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Abstract— This paper deals with the anesthesia control, using

bispectral index (BIS) as a measure of the depth of anesthesia;

controlled by hybrid model predictive control strategy. The

piecewise affine (PWA) hybrid pharmacodynamic model of a

patient containing a set of local linear dynamics is used to

describe the relationship between BIS value and drug infusion

rate. The hybrid model predictive control problem is formulated

as a mixed integer quadratic programming (MIQP) problem and

solved online. Furthermore, a disturbance observer is designed for

the offset-free BIS reference tracking. The results of designed con-

troller intended for reference tracking, disturbance rejection and

constraint handling are presented. Moreover, the performance of

nonlinear MPC is compared with the hybrid MPC and is shown

to be computationally less complex and fast.

I. INTRODUCTION

The barriers between control engineering and medicine
are slowly eroding as it becomes more evident that control
system technology has a great deal to offer medicine. Over
the last decades, closed-loop control of anesthesia has received
a considerable attention from researchers. Conventionally, the
anesthesiologists used to decide the initial drug dose (bolus)
by considering the patient’s physical characteristics, such as
gender, age, weight and height. During the period of surgery,
anesthesiologists use to maintain anesthetic state based on
patient’s physiologic status such as blood pressure, heart rate,
and breathing. Open-loop drug delivery control can lead to
under- and over-dosing which can affect patient safety and
increase anesthesiologists workload.

An automatic control system which can regulate drug
delivery rate based on the anesthetic level can potentially
improve the quality of surgical operations, patients safety,
cost-effectiveness and reduce clinician’s workload. It may
reduce the risk of awareness and adverse outcomes during
anesthesia, as well as reduce the health-care cost due to drugs,
devices and recovery time. However, the realization of a safe
and reliable closed-loop control of anesthesia is yet to be
achieved due to a manifold of challenges. The main challenges
in designing an automated closed-loop anesthesia delivery
systems are i) to deal with non-linear, multi variable and inter-
and intra-variability pharmacokinetic-pharmacodynamic (PK-
PD) patient model; ii) selection of a controlled variable and
its sensors that measure the relevant drug effect; iii) setting
of clinically relevant set-point for this variable, which is the
chosen target value specified by the anesthesiologist; iv) reli-
able actuator (the infusion pump driving drug administration);
and v) design and implementation of a controller to manage
the actuator, which comprises an algorithm for translating the
measured value of the controlled variable to a particular action

in order for the actuator to steer the controlled variable closer
to the target value [1], [2].

The PK-PD model is the commonly used patient model in
medicine to describe the dose-effect relationship of drugs in
the human body. PK model is used to model and/or predict
the disposition of the drug in the body, by modeling the
simultaneous diffusion of drug through body tissues and the
flow of drug in the blood. PD models are used to describe
the relationship between drug concentration and the observed
clinical effect; effect signals may be any number of patient vital
signs and electroencephalogram (EEG) derived signals. These
models are typically given by static nonlinear functions, which
are used to describe the equilibrium relationship between
the drug concentration, and drug effect. A commonly used
pharmacodynamic model structure is given by the well-known
Hill curve [3].

In general, the drug effect or the depth of anesthesia (DoA)
is predicted, based on the feedback obtained from the linear
PK model i.e. effect-site concentration and nonlinear PD model
is just use to co-relate the effect-site concentration with the
drug effect and it is not considered in a feedback loop. As a
consequence of this structure (a linear block in series with a
static nonlinearity), the prediction of human response to drugs
cannot be accurately performed by linear model [4]. Based on
this modeling approach, several classical and advanced control
strategies has been designed and implemented in simulations.
The earliest classical controllers designed for this system
are fixed gain controllers like proportional-integral (PI) and
proportional-integral-derivative (PID) [5]. Due to the fact
that these controllers tend to poor performance in a case
of robustness, stability, constraint handling and time delay
systems, the advance controller like linear model predictive
controller (MPC) which performs well for linear PK model
and constraints satisfaction has been investigated in [6]–[9].

The attempts has been made to use approximated nonlinear
PD model in the closed-loop control of anesthesia [10], [11]. In
these research studies, linear MPC strategy was used to control
the drug effect parameter. The presence of nonlinearities and
constraints on one hand, and the simplicity needed for real-
time implementation on the other, have discouraged the design
of linear MPC for this kind of problem. Another way of
dealing with this problem is by obtaining piecewise affine
(PWA) hybrid model containing a set of local linear dynamics
and the control of such systems lead to the hybrid model
predictive control strategy [13], [14]. Recently, in [15] authors
have demonstrated the applicability of explicit hybrid MPC for
the control of anesthesia using PK-PD model presented in [11].

In this paper, we present a offset-free hybrid model pre-
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dictive control (hMPC) strategy for the control of PWA hybrid
anesthesia system. We used bispectral index (BIS) as a measure
of DoA and Propofol as an anesthetic agent. Anesthesia control
problem is formulated as a mixed integer quadratic program-
ming (MIQP) problem and solved using online optimization
method. We show the simulation results of designed controller
intended for reference tracking, constraints handling, and dis-
turbance rejection. The computational complexity of offset-
free hybrid MPC is compared with nonlinear MPC to show
the capability of hybrid MPC for the real-time implementation
on embedded hardware.

II. COMPARTMENTAL PK-PD PATIENT MODEL

This section comprised of two subsections. In the first
subsection, we introduce a four compartment, single-input
(drug infusion rate) single-output (effect-site concentration) PK
model of the patient with Hill’s sigmoid PD model to co-
relate output of PK model to clinical effect i.e. BIS index.
Subsequently, in the second subsection, we describe the PWA
hybrid model of the nonlinear PD model.

A. Nonlinear PK-PD Model

As for the pharmacokinetic model, we use four compart-
ment model including the Propofol effect-site compartment
based on the large-scale multi-center study by [16] which is
further extended in [17]. The model seems to be sufficiently
reliable, as its parameters were determined based on patient’s
real-time data and this model incorporates the patient’s age and
body weight (BW), so it can take individual differences into
account to a certain extent. Fig. 1 shows the three compartment
model with the effect-site compartment. It consists of central,
shallow peripheral (fast), deep peripheral (slow) and virtual
compartment regarded as effect-site. Peripheral compartment
comprise muscle, fat, and other organs and tissues of the body
which is metabolically inert as far as the drug is concerned.
Shallow peripheral compartment represents tissues with a rich
blood supply and deep peripheral compartment represents
tissues with very poor blood supply.
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Fig. 1. A block diagram of four-compartment PK-PD patient model showing
drug concentration, volume, clearance and elimination.

The state space representation of the continuous-time phar-
macokinetic model with the effect-site compartment is given

by

ẋ(t) = Ax(t) +Bu(t), (1a)

y(t) = Cx(t), (1b)

where x(t) ∈ R
n is the system state vector of Propofol

concentration in different compartments, u(t) ∈ R
l is the

system input vector of Propofol infusion rate and y(t) ∈ R
m

is the system output i.e. effect-site concentration, moreover,
A ∈ R

n×n, B ∈ R
n×l and C ∈ R

m×n are system matrices as
given below with the assumption that pair (A,B) is stabilizable
and (C,A) is detectable
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,

B =
[

1
V1

0 0 0
]T

, C = [0 0 0 1] .

here the subscripts 1, 2, 3, and 4 correspond to the central, shal-
low peripheral, deep peripheral and effect-site compartment,
respectively. The parameter k and V are the clearance and
volume of a different compartment, respectively, given as func-
tions of patient’s age and body weight. The relation between
clearance, volume, age and weight can be found in [17][Table
I]. The pharmacodynamic model represents relation between
the effect-site concentration of Propofol and the BIS index
value given by the following Hill’s sigmoid Emax model

BIS(t) = E0 − Emax
y(t)

γ

y(t)
γ
+ c

γ
50

, (2)

where E0 is the BIS value before starting the Propofol in-
fusion, Emax is the change of the BIS index corresponding
to the infinite Propofol concentration, C50 is the effect-site
concentration corresponding to Emax

2 , and γ is the Hill’s
coefficient. In this paper, we assume Emax = E0. The control
objective is to manipulate the Propofol infusion rate such that
the BIS index tracks a prescribed reference. In the above
model, we assumed baseline value equal to maximal output
value and default values of C50 and γ are taken from [17].

BIS is an EEG-derived index which indicates the effect of
drug on the body and measured on the scale of 0− 100. BIS
values near 100 represent an “awake” clinical state while 0
denotes the maximal EEG effect possible (i.e., an isoelectric
EEG) which means the patient is in the dead state. In general
surgery practice, the BIS value is maintained in the range of
40 − 60 to ensures adequate hypnotic effect during balanced
general anesthesia while improving the recovery process. The
drug dose below 60 is regarded as under dose where patient
can respond to surgical stimuli and can feel pain. BIS index
values lower than 40 signify a greater effect of the drug on
the EEG of a patient and drug dose is regarded as overdose.

In general, targeted BIS value can be achieved by track-
ing corresponding effect-site compartment concentration and
substitute that value in the (2) to get BIS value. It has been
seen that this approach leads to inaccurate measurement of BIS
values due to skipping nonlinear PD model from the feedback
loop. One might consider PD model in the feedback loop
which will turn into the nonlinear optimization problem. To
solve this issue we will use piecewise linear (affine) models
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linearized from nonlinear PD model. In the next, we will
describe PWA modeling of a anesthesia system.

B. Piecewise Linear PK-PD Model

As mention in the previous section, the relationship be-
tween drug concentration (effect-site compartment) and clini-
cal effect (BIS) is mathematically given by nonlinear expres-
sion (2) and graphically as shown in Fig. 2 The nonlinear
relationship between the effect-site compartment concentration
and BIS is linearized by using the piecewise affine transfor-
mation of nonlinear response. In this task, the nonlinear Hill’s
curve was first divided into three pieces and then each piece
was linearized by data fitting technique to find the coefficients
of a polynomial function (BIS(t)) of degree 1 that fits the
Hill’s curve data best in a least-squares sense. The procedure
was repeated by dividing curve into five pieces to get another
PWA model. Here, we used MATLAB’s “polyfit” function
to find the coefficients of the PWA functions from Hill curve
data. Fig. 2 shows the PWA models obtained after data fitting
for three and five regions of original Hill’s curve. It can be
observed that the PWA model with five coefficients fits better
to the original nonlinear curve but at the same time increases
the complexity as compared to the three coefficient model
which fits almost same in the upper part of the curve. So,
in the controller design, we focused on PWA model with three
regions. The piecewise linearized version of the Hill’s curve
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Fig. 2. PWA models of nonlinear Hill’s curve. PWA models when Hill curve
(blue) is divided into three (magenta) and five (red) regions.

is given as follows:

BIS(t) = aiy(t) + bi if y(t) ∈ P i, (3)

where {P i}ni=1 is the ith polyhedral partition in the output
space (effect-site concentration) defined as the intersection of
finite number of half-spaces, which can be compactly defined
as follows

P = {y ∈ R
m : Hy ≤ h}, (4)

where matrices H ∈ R
r×m, h ∈ R

r×m are representing
collection of intersecting affine half-spaces.

III. OBSERVER DESIGN

One of the key challenges for the design of drug delivery
systems for anesthesia is high inter- and intra-patient variabil-
ity, which introduces a high degree of uncertainty into the
system. Therefore, the control design should be robust against
implying uncertainty and tested for the uncertain system. In
brief, we want a controller which guarantees constraint satis-
faction for all admissible values of uncertainty and optimally
steers the system to the desired BIS value. The uncertainty
can originate from the model-mismatch (change in input
parameters of model, i.e. age and weight), non-captured hidden
process dynamics and input or output disturbances. To achieve
offset-free controller, discretized version of the plant model (1)
is augmented with a disturbance vector d(t) ∈ R

p [18, Chapter
13] as shown below

x(t+ Ts) = Ax(t) +Bu(t), (5a)

d(t+ Ts) = d(t), (5b)

y(t) = Cx(t) + Cdd(t), (5c)

where Cd ∈ R
m×p = I is the disturbance model output

matrices and Ts is the sampling time. For the simplicity
augmented model can be represented as follows

[
x(t+ Ts)
d(t+ Ts)

]

︸ ︷︷ ︸

xe(t+Ts)

=

[
A 0
0 I

]

︸ ︷︷ ︸

Ae

[
x(t)
d(t)

]

︸ ︷︷ ︸

xe(t)

+

[
B
0

]

︸ ︷︷ ︸

Be

u(t), (6a)

ye(t) = [C Cd]
︸ ︷︷ ︸

Ce

[
x(t)
d(t)

]

︸ ︷︷ ︸

xe(t)

, (6b)

where 0 and I are the null and unit matrices/vectors of
appropriate size. The subscript ‘e’ denotes the extended version
of the combined state and disturbance.

The objective of estimator is to estimate the current states
of the system and remove any control offset which may arise
during the reference tracking. Extended state xe is estimated
from the plant measurement by designing a Luenberger ob-
server for an augmented system (6) as follows

x̂e(t+ Ts) = Aex̂e(t) +Beu(t) + Le(y(t)− ŷe(t)), (7a)

ŷe(t) = Cex̂e(t), (7b)

where Le = [ Lx Ld ]
T

is the filter gain matrices for the state
(of dimension n×m) and the disturbance (of dimension p×m),
respectively and can be obtain by pole placement or quadratic
estimation methods. Please note that the y(t) is not a measured
signal in this setup and therefore it needs to be computed
from (2) based on measurement of BIS(t).

IV. HYBRID MODEL PREDICTIVE CONTROL

The intravenous anesthesia control of a BIS based on the
mathematical model of the patient as given in the Section II-A
can be cast as a following nonlinear optimal control problem
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(OCP):

min
u0,...,uN−1

N−1∑

k=0

(
||BISk −BISref||

2
Q + ||∆uk||

2
R

)
(8a)

s.t. xk+1 = Axk +Buk, (8b)

dk+1 = dk, (8c)

yk = Cxk + Cddk, (8d)

BISk = E0 − Emax
yk

γ

ykγ + c
γ
50

, (8e)

∆uk = uk − uk−1, (8f)

u ≤ uk ≤ u, (8g)

∆u ≤ ∆uk ≤ ∆u, (8h)

x0 = x̂e(t), (8i)

u−1 = u(t− Ts), (8j)

where xk , uk, yk, and BISk represent the values of states,
inputs, outputs and the bispectral index, respectively, predicted
at the kth step of the prediction horizon N and all constraints
in (8b)–(8h) are enforced for k = 0, . . . , N−1. The predictions
are obtained from the LTI prediction model given by the
equations (8b), (8d) and from nonlinear equation (8e). The
difference of the control actions is given by (8f). The min/max
constraints for the control input amplitude and difference are
given by (8g) and (8h), respectively. The initial conditions
of the problem (8i) are given as the state estimates from the
estimator. For a particular initial conditions, the optimization
procedure computes the sequence u∗

0, . . . , u
∗

N−1 of control
inputs that are optimal with respect to the quadratic objective
function (8a) and the constraints. The term ‖a‖2Q in the
objective function represents the weighted squared 2-norm, i.e.,
aTQa, with the positive definite diagonal weighting matrix
Q. The first term of the quadratic cost function minimizes
the square of the differences between measured and desired
BIS, while the second term minimizes the square of the drug
injection differences in successive time steps. The problem is
defined in discrete time, for all time indexes k acquiring integer
values, k = 0, . . . , N − 1.

It is well known that the nonlinear optimization problems
are in general hard to solve. Therefore, in order to be computa-
tionally less expensive, the original nonlinear problem (8) will
be reformulated into the MIQP problem, for which an efficient
optimization algorithm exists and can be solved in polynomial
time [19]. This can be done by replacing the nonlinear BIS
equation (8e) with the approximated PWA expression given
by (3). In this section, we will exploit the fact that PWA
functions can be expressed as if-than-else statements, which
can be directly converted into the logical propositions.

The discrete form of the PWA approximation of the BIS
function (3) can be rewritten as follows

δik ⇔ yk ∈ P i, (9a)

δik ⇒ BISk = aiyk + bi, (9b)

where δik ∈ {0, 1}, represents the binary indicator for ith

polyhedral partition of the PWA function in k − th time
instant. Here, “⇔” denotes logic equivalence, i.e., the left-
hand-side is true if and only if the right-hand-side is satisfied.
Item “⇒” denotes logic implication, i.e., the right-hand-side is
true if the left-hand-side is true. Note, that the statement (9a)

can be expressed equivalently by the following half-space
representation

δik ⇔ Hiyk ≤ hi. (10)

However, the logical statements are not directly compatible
with optimization solvers. Therefore, in the sequel we show
how to reformulate the PWA expression (9) into the form
which will be suitable for solution by state of the art opti-
mization algorithms. For this purpose we will use mathemat-
ical modeling framework called a big-M method introduced
by [20].

Lemma 4.1 ( [20]): Consider the statement

[δ = 1] ⇔ [g(v) ≤ 0], (11)

where δ ∈ {0, 1} is a binary variable, v is a vector of
continuous variables, and g(·) is any function. Then (11) holds
if and only if δ and v satisfy

g(v) ≤ M(1− δ), (12a)

g(v) ≥ ǫ+ (m− ǫ)δ, (12b)

where M is a sufficiently large scalar, m is a sufficiently small
scalar, and ǫ > 0 is the machine precision. �

Lemma 4.2 ( [20]): Similarly as in Lemma 4.1 lets have
the statement

[δ = 1] ⇒ [g(v) = 0]. (13)

Then (13) holds if and only if δ and v satisfy

m(1 − δ) ≤ g(v) ≤ M(1− δ). (14a)

�

Subsequently by employing Lemmas (4.1) and (4.2), the
PWA function (9) expressed via logical statements can be
rewritten as follows

Hiyk − hi ≤ M(1− δik), (15a)

ǫ+ (m− ǫ)δik ≤ Hiyk − hi, (15b)

m(1− δik) ≤ BISk − aiyk − bi ≤ M(1− δik), (15c)
n∑

i

δik = 1. (15d)

The first two equations (15a) and (15b) are reformulations of
the equation (9a) via Lemma (4.1). The third equation (15c) is
reformulation of the equation (9b) via Lemma (4.2) and (15d)
is an additional term which ensures, that only one region of
the PWA function can be active at each time instant. Finally,
by replacing (8e) from the original nonlinear problem in (8) by
big-M model of the PWA function (15), the problem becomes
MIQP which is well suited for the solution via optimization
algorithms.

V. SIMULATION RESULTS

In this section, we will show the simulation results of
designed hybrid MPC controller for the virtually generated
patient model of age 25 years and weight 60 kg assuming the
sampling time of 60 seconds. The MPC tuning parameters such
as prediction horizon N was set to 10 and weighting matrices
Q and R were set to 1. The following set of parameters
was selected in the optimization problem (8): 0 ≤ uk ≤ 20,

−500 ≤ ∆uk ≤ 500, x0 = [0 0 0 0]
T

, u−1 = 0, and
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the observer gain was obtained using discrete linear-quadratic
estimator function (dlqe) of the MATLAB which is given as

Le = [0.0275 0.0274 0.0691 0.2684 0.4908]
T

.

The hybrid MPC were implemented in YALMIP [21] and
solved online using Gurobi [22] QP solvers. Designed offset-
free controller is tested for the varying BIS reference tracking,
constraints handling and disturbance rejection. Upper response
in Fig. 3 shows the BIS tracking response of hybrid MPC
(hMPC) with and without disturbance modeling. Initially, the
patient is in fully awake state i.e. BIS= 100 and then drug
rate is increased to take BIS value to 50 and again optimized
for varying reference. The lower response in Fig. 3 shows the
optimized drug input rate for achieving desired target values.
It can be observed that the drug rate obtained from the MPC
controller is in given constraints but controller without offset-
free scheme has more steady state error which can be clearly
seen form time 10− 28 min.
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Fig. 3. Performance of normal hybrid MPC (hMPC) (green) and offset-free
hybrid MPC (blue) schemes for the control of BIS in anesthesia system.

Next, we show the complexity comparison of different
MPC schemes employed in the anesthesia control. The con-
sidered controllers are as follows,

• Controller I: nonlinear MPC with and without (w/o)
disturbance modeling to track BIS as an output using
nonlinear PD model. This controller considers nonlin-
ear PD model in optimization problem and solve it
using fmincon solver of MATLAB.

• Controller II: hybrid MPC with and without distur-
bance modeling to track BIS as an output using PWA
models. Here, we used Gurobi solver for optimization.

The controller complexity is compared on the basis of run-time
required to complete total simulation (36 min). As computing
hardware, a personal computer with an Intel Core i7 CPU with
2 GHz processor and 8 GB memory were used. As operating

system and simulation environment 64 Bit Windows 7 with
MATLAB 2015b was used. Table I summarize the simulation
run-time and seconds per sample taken by the optimization
problem solvers employed in MPC controllers. It can be

TABLE I. RUN-TIME COMPARISON OF NONLINEAR AND HYBRID MPC
ALGORITHMS EMPLOYED FOR BIS CONTROL IN ANESTHESIA SYSTEM.

MPC Controller Time [s] Seconds/sample [s]

Controller I: w/o offset-free 7.1662 0.1991

Controller II: w/o offset-free 1.3872 0.0385

Controller I: with offset-free 8.1146 0.2254

Controller II: with offset-free 1.7442 0.0485

observed from the table that the controllers without (w/o)
offset-free scheme take less time as compared to controllers
with offset-free scheme. In the run-time comparison, hybrid
MPC takes less time in both the schemes (with and w/o
offset-free) as compared to the nonlinear MPC as it solved
the nonlinear problem of more complexity as compared to the
MIQP problem in hybrid MPC. The performance of nonlinear
MPC and hybrid MPC with the offset-free scheme are shown
in the Fig. 4 for varying reference tracking. In many parts of
the response, the performance looks like almost same but it
differs in the starting of each step change which can be seen
in Fig. 5.
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Fig. 4. Performance of offset-free hybrid MPC (hMPC) (blue) and offset-free
nonlinear MPC (NMPC) (green) strategy for BIS control in anesthesia system.

From the responses, it can be observed that the nonlinear
MPC performs better but from table, it seems that hybrid
MPC overperform the nonlinear MPC and it can is preferred
for anesthesia control due to the less complexity and can be
implemented on low-cost low-end embedded hardware.

VI. CONCLUSION

In this paper, an offset-free hybrid model predictive control
scheme for closed-loop control of anesthesia using BIS as a
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Fig. 5. Detailed view of the responses in Fig. 4.

clinical effect and Propofol as an anesthetic was designed and
implemented in MATLAB. The nonlinear pharmacodynamic
model was linearized using piecewise affine models. To deal
with inter- and intra-patient variability we designed an offset-
free controller using disturbance modeling. The offset-free hy-
brid MPC problem was formulated as mixed integer quadratic
programming problem, which was subsequently solved on-
line using Gurobi solver. The designed controller was tested
on the virtually generated patient model for BIS reference
tracking. The performance and complexity of the implemented
controller were compared with the nonlinear MPC strategy
to achieve the same target. Results show that the offset-free
hybrid MPC gives an almost same performance as nonlinear
MPC and takes less time as compared to the nonlinear MPC.
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