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Abstract—In today’s era of renewable energy, hydrogen fueled

proton exchange membrane (PEM) fuel cells are considered as an

important source of clean energy. As the technology is emerging

fast, many universities and colleges have adopted fuel cells in their

educational program. In this paper, we will present the modeling

and control of the fuel cell pilot plant present in Clean Energy
Trainer, which is used by students and researchers in many

universities. The plant under consideration is a laboratory-scale

pilot plant designed mainly for verifying the applicability of the-

oretically studied control strategies on the real-world application.

The plant is a series connection of electrolyzer and a PEM fuel cell

stack with one input and one output. The control of such a plant

is the challenging research problem due to the nonlinearities,

slow dynamics, dynamics and physical constraints. The control

oriented data-driven model of the plant is developed and validated

through a series of experiments. To tackle the electrolyzer-fuel cell

control problem, we present a model predictive control (MPC)

scheme that can take into account the physical constraints of

the plant. In addition to the controller, a disturbance observer is

designed to cope with the external disturbances and to avoid

adverse effects on the system performance. Subsequently, the

developed control scheme is successfully implemented in real-

time. Highly satisfactory results are obtained, regarding reference

tracking, constraint handling, and disturbance rejection.

I. INTRODUCTION

Over the last decade, fuel cells and hydrogen energy
technologies have received attention in power generation and
automobile industries. Use of the fuel cells in these sectors has
remarkable advantages like high efficiency, zero emission, no
noise and low heat transmission. There are several types of fuel
cells and in general, they all work in the same manner. Every
fuel cell unit consists of three adjacent segments: the anode,
cathode, and electrolyte. Two chemical reactions occur at the
interfaces of the three different segments. As a result of these
reactions, an electric current is generated by the consumption
of fuel and water or carbon dioxide is produced as a by-
product [1].

Among the family of fuel cells, the Proton Exchange
Membrane (PEM) fuel cell is considered as the most promising
one due to the small size, lightweight and quick startup [2].
A good overview of the PEM fuel cell applications can be
found in [3]. Apart from the problems of integration and
capital cost, the use of PEM fuel cell as a power source also
needs a full control of dynamics and thus having a closed-loop
control strategy. Many classical and advanced control methods
have been proposed for the closed-loop control of PEM fuel
cells. A dynamic feedforward controller was proposed in [4]
to control air flow rate, proportional-integral (PI) controller
in [5] to achieve power density and proportional-integral-
derivative (PID) controller in [6] to keep power output at

desired reference. The main advantage of these gain-based
and rule-based control methods is their simple implementa-
tion. However, these controllers fail in handling multi-input
multi-output (MIMO) and slow dynamic systems, physical
constraints and do not guarantee optimal use of resources.

To improve the efficiency and safety of the PEM fuel cells
several authors have proposed the use of advanced control
techniques. generalized predictive control (GPC) in [7] for
tracking output voltage. A model predictive control (MPC)
scheme has also been investigated for the closed-loop control
fuel cells. An on-line nonlinear MPC was proposed and the ap-
plicability of proposed controller was experimentally validated
in [8]. A linear MPC was proposed in [8] and experimentally
validated the applicability of proposed controller. A linear
MPC was demonstrated to control the oxygen excess ratio [9]
and to satisfy the hydrogen’s expected quality [10]. All these
proposed MPC schemes showed that the MPC outperforms
the classical controllers in reference tracking, disturbance
rejection, constraint handling and multi-variable control.

Model predictive control is a control strategy that offers
attractive solutions for the control of constrained linear or
non-linear systems and, more recently, also for the control of
hybrid systems. MPC is an optimal control method, where the
control action is obtained by solving a constrained finite time
optimal control (CFTOC) problem for the current state of the
plant at each sampling time. The sequence of optimal control
inputs is computed for a predicted evolution of the system
states over a finite horizon. However, only the first element of
the control sequence is applied and the state of the system is
then measured again at the next sampling time. This so-called
receding horizon control (RHC) introduces feedback to the
system, thereby allowing a compensation of potential modeling
errors or disturbances acting on the system. These features in
combination with the need of PEM fuel cell operation signify
that the application of MPC to PEM fuel cell systems is an
attractive solution.

Incorporation of two separate units; a ready to use hydro-
gen supply unit and a fuel cell unit is a well-known process,
used in industry and has been presented in above all the
papers, but there are no studies where a water electrolysis
unit is incorporated into hydrogen fuel cell system. The plant
under consideration is the combined system comprised of
electrolyzer and fuel cell, which can be used in portable ap-
plications. Off-course this set-up emerge interesting question,
is it possible to control such a system? This paper shows that
the control of such a pilot plant is possible and answer the
question by experimental results.

In this paper, we present a model predictive control strategy
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to control a laboratory plant called the Clean Energy Trainer1.
The plant is comprised of an electrolyzer connected to the
fuel cell stack. The task is to manipulate the voltage to the
electrolyzer such that the output voltage from the fuel cell
tracks user-supplied references. The hydrogen produced by
the electrolyzer is accumulated in a storage tank. However,
due to the setup of the particular plant under consideration, it
is not possible to manipulate the hydrogen flow rate directly.
Instead, the hydrogen flow rate is controlled indirectly by the
input voltage to the electrolyzer. Admittedly, this is not a
standard way of operating a fuel cell. However, it represents
the only setup available by the Clear Energy Trainer. Since
such a device is frequently used by many universities in their
educational and research processes, we believe this setup is of
interest to the community. In addition, it represents a challeng-
ing control problem on its own that is further complicated by
the presence of physical constraints on the actuators. Moreover,
operating conditions like room temperature, humidity, air flow
rate, and measurement noise make the control design procedure
challenging. To cope with these factors, an optimization-
based control strategy is adopted in this paper, together by
using a disturbance observer to deduce external unmeasured
disturbances.

II. PROCESS DESCRIPTION

A. Fuel Cell Process

Power generation using PEM fuel cell is a continuous
process wherein hydrogen is fed to the anode side and oxygen
to the cathode side of the cell. Process of generating electric
energy from the chemical reactions can be described as fol-
lows:

H2 +
1

2
O2 −−→ H2O. (1)

In addition to the fuel cell stack, the plant comprised of other
subunits such as a voltage regulator to regulate voltage supply
of electrolyzer, an electrolyzer to produce hydrogen, canisters
to collect generated hydrogen and oxygen, and the load. In
practice, the power required for electrolysis process can be
obtained from solar or wind energy but in our case, we are
using readily available power in the lab as our focus is mainly
on the control of pilot plant. In our plant, the voltage to
electrolyzer is supplied through USB-data monitor.

B. Experimental Set-up

Considered electrolyzer-PEM fuel cell plant is one of
the experiments in laboratory-scale Clean Energy Trainer Kit
provided by Heliocentris Energiesysteme GmbH, Germany.
Fig. 1 shows the experimental set-up available in the process
control laboratory. This plant consists of several sub-units, the
technical specifications of each unit are listed in Table V.

1) Hydrogen Generation: Hydrogen (H2) is the basic fuel
for the stack to generate electricity. Hydrogen can be produced
from both renewable and non-renewable sources using a va-
riety of techniques. In our experimental set-up we are pro-
ducing hydrogen by splitting water. We used electrolyzers to
decompose water into hydrogen and oxygen by the electrolysis

1https://www.heliocentris.com/en/academia/education-products/
clean-energy-trainer/

TABLE I. COMPONENTS AND SPECIFICATIONS OF THE

ELECTROLYZER-PEM FUEL CELL SET-UP [11].

Component Name Specification Items

Fuel cell stack Max. power: 1W

Max. output voltage without load:

4.8V

1

Cell Max. power without load: 0.2W

Max. output voltage: 0.96V

5

Electrolyzer Max. input voltage: 2V

Power: 1.16W

Hydrogen generation: 5 cm3
min

−1

Oxygen generation: 2.5 cm3
min

−1

2

USB data monitor Max. power: 10W

Max. current: 5A

Max. voltage: 10V DC

2

Load (bulbs) Power of each bulb: 2.4W 2

Water canister Volume: 30 cm3 2

Oxygen canister Volume: 30 cm3 1

Hydrogen canister Volume: 30 cm3 1

Power source 6VDC/3.3A 1

process. A DC electrical power source is connected to two
electrodes of electrolyzers which are dipped into distilled water
supplied by two canisters. The electrolyzer is comprised of an
anode and the cathode. The water decomposition reactions can
be written as

H2O −−→
1

2
O2 +H2. (2)

The generated hydrogen is then collected in another canister
connected to the input side of the cell stack.

2) Fuel Cell Stack: In general, PEM fuel cell stacks consist
of several cells assembled together to meet the power demands
of a variety of commercial applications [12]. In our set-up, it
consists of five fuel cells to achieve the desired voltage. Contin-
uously generated hydrogen flows to the cell stack through the
canister. Inside the stack, hydrogen reacts with atmospheric air
to produce electricity and pure water. The performance of fuel
cell stack mainly depends on hydrogen flow rate, temperature,
air flow rate and humidity [12].

3) Data Monitor: We used two USB data monitors, one of
them is used as a voltage source to regulate the input voltage
of electrolyzers. It is worth to mention that it shows 5− 6 %
(i.e 0.10V-0.12V) of error in the output. So, it is mandatory to
feed 2.12V to get 2V. The another monitor is used to measure
the output voltage generated by the cell.

4) MATLAB Interface: The device drivers were written to
establish the communication between USB data monitor and
the host PC. Further, a MATLAB/Simulink block was created
to control the whole process through the MATLAB.

III. ELECTROLYZER-FUEL CELL PLANT MODEL

IDENTIFICATION

The model is based on experimental data which takes
into consideration the dynamic characteristics of the plant. It
describes how the output voltage of fuel cell is affected due to
changes in the input voltage of electrolyzers at a constant load.
Steps involved in model identification are described below,
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Fig. 1. A combined electrolyzer-PEM fuel cell experimental set-up at the process control laboratory.
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Fig. 2. Input excitation signal for model identification.
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Fig. 3. Measured output response corresponding to input excitation signal.

1) Process variables and operating ranges: For the system
identification task we considered input voltage (VIN) as a
manipulated variable and output voltage (VOUT) as a mea-
sured variable. Despite the fact that electrolyzer operates in
the voltage range of 0V-2.12V, but practically it starts to
generate hydrogen at 1.80V. Therefore, we set the operating
range of the input voltage as 1.80V-2.12V which means that
electrolyzers operating range is only 0.32V.

2) Input-output data acquisition: To obtain the system time
constant and the gain, input signal was set as shown in Fig. 2.
Input is applied in staircase form with a step change of 0.03V.
Two data monitors were used to acquire the electrolyzers input
voltage and fuel cells output voltage at the sampling time of
0.5 s. A load of 4.8W is connected throughout the experiment
and data points were stored for identification and validation
purpose. The measured output response of the plant is shown
in Fig. 3.

3) Data pre-processing: Measured data were accompanied
by undesired noise and other anomalies. To improve the
identification, measured data were normalized before used in
MATLAB’s System Identification Toolbox.

4) Model selection: The function “n4sid” of the MAT-
LAB’s System Identification Toolbox and the measured data
were utilized in estimating a set of discrete time state space
models ranging from first order to fifth order. The func-
tion“n4sid” uses numerical subspace algorithm to identify
state space model of the system. All the models were targeted
for “prediction” focus and disturbance model estimation. Ta-
ble II shows the values of data fitting, final prediction error
(FPE) and mean square error (MSE) for different models. The
detailed description about FPE and MSE is given in [13]. It
can be observed that there is a very small difference in data
fitting and error values among the five models. Considering
the model complexity and data fitting values, the first order
is selected which shows approximately the same dynamics as
that of the fifth-order model as there is only 1% difference in
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fit.

TABLE II. VALUES OF DATA FITTING EFFECTIVENESS FOR THE

DIFFERENT MODELS.

Model Order Fit To Estimated Data FPE MSE

1 95.61 % 3.924×10
−5 3.90×10

−5

2 96.57 % 2.415×10
−5 2.394×10

−5

3 96.64 % 2.324×10
−5 2.293×10

−5

4 96.73 % 2.256×10
−5 2.187×10

−5

5 96.84 % 2.107×10
−5 2.080×10

−5

5) Parameter estimation: In this step, parameter estimation
of the best fit prediction model was carried out and as a result
of that, we obtained an linear-time invariant state space model
of plant in discrete time given as

xt+Ts
= 0.9960xt + 0.0083(ut − uss), (3a)

yt = xt + yss, (3b)

where x ∈ R
n is the state variable, u ∈ R

l is the control
input variable and y ∈ R

m is the output variable. Moreover,
the constants uss = 1.84V and yss = 1.71V are the steady
state values of input and output respectively.

6) Model validation: In this task, the estimated model (3)
is validated with measured data to check if model in (3) fits
appropriately to the real system. To show the ability of the
model to predict future dynamics, we compared measured
output with 10-step-ahead prediction output of the estimated
model. Fig. 4 shows the response of normalized measured
output and 10-step-ahead prediction output. The percentage
of fit is a statistical measure of how well the predicted
output matches with the measured output. The percentage
of fit was utilized as a criteria to select the best prediction
model to represent plant behavior. The cost function utilized
to determine the goodness of fit was Normalized root mean
square (NRMS) and we obtained 90.66 % of data fitting for
10-step-ahead prediction.
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Fig. 4. Measured and 10-step-ahead prediction output.

IV. CONTROL PROBLEM

To devise appropriate control strategy for experimental
set-up, it is essential to understand the nature of control

problem first. The closed-loop control scheme is shown in
the Fig. 5. This control loop scheme is simplified, thus, we
combine the observer and MPC into one block. The control
objective is to control desired output voltage (VOUT) of fuel
cell stack by manipulating the input voltage of electrolyzers
(VIN). The idea is to obtain optimal input voltage by solving
an optimization problem at each sampling time considering
the prediction model in (3), the objective function (reference
tracking) and constraints on input. In this work, we are more
focused towards the plant control rather than improving the
efficiency. In our experimental set-up, the hydrogen demand
is fulfilled by generating hydrogen by water electrolysis using
electrolyzers which have 76% degree of energetic efficiency
whereas the total degree of energetic efficiency of a fuel
cell including electrolyzers is around 48% [11]. The plat is
influenced by operating conditions like temperature, humidity
and air flow rates. In simulations, this works perfect, but in
practice, there is always plant-model mismatch and to tackle
with such a problem in next section we will present disturbance
modeling approach.

A. Model Predictive Control

This section features the synthesis of MPC strategy. Design
of the MPC strategy is two-fold. First, we present the design
of a disturbance model and second, we formulate the MPC
problem.

The main principle of disturbance modeling approach lies
in extending the state space model by one disturbance signal
di(t) for each plant output signal yi(t). A simple Luenberger
observer is designed to estimate the disturbance signal. For-
mally, the extended state space model can be expressed as

xt+Ts
= Axt +But, (4a)

yt = Cxt +Dut + Fdt, (4b)

dt+Ts
= dt. (4c)

The matrix F is a user defined matrix, usually equal to identity
matrix of appropriate dimensions. Define a new vector of states
as

xe =

[

x
d

]

, (5)

and

Ae =

[

A 0
0 I

]

, Be =

[

B
0

]

, (6a)

Ce = [C F ] . (6b)

After state space model in (4) with definitions in (5) and (6)
we can formulate an extended state space model, given by

xe,t+Ts
= Aexe,t +Beut, (7a)

yt = Cexe,t +Dut. (7b)

Based on the extended matrices (6), an observer is designed
via pole placement method.

Next, we show how the MPC strategy is formulated as a
constrained finite-time optimal control problem with a predic-
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Fig. 5. The closed-loop control configuration with MPC for electrolyzer-PEM fuel cell plant.

tion horizon N and it is given by

min
u0,...,uN−1

N−1
∑

k=0

(

||yk − r||2Q + ||∆uk||
2
R

)

(8a)

s.t. xk+1 = Axk +Buk, (8b)

yk = Cxk +Duk + Fdk, (8c)

dk+1 = dk, (8d)

∆uk = uk − uk−1, (8e)

umin ≤ uk ≤ umax, (8f)

x0 = x(t), (8g)

d0 = d(t), (8h)

where (8a) is the cost function where are penalized weighted
squared 2-norms of respective quantities, i.e., ||z||2M = z⊺Mz.
Weighting matrices are positive definite matrices and Q ∈
R

nx×nx and R ∈ R
nu×nu . Next, constraints (8b)- (8f) are

enforced for k = 0, . . . , N−1. Furthermore, the control action
increment is defined as ∆uk = uk − uk−1. The reference r is
assumed to be constant during whole prediction horizon.

The optimization problem in (8) is a quadratic program-
ming problem (QP) with quadratic objective function (8a) and
linear constraints (8b)-(8f). Such a problem can be solved via
state of the art solvers like GUROBI or CPLEX. The QP (8)
is initialized at

• x0 = x(t) as the current estimation of the states in (4),

• d0 = d(t) as the current estimate of unmeasured
disturbances,

• r = r(t) as the user defined value of the reference,

• u−1 = u(t − Ts) as the value of previous control
action.

By solving the QP (8) initialized at mentioned values, we
obtain the open-loop sequence of control inputs u0, . . . , uN−1,
from which value of u0 is applied as a control action to the
plant. By repeating this procedure every sampling instant, we
achieve closed-loop control and enforce stability. To such a
strategy is often referred to as a Receding Horizon Policy [14].

V. EXPERIMENTAL RESULTS

In this section, the experimental results of MPC scheme
implemented for electrolyzer-fuel cell plant control problem
and performance index values are presented. The developed
MPC scheme is tested for reference tracking, disturbance and
constraints handling.

The linear MPC employing an on-line optimization method
was implemented in MATLAB using multi-parametric toolbox
(MPT) [15] with prediction horizon N equal to 10, input
manipulation weights R equal to 1 and target error cost Q
equal to 100. Constraint on input voltage umin and umax was
set to 1.81V and 2.12V respectively.

Initially, input and output were kept at steady state values
and then a step change in a reference is given. Fig. 6 shows
the output response of the plant for variable reference. In first
step change from 1.71V to 1.81V, output took 40 s to reach
the desired reference which is due to the large increase in the
reference. In the subsequent steps, output took less than 20 s
to achieve reference. Fig. 7 shows the manipulated variable
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Fig. 6. Output response of the electrolyzer-PEM fuel cell system controlled
by the linear MPC.
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Fig. 7. Control input profile of electrolyzer-PEM fuel cell system controlled
by the linear MPC.

profile. It can be seen that as the reference increases there is
an increase in the input voltage to generate more hydrogen and
subsequently produce more voltage from the fuel cell. We can
observe that the input voltage lies within the constraints.

In order to see the performance of MPC strategy, we used
quantitative values of settling time (τs), mean squared error
(MSE), Integral Square Error (ISE), integral absolute error
(IAE) and integral squared control efforts (ISCE). Table V
shows the values of performance indices obtained for experi-
mental results.

The settling time of the output voltage is different at each
step change in reference and depends on step size. The average
settling time of four step changes is given in the table and other
indices are calculated for the whole trajectory. In terms of
error between desired and measured output, MPC shows very
less error which in turn shows that MPC drives output very
close to the reference. In terms of ISE and IAE, MPC shows
satisfactory performance. To show the input voltage required
by the electrolyzer to achieve desired output voltage reference
trajectory we calculated the controller efforts (

∑

∆u2).

TABLE III. PERFORMANCE OF THE ELECTROLYZER-PEM FUEL CELL

PILOT PLANT.

τs MSE ISE IAE ISCE

28 s 0.0002 0.2811 8.8625 0.1859

VI. CONCLUSIONS

The control oriented data driven model and the model
predictive controller for the combined electrolyzer-fuel plant
called Clean Energy Trainer [11] used in many universities
and colleges has been developed. The designed MPC uses pa-
rameter adaptation to electrolyzer input voltage. Moreover, the
disturbance observer has been designed to mitigate the effect of
pilot plant’s operating conditions. The control strategy has been
tested and validated through the series of experimental results.
The results of electrolyzer-fuel cell plant controlled by the
constrained linear MPC showed highly satisfactory results for
variable reference tracking, disturbance rejection, and handling
physical constraints on electrolyzer input voltage.
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