013) ... 19

Figure 3.1 – Architecture of data acquisition .. 21

Figure 3.2 – Digital temperature sensor .. 22

Figure 3.3 – Combined Air Temperature and Humidity Sensor ... 23

Figure 3.4 – Door opening sensor mechanism .. 23

Figure 3.5 – Person counter mechanism ... 24

Figure 3.6 – Arduino Yún board ... 26

Figure 3.7 – Whole data acquisition node ... 26

Figure 3.8 – Diagram of sensor and node location and connection 27

Figure 3.9 – Industrial computer attached to the wall ... 29

Figure 4.1 – Complete GUI ... 30

Figure 4.2 – Inkscape 0.92 drawing interface ... 31

Figure 4.3 – Room illustration without the front section .. 32

Figure 4.4 – Example of the displayed window for wall temperature visualization 33

Figure 4.5 – jQuery DatePicker object .. 35

Figure 4.6 – Average table for a three-sensor wall ... 38

Figure 4.7 – Zoom in to the graph ... 41

Figure 4.8 – Captioning a single data point... 42

Figure 4.9 – Current values table displayed on the main page .. 43

Figure 4.10 – MAX! Cube device ... 44

Figure 4.11 – MAX! Radiator thermostat ... 45

Figure 4.12 – Thermostat settings modal window .. 45

13

List of Abbreviations

GUI Graphical User Interface

IoT Internet of Things

PHP PHP: Hypertext Preprocessor

SQL Structured Query Language

SVG Scalable Vector Graphics

AJAX Asynchronous JavaScript and XML

JSON JavaScript Object Notation

14

Introduction

From the beginning of human history, people have developed more advanced technologies,

and then used these technologies to their advantage and comfort. The importance of an

individual‟s comfort inside their household, or the comfort of work environments, has been

growing rapidly over the recent years. Starting by introducing electricity and water supply to

homes, through central heating, air conditioning, automatic light settings, and finally home

automation solutions, we‟ve always put great effort into improving our environment.

The objective of the thesis is to create a user interface for an “Intelligent Room”. In the

context of objects, places, or software solutions, the term Intelligent doesn‟t mean sensible or

conscious, but informs that the object in question is far from ordinary, and has the purpose to

co-operate with humans towards a specific goal. In case of the Intelligent Room project, the goal

is to conduct measurements of various quantities in the room, such as temperature and humidity,

and then display the output in an interactive Graphical User Interface (GUI).

The biggest advantages of the GUI are its accessibility through the Internet, the transparency

and simplicity of viewing information, but also the option to directly adjust the heating power of

the radiators in the room. This one environment, in which we can control temperature actuators

and then view the outcomes of the performed changes, might serve as an important tool for

further research of air temperature control at the Institute.

In the thesis, we focus on explaining the importance and advantages of an Intelligent

Environment. We then continue by comparing this Intelligent Room project with other similar

projects, and introduce the term Internet of Things, which the project is closely related to. In the

following chapters, we provide a list of all sensors that were installed in the room, and further

describe the entire architecture of data acquisition, with not just the intention to clarify how it

works, but also how it could be expanded in the future. We then proceed to describe the entire

process of creating the GUI, focusing on details of every aspect of its source code. We conclude

the thesis by analyzing the possibilities and outcomes of future research that could be conducted

in the room.

15

1 Intelligent Room

There are many companies and products around the world, whose main objective is to

optimize the cost and controllability of the features providing comfort in buildings. Starting from

an adjustable thermostat, on which one can set the entire week„s heating cycle, up to fully

automated (autonomous) systems, which we call Intelligent Environments.

An Intelligent Environment is defined as a physical space with embedded systems, and

information and communication technologies creating interactive spaces that bring computation

into the physical world and enhance occupants‟ experiences (Augusto C., 2013). However,

whether or not we can call a room with some embedded systems devoted to enhance the comfort

inside an Intelligent Environment is still ambiguous. As of yet, there are no international

standards covering this topic.

The Intelligent room, whose creation, features, used technologies, and future usage are

covered in the thesis, is located at the Institute of Information Engineering, Automation, and

Mathematics (IAM) of the Faculty of Chemical and Food Technology of Slovak University of

Technology in Bratislava. It serves as the Institute‟s library and conference room, and has the

seating capacity of approximately 20 people.

The reason why we are confident in calling the room an Intelligent Environment is that there

have been installed many sensors and technologies for collecting information from these sensors,

which give us a lot of data, based on which we can follow steps to change the room‟s

environment. Our objective was to obtain as much data as possible, store it in a database and then

output this data in a transparent manner.

1.1 Optimal Room Environment

One of many reasons why Intelligent Environments exist is to enhance the comfort of people

inside. However, it is quite difficult to define what are the optimal conditions (thermal conditions

in particular), of an office or any work environment in general. It would appear reasonable to

have the definition of optimal conditions based on some model of thermal comfort of a large

number of people. Thermal comfort modeling has been the topic of studies during the last four

decades. (Laftchiev E., Nikovski D., 2016). One of the most influential has been the model

introduced by Dr. Povl Ole Fanger in 1967, which was adopted as an international standard (ISO

7730).

16

Studies have proven, that thermal conditions of an office environment have significant impact

on work productivity, e.g. in a study by Hedge et al., 2005 in Laftchiev E., Nikovski D, it was

found that lower temperature conditions of an office environment reduce the work output by as

much as 46%.

By introducing technologies for both measurement and control of the room‟s temperature

conditions, we are one step further to obtaining the optimal conditions inside the room, which

would be based on a thermal conditions model, taking into account the temperature, humidity,

number of people in the room, the freshness of air, air movement (e.g. by controlling fan rotation

speed) etc.

The thesis focuses on building the first ground for an Intelligent Room: a structure of

data-collecting nodes and sensors, which will be essential to any further studies regarding control

of the room‟s actuators in order to reach the optimal conditions.

1.2 Data Acquisition

For any studies, which would need to analyze the course of temperature changes inside the

room, or purely to satisfy the vast human curiosity, it is important to have as much data as

possible. For an in-depth analysis, a single thermometer somewhere in the room is not nearly

enough information to base assumptions on. It is important to know the source of heat-loss and its

significance to the overall room temperature.

Based on these premises, we‟ve decided to measure (among other quantities) the temperature

of the inside layer of the room‟s walls. There is a total of 16 sensors installed throughout the

room‟s walls, including the floor, ceiling and also insulation and outside facade of the building‟s

outer walls, to measure the gradient of heat-loss through these walls. Here is a list of all measured

quantities in the room:

 temperature and humidity of the air inside;

 temperature of the inner layer of five walls – one wall is separated by the entrance

door;

 temperature of insulation and outside facade of the three outer walls;

 temperature of the floor and ceiling, measured twice in opposite corners of the room;

 air temperature near the two radiators;

 whether the entrance and the balcony door is opened or closed;

 number of people in the room.

17

Most parts of the data acquisition architecture were installed and functional previously – the

Intelligent room existed and partially worked before our work on the project. As was mentioned

before, our main objective was the creation of GUI for the measured data, although not all sensors

that are currently working were functional originally. Many changes have been made to the

original setup of data acquisition, including installing new cable endings on added sensors, and

replacing the previous sensor connections to match the new ones. These new cable endings

simplify the potential replacement of a faulty sensor, and also the addition of new ones.

More information about data acquisition can be found in Chapter 3.

1.3 Output of Data – GUI

After acquiring data from the sensors, the next step is to create an interface for browsing

among this data. The User Interface shouldn‟t just be a set of tables that contain the measured

values, but should provide interactive features for the user, so that they can browse, check, and

compare various information as easily as possible.

It is important, that the GUI is easily accessible and that there is no need to install a specific

software to gain the access. Furthermore, the interface for viewing measured data and also

controlling the room‟s actuators, should be available on the Internet. Therefore, the created GUI

is available as a PHP webpage, with interractive features of a client-side JavaScript code. Chapter

4 is dedicated purely to describing the features of the GUI, and explaining the programming

background.

18

2 State of the Art

In this section, we focus on the current existing solutions of Inteligent Environments around

the world, how they affect their occupants and compare their used technologies with the

technologies used in this project.

The idea of a truly intelligent room, which would respond to verbal commands and

understand and react to complex requests, such as “I‟m feeling cold” or “It‟s getting dark”, is not

just part of science fiction anymore. The voice recognition technology has improved enormously

during the past few years, and is actively used by many people in smartphone applications, to

search for a specific phrase on the Internet or adjusting the phone‟s settings on the user‟s demand.

The actions performed based on the request only concern the settings or commands of that

specific device, whereas in an intelligent room, the processing application must control multiple

actuators, and obtain data from various sources.

Already in 1998, on MIT in Massachusetts USA, a project with the name “Intelligent room”

was created. Its purpose was to enable experiments with natural human-computer interactions

during what is traditionally viewed as non-computational activity. (Coen M., 1998) More than on

deterministic automatic control, it was focused on reseach of Artificial Intelligence (AI). The

room included cameras, voice recognition systems and multiple monitors around the room, and

had algorithms implemented to determine the direction where its current user is pointing. Their

objective was that the computer system is constantly active in the room, activated by voice

commands when required, or autonomously interacts with people according to their current

activity, e.g. on the command “Computer, show me the weather forecast”, it would respond by

displaying it on the monitor nearest to the user, or ideally in the future, when it would see a person

lying down and closing their eyes, it will dim the lights and play some relaxing music.

Our “Intelligent room” project is not focused on human-computer interactions, but rather

interactions between people and objects. The project is very closely tied with the term “Internet of

Things” (IoT).

2.1 Internet of Things

IoT refers to a new direction, in which the Internet is expanding in the recent years –

connection of smart objects. “Smart objects” is the term for everyday physical things, which are

expanded by a small electronic device that is meant to provide local intelligence and connectivity

to the cyberspace (Kopetz H., 2001). This small device refers to a computational component (e.g.

19

a microcontroller), which is attached to the physical thing and ultimately connects the physical

world with the information world.

The novelty of the IoT is not in the functional capability of a smart object – there are already

many devices (embedded systems) connected to the Internet – but in the expected size of billions

of smart objects – a huge network of interconnected objects, which not only harvests information

from the environment (sensors) and performs actions towards the physical world (commands,

actuation, control), but also takes advantage of the current Internet standards to offer services for

analytics, communication and information transfer. (Gubbi, J. et al., 2013). Figure 2.1 illustrates

the idea of a complete and global IoT, which would influence all aspects of an individual‟s life,

and also enhance the simplicity and comfort of the entire society.

Figure 2.1 – Internet of Things schematic (Gubbi J. et al., 2013)

The IoT is an inevitable part of the human advancement in the future, as the number of smart

objects is constantly growing, and the coverage and usability of wireless communication

technology such as Bluetooth, Wi-Fi or telephonic data services are improved everyday.

20

A similar project to our Intelligent room also on Slovak University of Technology was

conducted at the Faculty of Civil Engineering as a part of a larger project called “Systém

monitorovania a riadenia vnútorného prostredia pre optimalizáciu spotreby energie”. (System to

monitor and control indoor environment for energy consumption optimization). The final

objective of this project was to ensure high comfort of the inner environment, while optimizing

the energy consumption. Creation of the “Intelligent room” was the first step towards this goal. It

measures data concerning both heating and cooling, ventilation and lighting. Sensors and

actuators are connected to a BACnet IP module, and the application supports remote internet

access, automatic control and alarm notification through email and SMS. The technologies have

already been used for research of environment quality and intensity of ventilation in the school‟s

Library and Information centre (Hrčková L., Krajčík M., 2015).

As for non-research projects of Intelligent Environments, there are many companies around

the world that develop and sell different kinds of home automation solutions, which are becoming

more and more accessible to the general public, in terms of cost and complexity. Most of the

solutions focus mainly on optimization of costs for heating and light sensitivity control, and most

of them require a custom PC or smartphone application for adjusting the settings. However, for a

single household, the price of these products usually exceeds the savings and advantages obtained

by the solution, and it will take several years before such solutions become very common in

homes. Still it is safe to say that Intelligent Environments are inevitably becoming an important

part of human advancement.

21

3 Architecture of Data Acquisition

In this section, we describe the used technologies and architecture of obtaining information

from the room, and how it is stored on the Internet for future visualization.

Before any information about the room‟s climate can be displayed for the user, we must first

obtain the correct data from individual sensors, and save them into a database in a periodic

interval. There are several steps that a value returned by a sensor must undergo before it is saved

to its designated database column. The architecture and hierarchy of data acquisition is illustrated

on Figure 3.1

Figure 3.1 – Architecture of data acquisition

3.1 Sensors

Naturally, there are various types of sensors installed in the room, as they each serve their

individual purpose. In this section, we provide a list of the various sensors used, their properties

and their physical location in the room. Connecting sensors to their designated nodes has been a

significant part of our work on the project, which required a respectable amount of time spent on

cable work.

22

3.1.1 Digital Temperature Sensor DS18B20

This is the most used sensor in the entire room, as there are total 16 installed. They are

installed in holes that were drilled into bricks forming the inside layer of the room‟s walls, as well

as the floor and ceiling. Some of them are also installed inside the insulation and attached to the

outside surface of certain walls.

The sensor consists of a water-proof probe with three wires forming just one cable with

a Grove connector. The sensor is powered by either 3.0V or 5.5V and its wiring contains a

pre-assembled pull-up resistor for digital signal conditioning. The sensor in this configuration can

be directly connected to an Arduino board. It has a wide temperature range from -55°C to 125°C

and accuracy of ±0.5°C. A picture of the DS18B20 sensor, which is mounted to the outside wall

surface is displayed on Figure 3.2.

Figure 3.2 – Digital temperature sensor

3.1.2 Combined Air Temperature and Humidity Sensor

This sensor is used twice in the room, in parallel corners of the front wall, so that their

distance is maximized subject to their connection to the Arduino nodes. It is connected via Grove

port.

The sensor consists of a capacitive sensor element used for measuring relative humidity and a

negative temperature coefficient (NTC) thermistor used for measuring temperature. The

proposed accuracy of the measurements is ±0.3°C in temperature and ±2% in relative humidity.

23

The sensor is displayed on Figure 3.3 and is also visible connected to the data acquisition node on

Figure 3.7.

Figure 3.3 – Combined Air Temperature and Humidity Sensor

3.1.3 Photo Electric Counter (ER-SMS38491S)

This photoelectric counter uses a groove IR Optocoupler to detect if there is an obstacle

located between the IR emiter and IR receiver. This sensor is installed twice, on both doors inside

the room, to detect whether the door is opened or closed. We‟ve crafted a small plastic

obstruction, which was then attached to the door, while the sensor is located on the doorframe.

When the door is closed, the plastic obstruction interrupts the IR signal and sensor reading

provides a logic level 0. If the door is open, the sensor returns logic level 1. Figure 3.4 shows how

the sensor is connected to the balcony door, in both open and closed state.

Figure 3.4 – Door opening sensor mechanism

24

3.1.4 Proximity Sensor (ER-SPGP2YIP)

 This sensor is used to measure distance of objects between 10cm to 80cm from the sensor.

There are total two sensors installed, which together serve the purpose of counting the number of

people that are currently in the room.

The two sensors are mounted on the doorframe side by side, aiming to the space where people

are expected to pass through. An obstacle is placed between the sensors to avoid a light of one

sensor to be captured by the second one. Each sensor contains one IR emmiting diode and

a position-sensible photo detector (PSD). The sensor works on triangulation principle, where the

emmited beam reflects on the detected object and falls on the PSD, whose conductivity is based

on where the beam landed. Output voltage is dependend on the conductivity, and the distance is

calculated by an analog-digital converter.

The distance threshold is set up inside the microcontroller to capture any solid object (in this

case a person) that passes through the door. The direction of person movement is determined by

order in which the sensors are triggered. The mechanism is displayed on Figure 3.5.

Figure 3.5 – Person counter mechanism

25

3.2 Microcontrollers – Arduino Yún

The sensors are connected to data acquisition nodes that are mounted on walls and spatially

distributed inside the room. Each node consists of electronic development board Arduino Yún

and Grove extension shield. Arduino Yún contains two independent processing units. First is an

8-bit Atmel ATMega32u4 microcontroller unit (MCU), which serves the purpose of controlling

and capturing input-output electric signals, e.g. from connected sensors. The second is an

integrated computer with Atheros AR9331 processing unit (CPU), which supports a Linux

distribution based on OpenWrt named Linino OS.

To communicate with the computer, it is possible to either use the Linino„s web interface, or a

secure shell (SSH). Communication between the CPU and MCU is served via a UART serial

interface (asynchronous serial communication), with the purpose of exchanging data.

The 8-bit microcontroller is programmed in the C language, through Arduino IDE

environment. Arduino IDE, which stands for Integrated Development Environment, is an

open-source program, available for download from the official Arduino site (www.arduino.cc),

which is used for programming all types of Arduino boards. It has great options of importing

additional libraries, and has a simple way of uploading a script to the specific type of Arduino

board.

The integrated computer is basically a standard PC running on Linux OS, and may run various

types of programs in different formats and languages. OpenWrt has a preinstalled Python

interpreter, so we‟ve decided to use a custom Python script to request data from sensors

connected to the microcontroller. There are no other environments needed to be installed.

Installing another computing environment could be beneficial in terms of performance, however,

it might present a problem due to significant memory constraints of the integrated computer.

The board has built-in Ethernet interface, as well as a Wi-Fi module, both of which are

supported by the Atheros AR9331 processor.

http://www.arduino.cc/

26

Figure 3.6 – Arduino Yún board

Figure 3.7 – Whole data acquisition node

27

3.3 Physical Location of Individual Units

In this section, we provide a more precise description of where individual nodes are located in

the room, and which sensors are connected to them. Figure 3.8 shows the exact diagram of the

Intelligent room architecture.

Figure 3.8 – Diagram of sensor and node location and connection

The diagram contains multiple types of symbols, which all follow the same pattern. “N”

inside a square is the label for data acquisition and control nodes (mircrocontrollers), which are

all mounted to the wall at the depicted locations. Sensors are marked by a circle or a diamond

label, depending on the type of the sensor:

 T is the label for digital temperature sensor (16x)

 TH is the combined air temperature and humidity sensor (2x)

 S marks the sensor for door opening (2x)

 PC is the people counter (1x)

This diagram, as well as the so far unmentioned MS Excel table depicting the exact Grove

ports number of individual connected sensors to the microcontrollers, are crucial for servicing a

potential sensor or connection failure.

The blue outline of the diagram indicates that the actual room has three walls that don‟t lead to

another room, but are the outer walls of the building, and are naturally exposed to weather

conditions. The second door (next to N5) leads onto the balcony, from where all the outer walls of

28

the room are accessible for installing a temperature sensor onto them (T5, T8 and T15). It is also

worth noting, that the room‟s ceiling is the floor of the above story‟s balcony, therefore it is an

outer wall as well.

As the objective is to provide as much information about the room as possible, the fact that

these four walls are the building‟s outer walls, might prove interesting when comparing their

temperature with the remaining walls. It also opens opportunities for analysing the impact of

weather conditions on the overall temperature in the room.

3.4 Communication Interface

Each computer of the Arduino Yún board is connected to the local computer network via

wireless interface. The local network, along with the Wi-Fi, is managed by a router. Each node

has its own fixed IP address within the local network. The nodes can be also accessed from wide

area network (WAN) through the router‟s public address and specific port number.

As mentioned before, a Python script is constantly running on these computers, purpose of

which is to await HTTP request in the correct form, which is a JSON array. When the HTTP

request is received, and its value checked as the correct JSON form, the computer sends the

request further to the Arduino board and awaits its response.

The response is based on the internal code of each Arduino board, as the number of connected

sensors, and the overall response time may vary between the microcontrollers. On request, the

sensors values are collected, mainly using Arduino IDE commands analogRead() and

digitalRead(), or by a different command specified by the sensor‟s library. The response is,

similarly to the request, in the JSON format, with the number of array elements matching the

number of sensors connected to the microcontroller. These are designed to be recognized by the

main PHP script, as it saves the returned data into the MySQL database accordingly.

3.5 Wall Computer

A PC has been placed on the wall near the room‟s entrance, which is essential to the whole

process of data collecting. It is an industrial computer of the ECW-281B series, with 1.8GHz

dual-core processor; 1GB RAM capacity, Ethernet and VGA monitor support. Currently, the

computer runs on Windows OS, however, this might be changed to Linux in the future. It is

displayed on Figure 3.9; next to it is the MAX! Cube device essential for controlling the heaters,

which is further described in Chapter 4.3, and more to the left is the data acquisition node N1.

29

Figure 3.9 – Industrial computer attached to the wall

While this PC remains constantly active, there is an internal timer running, which runs a PHP

script every specified number of minutes, which represents the sampling time of collecting data

from the sensors. Currently, the period in which data is collected is set to 5 minutes, although this

value might be changed to obtain data more often.

Purpose of the PHP script is to send an HTTP POST request onto the designated computers

via CURL – native PHP library for communication through various web protocols, including

HTTP and its certificates. By specifying the internal IP addresses of the Arduino computers,

which are connected to the same network as the wall PC, we ensure that they receive the required

request in the correct form, which is a JSON array in the format {“getData” : 1}.

Each of the integrated computers is running a Web server (in Python), which receives the

request and forwards it to the microcontroller through the serial link. The microcontroller then

proceeds to read the request and collects data from the connected sensors. The obtained data is

then transformed into a JSON array as well, the size and shape of which vary between the

individual microcontrollers. The array is then transferred back to the Python script, which

forwards it to the industrial PC as a response to the original HTTP request.

When data from all microcontrollers is obtained, the PHP script converts the received JSON

format into a standard array object, and saves the value of its individual elements into MySQL

database.

When data is stored inside the database, the next step of the application is to provide an

efficient and attractive way to display it. The following chapter is devoted to describing both the

frontend and backend of the user interface for browsing all collected data.

30

4 User Interface

As the objective of the thesis is to visualize information about the room, the most vital part is

to create a graphical user interface (GUI) for displaying and control of individual features. It is

required that the GUI is accessible through web and supported on various browsers.

Figure 4.1 – Complete GUI

4.1 Application Structure

The GUI is built as a web application, whose structure consists of multiple files in different

programming languages. The main page, which appears in the URL address of the user‟s

browser, is in the PHP format. It consists of HTML elements, whose functional and dynamic

properties are adjusted by JavaScript. However, the most important feature of the visualization is

the main image (illustration) in the SVG format.

4.1.1 SVG Image

The first step of creating the user visualization was creation of the image representing the

room in a vector graphic format. We‟ve used the .svg format, which is a standardized form of the

XML language. This means that the image is basically a text file, which consists of markup

elements similar to HTML that can be assigned various attributes. It is standard for modern web

browsers to be able to recognize and display an SVG file as image. However, the tree structure of

the file, as well as attributes of the individual objects such as class or id are preserved by the

31

browser, which allows the JavaScript code to access them and provide them with properties

responsive to user interactions, such as hover or click, and also dynamically change their

properties, e.g. change their fill color or stroke width.

To create the image, we‟ve used the open source drawing software Inkscape 0.92, which

allows the user to directly optimize the output SVG file for its use in web environment. It is also

possible to directly access the source code of the image during the drawing process, which

significantly simplifies the assignment of the class and id attributes to individual objects.

Figure 4.2 – Inkscape 0.92 drawing interface

Individual walls on the image are drawn using the <rect> element, which standardly

represents a perpendicular rectangle. However, by adjusting the element‟s attributes, it is possible

to rotate, turn and adjust the size of the element. The Inkscape environment makes the adjustment

of these attributes very straightforward. In some cases, there are more objects used to represent

one wall in the room.

All objects representing a single wall are put into a parent group element, to which we assign

a common class wall_group and a unique id. Both of these attributes are used for

interactions with the user‟s mouse. The rest of the objects forming the image are created in

a similar way, and we choose an eligible color scheme to enhance the user experience.

To illustrate the entire room, we‟ve elected to use a 3-dimensional projection from the right

side, which can be seen in whole on Figure 4.1, covering major part of the screen. In the image‟s

source code, the objects are merged into two main groups (layers) – front and back, due to the

fact that the objects representing the front walls and ceiling overlap the remaining objects, and

therefore prevent mouse interactions with them. By implementing the layers, the user has an

option to hide (and subsequently show) all of the objects overlapping the ones in the back by

32

clicking on a designated button located to the right of the image.This functionality is secured by

a JavaScript function, which reads the current value of the CSS attribute display of the front

layer group element, and changes it to the opposite, i.e. from the value block to none and vice

versa. The view of just the back section of the room is illustrated on Figure 4.3.

Figure 4.3 – Room illustration without the front section

4.1.2 Main Page – HTML and PHP

The source code of the main page is written in HTML, and contains and internal PHP script.

Therefore, the URL of the website has .php suffix. The structure of the page is very simple, as it

consists of only the heading and a few <div> elements, by which individual sections of the page

are placed to their positions and sizes.

Content of the first block is filled by the SVG image‟s source code using the function

file_get_contents() of the PHP language. The desired width and proportional height of

the image are adjusted in CSS by changing properties of the <svg> element, i.e. the image‟s root

element.

The remaining blocks that create the structure of the page form the right side of the interface –

the toggling view button and the table, which displays the latest measured information about the

room.

4.1.3 Source Code – JavaScript

The the source code of the application‟s interactive user environment is written in JavaScript.

We mostly use functions of the jQuery library, with many of its extensions such as jQuery.ui

and Flot.

The interaction of individual objects of the illustrations, such as walls and heaters, with the

user‟s mouse is provided by selector for the joint class of all of the walls and heaters respectively,

for which we call the jQuery functions .mouseover() and .click().

33

After hovering over a certain wall, the original color and opacity of the SVG elements

representing the wall is saved into global variables, along with the specific wall id parameter.

The color is then changed to a defined value, which highlights the wall, and the cursor picture is

changed to pointer with CSS. This encourages the user that clicking on the wall will trigger an

event. After hovering over a different wall or moving the mouse from the image entirely, the

color and opacity values are set to those saved in the global variables. This way, the image

remains in the same color scheme, and only the hovered object is highlighted.

Clicking on a wall opens a modal window that shows a graph with the wall‟s temperature

profile, along with a small table that shows the average values. The time interval, for which the

values in the graph are displayed, can be changed by a calendar feature. The graph is made to

support user interactions with the drawn data as much as possible. The source code and functions

that create the modal window are further described in the following chapter (4.2). An example of

the modal window that pops up after clicking on a wall is illustrated on Figure 4.4.

Figure 4.4 – Example of the displayed window for wall temperature visualization

4.1.4 MySQL Database

MySQL is an open-source database management system, which runs on the side of the server

and uses standard SQL (Structured Query Language) commands. A database is a structured

collection of data, in our case, of all measured variables in the room. The database currently

consists of only one large table, where each row represents one measurement that includes the

time of measurement in one column, and each measured value in its own corresponding column.

34

When displaying data from the databse, to distinguish which column represents which sensor, we

use an MS Excel table that has been created and updated during the time the sensors were

installed, and the source code of their connected Arduino boards adjusted.

4.2 Displaying Data from the Database

The main objective of the created visualization is to display collected data stored in the

database, in a transparent manner to the user. In this chapter, we describe the methods that are

used for this purpose.

Clicking on a wall on the illustration triggers a series of functions that create the modal

window displaying all measured data of this specific wall. The unique identifier, by which the

wall is distinguised from the others, is the id attribute of the SVG <g> (group) element

representing the wall. The walls have various properties, which are important for us to know in

order display all information about them. Based on just the id attribute, we already know the

following:

 Whether there is just one, or three temperature sensors installed in this wall

 Name, or names of the corresponding columns in the database for this wall

 Description name of the wall, which appears in the modal window‟s title

 Filename of the small image, which illustrates the location of the wall

As these properties depend solely on the id of the wall element, and they are respectively

required in different sections of the code, we‟ve created a function which returns the currently

prompted parameter value, based on the id. With these parameters accessible, we are ready to

create the modal window.

4.2.1 Creation of Modal Window

When creating the modal window, we start by creating a new <div> block on the page with

jQuery, which has a dynamic id named modal. The contents of this block are filled by a 2x2

<table>, and we put an empty <div> block into each cell, which we are going to access later

by their assigned id.

However, as the user can have multiple modal windows opened at the same time, these

identifiers cannot be fixed, but must be unique in each modal window. For this purpose, a global

variable called figure_count has been defined, whose (numeric) value increases with each

35

click on a wall. Identifiers of the blocks inside individual table cells contain this number, and are

therefore unique for the entire document.

4.2.2 Selecting the Date Range - jQuery DatePicker

The top left corner of the modal window contains a functionality, by which the user can select

the date range, for which he wants the figure of the wall„s temperature profile to be displayed.

While searching for a handy tool for implementig such functionality, we‟ve decided to use

DatePicker – part of jQuery.ui, a freely available and scalable library for jQuery, which is mostly

dedicated to enhance the user experience and simplify the web-development process.

As we need a range of dates for data display, the user must select both the starting and ending

point of the desired interval. For layout purposes, we create a borderless table inside the top left

cell of the parent element, which contains two <input> elements in separate rows, with

a unique id. The <input> element is supported by the DatePicker library, therefore we may

call the .datepicker({options}) method to create a scalable DatePicker element. By

clicking on such element, a small calendar for selecting a date pops up.

Figure 4.5 – jQuery DatePicker object

With the options parameter, we may adjust the object„s properties, such as whether it is

possible to change the month or year for the selected date, number of displayed adjacent months,

and format of the date that is written in the input.

For these objects, we call the method .on(“change”,{}). At each change of the input

elements, the function for drawing the figure of temperature profile – PlotData() – is called,

which has many parameters including the starting and ending date. A function for displaying the

average values in the given time interval and the most recent measured value, is called afterwards.

36

Changing a date in one of the inputs also affects the other one, as the result must be a valid

date range. The DatePicker objects have a very convenient adjustable options – minDate and

maxDate. By changing the “Date from” value, the minDate attribute of the “Date to” input is

set to this date, and analogically for the opposite case. The effect is illustrated on Figure 4.5,

where the invalid dates are blurred and unselectable.

With an interest to simplify the user experience with comparing the temperature values

measured for different walls in the room, a change of date saves this date into a corresponding

global variable. These two global variables are the default value for the DatePicker object when a

new modal window is created. Therefore, if the user selects the desired time interval for browsing

data, and opens a new window (by clicking on a different wall), the selected interval remains the

same, and the user can easily compare the two temperature profiles. When all currently open

windows are closed, values of the global variables are set to the previous default ones –

yesterday‟s and today‟s date.

4.2.3 Displaying the Average Values Table

The function for creating the table that contains average temperature values within the

selected time interval, and also the most recently measured value, is called when a new modal

window is created, as well as at each change of the date interval as mentioned before. The

parameters of the function, with which it‟s called are: id of the wall object, dates from – to and

id of the element, into which the output table is drawn.

Knowing the id of the wall element, we also know the name of its corresponding collumn in

the database. Database data are accessed using the AJAX technology. AJAX stands for

Asynchronous JavaScript and XML, and is called by the jQuery function $.ajax(), which

asynchronously calls an external script with a specified URL – in out case a custom PHP script. It

also sends specified data using the POST method, which are the necessary input data for the script

– column name and the range of dates. The PHP language has a great synergy with the SQL

language, or just tools and commands for overall work with a MySQL database. To obtain

various average values within the time interval, we create a query on the database.

A query is just a custom string variable in the PHP script, but by calling the function

mysqli_query(), it is translated into SQL and the desired data is extracted from the database.

The query string is constructed with variables, therefore we obtain the desired data on each call of

the PHP script based on the input parameters. Here‟s the query used to obtain the average daytime

temperature:

37

Using the function mysqli_fetch_array(), all of the measured temperature values

between 6 a.m. and 6 p.m. of each day within the interval, are stored into an array. The single

average value is then obtained by a simple loop through all of the array‟s elements. The same

procedure is then applied for obtaining the average night time temperature. The overall average is

the mean value of these two.

To obtain the most recently measured (current) temperature value, we use a similar query, but

without the time condition, then order the output according to time, and we only take the last

available value (condition LIMIT 1 at the end of the SQL query).

The next step is to transfer the obtained results back to JavaScript, in order to display it in the

table. We store all the desired results into an associative array, which also preserves the names of

each value, in order to distinguish betwwen them. A PHP array object would be difficult to

process in JavaScript, therefore we transform it into JSON format (JSON stands for

JavaScript Object Notation), by calling the function json_encode($result,

JSON_FORCE_OBJECT).

In the AJAX function, we can define the output type, so naturally we set it to JSON. The

obtained output is then in the JavaScript object format, therefore we can access its individual

elements associatively. All the extracted values are rounded to two floating points, and inserted

into their designated cells of the Average values table.

4.2.3.1 Average Values for a Three-sensor Wall

In case the selected wall has three sensors installed, we use a modified function for creating

the average values table, which has two additional parameters, and also calls a different PHP

script. Such change is preffered due to the fact that we are requesting a set of three measured

values instead of just one. To call the same script, which prompts the database and receives data

three times in a row to obtain three average values, would be much less effective than creating

a different script, which sends a query to the database to obtain values from three columns. All

three average values are calculated within the same loop. The output format is also a JSON array,

$sql = 'SELECT '. $column_name. ' AS "col",

EXTRACT(HOUR FROM time) AS "hrs" FROM sensors WHERE EXTRACT(HOUR FROM time) AS "hrs" FROM sensors WHERE

(time > "'.$from.'" AND time < "'.$to.'") AND

(EXTRACT(HOUR FROM time) >=6 AND EXTRACT(HOUR FROM time) < 18)

ORDER BY time ASC ';

38

but with three times as many elements. An example of an average value table for a three-sensor

wall is illustrated on Figure 4.6.

Figure 4.6 – Average table for a three-sensor wall

4.2.4 Small Image in the Modal Window

When the user has opened multiple modal windows, it is in our best intentions to make the

distinction between them as transparent as possible. Even though each window has its own title,

we‟ve put extra effort by placing a small image into the top right corner of the window, which

illustrates the location of the selected wall.

The displayed image is a file in the .png format, a separate file for each clickable wall. These

images were created by changing the color scheme of the original image in Inkscape, changing

the overall size of the image in order to reduce the output file size, and saving them under their

corresponding name directly in the .png format. The filename is directly linked to the id attribute

of each wall, and is obtained during the process of creation of a new modal window via the

function mentioned at the beginning of chapter 4.2.

For a wall with three sensors, the top right corner of the modal window is split into two

columns, and contains an additional image. This image illustrates the meaning of why there are

39

three columns in the average values table, as well as three lines in the graph. It represents a cross

section of the individual layers of the wall – outside facade, insulation and inner layer – each

containing a temperature sensor. The colors of the plotted lines, as well as headings of the

average values table match the colors used in the image, which is possible as this image was also

created using Inkscape, and so its individual elements and their colors are customizable.

4.2.5 Graph Plotting - Flot

The most important part of the modal window is the graph showing the temperature profile on

the clicked wall in a selected time. For plotting the graph we are using the freely available jQuery

library called Flot (www.flotcharts.org). The main purpose of this library and its methods is to

plot graphs and support user interactions and customization options as much as possible. A great

advantage of this library is its popularity among the users, who help create additional expansions,

and there is always a vast documentation available for each usable functionality.

To use Flot on a page, the main document must have the main library, as well as all used

addtional libraries, linked as a new script. These have been downloaded from the official Flot

repository, which can be found on the official Flot website. The fundamental command for

plotting a graph is:

where placeholder is a fixed page element, where the graph should be drawn, which must have

its width and height set to a certain value in CSS. It is recommended that this value should not be

changed afterwards. The variable data denotes a two-dimensional array, which has many rows

and two columns. Each row represents one data point, the first column depicts the x-axis

coordinate and the second column the function value. The “data” parameter might also represent

a structure variable, which contains several such arrays. This is used for plotting multiple lines

into one graph, in our case for walls with multiple sensors. The last function parameter – options

– is a structure variable in a standard format, by which the properties of the plot are customized,

e.g. an option to zoom in and out of the plotted data, moving in the plot area by dragging the

mouse in the direction of both x and y-axis (pan), properties of individual axis labels etc.

$.plot(placeholder, data, options);

40

4.2.5.1 Obtaining Data for Plotting

The data plotted into the graph are obtained in a similar way as data for the average values

table – by asynchronous request to an external script (AJAX). SQL query inside the external PHP

script contains the corresponding column‟s name in the database for the selected wall, or names

of three columns corresponding to a triple-sensor wall.

In this case however, we only use one script for both wall types, and distinguish between the

cases based on a binary variable. This variable is obtained according to the selected wall‟s id

attribute. The check whether a wall has one or three sensors installed is done twice, first in

JavaScript before sending the AJAX request, which in case of a single-sensor wall will cause the

remaining two column names to be left blank, as the script always receives values of three

variables. The wall type is then checked again at the beginning of the PHP script, to verify

whether the second and third received column names are relevant and to change the SQL query

accordingly.

Besides the individual measured temperature values, we also prompt the database for the time

when the data was measured. This information is then transformed into the timestamp format,

which is an integer which represents, according to www.php.net, “a time measured in the number

of seconds since the Unix Epoch (January 1 1970 00:00:00 GMT)”. To transform the database

value into the timestamp format, we use the function strtotime().

Output of the external script is a two-dimensional array, where each row represents one

measurement, so it either has two or four columns based on the wall type. To transfer the array

back to JavaScript, it is encoded into the JSON format.

4.2.5.2 Editing Data into Correct Format

The next step after obtaining data from the database is to transform it from the JSON format

into a standardized JavaScript array, which works for Flot, as mentioned previously – many rows

and two columns, where each row is one datapoint. The time variable, stored in the first column

of the array, which represents the plot x-axis, must be first transformed into JavaScript

timestamp, which is different from the PHP timestamp format, as the time units are

miliseconds in JavaScript, as opposed to seconds in PHP. Therefore, the integer value returned by

the external script must be multiplied by 1000 before it is stored into the JavaScript array.

In the case of a three-sensor wall, this procedure remains the same, but the output are three

arrays stored inside one structure variable.

http://www.php.net/

41

4.2.5.3 Adjusting Graph Properties

Based on Flot documentation, we adjust individual properties of the graph by defining the

options parameter of the plot function. The set options include:

 Changing the x-axis label, by denoting that the values of the x-axis are in the

timestamp format, and specifying the timezone in which the data were measured.

 Zoom in and out from the graph by scrolling the mouse.

 Pan in the direction of both x and y-axis by pressing the mouse in the graph area and

dragging it in the desired direction.

Sizes of how much does the user zoom in and out, and by how much do they pan the visible

area are dependent on the amount of data points, or to be more exact, by the range of values on the

x-axis. This value changes with each zoom into the graph, therefore so do the speed of zooming

and paning, until they no longer change when the bottom limit has been reached. The top limit is

the original size of the graph. The amount of labels and their text on the x-axis also change by

zooming, from dates, to dates with time, up to just time in the 24-hour format. Double-clicking on

any place in the graph calls the PlotData() function with the exact same parameters, which

ultimately resets the zooming, while maintaining the same properties. These functionalities are

included in the additional Flot library flot.time.

Figure 4.7 – Zoom in to the graph

42

4.2.5.4 Displaying a Single Datapoint

To enhance the transparency and simplicity of browsing the displayed data, the user has an

option to hover over a plotted line in the graph, which makes a small banner pop up that contains

information about the single measurement. The banner is created and positioned using the

function

which is included in the basic Flot library. It recognizes the position of the hovered data point

according to the bottom left corner of the graph, and both x and y-values. We then create a new

fixed element in the document denoted by a unique id, append it to the modal window element,

and adjust its CSS position attributes according to the data point„s position. An illustration of

such banner is given on Figure 4.8.

Figure 4.8 – Captioning a single data point

4.2.6 Current Values Table

As the objective is to visualize all available data about the room, and so far we‟ve only

covered the visualization of temperature profiles of walls, we now move to displaying the most

recently measured information, such as current air temperature and humidity both inside and

outside of the room, and whether the door leading to the hallway, or the door leading to the

outside balcony, is open or closed.

The temperature values are showed inside a small table, located near the bottom right corner

of the main image. The values are obtained in a similar fashion to the average values table for

a wall – AJAX request to a designated PHP script. The request is sent on the event of the page

$(element).bind(“plothover”, function());

43

being loaded, and the table is not further updated unless the user reloads the page. As there are

two sensors that measure temperature and humidity inside the room, located in parallel corners of

the room, the displayed value is the mean between the two acquired values.

Figure 4.9 – Current values table displayed on the main page

Information about the door being opened or closed is displayed directly on the main image, as

the original SVG contains two objects representing each door either open or closed that overlap

each other. After receiving information about each door being closed or open, one of the SVG

elements is hidden using CSS. This value is also only updated every time the page is refreshed.

44

4.3 Controlling the Heaters

The web application serves not only as a way to view measured data, but it also allows the

user to directly control the radiator thermostat units. The technology, which enables such

functionalities, is the eQ-3 MAX! Cube LAN Gateway.

“MAX!” is the product name of a house solution by the brand eQ-3 for heating control, which

we‟ve decided to use for its cost and functional efficiency. The MAX! Cube (Figure 4.10) is the

central element of the solution, which communicates wirelessly with other individual

components – thermostats. The physical location of the MAX! Cube in the room is near the

entrance, below the industrial PC on the wall. It is connected to the internet by Ethernet cable, and

the USB power supply is connected to the wall PC.

Figure 4.10 – MAX! Cube device

The reason why the Cube is connected to the internet is that we‟re using an artificial method

of communication, called MAX! Home Automation, which was developed by Dmitry A.

Kazakov (Kazakov, D. 2015), as opposed to the local MAX! software or the official smartphone

application. The solution provides that while the Cube remains active and connected to the

internet, it is possible to control individual thermostats, which are physically installed on the

radiators (Figure 4.11), by HTTP GET requests. When internet connection is lost, or the Cube

deactivated, the configuration of both thermostats remains the same.

45

Figure 4.11 – MAX! Radiator thermostat

The HTTP request must be in a standard form, which specifies IP address of the integrated

HTTP server of the application for all connected cubes, the RF (hexadecimal) address of the

specific cube, as well as the RF address of the thermostat. There are multiple options of how to

change the HTTP requests in order to obtain or set certain parameters value.

Similarly to viewing temperature profiles of walls, clicking on a radiator opens a new modal

window, the contents of which, however, are very different. Left side of the window shows the air

temperature measured by the thermostat, as well as a section for adjusting the temperature

setpoint of both radiators in the room. To send the request, we use the command $.get(),

where the address is the standard MAX! command. An example of the command to increase the

temperature setpoint by 0.5 °C:

The right side of the window shows the current status of the clicked radiator‟s thermostat – its

battery life, control mode (automatic / manual), and the valve position (0-100%). This

information is obtained by an asynchronous request to an HTTP location specified by the

device‟s address, which is a plain text in the JSON format. The JSON array contains all sorts of

information, but we‟ve decided to only display the mentioned.

Figure 4.12 – Thermostat settings modal window

http://<ip-address>/set-manual?cube=116EA8&device=0F1D4A&temperature+=0.5

46

5 Further Approach

The subject of Intelligent environments is very vast and assorted. There are always many

options how to proceed in creation of such a project. In this thesis, we„ve successfully created

a functional GUI for the Intelligent room, which periodically measures data and stores it in

a database, using Arduino boards and other components, which we‟ve described previously.

However, it would be foolish to claim that the project is complete and ready for use or even sale.

There is still a lot more work to be done around the room, concerning both data acquisition and

the GUI, as by installing new sensors into the room, the source code of the interface must be

adjusted accordingly. The current source code has not yet been tested for efficiency or security

breach possibilities, and in the future of this project, adjustments are definitely going to be

required. However, it fulfills all of its current tasks and the objectives of the thesis, and it„s

a sufficent tool for displaying all measured data and a manual control of the radiators.

Among other planned extentions for the project is the option to control another actuator for

the temperature besides the radiators – the air conditioning unit (A/C). Implementation of this

feature seems almost crucial for further research of air temperature control, as it enables direct

action to decrease the temperature, rather than just increasing in case of the radiators. And besides

all possible further research, it is still a convenient feature to control the temperature of an actual

room through nothing but the internet browser.

Other actuators that might be added in the future are, for instance, ceiling fans or light

intensity adjusters, automatic window openers etc. There truly are many ways to approach this

project in the future, whether it‟s temperature control towards a given setpoint, using all three of

the actuators, optimization of energy consumptions for reaching a certain level of the room

environment, or studying the sources and prevention of heat loss through the walls.

One of the most interesting possible further researches to be conducted in the room is the

measurement and automatic control of human comfort level, which is based on human comfort

modeling, which uses variables such as temperature, humidity, air freshness, air movement and

light intensity, as was briefly described in Chapter 1. To conduct such research would require

more than just the results of our project, and the Intelligent room has to be significantly expanded

before it becomes possible. But maybe in the future, and maybe even thanks to this project, it will

be.

47

6 Conclusion

Objectives of the thesis included participation on further development of the used technical

solution in the intelligent room and development of a web-based Graphical User Interface for

visualizing measured physical quantities.

The Intelligent room is a very interesting project at IAM in terms of monitoring and automatic

control of room climate. Its main purpose is research and testing, which requires student

participation on the project. However, the library serves mostly as a conference room for the

employees of the Institute, and the provided technical solution might be eventually used to

enhance the comfort level of the room‟s occupants.

Although many parts of the technical sphere of the room have been functional before our

work on the project, we‟ve succeeded in expanding the sensor network and therefore contributed

significantly to the project‟s development. However, the most important contribution has been

the creation of the GUI.

The created GUI works well for visualizing measured information in the room. It enables

viewing of the time course of measured temperature of all the room‟s walls, in any desired

interval, as well as the air temperature and humidity. There is an option to zoom, move and view

individual measurements in the graph, which should fulfill all desires of a curious user. Although

as mentioned in the thesis, the purpose of the GUI is not just replenishing curiosity, but it

composes the first ground for further research in the room. It also allows the user to control the

heating power of the two radiators in the room.

We‟ve also described several possible researches that might be conducted in the room in the

future, which will probably require expansions in the room‟s sensors and actuators. Therefore the

thesis provided information how one should approach the expansion, and described the entire

process of storing information measured by physical sensors into an information database in real

time.

48

7 Resumé

Diplomová práca s názvom Development of Graphical User Interface for Intelligent Room sa

venuje návrhu architektúry zberu dát a vytvoreniu uživateľského rozhrania pre inteligentnú

miestnosť. Stručne opisuje problematiku inteligentných prostredí a produktov domovej

automatizácie, a porovnáva vytvorené riešenie s ďalšími projektmi inteligentných miestností.

Inteligentná miestnosť sa nachádza na Ústave informatizácie, automatizácie a matematiky na

FCHPT, STU v Bratislave, kde slúži ako knižnica a zasadačka pre zamestnancov. V miestnosti

bolo nainštalovaných množstvo senzorov, ktoré merajú veličiny akými sú teplota a vlhkosť

vzduchu, počet ľudí v miestnosti, ale aj teplotný profil vybraných stien, u ktorých sa meria teplota

vonkajšieho povrchu, vrstvy izolácie a vnútra samotnej steny.

Jednotlivé senzory sú zapojené do siete mikroovládačov typu Arduino Yún, ktoré majú

integrované dva procesory, jednotku mikroovládača (MCU) a procesnú jednotku (CPU), na

ktorej beží distribúcia Linuxu s názvom OpenWrt. Na komunikáciu a výmenu dát medzi sebou

využívajú procesory sériovú linku UART. OpenWrt obsahuje interpreter jazyka Python, čo

umožnuje, aby v pozadí bežal skript v tomto formáte, ktorý po prijatí špecifickej požiadavky

odošle požiadavku na MCU, ktoré získa dáta z jednotlivých pripojených senzorov a vráti ich ako

pole vo formáte JSON. Túto požiadavku, ktorá spustí proces zberu dát, odosiela PHP skript

bežiaci na priemyselnom počítači, ktorý sa nachádza na stene pri vstupe do miestnosti a obsahuje

interný časovač, ktorý zaručuje spustenie skriptu v definovaných periódach. Ako odpoveď na

HTTP POST požiadavku, ktorú odošle jednotlivým integrovaným počtačom mikroovládačov,

očakáva pole vo formáte JSON. Jednotlivé dáta spracuje a uloží do MySQL databázy.

Na prezeranie namerných údajov uložených v databáze bolo vytvorené grafické užívateľské

rozhranie (GUI). Je vytvorené ako webová aplikácia vo formáte PHP, ktorej interaktívne

vlastnosti zabezpečuje JavaScript na strane klienta. Hlavnou súčasťou aplikácie je obrázok vo

vektorovom formáte SVG, ktorý zobrazuje miestnosť v trojrozmernej projekcii sprava.

Jednotlivé steny miestnosti zmenia farbu po nadídení myšou a po kliknutí na ne sa otvorí

modálne okno, v ktorom sa nachádza graf s vykreslenými hodnotami nameraných údajov,

tabuľka obsahujúca informácie o priemerných hodnotách, a funkcionalita na zmenu intervalu

dátumov, pre ktorý sa zobrazujú namerané dáta v grafe. Na získanie údajov z databázy sa

využívajú asynchrónne požiadavky (technológia AJAX) na interné PHP skripty. V práci sú

popísané použité funkcie a metódy, ktoré zabezpečujú možnosti ako priblíženie do grafu,

49

zobrazenie jedného konkrétneho nameraného bodu, postup a štruktúra vytvoreného modálneho

okna a pod.

Významnou súčasťou práce je možnosť ovládať termostaty oboch radiátorov, ktoré majú na

starosti kúrenie v miestnosti. Termostaty a ich riadiaca jednotka, ktorá je pripojená k internetu, sú

značky MAX! a pomocou riešenia MAX! Home Automation, ktoré bolo vyvinuté dodatočne

treťou osobou, je možné nastavovať a získať aktuálne hodnoty parametrov jednotlivých

termostatov pomocou štandardizovaných HTTP GET požiadaviek. Podobne ako pri stenách

miestnosti, kliknutie na ilustráciu radiátora otvorí modálne okno, v ktorom sa zobrazia všetky

aktuálne údaje a ovládacie prvky pre žiadanú hodnotu teploty v miestnosti. Možnosť ovládať

teplotu v miestnosti sa plánuje rozšíriť pomocou rozhrania pre ovládanie klimatizácie, preto bude

možné teplotu meniť nielen smerom nahor, ale ju aj znižovať.

Touto diplomovou prácou projekt Inteligentnej miestnosti nie je ani zďaleka ukončený, ale

práve naopak sa otvára veľké množstvo možností na výskum riadenia teploty vzduchu, skúmanie

vplyvu počasia na teplotu vzduchu či stien miestnosti, minimalizáciu strát tepla do okolia

a ďalších potenciálnych výskumov. Pre takéto projekty je vytvorená architektúra zberu dát a ich

interaktívna vizualizácia základným bodom, od ktorého je možné sa odraziť.

50

Bibliography

AUGUSTO, J. C. 2013. Intelligent Environments: a manifesto. In Human-centric Computing

and Information Sciences. [online]. 2013, vol. 3, no. 12 [cit. 2017-03-10]. Available on the

Internet: <https://link.springer.com/article/10.1186/2192-1962-3-12/fulltext.html>. ISSN

2192-1962.

COEN, M. H. 1998. Design Principles for Intelligent Envrioments. Cambridge, MA: MIT

Artificial Intelligence Lab, 1998. ISBN 0-262-51098-7.

GUBBI, J. et. al. 2013. Internet of Things (IoT): A Vision, Architectural Elements, and Future

Directions. [online]. In Future Generation Computer Systems, vol. 29, 2013, p. 1645-1660. [cit.

2017-04-05]. Available on the Internet: <https://arxiv.org/ftp/arxiv/papers/1207/1207.0203.pdf>

HRČKOVÁ, L., KRAJČÍK, M. 2015. Kvalita vnútorného prostredia a intenzita vetrania

v knižnici SVF STU. [online]. In ASB.sk 2015. [cit. 2017-04-08]. Available on the Internet:<

https://www.asb.sk/tzb/vetranie-a-klimatizacia/kvalita-vnutorneho-prostredia-a-intenzita-vetrani

a-v-kniznici-svf-stu)>.

KOPETZ, H. 2011. Real-Time Systems. Design Principles for Distributed Embedded

Applications. 2nd ed. US: Springer, 2011. 378 p. ISBN 978-1-4419-8236-0.

KAZAKOV, D. 2015. MAX! Home Automation. version 1.9. In dmitry-kazakov.de [online].

2015. [cit. 2017-04-05]. Available on the Internet:

<http://www.dmitry-kazakov.de/ada/max_home_automation.htm>.

LAFTCHIEV, E., NIKOVSKI, D. 2016. An IoT System to Estimate Personal Thermal Comfort.

3rd World Forum on Internet of Things (WF-IoT). Reston, VA: IEEE, 2016, p. 672-677.

The PHP group. Function time(). [online]. In php.net [cit. 2017-04-15]. Available on the Internet:

<http://php.net/manual/en/function.time.php>.

https://arxiv.org/ftp/arxiv/papers/1207/1207.0203.pdf

51

Attachments

Attachment A: CD medium – electronic version of the thesis and source files of the GUI

