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Abstract

This dissertation thesis deals with the improvement of the control performance
of closed-loop systems via optimizing the setpoints for these closed-loops.
Closed-loops consist of a primary controller, which provides stability and some
tracking properties for a process. Since these controllers are usually of very
simple structure, they do not provide constraint satisfaction nor enforce track-
ing properties. This thesis summarizes a concept of reference governors (RG)
based on model predictive control (MPC), which provides optimal setpoints
for the primary control layer. We will show how such an MPC-based reference
governors (MPC-RG) are formulated. We will be dealing with three main cases,
first, a closed-loop containing PID controllers, second a closed-loop utilizing
the behavior of the on/off controller and finally a complex closed-loop scheme
with local MPC controllers. We will show how to model these closed-loops and
subsequently formulate the MPC-RG control problems, which are in the form of
optimization problems. The second part of this thesis is devoted to case studies,
where the benefits of the MPC-RG strategy is elaborated. We consider one
experimental case study involving the stabilizing and control of a magnetically
suspended ball. Next, we offer two simulation-based case studies, one focused
on improving the behavior of a boiler-turbine system and the second concerning
a thermostatically controlled temperature in buildings.
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Abstrakt

Táto dizertačná práca sa venuje návrhu riadiacich systémov, ktoré vylepšujú
správanie sa už existujúcich riadiacich slučiek. Tieto existujúce riadiace slučky
pozostávajú z primárneho regulátora, ktorý zabezpečuje stabilitu riadeného
procesu a základné kvalitatívne parametre riadenia. Vylepšenie je realizované
na základe optimalizačných metód, ktoré upravujú žiadané hodnoty existu-
júcich riadiacich slučiek. Ked’že tieto primárne regulátory majú v drvivej
väčšine jednoduchú štruktúru, nie je možné pomocou nich zabezpečit’ pre-
vádzku zariadenia, ktorá by spĺňala technologické normy a zároveň by bolo
zabezpečené znižovanie finančných nárokov a pod. V tejto práci sa budeme
zaoberat’ návrhom prediktívneho riadenia (model predictive control – MPC, z
ang.), kde tento MPC regulátor bude poskytovat’ optimálne nastavenie žiadanej
hodnoty pre primárnu vrstvu riadenia, t.j. bude z neho MPC supervízor. V
tejto práci ukážeme ako navrhnút’ takýto MPC regulátor pre tri hlavné triedy
primárnych riadiacich slučiek. V prvej časti sa budeme venovat’ modelovanie a
návrhu MPC pre slučky s PID regulátormi. Následne prejdeme na modelovanie
a návrh MPC regulátore pre slučky s logickým riadením, alebo on/off regulármi.
Ako posledný scenár budeme uvažovat’, že primárna riadiaca slučka už ob-
sahuje MPC riadiacu stratégiu, ale je potrebné ju vylepšit’. V druhej časti tejto
dizertačnej práci ukážeme tri prípadové štúdie, kde demonštrujeme výsledky
použitia MPC supervízorov. Prvá štúdia zahŕňa výsledky získane z experimen-
tov pri riadení polohy guličky v magnetickom poli. Ďalej sa ukážeme výhody
MPC supervízorov pri riadení energeticky náročných systémov ako je turbína
spojená s výparným kotlom. Posledná prípadová štúdia zahŕňa návrh MPC
supervízora pre termostatom riadenú teplotu v budovách.
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CHAPTER 1

Introduction

Historically, in the process industry, the optimization based control was always
used as a supervisory decision maker. More specifically, the optimization based
algorithms just provided setpoints for primary layer of controllers, which were
primarily responsible for the operation of processes. Such elaborated control
schemes were firstly implemented in early 80’s in the petrochemical industry.
One of the most cited works in the history of the model prediction control is the
paper by Cutler and Ramaker [1979], where the MPC predecessor, the dynamic
matrix control (DMC) was introduced. This was one of the first scientific paper,
which introduced a truly optimal solution to the optimization problem stem-
ming from the industry needs. Here, the DMC controller was responsible for
providing the setpoints for primary level controllers, like PIDs etc. The concept,
in fact, was not new at all. A paper by Richalet et al. [1978] predates the DMC
paper, but the solution to the optimization layer was done in a heuristic way.
Such algorithms proved to be very effective in reducing the operating costs as
well as increasing the safety of the entire plant operation [Qin and Badgwell,
2003]. Such a level of economic and safe operation is difficult to achieve using
traditional control loops, which typically involve PI/PIDcontrollers [Åström
and Hägglund, 2006]. Therefore optimization-based control strategies, such
as those based on Model Predictive Control (MPC) [Maciejowski, 2002], are
preferred in many areas, such as in petrochemical industries.

1.1 Concept of the MPC-based Governors
The concept, where the model predictive control strategy supplies setpoints
for primary controller is referred to as an optimization-based reference gover-
nors. Such an arrangement of control layers was studies widely by Bemporad
and Mosca [1994], Mosca [1996], Gilbert and Kolmanovsky [1999]. Results
in these publication were oriented towards industrial applications. However,
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PlantPrimary Controller

Optimization
y

w
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r

primary/inner layer

supervisory/outer layer

Figure 1.1: Conceptual diagram of the optimization-based reference governor
scheme.

by optimizing the reference signals, the overall performance of the plant is
improved [Bemporad, 1998, Gilbert and Kolmanovsky, 2002].

In this thesis, we follow more recent work by e.g. Borrelli et al. [2009], and we
formulate and solve the reference governor problems as an optimal control
problems. This, combined with utilization of the off-the-shelve optimization
solvers yields better performance and widens the applicability of the governors.

A conceptual diagram is drawn in Fig. 1.1 to better illustrate the concept of the
reference governor. Here, optimization-based layer is denoted as secondary
layer or outer layer. Primary controllers are also referred to as inner controllers,
which actually provides the control action u. Moreover, the user defined refer-
ence, denoted as r enters the secondary layer and the setpoint for the primary
controller is denoted as w and it is obtained by solving the optimization problem
in the upper layer, with respect to the measurements y. In this arrangements, the
optimization variables is no longer the control input u, like it is in the situation
where the MPC itself provides the value of the manipulated variable.

1.2 Contributions of the Thesis & Thesis Concept

1.2.1 Goals of the Thesis
Aims of the thesis were summarized into three main items, specifically
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I. development of computationally efficient optimal control algorithms,

II. verification and implementation of optimal control algorithms on labora-
tory devices,

III. application of optimization and optimal control approached to path plan-
ning problems.

This thesis further explores the first two items. An extensive part of the theoreti-
cal contribution of the thesis is devoted to the closed-loop modeling, which is a
necessary step before any control design. The main contribution in the area of
the design of the control algorithms lies in structuring the MPC-based reference
governors for three main cases of the closed-loop systems. Each of the proposed
optimal control algorithms has been verified via simulation and experimental
case studies. The most important results of the author in the area of optimal
algorithm design related to the MPC-based reference governors were published
in:

• Klaučo, M., Kvasnica, M.: Control of a boiler-turbine unit using MPC-
based reference governors. Applied Thermal Engineering, Elsevier, ISSN:
1359-4311, vol. 110, pg. 1437–1447, 2017, (IF: 3.043), citations: 1.

• Klaučo, M., Kalúz, M., Kvasnica, M.: Real-time implementation of an
explicit MPC-based reference governor for control of a magnetic levitation
system. Control Engineering Practice, Elsevier, ISSN: 0967-0661, vol. 60, pg.
99–105, 2017. (IF: 1.830)

• Drgoňa, J., Klaučo, M., Kvasnica, M.: MPC-Based Reference Governors
for Thermostatically Controlled Residential Buildings. In 54rd IEEE Con-
ference on Decision and Control, Osaka, Japan, vol. 54, 2015,

• Holaza, J., Klaučo, M., and Kvasnica, M.: Solution techniques for multi-
layer MPC-based control strategies (accepted). In Preprints of the 20th
IFAC World Congress, France, pages –, 2017.

The author has also participated on research covering other areas of the control
design, however, the results of that research are not elaborated in this thesis.
Specifically, advances in the area of explicit MPC has been made by exploring
the applicability of the region-less explicit MPC strategy. Results were published
in

• Drgoňa, J., Klaučo, M., Janeček, F., Kvasnica, M.: Optimal control of a labo-
ratory binary distillation column via regionless explicit MPC. Computers &
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Chemical Engineering, Elsevier, ISSN: 0098-1354, vol. 96, pg. 139–148, 2017,
(IF: 2.581).

Furthermore, the author made contributions in the optimal path-planning de-
sign:

• Oravec J., Klaučo, M., Kvasnica, M., Lofberg, J., Computationally Tractable
Formulations for optimal Path Planning with Interception of Targets’
Neighborhoods, Journal of Guidance, Control, and Dynamics, issue 5, vol. 40,
pp. 1221–1230, 2017, American Institute of Aeronautics and Astronautics,
ISSN: 0731-5090, (IF: 1.291)

• Klaučo, M., Blažek, S., Kvasnica, M.: An Optimal Path Planning Problem
for Heterogeneous Multi-Vehicle Systems. International Journal of Applied
Mathematics and Computer Science, ISSN 2083-8492, issue. 2, vol. 26, pg.
297–308, 2016. (IF: 1.037), citations: 1.

Full publication list of the author can be found in the Appendix A, which also
includes conference publications related to the topics of this thesis as well other
research areas.

1.2.2 Thesis Outline
This thesis is structured into two main parts. The first part is devoted to the
theoretical contributions and the second part discusses experimental results
and simulation-based case studies. In the theoretical part, we start with the
preliminaries. The general optimization is introduced in the Chapter 2, which
is followed by the introduction of model predictive control in the Chapter 3.
Next, we will discuss the reference governors based on model predictive control.
The Chapter 4 establishes the problem statement of the MPC-based reference
governor. Moreover, this chapter includes three main sections, where particular
MPC-RG control problem formulations are addressed. In the Section 4.1, we
discuss closed-loop system involving a set of PID controllers. The Section 4.2
focuses on a closed-loop model involving the on/off controller. Finally, the
Section 4.3 addresses the problem of MPC-RG for a case of a closed-loop model
involving several local MPC strategies.

The second part of the thesis discusses the applications of proposed theoret-
ical MPC-RG formulations. The first case study, in the Chapter 5 introduces
experimental results involving the process of a magnetically suspended ball,
where the MPC-RG is implemented as an explicit MPC controller. Next, in the
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Chapter 6 we focus on a energy-intensive system, the boiler-turbine unit, where
we show how the MPC-RG improves the behavior of three decoupled PI loops
stabilizing the plant. Finally, the Chapter 7 presents a simulation-based case
study involving optimizing the behavior of thermostatically controlled temper-
ature inside a building. Conclusions and future research topics are addressed in
the Chapter 8.
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Part I

Theory





CHAPTER 2

Optimization

An overview of optimization is addressed in this chapter. In the Section 2.1,
we introduce three key types of optimization problems. We cover the standard
formulation of linear and quadratic programming problems. The MPC formula-
tion and as well as MPC-based reference governors must be transformed into
these standard forms of linear or quadratic problems so that they can be solved
via available techniques. We also cover a mixed-integer optimization problem,
which arises when considering MPC-based governors supervising relay-based
closed-loops. Next, in the Section 2.2 we discuss solution techniques to obtain
the optimal solutions to aforementioned optimization problems.

2.1 Types of Optimization Problems
A general optimization problem is stated as

min
z

hobj(z) (2.1a)

s.t. hineq,i(z) ≤ 0, ∀i ∈ Nmineq
1 , (2.1b)

heq,j(z) = 0, ∀j ∈ Nmeq
1 , (2.1c)

where the vector z ∈ Rm denotes the optimization variable, hobj(z) is the objec-
tive function, and hineq,i(z), heq,j(z) are constraint functions. Scalars mineq, and
meq represents the number of inequality constraints and equality constraints,
respectively. Based on the type of the objective function (2.1a) and functions
hineq,i(z), heq,j(z), we distinguish between several classes of the optimization
problems.

Firstly, we differentiate between convex optimization problems and non-convex.
The main advantage of convex optimization problems over the non-convex
problems is the guaranteed presence of unique global optima z?. Problems are
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convex, if and only if the objective function and all constraint functions are
convex. Particular optimization problems are discussed in subsequent sections.
For more details about any of mentioned class of optimization problems, we
direct the reader to [Boyd and Vandenberghe, 2009, Nocedal and Wright, 2006].

2.1.1 Linear Programming
When the objective function, as well as the constraint functions, are affine, we
refer to such an optimization problem as a linear optimization problem (LP).
Linear programming problems are usually written in the matrix form

min
z

cᵀz + d (2.2a)

s.t. Aineqz ≤ bineq, (2.2b)

Aeqz = beq, (2.2c)

where z ∈ Rm is the vector of optimization variables. Next, c ∈ Rm, d is a scalar,
Aineq ∈ Rmineq×m, bineq ∈ Rmineq , Aeq ∈ Rmeq×m, and beq ∈ Rmineq are constants of
the LP. The LP is a convex optimization problem.

2.1.2 Quadratic Programming
The quadratic optimization problem (QP) differs from the LP in the objective
function. Specifically, we cast the quadratic optimization problems as follows

min
z

zᵀHz + cᵀz + d (2.3a)

s.t. Aineqz ≤ bineq, (2.3b)

Aeqz = beq, (2.3c)

with the vector z ∈ Rm being the decision variable. The matrix H ∈ Rn×n

determines the convexity of the optimization problem. If H � 0, then the
optimization problem in (2.3) is a convex problem, hence it solution converges
to a unique optimum.

2.1.3 Mixed-Integer Programming
Presented formulations in Section 2.1.1 and 2.1.2 assume that the optimization
variable z is real. Here, we split the optimization variable z to a vector of real
variables and to a vector of binary variables, specifically,

z =
[
zᵀr zᵀb

]ᵀ
, (2.4)
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where zr ∈ Rmr , zb ∈ {0, 1}mb , and mr + mb = m. In this thesis, we will deal
with mixed-integer (MI) optimization problems with linear constraints and
with linear (MILP) or quadratic (MIQP) objective function. Formally, these MI
problems can be stated as

min
zr,zb

hobj(zr, zb) (2.5a)

s.t. Aineq,rzr +Aineq,bzb ≤ bineq, (2.5b)

Aeq,rzr +Aeq,bzb = beq, (2.5c)

zb ∈ {0, 1}mb (2.5d)

with Aineq,r, Aineq,b, Aeq,r, and Aeq,b of real matrices of appropriate size. If the
optimization problem (2.5) is casted as an MILP, then the objective function is

hobj(zr, zb) = cᵀr zr + cᵀbzb + d, (2.6)

while for an MIQP,

hobj(zr, zb) = zᵀr Hrzr + zᵀbHbzb + cᵀr zr + cᵀbzb + d. (2.7)

By including the binary constraint (2.5d), the problem (2.5) becomes non-convex,
which makes it more difficult to solve then LP/QP. Further reading material
on the topic of the mixed-integer programming can be found in [Conforti et al.,
2014].

2.2 Solutions Techniques
In this section we briefly discuss the solutions techniques to aforementioned op-
timization problems. We will focus on the traditional optimization techniques,
denoted as online optimization and we will elaborate on the parametric opti-
mization as well. We will not cover the method in detail, since it is not the topic
of this thesis.

2.2.1 Online Optimization
By the term online optimization we mean that the optimization problem is
numerically solved, hence obtaining the optimal value of decision variables.
The optimization problems are solved using one of many algorithms which
largely depends on formulating the KKT conditions.

The best known algorithms for obtaining the optimal solution to QP and LP is
the Active-Set Method and the Interior-Point Method. For the LP we can employ the
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Simplex Method to find the optimum. Solving this class of optimization problems
is fairly easy, and it can be done even for a large number of decision variables in
reasonable time, by employing state-of-the-art solvers, like GUROBI, CPLEX,
and MOSEK. On the other hand, solving the MILP/MIQP is more time con-
suming. The brute-force way to solve MI problems is to enumerate all feasible
combinations of the binary variable and then solve corresponding LP/QP via,
e.g., Active-Set. Then, the optimal combination of binary variable will be chosen
such that the value of the objective function is as small as possible. Since there
are nb variables, the worst case scenario is to solve 2nb local LPs/QPs. However,
more effective ways exist to solve the MILP and MIQP problems. Software
tools like GUROBI1, CPLEX2, and MOSEK3 utilize methods like Branch&Bound
and Branch&Cut algorithms, which allow for faster solution of the MI problem
without the need of exploring all of the combinations of binary variable.

2.2.2 Parametric Optimization
We will discuss the principle of the parametric optimization on the quadratic
programming (2.3). Consider a QP4 into

min
z

zᵀHz + θᵀFz + cᵀz (2.8a)

s.t. Aineqz ≤ bineq + Eθ, (2.8b)

where z ∈ Rm is the vector of decision variables and θ ∈ Rnθ is a free parameter.
In connection with the MPC, the θ parameter is usually an initial condition
or a measurement of a process variable. Next, H , F , c, Aineq, bineq and E are
matrices and vectors of constants of appropriate sizes. Naturally, if the θ would
be given, the problem (2.8) translates back to the QP form in (2.3). In the
parametric optimization, however, the parameter is not known a priori. Here,
the solution to the problem is not a specific value z?, but an explicit function of
all possible values of θ, which satisfy the constraint (2.8b). The optimal solution
si denoted as z?(θ). Once the z?(θ) is constructed, the optimal value of the
decision variable is obtained by a mere function evaluation at the given value
of θ variable. Note, that parametric solution and subsequent evaluation of z?(θ)
for given θ is equivalent to the online solution. The parametric formulation
of the optimization problem can be extended to accommodate the quadratic
objective function as well as mixed-integer cases. Depending on the structure

1www.gurobi.com
2www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
3www.mosek.com
4The equality constraints can be removed from the optimization problem by taking the nullspace

of the matrix Aeq and some particular solution for z in (2.2c)

www.gurobi.com
www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
www.mosek.com
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of the original problem, the properties of the resulting z?(θ) changes. In case
of LP and QP, the z?(θ) is in the form of a continuous piecewise affine (PWA)
function, while in case of the MILP and MIQP the resulting optimizer can be
discontinuous PWA function. Specifically,

LEMMA 2.1 (BEMPORAD ET AL. [2002], BORRELLI [2003]). Consider the para-
metric quadratic program in (2.8). Then the optimizer z? = κ(θ) is a piecewise
affine (PWA) function of the vector of parameters, i.e.,

κ(θ) =





α1θ + β1 if θ ∈ R1
...

αnRθ + βnR if θ ∈ RnR

. (2.9)

where

Ri = {θ | Γiθ ≤ γi} i = 1, . . . , nR (2.10)

are polyhedral regions and nR denotes the total number of regions. �

In simple terms, Lemma 2.1 states that the optimal solution to (2.8) for a partic-
ular value of the parameter θ can be obtained by simply evaluating the PWA
function in (2.9). This can be done in various ways. The simplest one is to use
the so-called sequential search. Here, we go through each i = 1, . . . , nR, checking
whether θ ∈ Ri. This can be done by testing whether Γiθ ≤ γi holds. If θ is
contained inRi, the optimal value of z? is given by z? = αiθ+ βi and the proce-
dure can be aborted. Otherwise the counter i is incremented by i = i+ 1 and
the next region is tested. Trivially, the runtime of such a sequential procedure
is O(nR). More efficient evaluation algorithms exist, e.g. the binary search tree
procedure of Tøndel et al. [2003], which is schematically depicted in the Fig. 2.1.
These, however, require additional preprocessing effort. Finally, we remark that
the parametric representation of the optimizer in (2.9) can be obtained off-line
by applying parametric programming solvers [Oberdieck et al., 2016a], which
are available, e.g., in the Multi-Parametric Toolbox [Herceg et al., 2013], or in
the POP toolbox [Oberdieck et al., 2016b].

The practical implication of the parametric solution is the ability to use tech-
niques of the optimal control in places, where online-solvers can not be imple-
mented. We may mention a low-level hardware like micro-controllers, which
are unable to accommodate complex algorithms like Active-Set [Kalúz et al.,
2015]. There are however several disadvantages to the parametric programming,
mainly the complexity of the obtain the parametric solution or the memory de-
mands for storing the optimizer z?(θ). Further reading material on this topic
can be found in [Borrelli et al., 2015, Kvasnica, 2009, Bemporad et al., 2002].
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Figure 2.1: Binary search tree.

2.3 Concluding Remarks
This chapter was devoted to the presentation of the optimization problems.
We have presented linear programming, quadratic programming, and mixed-
integer programming. These problems are directly linked to the model predic-
tive control strategy, which is shown in the next chapter. The MPC is formulated
as an optimal control problem, which is then translated into an LP, QP, MILP or
MIQP problem, to be solved. In this thesis, we use both approaches to solving
MPC problems. Further details about particular applications of the optimization
can be found in case studies which are discussed in Part II of this thesis.



CHAPTER 3

Model Predictive Control

The main principle of the model predictive control strategy is to choose optimal
control inputs while predicting the future behavior of the plant based on the
current measurements of process variables. The future behavior is predicted
over a time frame called the prediction horizon. Repeated solving an optimiza-
tion problem obtains the optimal control actions at every time instant. To such
a scheme we often refer to as a receding horizon policy [Maciejowski, 2002,
Mayne et al., 2000]. Naturally, the topic of the MPC is widely studied by many
researchers in connection with various fields [Mayne, 2014]. Theory presented
in this chapter of the thesis is inspired mainly by work of [Pannocchia and Rawl-
ings, 2003, Shead et al., 2009, Muske and Badgwell, 2002] in terms of the MPC
formulations and especially in connection with offset free control strategies.

These optimization problems are of various nature, depending on the type of
the plant we desire to control or depending on the hardware where the control
actions are evaluated. In this chapter, we will present the control problem
formulations if we assume that the plant is controlled solely by the MPC. To
such a setup we will refer to as a Direct-MPC scheme. In every case of the MPC
design, a knowledge of the plant model is required. Naturally, we know of
several types of model, which can be used in the synthesis of the optimization-
based controllers.

Despite the choice of the plants’ model, the structure of the MPC controller
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remains the same, in general, we can cast it as follows

min
U

`N(xN ) +
N−1∑

k=0
` (xk, yk, uk) (3.1a)

s.t. xk+1 = f(xk, uk), k ∈ NN−1
0 (3.1b)

yk = g(xk, uk), k ∈ NN−1
0 (3.1c)

uk ∈ U , k ∈ NN−1
0 (3.1d)

xk ∈ X , k ∈ NN−1
0 (3.1e)

yk ∈ Y, k ∈ NN−1
0 (3.1f)

x0 = x(t). (3.1g)

Here, constraints (3.1b) and (3.1c) represent the model behavior based on which
the predictions are made. Next, we enforce limitations on manipulated, state
and process variables via (3.1d)-(3.1f). Sets U , X , and Y can be of arbitrary
nature, but we usually restrict signals u, x and y by a box constraint, expressed
as

umin ≤ uk ≤ umax, (3.2a)

xmin ≤ xk ≤ xmax, (3.2b)

ymin ≤ yk ≤ ymax. (3.2c)

The quality criteria of the control performance are utilized in the objective
function (3.1a). The optimization problem (3.1) is initialized by a measurement
of the state variables x(t) in (3.1g). The vector of initial conditions may differ
from particular choice of the prediction model in (3.1b) or by choice of the
objective function. The solution of the aforementioned optimization problem
yields an optimal sequence of control inputs

U =
[
uᵀ0 . . . uᵀN−1

]ᵀ
. (3.3)

In the closed-loop implementation, we apply to the process the first element of
the sequence u0 and we disregard the rest of the sequence

[
uᵀ1 . . . uᵀN−1

]ᵀ
. In

the next sampling instant, we resolve the (3.1) with a new initial condition x0.
Such an implementation is called Receding Horizon Control (RHC).

Depending of the choice of the objective function (3.1a) and the choice of the
functions f(·), g(·) we may arrive to various types of optimization problems.
First, we will focus on the types of the objective function. Terms of the objective
function are expressed via weighted norm ‖Qz‖p, where p = {1, 2,∞}, Q � 0,
and z ∈ Rm. The first term of the objective function, the terminal penalty, is an
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optional extension of the performance criteria. The choice of the value p then
translates the weighted norm to specific expressions

‖Qz‖1 =
m∑

i=1
|Qizi|, (3.4a)

‖Qz‖2 = zᵀQz, (3.4b)

‖Qz‖∞ = max (|Qizi|) . (3.4c)

From (3.4) results that if we choose p = {1,∞} the resulting objective function
will be linear in the optimization variables, and if p = 2 we will arrive at
quadratic objective function.

In this thesis we will deal with tracking types of the MPC, hence we will consider
following structure of the objective function (3.1a)

`(yk, uk) = ‖Qy (rk − yk) ‖p + ‖Qdu∆uk‖p, (3.5)

where ∆uk = uk − uk−1. The first term drives the output yk to the k−th step of
the user defined reference rk. The second term penalizes the control increments,
which introduces integral action to the closed-loop. Such property is desired
when the steady state offset needs to be removed.

The prediction model changes the structure of the constraints. In general, we
can either choose a nonlinear expressions for the model behavior, or we consider
a linear models. The first case results in a non-linear optimization problem,
while the latter choice results in quadratic programming or linear programming.

Lastly, sets U , X , Y are usually chosen as polyhedra. Thus they are represented
by finitely many linear inequalities. However, these set can also include non-
linear expressions, like an ellipsoidal structure or even non-convex shapes. It is
often desired to structure the MPC towards an LP or a QP with convex linear
constraints. Such classes of optimization problem can be easily solved via
several state-of-the-art tools.

3.1 Linear Prediction Models
This section presents standard prediction models. First, we will show the
structure of the MPC if an input-output model in the form of a transfer function
is used. Second, we focus on a state space prediction model. Both of these
formulations are later utilized to design the MPC-based reference governor.
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3.1.1 Input-output Prediction Model
The simplest choice for the plant model can be a transfer function. Such a model
is usually used when we are dealing with SISO systems. In order to combine
the transfer function based model

H(z−1) =

m∑

j=0
bjz
−j

n+1∑

i=0
aiz
−i
, (3.6)

with the MPC structure in (3.1) we require that the prediction model is in the
form of the difference equation similar to (3.1b) or (3.1c). Naturally, if the
transfer function is proper, i.e., m ≤ n, then the model in (3.6) can be converted
into the time domain, yielding

y(t+ Ts) = 1
a0


−

n∑

i=1
aiy
(
t− (i+ 1)Ts

)
+

m∑

j=0
bju
(
t− (j + 1)Ts

)

 . (3.7)

To simplify the notation, lets abbreviate the right hand side of (3.7) by

y(t+ Ts) = fy(y(t), . . . , y(t− nTs), u(t), . . . , u(t−mTs)). (3.8)

In order to use the difference equation in (3.8) as a prediction equation, we
shift the sequence by a one sample time instant forward. The MPC problem
formulation is then given as

min
u1,...,uN

`N(yN+1)
N−1∑

i=0
`io (yk, uk) (3.9a)

yk+1 = fy(yk, . . . , yk−n, uk, . . . , uk−m), k ∈ NN−1
0 , (3.9b)

uk ∈ U , k ∈ NN−1
0 , (3.9c)

yk ∈ Y, k ∈ NN−1
0 , (3.9d)

θ0 = θ(t), (3.9e)

where the function fy(·) in (3.9b) is the prediction equation based on (3.8). The
problem (3.9) is initialized by vector of theta given as

θ(t) =
[
y(t) . . . y(t− nTs) u(t− Ts) . . . u(t−mTs)

]ᵀ
. (3.10)

Since the one-step-ahead prediction of the output y(t + Ts) depends on the
sequence of the current and past inputs and measured outputs respectively, the
vector of initial conditions contains previous instances of y and u in accordance
with (3.7).
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The objective function (3.9) given as

`io(yk, uk, rk) = ‖Qry (rk − yk) ‖2 + ‖Qu (∆uk) ‖2, (3.11)

consists of two terms, the first penalizes the control error in each step of the
prediction and the latter one penalizes the differences in control actions ∆uk =
uk − uk−1. The vector θ(t) also consist of the term u(t− Ts), which is required
for the initialization of the ∆u1 in (3.11).

Even though the model predictive control algorithms originated in the dynamic
matrix control (DMC) Cutler and Ramaker [1979], later known as Generalized
Predictive Control (GPC), which was based on the input-output models Cama-
cho and Bordons [2007], the formulation (3.9) has several key limitations. First,
we do not have access to the states, hence we also can not include constraints on
these signals. Second, the vector of initial parameters θ(t) can be of significant
length for higher order systems. This however has no direct consequence if we
consider implicit solution to the optimization problem. On the other hand the
length of θ has negative impact on the complexity of the explicit solutions to the
QPs. The explicit model predictive control strategy is covered in more detail in
the Section 3.3.

3.1.2 State Space Prediction Model
Second type of widely used MPC formulations stems from the utilization of
state space models. Formally the state space model in discrete is expressed as

x(t+ Ts) = Ax(t) +Bu(t), (3.12a)

y(t) = Cx(t) +Du(t), (3.12b)

where states are denoted as x ∈ Rnx , measured signals are denoted by y ∈ Rny

and by u ∈ Rnu is represented the vector of manipulated variables. Next, A ∈
Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu . The variable Ts represents
the sampling time.

In fact, most of scientific works in the field of MPC strategies are based on linear
state space models Prasath and Jørgensen [2009], Shead et al. [2010], Rawlings
and Mayne [2009]. The control problem can be casted in several different ways.
In this thesis we will focus on a formulation, which removes the offset, i.e.
manages to track the reference. More on the offset-free reference tracking can be
found in the next Section 3.2. The control problem in form of an optimization
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problem is expressed as follows

min
u0,...,uN−1

‖QNxN‖p +
N−1∑

k=0
`ss (xk, yk, uk) (3.13a)

s.t. xk+1 = Axk +Buk, k ∈ NN−1
0 (3.13b)

yk = Cxk +Duk, k ∈ NN−1
0 (3.13c)

umin ≤ uk ≤ umax, k ∈ NN−1
0 (3.13d)

xmin ≤ xk ≤ xmax, k ∈ NN−1
0 (3.13e)

ymin ≤ yk ≤ ymax, k ∈ NN−1
0 (3.13f)

x0 = x(t), u−1 = u(t− Ts). (3.13g)

where the objective function (3.13a) is given as

`ss(·) = ‖Qry (rk − yk) ‖2 + ‖Qu (∆uk) ‖2, (3.14)

in which again the last term is defined as ∆uk = uk − uk−1. If we assume that
the design model given by (3.13b) and (3.13c), is identical to the process, then
using such an MPC strategy will achieve offset-free tracking of given reference.
Of course, this assumption is rarely valid, hence different techniques must be
considered in order to make the MPC track the reference precisely. The next
section will cover such a control strategy.

3.2 Offset-Free Control Scheme
As indicated in the previous section, we rarely arrive at the situation, when the
design model is identical to the process. Moreover, even if this is the case, the
process is usually affected by unmeasured disturbances, which introduces the
offset to the tracking problem. In order to mitigate this situation, we extend
the design model by a set of state and output disturbance signals, which are to
be estimated at every sampling instant. This control scheme is often called as
disturbance modeling, and it is well documented in several publications Muske
and Rawlings [1993], Muske [1997], Muske and Badgwell [2002].

Since the offset-free control strategy plays a vital role in this thesis, lets establish
the procedure. First, consider an extended state space model in discrete time

xk+1 = Axk +Buk + Exdk, (3.15a)

yk = Cxk +Duk + Eydk, (3.15b)

dk+1 = dk, (3.15c)
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where the unmeasured disturbances d enter into (3.15a) and (3.15b) via a user-
specified matrices of appropriate sizes Ex, Ey, respectively. Moreover, the distur-
bances are assumed to have constant dynamics, cf. (3.15c). Define the estimated
extended state vector as

x̂e =
[
x̂k
d̂k

]
, (3.16)

where x̂ is the estimate of the state vector of the original model in (3.13), and
d̂ is the estimate of the unmeasured disturbances. The number of these distur-
bances can vary, depending on the controller process. Usually, as suggested
by many scientific works, e.g. by [Borrelli et al., 2015, ch. 13.6] the number of
disturbances should coincide with the number of controller outputs. The choice
of matrices Ex, Ey depends also on the controller process. Usually, we set the
matrix Ex as a zero matrix if the process does not contain unstable open loop
dynamics Pannocchia [2003].

Next, we have two choices of obtaining the estimate of the vector xe,k. Either
we use a standard Luenberger observer, or we consider a time-varying Kalmar
Filter. The first choice, the Luenberger observer is implemented via a state space
model

xe,k+1 = Aexe,k +Beuk + L (ye,k − ym,k) , (3.17a)

ye,k = Aexe,k +Deuk, (3.17b)

where the system matrices are defined as follows

Ae =
[
A Ex

0 I

]
, Be =

[
B

0

]
, (3.18a)

Ce =
[
C Ey

]
, De =

[
D
]
, (3.18b)

and the variable ym(t) is the vector measurements taken from the process. The
gain L is a static gain obtain usually via a pole placement method. In Pannocchia
and Rawlings [2003] is also suggested that L can be calculated with respect
to the stochastic properties of the state and output signals, i.e., to use a static
Kalman Filter. The main advantage of using static gain in the observer is the
simple structure of the estimator, hence easier implementation. Naturally, if
such an approach of state estimation is used in connection with a non-linear
model, the actual control performance can be negatively affected if we move
away from the linearisation point, at which the model in (3.15) was obtained.
In order to mitigate this negative impact, we propose to use a time-varying
Kalman Filter, which has better convergence properties even if we move away
from steady state.
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The time-varying Kalman filter procedure consists of two phases. The first
phase is the prediction phase which is followed by the update phase. In both
phases the index k|k represents current estimate of the individual variables. The
prediction phase consist of two equations, namely

x̂e,k|k−1 = Aex̂e,k−1|k−1 +Beuk, (3.19a)

Pk|k−1 = AePk−1|k−1A
ᵀ
e +Qe (3.19b)

where x̂e,k|k−1 is the predicted state estimate based on the previous time instant,
and Pk|k−1 is the predicted value of the covariance matrix. The matrices Ae, Be,
Ce, De are given as per (3.18).

The consecutive step in the estimation algorithm is the update phase, repre-
sented by

εk = (ym,k − yL)−
(
Cex̂e,k|k−1 +Dewk

)
, (3.20a)

Sk = CePk|k−1C
ᵀ
e +Re, (3.20b)

Lk = Pk|k−1C
ᵀ
e S
−1
k , (3.20c)

x̂e,k|k = x̂e,k|k−1 + Lkεk, (3.20d)

Pk|k = (I − LkCe)Pk|k−1. (3.20e)

Here, the estimation error εk is calculated based on the plant measurements ym,k

per (3.20a). Since the estimator runs in deviation variables, the linearisation
point yL must be substracted from the measurement. The time-varying estimator
gain Lk is then calculated by (3.20b) and (3.20c). This gain is subsequently used
to obtain the current estimate of the state variables x̂e,k|k via (3.20d). At the end
of the update phase, the covariance matrix P is updated. The tuning matrix Re

should be chosen with respect to the stochastic properties of the output signals.

The estimates of x̂e and d can then be extracted from x̂e by

x̂k = Mxx̂e,k|k, d̂k = Mdx̂e,k|k, (3.21)

where

Mx =
[
Inx 0

]
, Md =

[
0 Ind

]
. (3.22)

Here, nx is the number of states of the closed-loop system in (3.12) and nd is the
number of disturbances.

The MPC design directly follows from the extended state space model (3.18),
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specifically

min
U

`N(xN ) +
N−1∑

k=0
`ss (xk, yk, uk) (3.23a)

s.t. xk+1 = Axk +Buk + Edk, k ∈ NN−1
0 (3.23b)

yk = Cxk +Duk + Fdk, k ∈ NN−1
0 (3.23c)

umin ≤ uk ≤ umax, k ∈ NN−1
0 (3.23d)

xmin ≤ xk ≤ xmax, k ∈ NN−1
0 (3.23e)

ymin ≤ yk ≤ ymax, k ∈ NN−1
0 (3.23f)

x0 = x̂(t), u−1 = u(t− Ts), d0 = d̂(t). (3.23g)

The objective function `ss remains the same as in (3.14). In many situations we
do not have access to the future value of the disturbance signal, hence in the
MPC design we often substitute the term dk for d0 in (3.23b) and (3.23c).

ProcessDirect-MPC
u

Estimatorx̂e

ymr

Figure 3.1: Control scheme of a MIMO PID control setup.

The whole procedure of the offset-free control scheme is visualized in the block
diagram on the Fig. 3.1. The Direct-MPC block represents the optimization
problem given in (3.23) and the Estimator block refers to either Luenberger
observer or to the time-varying Kalman Filter.

3.3 Explicit MPC Concepts
Once the MPC problem is formulated as a quadratic optimization problem (QP),
obtaining optimal control inputs amounts to solving the QP for the particular
initial conditions. In essence there are two ways how to achieve this: the on-line
(implicit) approach and the off-line (explicit) approach. In the on-line approach
the QP is solved on-line at each sampling instant for a particular initial condition
using numerical optimization methods. In the off-line approach the QP is solved
for all feasibile initial conditions. By using parametric programming the optimal
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solution can be obtained as a function which maps initial conditions onto
optimal control inputs. Then, on-line, the optimal control inputs are obtained
by merely evaluating such a mapping function. It is worth emphasizing that
both approaches yield the same optimal control moves and are thus, from a
mathematical point of view, equivalent.

However, the off-line approach (see Section 2.2.2) offers one crucial advantage:
the on-line evaluation of the optimal map is usually faster and simpler compared
to solving the QP on-line. Therefore such an approach is ideal when aiming for
a fast and simple implementation of the MPC strategy to devices such as PLCs.

The idea of explicit MPC as popularized mainly by Bemporad et al. [2002] is
to use the parametric representation of the optimal solution to (2.8) to abolish
the main limitation of traditional on-line methods in terms of long computation
times. Specifically, in explicit MPC the idea is to replace on-line optimization
by evaluation of the PWA solution in (2.9). If the number of regions, i.e., nR,
is low (say below 100), obtaining U?(θ) from (2.9) can be done in the range
of microseconds even on a very simple implementation hardware. Recently,
the topic of region-free explicit MPC has resurfaced [Kvasnica et al., 2015]
originally suggested by Borrelli et al. [2010], hence the explicit MPC can be
applied to process with larger number of parameters. Presented approach has
been experimentally tested on the control of the reflux ratio in the distillation
column and findings has published in [Drgoňa, Klaučo, Janeček, and Kvasnica,
2017].

An another, and probably even more prominent, advantage of the parametric
solutions in (2.9) is that their implementation is division free. This means that
identification of U?(θ) only requires additions and multiplications. No division
operations are required. This mitigates potential implementation problems e.g.
due to buffer overflow or division-by-zero scenarios.

Once optimal solution U?(θ) via explicit MPC is obtained, to the process is
applied only the first component of U?(θ), usually denoted as u?. This follows
the receding horizon policy.

As s final remark, it should be mention that the parameter θ does not necessarily
consist only from the state measurement. Depending on the MPC problem
formulation, the parameter theta is extended by several other variables. When
reference tracking is achieved, then the parameter theta is extended by the
reference values as well. Same goes for the measured/estimated disturbances.
Furthermore, when the ∆u variable is introduced to the MPC formulation, θ
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parameter must be extended by variable denoted as u(t− Ts), as suggested by
e.g. (3.10).

3.4 Concluding Remarks
In this chapter was presented well known theory of the model predictive control
strategy. Formulations based on difference equations and state space equations
were presented. Individual MPC formulations were modified to enforce the
tracking objective. Moreover, the approach fo disturbance modeling or offset-
free control has been discussed to further strengthened the ability of the MPC
to remove any offset in reference tracking.

If the collection of presented optimal control strategies would be implemented
to control processes directly, one would gain significant improvements over
traditional strategies. In the next chapter we will present the alternative, called
reference governor control schemes. In these schemes we allow to keep current
control infrastructure, on top of which an optimization layer improves the total
performance.
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CHAPTER 4

MPC-based Reference Governors

The reference governor is a control strategy which objective is to modify the
user given reference r in order to improve the quality and safety of a system,
which already consist of a primary controller. We will refer to this control
strategy as an MPC-based reference governor (MPC-RG). This secondary layer
of control serves as a supervisory layer to the primary control layer, cf. Fig. 4.1.
The primary control layer consists of low level controllers, which provides
the actual control inputs and stabilizes the process and provide some tracking
performance.

PlantPrimary Controllers

MPC-RG Estimator
yx̂

w

u

r

primary/inner layer

supervisory/outer layer

Figure 4.1: Conceptual diagram of the optimization-based reference governor
scheme.

Objectives of the reference governor are to improve tracking performance while
guaranteeing rigorous constraint satisfaction. The objectives are achieved by
optimizing setpoints for the primary layer of controllers. Note, that user will
not longer supply setpoints to the primary controllers, but it will be provided to
the reference governor, which will then calculate setpoints for the primary layer.
Such an arrangement has two key advantages. First, since the setpoints fro the
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primary layer are provided in optimal fashion, second if the MPC-RG fails to
provide the setpoint, the inner layer still maintains the stability of the operation.

The reference governor is formulated as an MPC-based control strategy. The
MPC-based reference governor can be formally given as

min
W

`N(xN ) +
N−1∑

k=0
` (xk, yk, uk, wk) (4.1a)

s.t. xk+1 = f(xk, uk), k ∈ NN−1
0 , (4.1b)

yk = g(xk, uk), k ∈ NN−1
0 , (4.1c)

uk = h(xk, wk), k ∈ NN−1
0 , (4.1d)

uk ∈ U , k ∈ NN−1
0 , (4.1e)

xk ∈ X , k ∈ NN−1
0 , (4.1f)

yk ∈ Y, k ∈ NN−1
0 , (4.1g)

wk ∈ W, k ∈ NN−1
0 , (4.1h)

x0 = x(t) (4.1i)

where u ∈ Rnu , x ∈ Rnx , y ∈ Rny , are control variables, system states, process
variables, respectively. By r ∈ Rny is denoted the user defined reference and
the w ∈ Rny , represents the set point for the primary layer of controller. The
optimization is solved to obtain the sequence

W =
[
wᵀ0 . . . wᵀN−1

]ᵀ
(4.2)

while enforcing constraints (4.1b)-(4.1h). The main difference between the MPC-
based reference governor in (4.1) and the MPC in (3.1) is the prediction model
h(xk, uk, wk) in (4.1d) which represent the model of the primary controller.
Furthermore, we allow to constrain also the setpoint w in (4.1h).

REMARK 4.1. Without loss of generality we assume, that the state of the process
can be directly measured, as per the initial condition (4.1i). However, the states
are often abstract, so they can not be measured directly, hence we include the
estimator in the control scheme, cf. Fig 4.1. This estimator can be design as a
time-varying Kalman Filter as discussed in the Section 3.2. �

Challenges in formulating the MPC-based reference governor lies in the type
of the h(·) in (4.1d). In subsequent sections, we will show how the MPC-based
governor can be constructed if the primary layer consist of

1. PID controllers, discussed in the Section 4.1 and published in [Klaučo
et al., 2017, Klaučo and Kvasnica, 2017],
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2. relay-based controllers, discussed in the Section 4.2, and published in [Dr-
goňa et al., 2015],

3. local MPC controllers, elaborated in the Section 4.3, and published in Ho-
laza et al. [2017].

In all three cases we will first derive the model of the primary layer with the
process, i.e., the closed-loop system, hence we will identify equations f(·), g(·),
and h(·). This model will then serve as a prediction model for the MPC-based
reference governor.

4.1 Systems with Set of PID Controllers
A situation where the process is controlled primary by a set of PID controllers
is very common in the industry. This section is devoted to the mathematical
modeling of such closed-loop systems which consists of a process and an inner
controller in a form of a set of PID controllers. We assume that the process is
described by the linear model (3.12). Overall scheme of such a control strategy
can be seen on the Fig. 4.2.

PlantPIDs
ue−

Reference
Governor

w y

r

Closed-loop system

Figure 4.2: Closed-loop system with MPC-based reference governor control
strategy.

Depending on the particular choice of the process modeling, the structure of
the MPC-RG will change. In this chapter we will formulate the MPC-based
governor control problems for three main cases. First, in the Section 4.1.1,
we consider a SISO process characterized by a transfer function. Next, the
Section 4.1.2 is devoted to two MIMO cases.



30 MPC-based Reference Governors

4.1.1 SISO Case
If the controlled system has one input and a single output, we can describe this
system by a transfer function of the form

G(s) = Y (s)
U(s) , (4.3)

where U(s) represents the Laplace transform of manipulated variable u(t) in
the s-domain, and the variable Y (s) is the s-domain counterpart of the output
signal y(t). For such a system exist a PID controller in a form of a single transfer
function

R(s) = U(s)
E(s) , (4.4)

in which E(s) is the Laplace transform of the control error e(t) defined as
e(t) = w(t)− y(t). By w(t) we denote the set point value for the PID controller.
Since we are dealing with SISO case, then w(t), e(t), u(t), y(t) ∈ R If we apply
the rules of transfer function algebra, we obtain the model of the closed-loop
system given by

Gcl(s) = Y (s)
W (s) = G(s)R(s)

1 +G(s)R(s) . (4.5)

In the MPC design a discrete time version of the model is considered, hence
the transfer function Gcl(s) from (4.5) is discretized. We can use z−transform to
obtain the discrete time version of Gcl(s), which we will denote as Hcl(z−1) for
a given sampling instant Ts. Furthermore, the numerator and the denominator
of Hcl(z−1) can be written as polynomials of z−1, leading to

Hcl(z−1) = Y (z−1)
W (z−1) =

m∑
j=0

bjz
−j

n+1∑
i=0

aiz−i
. (4.6)

If the discrete time transfer function is proper, i.e., m ≤ n, we can rewrite the
transfer function into a recursive definition as follows

y(t+ 1) = 1
a0


−

n∑

i=1
aiy(t− i+ 1) +

m∑

j=0
bjw(t− j + 1)


 . (4.7)

The model in (4.7) represents exactly the prediction equation as in the Sec-
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tion 3.1.1. The MPC-based reference governor has following form

min
u1,...,uN

N∑

k=1
`io (yk, uk, wk) (4.8a)

yk+1 = fy(yk, . . . , yk−n, wk, . . . , wk−m), k ∈ NN−1
0 (4.8b)

ymin ≤ yk ≤ ymax, k ∈ NN−1
0 (4.8c)

θ0 = θ(t), (4.8d)

with the objective function

`io(·) = ‖Qry (rk − yk) ‖2 + ‖Qrw (rk − wk) ‖2+
‖Qwy (wk − yk) ‖2 + ‖Qdw (wk − wk−1) ‖2. (4.9)

The objective function is extended by several term compared to the original `io

in (3.11). First term, penalizes the difference between the measured output and
the user-defined reference r. Second term penalizes the enforce convergence
of the shaped reference. Third penalization term provides that the predicted
evolution of the closed-loop system converges to the shaped reference. Last term
dampens the fluctuations in the evolution of the shaped reference throughout
prediction window. The penalty matrices Qry � 0, Qrw � 0, Qwy � 0, and
Qdw � 0 allow the designer to give different priorities to individual properties
of the reference governor.

The vector of initial conditions (4.8d) is for this case is expressed as

θ =
[
y(t) . . . y(t− nTs) w(t− Ts) . . . w(t−mTs) r1 . . . rN

]ᵀ
.

(4.10)

REMARK 4.2. The length of the parameter θ can be decreased byN−1 elements
once we do not provide the future user-defined reference profile. �

The transfer function based prediction equations shown as in (4.7) is suitable to
use if we are dealing with SISO systems. On the other hand, some applications
require the use of state space approach. The state space based modeling can be
easily extended also to a MIMO case, which is covered in the next section.

4.1.2 MIMO Case
In the modeling of the MIMO closed-loop system we must distinguish between
two principal cases. For both cases a closed-loop model is derived using state
space modeling. Findings presented especially in the Section 4.1.2.1 are used to
formulate MPC strategy mentioned in Chapter 6.
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4.1.2.1 Symmetric Case

This case assumes the fact that the number of controlled outputs is equal to the
number of inputs. This also means that the number of set points is coincidental
to the number of outputs. Formally, such a condition is expressed as

ny = nu = nw = p,

where p is the number of PID controllers. Control scheme is visualized in the
Fig. 4.3.
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Figure 4.3: Control scheme of a MIMO PID control setup.

Consider that the plant model is represented by the state space equations
from (3.12). Similarly to the plant model, we can obtain the state space model of
PID controllers R1,...,p(s). The compact representation of such a model can be
expressed as

xr(t+ Ts) = Arxr(t) +Bre(t), (4.11a)

u(t) = Crxr(t) +Dre(t), (4.11b)

where the variable xr denotes the aggregated vector of states of individual PID
controllers, i.e.,

xr =
[
xᵀr,1 xᵀr,2 . . . xᵀr,p

]ᵀ
, (4.12)

where variable xr,1 represents the states of the first PID controller, etc. Since
a PID controller is represented in general by a second order transfer function,
hence xr ∈ R2p.

REMARK 4.3. The construction of the compact state space model of the PID
controllers in (4.11) can be easily extended to accommodate also any polynomial
controllers. The only difference will be increased size of the vector xr in (4.12). �
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In order to derive the state space model of the closed-loop system we must first
formulate an open-loop model. Such a model is easily formed by combing (3.12)
with (4.11), yielding a combined state vector

x̃ =
[
xr

x

]
. (4.13)

Furthermore, the expression for u(t) from (4.11b) is inserted into state equa-
tion (3.12a) and to output equation (3.12b). Then the state space model of the
open-loop system is given as

x̃(t+ Ts) = AOLx̃(t) +BOLe(t), (4.14a)

u(t) = COL,ux̃(t) +DOL,ue(t), (4.14b)

y(t) = COL,yx̃(t) +DOL,ye(t), (4.14c)

where,

AOL =
[
Ar 0
BCr A

]
, (4.15a)

BOL =
[
Br

BDr

]
, (4.15b)

COL,u =
[
Cr 0

]
, (4.15c)

DOL,u = Dr, (4.15d)

COL,y =
[
DCr C

]
, (4.15e)

DOL,y = DDr. (4.15f)

Next, combining the expression for tracking error e(t) which is given as

e(t) = w(t)− y(t), (4.16)

with the equation (4.14c) yields

y(t) =
(
I +DOL,y

)−1
COL,yx̃(t) +

(
I +DOL,y

)−1
DOL,yw(t). (4.17)

After inserting (4.16) and (4.17) into (4.14) we obtain following matrix expres-
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sions

ACL = AOL −BOL
(
I +DOL,y

)−1
COL,y, (4.18a)

BCL = BOL −BOL
(
I +DOL,y

)−1
DOL,y, (4.18b)

CCL,u = COL,u −DOL,u
(
I +DOL,y

)−1
COL,u, (4.18c)

DCL,u = DOL,u −DOL,u
(
I +DOL,y

)−1
DOL,u, (4.18d)

CCL,y =
(
I +DOL,y

)−1
COL,y, (4.18e)

DCL,y =
(
I +DOL,y

)−1
DOL,y, (4.18f)

which are then arranged in a familiar fashion into a full-fledged state space
model of the closed-loop system of the form

x̃(t+ Ts) = ACLx̃(t) +BCLw(t), (4.19a)

u(t) = CCL,ux̃(t) +DCL,uw(t), (4.19b)

y(t) = CCL,yx̃(t) +DCL,yw(t). (4.19c)

Model in (4.19) allows us to simulate responses of the states x̃(t) based on (4.19a),
the evolution of the manipulated variable u(t) in (4.19b) as well as the output
profile y(t) in (4.19c) given the referencew(t). Compared to the transfer function
based approach in Section 4.1.1, we can easily access also control inputs.

The MPC-based reference governor is casted as a constrained finite time opti-
mization problem

min
u0,...,uN−1

`N(xN ) +
N−1∑

k=0
`ss (yk, uk, wk) (4.20a)

s.t. x̃k+1 = ACLxk +BCLwk, k ∈ NN−1
0 (4.20b)

uk = CCL,ux̃k +DCL,uwk, k ∈ NN−1
0 (4.20c)

yk = CCL,yx̃k +DCL,ywk, k ∈ NN−1
0 (4.20d)

umin ≤ uk ≤ umax, k ∈ NN−1
0 (4.20e)

xmin ≤ xk ≤ xmax, k ∈ NN−1
0 (4.20f)

ymin ≤ yk ≤ ymax, k ∈ NN−1
0 (4.20g)

x0 = x(t), u−1 = u(t− Ts), w−1 = w(t− Ts), (4.20h)

with objective function defined as

`ss(·) = ‖Qry (rk − yk) ‖2
2 + ‖Qrw (rk − wk) ‖2

2 + ‖Qwy (wk − yk) ‖2
2+

‖Qdw (wk − wk−1) ‖2
2 + ‖Qdu (uk − uk−1) ‖2

2. (4.21)
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The structure of the objective function in (4.21) is similar to `io(·) in (4.9), except
of the penalization of the control slew rates. Note, that since the manipulated
variable u is no longer the optimization variable, we do not necessarily require
a penalization of this variable in the objective function.

In the next subsection we will focus on a more general case, when the number
of manipulated variables does not coincide with the number of controlled
variables.

4.1.2.2 General MIMO Case

The characteristic of this second principal case is that the number of manipu-
lated variables differs from the number of controlled signals. Here, we must
distinguish between two scenarios. First, if nu < ny then the system is not
fully controllable. Second case is, if nu > ny, then during control may arise a
problem with maintaining the offset-free qualities of the control performance.
However, in the each of these two sub-cases a pre-compensator must be in-
cluded in the control scheme in order to compensate between mismatching
number of control variables and manipulated variables. Such a control scheme
is illustrated in the Fig. 4.4. In such a scheme the individual PID controllers do
not directly provide the control action u(t), however, they provide an auxiliary
control action, denoted as v(t), which is supplied to the pre-compensator. The
actual control action u(t) is provided by the pre-compensator filter. The design
of the pre-compensator filter is usually realized in s-domain [Skogestad and
Postlethwaite, 2005, ch. 3], i.e., as a set of transfer functions, generally denoted
by T(s). The pre-compensator is a matrix of transfer functions given as

T(s) =




T1,1(s) T1,2(s) · · · T1,ny(s)
T2,1(s) T2,2(s) · · · T2,ny(s)

...
. . . . . .

...
Tnu,1(s) Tnu,2(s) · · · Tnu,ny(s)


 . (4.22)

The matrix T(s) can be converted into one state space model, denoted as

xT(t+ Ts) = ATxT(t) +BTv(t), (4.23a)

u(t) = CrxT(t) +DTv(t), (4.23b)

where the variable xT denotes the utilized vector of states, which originates in
converting each of the single transfer function in (4.22). Recall, that signal v(t) is
the actual output from individual PID controllers and the output from this state



36 MPC-based Reference Governors

PlantT(s)

u1

unu

...

R1(s)

Rny(s)

v1

vny

...

y1

yny

...

y

w1

wny

...

Figure 4.4: Control scheme of a MIMO PID control setup, where G(s) represents
the transfer function matrix model of the MIMO system and the pre-
compensator is denoted by the matrix T(s).

space model is the manipulated variable u(t). In order to derive the model of the
closed-loop system with the filter T (s), we will first derive the combined model
of the filter (4.22) and the plant model (3.12). We will substitute the variable u(t)
in the model (3.12) for the expression in (4.23b). Such a substitution results in
an aggregated model

xT(t+ Ts) = ATxT(t) +BTv(t), (4.24a)

x(t+ Ts) = Ax(t) +B (CTxT(t) +DTv(t)) , (4.24b)

y(t) = Cx(t) +D (CTxT(t) +DTv(t)) , (4.24c)

which can be restructured to a matrix form
[
xT(t+ Ts)
x(t+ Ts)

]
=
[
AT 0
BCT A

] [
xT(t)
x(t)

]
+
[
BT

BDT

]
v(t), (4.25a)

y(t) =
[
DCT C

] [xT(t)
x(t)

]
+DDTv(t). (4.25b)

Next, we can treat the model in (4.25) as the main system, which is controlled
by a set of PID controllers and we can apply matrix manipulations as in (4.14)-
(4.19). Now, we have obtained a state space model of the closed-loop system
which also includes a pre-compensator filter. The MPC-based strategy can be
then designed exactly in the same fashion as is expressed in (4.20) with the
objective function (4.21).

REMARK 4.4. The number of states in such a system can increase dramatically
due to the structure of the filter T(s). Such an increase on system states can
negatively effect the complexity of the MPC control strategy. �
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The MPC-based reference governor based on a transfer function modeling
(Section 4.1.1) of the closed-loop system was experimentally applied, and the
results of these experiments are addressed in detail in the Chapter 5. Moreover,
we have also applied the MPC-RG based on the state space model of the closed-
loop system containing three individual PI controllers, and these results are
covered in the Chapter 6.

4.2 Systems with Relay-based Controllers
Relay-based control is also known under the term on-off control or a bang–bang
control. It is one of the oldest types of controllers. The operation of such a
controller is limited to providing either minimum, umin, or maximum, umax,
value of the control action. These min/max values correspond to on/off states
of the relay, since usually the relay controller does not provide the actual control
action. The change between providing the maximum value is triggered by the
measured variable crossing a threshold γ. Depending on particular application,
the maximum value can be applied of the threshold is crossed in the negative
direction and vise-versa. The operation of the relay-based controller is depicted
on the Fig. 4.5. Theoretical formulations presented in this section are adopted

u = umax u = umin

y ≥ w + γ

y ≤ w − γ

Figure 4.5: Relay-based controller.

from [Drgoňa, Klaučo, and Kvasnica, 2015], where specific MPC-RG for on/off
controller was designed to improve the behavior of a thermostatically controlled
temperature in building. Here, in this section we generalized this approach to
an arbitrary on/off controller.

4.2.1 Model of the Relay-based Controllers
The model of the relay based controller, represented by the finite state machine
by Fig. 4.5, can be captured by introducing a binary state variable z ∈ {0, 1}.
Then z = 1 represents the "on" state, or the state when umax is applied, while the
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"off" state corresponds to z = 0. The dynamical evolution of the state z is given
by a state equation

z(t+ Ts) = fz
(
z(t), y(t), w(t)

)
, (4.26)

where z(t) is the current value of the binary state, y(t) is current measurement a
the w(t) is the setpoint provided to the relay-based controller. The state update
function fz(·) is given by

fz
(
z(t), y(t), w(t)

)
=





1 if (z = 1 ∧ ¬ (y ≥ r + γ))∨
(z = 0 ∧ (y ≤ r − γ))

0 otherwise

(4.27)

where the “¬" denotes the logic negation, “∧” is the logic conjunction and “∨”
stands for the logic disjunction. Once the binary state of the thermostat is
available, the value of the manipulated variable provided to the process is given
by

u =
{
umax if z = 1
umin if z = 0.

(4.28)

Note, that the relay-based controller does not have to necessarily switch between
umax and umin. These values may be chosen arbitrarily based on the needs of the
particular technology, they even can be time-dependent.

4.2.2 Reference Governor Synthesis
The synthesis of the MPC-based reference governor presented in this section is
adopted and generalized based on paper by Drgoňa et al. [2015]. The closed-
loop model with a relay-based controller is given by a linear discrete time state
space model as in (3.12) and by a control law given by the binary state update
equation (4.26). The control scheme with the inner loop is shown in the Fig. 4.6.

In the MPC-based design, the optimal profile of modulated references w is
obtained over a prediction time frame N based on the state measurements.
Specifically, the optimal sequence w0,...,N−1 can be obtained by solving follow-
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Figure 4.6: Reference governor scheme with a relay-based controller.

ing optimal control problem

min
W

`z (xk, yk, uk, wk) (4.29a)

s.t. xk+1 = Axk +Buk, k ∈ NN−1
0 (4.29b)

yk = Cxk +Duk, k ∈ NN−1
0 (4.29c)

xmin ≤ xk ≤ xmax, k ∈ NN−1
0 (4.29d)

ymin ≤ yk ≤ ymax, k ∈ NN−1
0 (4.29e)

uk =
{
umax if zk = 1
umin otherwise.

, k ∈ NN−1
0 (4.29f)

zk+1 = fz
(
zk, yk, wk

)
, k ∈ NN−1

0 (4.29g)

x0 = x(t), z0 = z(t). (4.29h)

Again, the xk denotes the k-th step prediction of the state vector obtained
though (4.29b) based on (4.29h). The dynamical behavior of the on-off evolves
according to (4.29g) and (4.29f). By employing a relay-based controller we inher-
ently can not achieve a zero offset while tracking the reference. The choice of the
objective function is this case is depends on particular application. One of the
choice is to include a term ‖Qryrk − yk‖2

2 which enforces the reference tracking
part, however in this case it will result in oscillating behavior. Individual appli-
cations may require a direct penalization of the manipulated variable, ‖Quuk‖2

2
since usually this signal is directly related to the energy spent to achieve the
control objectives.

Unfortunately, the problem (4.29) cannot be immediately solved since it contains



40 MPC-based Reference Governors

IF-THEN rules in (4.29f) and (4.29g) via (4.27). Therefore, we show that these
constraints can be rewritten into a set of inequalities that are linear in the decision
variables. However, since the state z is a binary variable, the entire reformulated
control problem will become a non-convex mixed-integer quadratic problem
(MIQP).

4.2.3 Mixed-Integer Problem Formulation
First, we start by rewriting the IF-THEN rule in (4.28) to a set of logic rules

[z = 1]⇔ [u = umax], (4.30a)

[z = 0]⇔ [u = umin], (4.30b)

where the “⇔" denotes the logic equivalence. Next, we rewrite (4.30) into a set
of inequalities using propositional logic Williams [1993]. Then (4.30) hold if and
only if z and u satisfy

−Mi(1− z) ≤ ui − umax,i ≤Mi(1− z), ∀i ∈ Nnu
1 , (4.31a)

−Miz ≤ ui − umin,i ≤Miz, ∀i ∈ Nnu
1 , (4.31b)

where M1,...,nu are sufficiently large scalars. The value Mi is often chosen
automatically by individual software tools (like YALMIP in MATLAB), however
if we need to choose it manually, we can adopt following expression

Mi = max{|umin,i|, |umax,i|}, ∀i ∈ Nnu
1 . (4.32)

In order further introduce the reader to the logic reformulation, let us show the
results in z = 0, then

−Mi ≤ ui − umax,i ≤Mi, ∀i ∈ Nnu
1 , (4.33a)

0 ≤ ui − umin,i ≤ 0, ∀i ∈ Nnu
1 , (4.33b)

which can be further expanded to

−Mi ≤ ui − umax,i ≤Mi →
{
ui ≥ umax,i −Mi

ui ≤ umax,i +Mi

, (4.34a)

0 ≤ ui − umin,i ≤ 0 →
{
ui ≥ umin,i

ui ≤ umin,i
, (4.34b)

enforced for i = {1, . . . , nu}. The inequalities in (4.34a) reads, that the value
ui is bounded from the bottom by a large negative number and the a large
positive number from the top. But, the second set of inequalities (4.34b) points
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to ui = umin,i, since from the bottom and from the top the variable ui is bounded
by the same expression umin,i. Same logic can be applied for the case when
z = 1, but we will obtain inverted scenario compared to the (4.34), hence we
will enforce logical rules in (4.30) via set of linear inequalities.

The translation of the binary state equation fz(·, ·, ·) as in (4.27) starts by rewrit-
ing it again to a set of logic equivalence rules

fz(z, T, r) =
{

1 if (z ∧ ¬δa) ∨ (¬z ∧ δb)
0 otherwise

(4.35)

where δa and δb are binary variables that indicate whether the measurement y is
above the upper threshold (i.e., y ≥ w + γ), or below the bottom threshold (i.e.,
y ≤ w − γ). Specifically,

[δa = 1]⇔ [y ≥ w + γ], (4.36a)

[δb = 1]⇔ [y ≤ w − γ]. (4.36b)

Next we rewrite (4.36) into a set of inequalities using propositional logic as have
done with the first IF-THEN rule.

LEMMA 4.1 (WILLIAMS [1993]). Consider the statement

[δ = 1]⇔ [g(v) ≤ 0], (4.37)

where δ ∈ {0, 1} is a binary variable, v is a vector of continuous variables, and
g(·) is any function. Then (4.37) holds if and only if δ and v satisfy

g(v) ≤M(1− δ), (4.38a)

g(v) ≥ ε+ (m− ε)δ, (4.38b)

where M is a sufficiently large scalar, m is a sufficiently small scalar, and ε > 0
is the machine precision. For the scalars M and m holds

M = max (g(v)) (4.39a)

m = min (g(v)) (4.39b)

(4.39c)

We can apply Lemma 4.1 to (4.36a) as follows. Take v = [yᵀ, wᵀ]ᵀ and let
g(v) := w + γ − y. Then (4.36a) is equivalent to

w + γ − y ≤Ma(1− δa), (4.40a)

w + γ − y ≥ ε+ (ma − ε)δa. (4.40b)
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With g(v) := y − w + γ, (4.36b) is satisfied if and only if

y − w + γ ≤Mb(1− δb), (4.41a)

y − w + γ ≥ ε+ (mb − ε)δb. (4.41b)

Next, we rewrite the IF condition of (4.35), i.e., (z ∧ ¬δa) ∨ (¬z ∧ δb), into
inequalities in binary variables z, δa, and δb. Introduce the substitutions

δ1 = z ∧ ¬δa, (4.42a)

δ2 = ¬z ∧ δb, (4.42b)

δ3 = δ1 ∨ δ2, (4.42c)

where δ1, δ2, δ3 are new binary variables. It is easy to verify that (4.42a) is
equivalent to

δ1 ≤ z, (4.43a)

δ1 ≤ (1− δa), (4.43b)

z + (1− δa) ≤ 1 + δ1, (4.43c)

which uses the fact that the negation of a binary variable δa can be equivalently
written as 1− δa. Using the same approach, (4.42b) can be rewritten as

δ2 ≤ (1− z), (4.44a)

δ2 ≤ δb, (4.44b)

(1− z) + δb ≤ 1 + δ2, (4.44c)

which is a set of inequalities that are linear in δ2, z, and δb. Finally, (4.42c) is
equivalent to

δ3 ≥ δ1, (4.45a)

δ3 ≥ δ2, (4.45b)

δ3 ≤ δ1 + δ2. (4.45c)

Therefore δ3 equivalently models the satisfaction of the IF condition in (4.35).
Then fz(z, T, r) in (4.27) can be rewritten as

fz(z, T, r) = δ3. (4.46)

With (4.28) rewritten per (4.30) and fz(·, ·, ·) in (4.27) being equivalent to (4.40)–
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(4.46), problem (4.29) can be equivalently stated as

min
W

N−1∑

k=0
`z(uk, yk, wk, rk) (4.47a)

s.t. xk+1 = Axk +Buk, (4.47b)

yk = Cxk +Duk, (4.47c)

uk,i ≥ umax,i −Mi(1− zk) (4.47d)

uk,i ≤ umax,i +Mi(1− zk) (4.47e)

uk,i ≥ umin,i −Mizk (4.47f)

uk,i ≤ umin,i +Mizk (4.47g)

wk + γ − yk ≤Ma(1− δa,k), (4.47h)

wk + γ − yk ≥ ε+ (ma − ε)δa,k, (4.47i)

yk − wk + γ ≤Mb(1− δb,k), (4.47j)

yk − wk + γ ≥ ε+ (mb − ε)δb,k, (4.47k)

δ1,k ≤ zk, (4.47l)

δ1,k ≤ (1− δa,k), (4.47m)

zk + (1− δa,k) ≤ 1 + δ1,k, (4.47n)

δ2,k ≤ (1− zk), (4.47o)

δ2,k ≤ δb,k, (4.47p)

(1− zk) + δb,k ≤ 1 + δ2,k, (4.47q)

δ3,k ≥ δ1,k, (4.47r)

δ3,k ≥ δ2,k, (4.47s)

δ3,k ≤ δ1,k + δ2,k, (4.47t)

zk+1 = δ3,k. (4.47u)

Here, the decision variables are xk, wk, uk, all of which are continuous, along
with binary variables δa,k, δb,k, δ1,k, δ2,k, δ3,k, and zk. The total number of op-
timization variables amounts to 5N . We remind that the index k goes from
0 to N − 1, and constraints (4.47d)-(4.47g) are utilized for i ∈ 1, . . . , nu. It is
important to note that all constraints in (4.47) are linear in the decision variables.
If we set the objective function similar to (3.14), then the entire problem be-
comes a mixed-integer quadratic problem with linear constraints. The problem
is initialized by the state measurements x0 = x(t), and by the current state of
the relay-based controller z0 = z(t). As a final remark, the prediction equation
in (4.47b) and (4.47c) can be extended by with accordance to offset-free modeling
(Section 3.2) in order to compensate for the effects of the unmeasured distur-
bances. Let us again emphasize, that a zero offset tracking is hardly possible
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due to the binary nature of the manipulated variable u.

The application of the MPC-based reference governor presented in this section
is addressed in the Chapter 7, where a simulation-based case study involving a
thermostatically controlled temperature in building in covered.

4.3 Systems with Inner MPC Controllers
The objective of this section is to present a systematic and computationally
tractable way of implementing reference governors where the inner feedback
loops contain individual MPC controller to control corresponding subsystems.
These controllers, however, are not aware of coupling constraints that are only
known to the reference governor. In this chapter we review two approaches
how to deal with the reference governor formulations The first approach (the
Section 4.3.2) uses the Karush-Kuhn-Tucker (KKT) conditions of the inner con-
trollers. Although these conditions are nonlinear, we show that they can be
rewritten as a set of convex constraints that involve binary variables. Although
the resulting problem is still non-convex, it can be solved to global optimality
using off-the-shelf mixed-integer solvers. The second approach, discussed in
the Section 4.3.3, is based on pre-computing, off-line, the explicit solution for the
inner MPC controllers. This solution can, again, be encoded using binary vari-
ables. Findings in this chapter are adopted from the paper by Holaza, Klaučo,
and Kvasnica [2017].

4.3.1 Local MPC and MPC-based Reference Governors
Consider a set of M linear time invariant models (3.12) denoted as

xi(t+ Ts) = Aixi(t) +Biui(t), (4.48a)

yi(t) = Cixi(t) +Diui(t), (4.48b)

where xi ∈ Rnx , ui ∈ Rnu , yi ∈ Rny are the state, input and output vectors of the
i-th subsystem, respectively. Without loss of generality we will assume that the
dimensions of all systems are identical. Each subsystem must be operated such
that its local constraints are satisfied:

xi ∈ Xi, ui ∈ Ui, yi ∈ Yi, (4.49)

where Xi ⊆ Rnx , Ui ⊆ Rnu , Yi ⊆ Rny are polyhedral sets, and ∀i ∈ NM1 . More-
over, the individual subsystems are assumed to be coupled by coupling con-
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Figure 4.7: Block diagram of the considered reference governor setup with inner
MPC controllers controlling individual subsystems.

straints


x1
...
xM


 ∈ X ,



u1
...
uM


 ∈ U ,



y1
...
yM


 ∈ Y, (4.50)

where

X ⊆ (X1 × · · · × XM ) ⊆ RMnx (4.51a)

U ⊆ (U1 × · · · × UM ) ⊆ RMnu (4.51b)

Y ⊆ (Y1 × · · · × YM ) ⊆ RMny . (4.51c)

The overall arrangement is depicted on the Fig. 4.7, where each subsystem
in (4.48) is individually controlled by its own MPC feedback policy in the form

u?i (t) = MPCi(θi(t)), (4.52)
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where θi(t) are the initial conditions of the i-th controller at the time instant
t, such as the state measurements xi(t), output references, etc. The MPC con-
trollers are assumed to be designed such that they enforce satisfaction of state,
input and output constraints in (4.49), but they do not have any knowledge of
the coupling constraints in (4.50), neither they communicate.

The aim is to design an MPC-based reference governor that shapes the individ-
ual references wi for the separate inner loops MPC controller MPCi(θi(t)) in
such a way, that

1. the coupling constraints in (4.50) are enforced,

2. the outputs of the individual subsystems track the user-specified refer-
ences r̄ = (r1, . . . , rM ) as closely as possible.

The local MPC controller u?i (t) = MPCi(θi(t)) is implemented in the receding
horizon fashion, hence the

u?i (t) = ΦUi(θi(t)), (4.53)

where

Φ = [Inu 0nu×nu · · · 0nu×nu︸ ︷︷ ︸
Ni−1

], (4.54)

with Ni being the prediction horizon for the MPC controlling the i-th subsystem.
Particularly, the local MPC is casted as

min
Ni−1∑

k=0

(
||yi,k − wi||2Qy,i

+ ||ui,k − ui,k−1||2Qu,i

)
(4.55a)

s.t. xi,k+1 = Aixi,k +Biui,k (4.55b)

yi,k = Cixi,k +Diui,k, (4.55c)

xi,k ∈ Xi, (4.55d)

ui,k ∈ Ui, (4.55e)

yi,k ∈ Yi, (4.55f)

xi,0 = xi(t), ui,−1 = ui(t− Ts) (4.55g)

where constraints (4.55b)−(4.55f) are enforced for k = 0, . . . , Ni − 1 with Ni.
The vector of initial parameters contains the initial conditions as in (4.55g) and
also the sequence of the references wi. Formally, we can write

θi =
[
xᵀi,0 wᵀi uᵀi,−1

]ᵀ
. (4.56)
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The optimization is performed with respect to the sequence of optimal control
input Ui, which is given as

Ui =
[
uᵀi,0 . . . uᵀi,Ni−1

]ᵀ
, (4.57)

furthermore, all of the weighting factors Qy,i, and Qu,i are positive definite
matrices, hence the problem (4.55) is strictly a convex optimization problem.

REMARK 4.5. Note, that the control problem in (4.55) can be extended with the
future value of the references, so the first term in the objective function will
change to

||Qy,i (yi,k − wi,k) ||22. (4.58)

Next, the model in (4.55b) and (4.55c) can be extended by disturbances with
accordance to the Section 3.2. Such a modification to the local MPC problem
will result in

θi =
[
xᵀi,0 wᵀi,1 . . . wᵀi,(Ni−1) uᵀi,−1 dᵀi,0

]ᵀ
, (4.59)

which is an extended vector of initial conditions. �

The role of the MPC-based reference governor is to determine the at each
sampling instant t an optimal sequence of shaped references wi(t) for i =
1, . . . ,M for the local MPC problems (4.55) such that

1. the tracking error ||ri − yi|| is minimized,

2. and the coupling constraints (4.50) are enforced.

The MPC-based reference governor is then casted as

min
N∑

j=0

M∑

i=1

(
‖yi,j − ri‖2

Qy,i
+ ‖wi,j − wi,j−1‖2

Qw,i

)
, (4.60a)

s.t. U?i,j(θi,j) = arg min (4.55a) s.t. (4.55b)− (4.55f), (4.60b)

u?i,j = ΦU?i,j(θi,j), (4.60c)

xi,j+1 = Aixi,j +Biu
?
i,j , (4.60d)

yi,j = Cixi,j +Diu
?
i,j , (4.60e)

x̄j ∈ X , (4.60f)

ū?j ∈ U , (4.60g)

ȳj ∈ Y, (4.60h)
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with (4.60b)−(4.60h) imposed for t = 0, . . . , N − 1, and (4.60b)−(4.60e) also for
i = 1, . . . ,M , where N is the prediction horizon of the outer MPC problem. The
reference governor problem in (4.60) is coupled with individual MPC controllers
via the optimally shaped references wi that enter (4.55) through θi,j in (4.60b)
and (4.60c). The vector of initial conditions for the local MPC at the j-th time
step is defined as

θi,j =
[
xᵀi,j wᵀi,j uᵀi,j−1

]ᵀ
. (4.61)

The variables in the coupling constraints in (4.60f)-(4.60h) are defined as follows

x̄j =
[
xᵀ1,j . . . , xᵀM,j

]ᵀ
, (4.62a)

ūj =
[
uᵀ1,j . . . , uᵀM,j

]ᵀ
, (4.62b)

ȳj =
[
yᵀ1,j . . . , yᵀM,j

]ᵀ
, (4.62c)

and the vector of optimal control sequences U?i,j reads to

U?i,j =
[
u?i,j
ᵀ . . . u?i,j+Ni−1

ᵀ
]ᵀ
. (4.63)

Lastly, in the MPC-based reference governor design, we allow for the prediction
horizon of the governor to be different from the horizons of local MPCs.

The closed-loop implementation of the MPC-based reference governor (cf. Fig. 4.7)
is done in the tradition receding horizon fashion:

1. Measure (or estimate) states xi(t) of the individual subsystems;

2. Initialize (4.60) by xi,0 = xi(t), u?i,−1 = u?i (t − Ts), ri (the user-specified
references), w?i,−1 = w?i (t − Ts) for i = 1, . . . ,M and solve (4.60) for w?i,0
(the optimally shaped references);

3. Feed w?i,0 as setpoints to the inner MPC controllers;

4. Repeat from Step 1 at the subsequent time instant.

When the procedure is commenced at t = 0, any ui,−1 ∈ Ui can be chosen as the
initial value of the “previous” control action, together with w?i,−1 = ri.

The difficulty of solving for the shaped references w?i , i = 1, . . . ,M from (4.60)
stems from the fact that the control sequences U?i,t in (4.60b) are given as the
solution of inner optimization problems (4.55). The problem in (4.60) is thus a
bilevel optimization problem, which is non-convex.
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4.3.2 KKT Conditions Reformulation
In this section, we show how the non-convex bilevel optimization problem (4.60)
can be rewritten by reformulating the inner optimization problem in (4.60b) via
its KKT conditions. Consider, that the inner MPC problem can be rewritten as a
parametric quadratic problem as stated in (2.8), hence

min
Ui

1
2U
ᵀ
i HiUi + θᵀi FiUi + cᵀi Ui (4.64a)

s.t. GiUi ≤ Vi + Eiθi, (4.64b)

with Ui being defined per (4.57).

To ease the notation, henceforth we will consider a particular subsystem (4.55)
and we will omit the index i. Since the QP in (4.64) is strictly convex, U? is its
minimizer if and only if the primal-dual pair (U?, λ?) satisfies the Karush-Kuhn-
Tucker (KKT) conditions

HU? + F ᵀθ + c+Gᵀλ? = 0, (4.65a)

GU? − V − Eθ ≤ 0, (4.65b)

λ? ≥ 0, (4.65c)

λ?s(G[s]U? − V [s] − E[s]θ) = 0, ∀s ∈ NnG
1 , (4.65d)

where G[s] denotes the s-th row of the corresponding matrix, nG is the number
of constraints in (4.64b), and λ ∈ RnG is the vector of Lagrange multipliers.

Notice that the KKT conditions (4.65) are nonlinear due to the product between
λ and U in the complementarity slackness condition (4.65d). One could straight-
forwardly replace U?i,t(θ) as the optimal solution to the inner problem in (4.60b)
by the corresponding KKT conditions (4.65), but then the reference governor
problem (4.60) would become a nonlinear programming problem (NLP) that is
difficult to solve to global optimality. Therefore we show how to formulate (4.65)
as a set of linear constraints that involve binary decision variables. Although
the problem will still be non-convex, it can be solved to global optimality using
off-the-shelf mixed-integer solvers, such as CPLEX, GUROBI, or MOSEK.

Observe that for (4.65d) to be satisfied, whenever the s-th constraint is inactive,
the corresponding Lagrange multiplier λs must be zero at the optimum, i.e.,

[G[s]U? − V [s] − E[s]θ < 0] =⇒ [λ?s = 0]. (4.66)

To model this logic relation, introduce binary variables δs ∈ {0, 1}, s = 1, . . . , nG,
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and rewrite (4.66) into

[G[s]U? − V [s] − E[s]θ < 0] =⇒ [δs = 1], (4.67a)

[δs = 1] =⇒ [λ?s = 0]. (4.67b)

Logical rules presented in (4.67) can be rewritten to a set of linear inequalities.
The procedure was already described in the Section 4.2.3 and in Lemma 4.1, but
specifically, consider function f(z), z ∈ Rnz and an arbitrary binary variable σ.
Then:

1. [f(z) < 0] =⇒ [σ = 1] if and only if f(z) ≥ Zminσ,

2. [σ = 1] =⇒ [f(z) = 0] if and only if Zmin(1− σ) ≤ f(z) ≤ Zmax(1− σ),

3. [σ = 1] =⇒ [f(z) ≤ 0] if and only if f(z) ≤ Zmax(1− σ),

with Zmin ≤ min f(z) and Zmax ≥ max f(z).

Applying the procedure to the implication rules in (4.67), we arrive at

G[s]U? − V [s] − E[s]θ ≥ Zmin,sδs, (4.68a)

Zmin,s(1− δs) ≤ λ?s ≤ Zmax,s(1− δs), (4.68b)

which for all s = 1, . . . , nG are linear inequalities in U?, λ?, and δs. Consider

λ =
[
λ1 . . . λnG

]ᵀ
, (4.69a)

δ =
[
δ1 . . . δnG

]ᵀ
, (4.69b)

then the mixed-integer formulation of the KKT conditions in (4.65) becomes

HU? + F ᵀθ + c+Gᵀλ? = 0, (4.70a)

GU? − V − Eθ ≤ 0, (4.70b)

λ? ≥ 0, (4.70c)

GU? − V − Eθ ≥ Zminδ, (4.70d)

λ? ≥ Zmin(1nG − δ), (4.70e)

λ? ≤ Zmax(1nG − δ). (4.70f)

Notice that (4.70e) is in fact redundant due to (4.70c) and can therefore be
omitted.

Then the MPC-based reference governor problem in (4.60) can be equivalently
reformulated by replacing (4.60b) with (4.70), imposed for all j = 0, . . . , N
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(i.e., for each step of the prediction horizon of the reference governor) and
i = 1, . . . ,M (i.e., for each subsystem):

min
λi,j ,δi,j ,ui,j ,wi,j

N−1∑

j=0

M∑

i=1

(
‖yi,j − ri‖2

Qy,i
+ ‖wi,j − wi,j−1‖2

Qw,i

)
, (4.71a)

s.t. HiU
?
i,j + F ᵀθi,t + ci +Gᵀi λi,j = 0, (4.71b)

GiU
?
i,j − Vi − Eiθi,j ≤ 0, (4.71c)

λi,j ≥ 0, (4.71d)

GiU
?
i,j − Vi − Eiθi,j ≥ Zminδi,j , (4.71e)

λi,j ≤ Zmax(1nG − δi,j), (4.71f)

u?i,j = ΦU?i,j , (4.71g)

xi,j+1 = Aixi,t +Biu
?
i,j , (4.71h)

yi,j = Cixi,j +Diu
?
i,j , (4.71i)

x̄j ∈ X , (4.71j)

ū?j ∈ U , (4.71k)

ȳj ∈ Y, (4.71l)

δi,j ∈ {0, 1}nG,i . (4.71m)

Since all constraints in (4.71) are linear, and the objective function is quadratic,
the reference governor problem can be formulated as a mixed-integer quadratic
program (MIQP). The total number of binary variables is N

∑M
i=1 nG,i.

The key limitation of solving the MIQP (4.71) is the number of binary variables.
To reduce this number, one can remove redundant inequalities from the con-
straints in (4.64b) by solving, off-line, one linear program for each constraint,
cf. [Bemporad, 2015].

4.3.3 Analytic Reformulation
An another computationally tractable way of solving the non-convex bilevel
optimization problem in (4.60) is to replace (4.60b) by the analytical solution
to the inner optimization problems (4.55). Specifically, consider (4.55) trans-
formed into the equivalent form (4.64). When θi in (4.64) is considered as a
free parameter, the problem is a strictly convex parametric QP (pQP) that since
H � 0 as elaborated above. The analytical solution is in the form of a PWA
function (2.9). In case of multiple local MPCs, we will obtain as many PWA
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functions. Specifically

κi(θi) =





αi,1θi + βi,1 if θi ∈ Ri,1
...

αi,nR,iθi + βi,nR,i if θi ∈ Ri,nR,i ,

(4.72)

with nR,i denoting the number of polyhedral regions for the i-th system. For
more details about the explicit MPC scheme, refer to the Section 3.3 and literature
therein.

Once the closed-form solutions U?i = κi(θi) are determined for each subsys-
tem i = 1, . . . ,M , (4.60b) can be replaced by (4.72) in the following way. For
each critical region of the i-th closed-form solution, introduce binary variables
δi,1, . . . , δi,nR,i . Then the inclusion θi ∈ Ri,r is modeled by

[δi,r = 1] =⇒ [Γi,rθi ≤ γi,r]. (4.73)

Since the map κi is continuous and ∪rRi,r is a convex set, the constraint

nR,i∑

r=1
δi,r = 1 (4.74)

enforces that, if θi ∈ Ri,r, then δi,r = 1 and the remaining variables will be zero,
i.e., δi,q = 0 ∀q 6= r. Then

[δi,r = 1] =⇒ [U?i = αi,rθi + βi,r] (4.75)

is optimal in (4.55). Applying the second and the third statement of Lemma 4.1
to (4.73) and (4.75) transforms these logic relations into linear inequalities in-
volving continuous variables θi, U?i and binary variables δi = (δi,1, . . . , δi,nR,i):

Γi,rθi − γi,r ≤ Zmax(1− δi,r), (4.76a)

Zmin(1− δi,r) ≤ U?i − αi,rθi − βi,r ≤ Zmax(1− δi,r), (4.76b)

where Zmin and Zmax are sufficiently small/large constants, cf. Lemma 4.1
or [Williams, 1993].

The inner optimization problems in (4.60b) can therefore be equivalently re-
placed by (4.76) together with (4.74). Then the reference governor problem
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in (4.60) becomes

min
δi,j,r,wi,j

N−1∑

j=0

M∑

i=1

(
‖yi,j − ri‖2

Qy,i
+ ‖wi,j − wi,j−1‖2

Qw,i

)
, (4.77a)

s.t. Γi,rθi,j − γi,r ≤ Zmax(1− δi,j,r), (4.77b)

U?i,j − αi,rθi,j − βi,r ≥ Zmin(1− δi,j,r), (4.77c)

U?i,j − αi,rθi,j − βi,r ≤ Zmax(1− δi,j,r), (4.77d)

1ᵀnR,i
δi,j = 1, (4.77e)

u?i,j = ΦU?i,j , (4.77f)

xi,j+1 = Aixi,j +Biu
?
i,j , (4.77g)

yi,j = Cixi,j +Diu
?
i,j , (4.77h)

x̄t ∈ X , (4.77i)

ū?t ∈ U , (4.77j)

ȳt ∈ Y, (4.77k)

δi,j,r ∈ {0, 1}, (4.77l)

with (4.77b)–(4.77e) imposed for i = 1, . . . ,M , j = 0, . . . , N − 1, and (4.77b)–
(4.77d) also for r = 1, . . . , nR,i. The optimization variables in this case are the
shaped references wi,j and binary variables δi,j,r. Recall, that the optimally
shaped reference w enters the local MPC via the vector of initial conditions
θi per (4.61). Contrary to the MIQP formulation (4.71) in the previous section,
where also the vector of manipulated variables U?i was also optimized, here this
variables is determined explicitly solely based on the choice of δi,j,r. Nect, since
all constraints in (4.74), (4.76), as well as in (4.60b)−(4.60h) are linear and the
objective function (4.60a) is quadratic, the augmented problem (4.77) is, again,
a mixed-integer QP. Again, the key limitation of the MIQP is the number of
binary variables, which in this case it is determined by expression N

∑M
i=1 nR,i.

Various complexity reduction techniques can be used to reduce the number of
critical regions in the explicit maps (4.72). For instance, one can resort to optimal
region merging [Geyer et al., 2008], or to clipped PWA functions [Kvasnica
and Fikar, 2012] to reduce Ri and thus the number of binary variables in (4.77).
Alternatively, one can use approximate replacements of κi in (4.72) as in Holaza
et al. [2015] at the expense of suboptimal performance of (4.77).

4.3.4 Example
Lets consider following example to show the performance of the MPC-based
reference governor supervising local MPC strategies. Specifically, we consider
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M = 3 subsystems that represent movement of frictionless vehicles, modeled as
a double integrator with a variable mass with Ts = 1:

xi(t+ Ts) =
[
1 1
0 1

]
xi(t) +

[
1/mi

0.5/mi

]
ui(t), (4.78a)

yi(t) =
[
0 1

]
xi(t), (4.78b)

where mi is the mass of the i-th vehicle (m1 = 1.0, m2 = 5.0 and m3 = 0.5, rep-
resenting, e.g., a passanger car, a truck, and a motorcycle, respectively), xi ∈ R2

consists of the vehicle’s position and speed, ui represents the manipulated
acceleration, and the speed of the individual vehicle is the controlled output.
Each vehicle is individually controlled by its own MPC controller, represented
by (4.55) with Ni = 4, Qy,i = 10, Qu,i = 1, and

Xi = {xi ∈ R2 | xmin ≤ xi ≤ xmax}, (4.79a)

Ui = {ui ∈ R | − 1 ≤ ui ≤ 1}, (4.79b)

Yi = {yi ∈ R | − 1 ≤ yi ≤ 1} (4.79c)

where

xmin =
[−15

1

]
xmax =

[
50
1

]
(4.80)

In addition, the individual subsystems are subject to coupling constraints that
are unknown to inner-loop MPCs. Specifically, we require the vehicles not to
collide. This constraint is translated to

X = {(x1, x2, x3) ∈ R6 | Cxx1 − Cxx2 ≥ ε, Cxx2 − Cxx3 ≥ ε}, (4.81)

where ε represents the minimal separation gap between vehicles with ε = 5 in
our simulations, and Cx = [1 0]. Moreover, we assume

Y = Y1 × Y2 × Y3 (4.82a)

U = U1 × U2 × U3 (4.82b)

The vehicles’ starting positions are assumed to be such that p1(0) ≥ p2(0) ≥ p3(0)
with pi = Cxxi.
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Figure 4.8: Closed-loop simulation results for the scenario with no reference
governor. The plots depict, respectively, the positions of individual
vehicles pi, the separation gap di between them (required to be
≥ 5 for no collision), the controlled speed yi, and the respective
manipulated inputs ui.
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Figure 4.9: Closed-loop simulation results for the scenario with reference gov-
ernor inserted into the loop. The plots depict, respectively, the
positions of individual vehicles pi, the separation gap di between
them (required to be ≥ 5 for no collision), the controlled speed yi,
and the respective manipulated inputs ui.
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Figure 4.10: References w?i optimally shaped by the reference governor.

First, to illustrate the need for a coordinating reference governor, we have
performed a closed-loop simulation starting from

x1(0) =
[
5
0

]
, x2(0) =

[
0
0

]
, x3(0) =

[−5
0

]
(4.83)

where the individual subsystems are controlled by their respective MPC feed-
back policies (4.55) in the absence of coupling constraints. Since no reference
governor is assumed in this scenario, wi = ri in (4.55a). The results for a time-
varying profile of the velocity trajectories ri to be tracked are shown in Fig. 4.8.
As can be observed, although the inner controllers manipulate the control in-
puts such that the velocity references are tracked, they violate (cf. the second
subplot in Fig. 4.8) the collision-free coupling constraints in (4.81) as they have
no knowledge about them. Notice that, although inner MPC loops maintain
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constraints of individual subsystems in (4.79), in absence of the reference gov-
ernor they violate the coupling constraints in (4.81) (notice that di < 5 in the
second subplot) starting from the 5th simulation step and never recover. The εi
quantity denotes the gap between the i-th and (i+ 1)-th vehicle.

To enforce satisfaction of (4.81) we have therefore inserted the proposed ref-
erence governor (4.60) into the loop. It was designed for N = 4, Qy,i = 10,
and Qw,i = 1 for i = 1, 2, 3. The reference governor, represented by the bilevel
problem (4.60), was subsequently formulated as a MIQP (4.71) per Section 4.3.2
using YALMIP [Löfberg, 2004] and solved by GUROBI. Specifically, the inner
MPC problems, translated to (4.64), had nRi = 34 for all subproblems, there-
fore (4.71) has 408 binary variables. The results of the closed-loop simulation
starting from the same initial conditions as reported above are visualized in
Fig. 4.9. Here, we can see from its second subplot that the minimal separation
gap, represented by the coupling constraint (4.81), is maintained. The reference
governor achieves this behavior by replacing the user-specified references ri by
optimized ones (w?i ), as shown in Fig. 4.10. Notice that the separation gap is
kept above the safety margin (di ≥ 5) at all time due to the reference governor
enforcing (4.81) by suitably modifying the velocity references, cf. Fig. 4.10. Note
how w?i start to diverge from user-specified setpoints ri when such a change is
required to enforce the coupling constraint in (4.81) during setpoint transitions,
and also between t = 10 and t = 15. Once recovered from a dangerous situation,
w?i converge to ri again.The average per-sample runtime required to solve (4.71)
was 0.28 s seconds with the maximum being 2.64 s.

Next, we have compared the KKT-based formulation in (4.71) to the approach
of Section 4.3.3 based on an analytic solution to (4.55). To do so, we have
first computed the closed-form solutions κi as in (4.72) by solving the inner
MPC problems (4.52) using MPT toolbox [Herceg et al., 2013]. Since each
subsystem assumes a different B matrix in (4.78), explicit solutions with a
different number of regions were obtained. Specifically, we got R1 = 107
regions for the first subsystem’s MPC, R2 = 127 for the second, and R3 = 89
for the third. These were obtained off-line in 21.8 s. Consequently, the reference
governor formulation in (4.77) had 1292 binary variables. The average per-
sample runtime required to solve (4.77) at each step of the simulation was 7.9 s
with the maximum being 117.3 s. Needless to say, as both (4.71), as well as (4.77)
are equivalent to (4.60), identical simulation results were obtained.
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4.4 Concluding Remarks
This chapter discussed the theoretical basis of the MPC-based reference gov-
ernors. We have shown, how the MPC-based governor is structured for three
main choices of the primary controllers.

First, we show the formulation of the governor for the closed-loop system,
which consists of PID controllers (the section 4.1). In here, we have modeled the
closed-loop system consisting of a several PID controllers into a one aggregated
state space model. This state space model is then used as a prediction model
for the MPC-based governor. The resulting optimization problem formulation
boils down to a quadratic optimization problem, which can be tractably solved
via GUROBI, MOSEK or other state-of-the-art solvers. In fact, the formulation
of the MPC-based reference governor in, e.g., (4.20) is basically the same as a
Direct-MPC formulation (3.13), discussed in the Section 3.1.2. The reason is,
the aggregation of the state space models of the PID controllers and the plant
itself. The application of this MPC-RG strategy is further discussed in two case
studies, in chapters 5 and 6.

The second case discussed, was a closed-loop system which consists of an
“on-off” controller. Compared to the previous MPC-RG strategy, here the cor-
nerstone was to derive the model of the switching logic. This was carried out
by employing propositional logic [Williams, 1993]. Here, the formulation of
the MPC-based governor (4.47) resulted in a mixed-integer optimization prob-
lem. Since the objective function is chosen either linear or quadratic and the
constraints are linear in decision variables, the problem can be again solved
in tractable manner by professional tools, like GUROBI, MOSEK or CPLEX.
Naturally, the number of binary variables in this case is the limiting factor of
scalability. The viability of the MPC-based governor supervising the relay-
based controllers is tested on a simulation-based case study with results in the
chapter 7.

Lastly, in the section 4.3, we show how to tackle MPC-based reference governor
setup for closed-loops consisting of local MPC controllers. The main challenge
stems from the nature of the optimization problem (4.60), which is bilevel. This
problem is non-convex in general, and can not be solved efficiently by available
solvers. To mitigate this problem, we propose two reformulation options of this
bilevel optimization problem. The first approach was based on replacing the
inner MPC problems by its respective KKT conditions. The second approach as-
sumes that the inner MPC is encoded as a polyhedral PWA function, i.e. solved
explicitly. In both cases, we obtain a mixed-integer quadratic optimization
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problem. The tractability of the solution is entirely problem-dependent, since
the variation in the number of binary variables, which is the main limiting factor,
largely depends in the number of constraints of the inner problem etc. In this
section, we offer a motivating example, to provide an illustration of how such a
MPC-RG can be formulated and solved.



Part II

Case Studies and
Applications





CHAPTER 5

Magnetic Levitation

In this chapter, we will illustrate the synthesis and experimental verification of
the MPC-RG strategy as described in the Section 4.1.2. The MPC-RG formulation
will be parametrically solved according to the Section 3.3 and implemented
in real-time fashion on a micro-chip with limited computational and memory
resources. Such an implementation require to encode the resulting parametric
solution to a binary search tree as introduced in the Section 2.2.2. The viability
of the MPC-RG strategy is tested on a laboratory process of a magnetically
suspended ball.

5.1 Introduction to Real-Time Control Strategy
The choice of the explicit MPC stems from the control hardware we have avail-
able. Namely, it is an Atmel AT-Mega382p 8-bit microcontroller with 2kB of
dynamic memory. A process involving a magnetically suspended ball is used to
test the viability of the proposed explicit MPC-based governor. Such systems
have a broad use in industrial applications where they serve to suspend materi-
als in a magnetic field. For instance, it is already used in maglev trains [Lee et al.,
2006], high-speed motors using magnetic bearings [Schuhmann et al., 2012], but
also in some unusual applications such as 3D cell culturing [Haisler et al., 2013]
or harvesting of kinetic energy from human movements [Berdy et al., 2015].

The scientific community offers several advanced control strategies focused on
the stabilization and control of the magnetic levitation. We may start by Glück
et al. [2011], a cascaded controller for self-sensing magnetic levitation along
with the position estimation based on least squares identification, implemented
on Altera Stratix II FPGA, is proposed. A wholly different approach to magnetic
levitation control is provided in Bächle et al. [2013], where a computationally
low-demand non-linear MPC is demonstrated on dSPACE platform. A robust
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Table 5.1: Comparison to other related works.

Bächle et al. [2013] Folea et al. [2016] Lin et al. [2014] Klaučo et al. [2017]

Control
scheme

Nonlinear
online MPC

Fractional
order contr.

FLCMAC
Explicit

MPC

Constraints
handling

input none none
input, output,

states

Controller
dSPACE

MicroAutoBox I
800 MHz

NI cRIO-9014
Embed. Contr.

400 MHz

Altera
Stratix II

FPGA

Atmel Sam3X
Cortex-M3

84 MHz

Controller
price [e]

thousands thousands hundreds tens

Computation
time

900µs N/A (< 2ms) N/A (< 100µs) 266µs

Sampling
frequency

700 Hz 500 Hz 10 kHz 1 kHz

tracking control of magnetic levitation process with input constraints is pro-
posed in Zhang et al. [2015]. Here the authors use the MATLAB-equipped PC
to control the system. An interesting approach of magnetic levitation control
design is provided in Folea et al. [2016], where a fraction order controller im-
plemented in embedded microcontroller is used to increase the closed-loop
performance and robustness. Very popular approach to the application of con-
trol algorithms for magnetic processes is the use of FPGA [Lin et al., 2011, 2014].
All of previously mentioned approaches has several shortcomings, like the price
of the controller used or the structure of the control strategy, which does not
allow to handle output constraints. A more detailed comparison is summarized
in Table 5.1.

This chapter will present the parametric solution to the MPC-based reference
governor strategy, which will account for both, the input and output constraints,
and will run on a cheap hardware. Findings in this chapter are based on
publications by [Kalúz, Klaučo, and Kvasnica, 2015] and [Klaučo, Kalúz, and
Kvasnica, 2017].

5.2 Plant Description
This section describes the mathematical modeling of the magnetically suspended
ball. Here, we also present the primary stabilizing PID controller and the state
space model closed-loop system. Secondly, we introduce the laboratory device
and experimental setup.
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5.2.1 Mathematical Modeling
The mathematical model of magnetic levitation is derived from the standard
physical understanding of magnetic suspension of an object. The spatial ar-
rangement of the system is shown in Fig. 5.1, followed by a photo-capture of
the experimental device. The arrangement consists of three main parts. These
are a metal cylinder with a winding that makes an electromagnetic coil at the
top, inductive proximity sensor at the base, and ferromagnetic ball in the space
between them. The arrangement considers the displacement of the ball only in
the vertical axis (denoted as p).

KaU

+

−

p
Fm

Fg

Fa

Figure 5.1: Magnetic levitation system.

The dynamics of the ball movement is derived from a standard force equation

Fa = Fg − Fm, (5.1)

where

Fa = mb
d2p

dt2
, (5.2a)

Fg = mbg, (5.2b)

Fm = Km
I2

c

p2 . (5.2c)

By the Fa we denote the vertical acceleration force, Fg is the gravitational force,
and Fm is the force of the magnetic field acting in the ball. Next, mb is the



66 Magnetic Levitation

Table 5.2: Parameters of the magnetic levitation plant.

Variable Unit Value

mb kg 8.4 · 10−3

g m s−2 9.81
aps V m−1 −1.1132 · 103

bps V 11.107
U s

c V 2.29
U s

ps V 1.40
Ka kg m2 s−2 V−1 1.1899 · 10−6

mass of the ball, g is gravitational acceleration, Km is magnetic constant, Ic is te
electric current flowing through the coil.

Since the practical implementation relies on inputs and outputs to be in voltage
units, the input voltage applied to the coil, i.e., Uc, can be expressed as

Uc = IcRc. (5.3)

Similarly, the output voltage taken from the position sensor, i.e., Ups, can be
expressed as a linear function of position

Ups = apsp+ bps. (5.4)

Using these two substitutions and introducing a conjured coil amplifier constant

Ka = Km

R2
c

, (5.5)

hence, the model can be written as

mb

aps

d2Ups

dt2
= mbg −Ka

U2
c a

2
ps

U2
ps − 2bpsUps + b2

ps
. (5.6)

This model, however, is non-linear in Uc and Ups. Therefore a linearization
around the equilibrium U s

c and Usps where Fa = 0 was considered. Applying
first-order Taylor expansion to (5.6) yields a linear dynamics of the form

d2y

dt2
= k1y + k2u, (5.7)

where

y = Ups − U s
ps (5.8a)

u = Uc − U s
c (5.8b)
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are the deviations of output and input voltages from the selected equilibrium
point, respectively. The output deviation of the system y is in the unit of volts
and it linearly represents the actual physical distance p. The constants k1 and k2
are given by

k1 = 2Ka
a3

psU
s
c

2

mb(U s
ps − bps)3 , (5.9a)

k2 = −2Ka
a3

psU
s
c

mb(Usps − bps)2 , (5.9b)

which, using the values from Table 5.2, amounts to k1 = 2250, k2 = 9538. The
system in (5.7) is subsequently converted into a transfer function model via
Laplace transform

G(s) = k2
s2 − k1

. (5.10)

The linear dynamics captured in (5.7) can be also transform to the state space
model counterpart, specifically

ẋ(t) =
[

0 1
k1 0

]
x(t) +

[
0
k2

]
u(t), (5.11a)

y(t) =
[
1 0

]
x(t). (5.11b)

Based on the transfer function model a suitable stabilizing PID controller was
found

GPID(s) = 13.07s2 + 1358s+ 4.367 · 104

s2 + 571.4s . (5.12)

The controller in (5.12) is then converted in the a discrete time state space model
using Ts = 1 ms. Note, that the PID controller (5.12) is implemented as a PSD
controller. Next, the system matrices of the closed-loop model were evaluated
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to

ACL =




0.6749 −0.0355 −0.0008 −0.0000
0.0008 1.0000 −0.0000 −0.0000
−8.8304 49.0588 0.9727 0.0010

−16470.9632 97772.4837 −51.6329 0.9751


 , (5.13a)

BCL =




0.0008
0.0000
0.0296

56.2470


 , (5.13b)

CCL,u =
[
−2418.9076 11781.9582 −7.8599 0.0000

]
, (5.13c)

DCL,u = 7.8599, (5.13d)

CCL,y =
[
−5.1447 25.0588 1.0000 0.0000

]
, (5.13e)

DCL,y = 0. (5.13f)

The aggregated state space model of the closed-loop system was obtained
according to the Section 4.1.2.2.

5.2.2 Laboratory Device
The actual physical system of magnetic levitation used in this work is the CE152
laboratory model, shown in Fig. 5.2. The plant consists of an electromagnetic
coil energized by a power amplifier, a linear position sensor and a ferromagnetic
ball. The intensity of magnetic field is the manipulated variable and can be
directly influenced by voltage electric signal in the range of 0 to 5 V. A measured
variable is the reading of the proximity position sensor in the same 0 to 5 V
range.

This system exhibits several properties that result in interesting control design
challenges. One of them is the fast dynamics of the system. The time constant of
the open loop is approximately 20 ms, which indicates that reasonable sampling
rate should be chosen not less than 0.5 kHz to get high-quality measurements.
In order to demonstrate the time efficiency of proposed MPC-based reference
governor strategy, an even higher sampling rate of 1 kHz has been chosen in this
work. Other challenging properties of the system are the natural instability and
non-linearity. The instability comes form the spatial arrangement of laboratory
model, where the levitating object is pulled upwards to the magnetic coil against
the force of the gravity. This is the exact opposite of naturally stable magnetic
repulsion arrangement used, e.g., by the maglev train. Moreover, the system
also exhibits a strong nonlinear behavior. As it is obvious from the force balance
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Figure 5.2: Laboratory model of magnetic levitation CE152

equation, the force applied on ball Fa is a sum o gravitational force Fg and force
of the magnetic field Fm. While Fg can be considered constant with always
present effect, the Fm is a quadratic function of manipulated variable (input
voltageUc) and is present only when nonzero voltage is applied. This results into
asymmetric non-linearity, depending on the direction of ball position control.

5.3 Synthesis of the MPC-based Reference Gover-
nor

The MPC-based reference governor is structured similarly to (4.20), and imple-
mented as depicted on the Fig. 4.2. The particular MPC strategy is casted as
follows

min
w0,...,wN−1

`ss(uk, yk, wk) (5.14a)

s.t. x̃k+1 = ACLx̃k +BCLwk, ∀k ∈ NN−1
0 , (5.14b)

uk = CCL,ux̃k +DCL,uwk, ∀k ∈ NN−1
0 , (5.14c)

yk = CCL,yx̃k +DCL,ywk, ∀k ∈ NN−1
0 , (5.14d)

umin ≤ uk ≤ umax, ∀k ∈ NN−1
0 , (5.14e)

ymin ≤ yk ≤ ymax, ∀k ∈ NN−1
0 , (5.14f)

wk = wNc−1, ∀k ∈ NN−1
Nc

. (5.14g)
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The objective function (5.14a) is given as

`ss(uk, yk, wk) =
N−1∑

k=0

(
‖yk − r‖2

Qy
+ ‖∆wk‖2

Qw
+ ‖∆uk‖2

Qu
+

‖wk − r‖2
Qwr

+ ‖yk − wk‖2
Qyw

)
. (5.15)

The first term of the cost function minimizes the tracking error and forces the
plants output, in this case the output voltage, to track a user defined reference r.
The second and the third term penalize fluctuations of the optimized setpoints
w and the control actions of the primary PSD controller, respectively. The fourth
term accounts for the difference between reference r and shaped setpoint w and
finally the fifth term penalizes the deviations between predicted output and
shaped setpoint for the inner controller. The tuning factors Qy, Qw, Qu, Qwr and
Qyw are positive definite matrices of suitable dimensions. The main difference
between the structure in (5.14) and e.g. (4.20) is the constraint (5.14g). This
constraints represents a move blocking constraint which employs the control
horizon Nc ≤ N and is used to decrease the number of degrees of freedom and
thus make the problem simpler to solve.

he optimization problem in (5.14) is initialized by the vector of parameters

θ =
[
xr(t)ᵀ x(t) w (t− Ts) u (t− Ts) r(t)

]ᵀ
, (5.16)

where xr(t) are the states of the inner PSD controller at time t and x(t) are
the states of the plant. Moreover, w (t− Ts) is the value of the optimized ref-
erence at the previous sampling instant, required in (5.14a) at k = 0 when
w−1 = w (t− Ts). Similarly, u (t− Ts) is the control input generated by the PSD
controller at the previous sampling instant that is used as u−1 in (5.14a). Because
of (5.11), the plant’s states x(t) consist of the ball’s position y(t) and its speed.
Since only the position can be directly measured, the ball’s speed is estimated
by

x(2)(t) = y(t)− y (t− Ts)
Ts

. (5.17)

REMARK 5.1. The speed, the state no. 2 can be also estimated employing an
state observer in a form of a Kalman Filter, but experiments showed, that such a
crude estimation as in (5.17) yields satisfactory results. �

Once the MPC-based reference governor is structured, it is solved parametrically
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as reported in the Section 3.3, hence we obtain a PWA function in the form of

W ?(θ) =





α1θ + β1 if θ ∈ R1
...

αnRθ + βnR if θ ∈ RnR ,

(5.18)

with polyhedral regions R as in (2.10). The PWA function represeting the
MPC-based reference governor was obtained via MPT Toolbox Herceg et al.
[2013] in 15 s on a 2.9 GHz Core i7 CPU with 12 GB of RAM. The explicit PWA
representation of the optimizer W ?(θ) in (5.18) consisted of nR = 21 critical
regions in a 7 dimensional parametric space, cf. (5.16). The MPT toolbox was
subsequently used to synthesize the corresponding binary search tree to speed
up the evaluation of the PWA function in (5.18). The total memory footprint
of the binary tree was 1392 bytes. This number includes both the separating
hyperplanes as well as the parameters of local affine feedback laws αi, βi
associated to each critical region. The construction of the tree took 5 s. Particular
software and hardware implement ion of the MPC-based reference governor on
the microprocessor chip can be found in Klaučo et al. [2017].

5.4 Experimental Results
Experimental results demonstrating benefits of the MPC-based reference gover-
nor are presented in this section. Two experimental scenarios are considered.
In both experiments, the sampling time was chosen as Ts = 1 ms. Moreover,
the reference was periodically switched between ±0.2 V (±0.18 mm) around the
chosen equilibrium point U s

ps = 1.4 V (ps = 8.7 mm).

The first experiment concerns controlling the vertical position of the ball solely
by the PSD controller (5.12). In this experiment, constraints on the control input
were enforced by artificially saturating the control actions. Naturally, the PSD
controller provides no a-priori guarantee of satisfying the output constraints.
The experimental results are shown in Fig. 5.3. As expected, the control inputs
of the PSD controller shown in Fig. 5.3(b) obey the limits on the control action
due to the saturation. However, the output constraints are violated, as can be
seen in Fig. 5.3(a). Moreover, the control profile exhibits significant under- and
overshoots during setpoint changes.

To improve the performance, in the second experiment the MPC-based reference
governor was inserted into the loop. The experimental data are visualized in
Fig. 5.4. First and foremost, the reference governor shapes the reference in such
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Figure 5.3: Control by the PSD controller only. The top figure shows the user-
defined reference r(t) in green and the ball’s position y(t) in blue.
The bottom figure shows the control action u(t) of the PSD controller,
along with saturation input constraints in dashed-black.

a way that constraints on the controlled output (i.e., on the ball’s position) are
rigorously enforced, cf. Fig. 5.4(a). This is a consequence of accounting for the
constraints directly in the optimization problem, cf. (5.14f). Moreover, the under-
and overshoots are considerably reduced. This shows the potential of MPC-
based reference governors to significantly improve the control performance.
The improvement is due to the optimal modulation of the user-defined reference
as shown in Fig. 5.4(b). As can be observed, just small modifications of the
reference are required to significantly improve performance. Finally, as can be
observed from Fig. 5.4(c), the reference governor shapes the reference in such
a way that the inner PSD controller provides satisfaction of input constraints
since they are explicitly embedded in (5.14e). The evaluation of the RG feedback
law (5.18), encoded as a binary search tree, took 254 µs on average. The best-case
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(c) Control action u(t) of the PSD controller

Figure 5.4: Control under the reference governor. The top figure shows the
measured position of the ball y(t) (blue line), while the reference
r(t) is depicted by green. Dashed lines denote output constraints.
The middle figure represents the optimally shaped setpoint w(t)
(magenta) and the user-defined reference r(t) (green). The bottom
figure shows the manipulated variable u(t) and its constraints in
dashed-black.
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evaluation time was 243 µs while the worst case was 266 µs. These fluctuations
are caused by the binary search tree not being perfectly balanced, which is an
inherent property of the geometric structure of the parametric solution. As a
consequence, different number of steps are required to evaluate the tree for
different values of the parameter θ in (5.16).

5.5 Concluding Remarks
In this chapter we show that the performance of the closed-loop system can
be enhanced by optimally modulating the setpoint for the inner stabilizing
controller. The MPC-based reference governor is based on a state space repre-
sentation of the closed-loop model, which allows to account for constraints on
the control input generated by the inner controller, as well as on the controlled
outputs. To implement the MPC strategy on the micro-controller, we choose
the explicit MPC realization. The resulting feedback strategy was in a form of
a PWA function, which was exported to a binary search tree. By doing so, the
MPC strategy was accommodated in approx. 5 kB of memory. Moreover, since
the optimal references are precalculated in the form of a PWA function, the
on-line implementation effort is modest as well. Specifically, it never exceeded
266 µs even on a very simple microprocessor.

The application of explicit MPC was possible only due to the low number of
dimension of the parametric space. Next chapter, discusses a system where
the number of parametric space increases, due to increased number of states,
process variables, and also number of PID loops. The MPC-based governor will
be again design based on the state-space representation of the process.



CHAPTER 6

Boiler-Turbine System

Here, the MPC-RG strategy is again based on the state-space modeling of the
closed-loop system, as discussed in the Section 4.1.2. This case study involves
a more complex model of the closed-loop since it contains three individual
PI loops. As a consequence of the size of the MPC-RG, the control problem
is solved online, using GUROBI solver. Results published in this chapter are
adopted from the paper [Klaučo and Kvasnica, 2017].

6.1 Plant Description and Control Objectives
In this part of the thesis we show how to design a reference governor for a
well-known boiler-turbine system, introduced in Åström and Eklund [1972].
It represents a system where fossil fuel is burned to generate steam in a drum
boiler. The steam is subsequently fed into the turbine. A schematic represen-
tation of the plant is shown in Fig. 6.1. The system features three controlled
outputs and three manipulated variables, which have to be operated subject to
constraints on their respective amplitudes and their slew rates. Various strate-
gies have been proposed in the literature to control such a plant, ranging from
the application of fuzzy MPC Liu and Kong [2013], Li et al. [2012], through
data-driven approaches Wu et al. [2014], dynamic matrix control Moon and Lee
[2009], up to the application of hybrid MPC techniques Sarailoo et al. [2012], Ke-
shavarz et al. [2010]. Although all aforementioned approaches can substantially
improve safety and profitability of the plant operation, they also assume that
the existing control architecture (represented by the inner PI/PID controllers) is
completely replaced by the new setup. As mentioned in the Introduction, this is
not always desired by plant operators.

In this thesis we assume that the individual manipulated variables are con-
trolled by a set of PI loops which, however, do not explicitly take constraints
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Figure 6.1: The boiler-turbine plant, picture reproduced from Åström and Ek-
lund [1972].

and performance objectives into account. Therefore, an optimization-based
reference governor setup is proposed to improve upon these two factors. We
show that the inner PI control loops can be modeled as a discrete-time linear
time-invariant system. Then, we design a suitable state observer to estimate
values of the states which cannot be directly measured, as well as to estimate
unmeasured disturbances. Using the model and the estimates we then formu-
late the optimization problem which predicts the future evolution of the inner
closed-loop system and optimizes references provided to the inner PI controllers.
Offset-free tracking of output references is furthermore improved by using the
concept of disturbance modeling as proposed in the Section 3.2. By means of
this case study we illustrate that the proposed concept has two main advantages.
First, it allows to keep existing control infrastructure. Second, and more impor-
tantly, it enforces a safe and economic operation of the plant. The case study
reported in this thesis quantifies the improvement in safety and profitability
and also compares it to the scenario where the plant is directly controlled by an
MPC controller which bypasses existing PI-based control infrastructure.

The three manipulated variables of the boiler-turbine system are individually
controlled by a set of three interconnected PI controllers as suggested by Dimeo
and Lee [1995]. Their primary purpose is to stabilize the plant. However, they
may exhibit a poor tracking performance due to presence of constraints. Specif-
ically, the amplitude of each control action is constrained in the (normalized)
interval [0, 1]. Additionally, slew rate constraints have to be considered to
guarantee a physically safe operation of the plant. Although anti-windup logic
can be included into the feedback law to mitigate the influence of min/max con-
straints on the amplitude, dealing with slew rate constraints requires extensive
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Figure 6.2: Reference governor setup.

controller tuning, which is a tedious procedure without any rigorous guarantees
of being successful.

We propose to enforce constraint satisfaction and to improve tracking perfor-
mance by devising a suitable reference governor. Its purpose is to shape the
references provided to individual PI controllers such that even these simple
controllers achieve constraints satisfaction and desirable performance. The
schematic representation of the proposed strategy is shown in Fig. 6.2. Specifi-
cally, the reference governor replaces the user-specified reference r by a shaped
reference signal w in such a way that the control actions u generated by the
inner PI controllers respect constraints. Moreover, the reference governor im-
proves tracking performance by taking into account predictions of the future
evolution of the inner closed-loop system such that the measured plant’s output
ym converges to the user-specified reference r without a steady-state offset.

We show that it can be designed as an MPC-like optimization problem solution
of which are the optimally shaped references w that enforce constraint satisfac-
tion and optimize tracking performance. Subsequently, in the Section 6.5, the
performance of the proposed strategy is compared to a pure PI-based control
strategy as well as to full-fledged MPC setup by means of a case study.
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6.2 Plant Modeling and Constraints
The mathematical model of the boiler-turbine plant was proposed in Åström
and Eklund [1972] as a set of three nonlinear differential equations of the form

∂p

∂t
= −0.0018u2p

9
8 + 0.9u1 − 0.15u3, (6.1a)

∂PN

∂t
= (0.073u2 − 0.016) p 9

8 − 0.1PN, (6.1b)

∂ρ

∂t
= 1

85 (141u3 − (1.1u2 − 0.19) p) . (6.1c)

Here, p is the drum pressure in kg cm−2, PN denotes the nominal power gen-
erated by the turbine in MW, and ρ is the density of the liquid in the boiler in
kg m−3. These three variables represent the three states of the system. Moreover,
the model features three control inputs: u1 is the fuel flow valve, u2 represents
the steam valve, and u3 denotes the feed-water valve. The liquid level h in the
boiler, represented in m, is given as a nonlinear function of states and inputs in
the form

h = 6.34 · 10−3p+ 4.71 · 10−3ρ+ 0.253u1 + 0.512u2 − 0.014u3. (6.2)

Only h, p, and PN can be directly measured. The density ρ is an internal state
which can only be estimated if it is required by the control strategy.

The three control inputs are subject to min/max bounds on their amplitude
with 0 ≤ ui ≤ 1, i = 1, . . . , 3, where 0 represents the fully closed position and
1 stands for the fully open position. In addition, slew rate constraints must be
respected as well. They are given by

∣∣∣∣
∂u1
∂t

∣∣∣∣ ≤ 0.007 s−1, (6.3a)

−2 s−1 ≤ ∂u2
∂t
≤ 0.02 s−1, (6.3b)

∣∣∣∣
∂u3
∂t

∣∣∣∣ ≤ 0.05 s−1. (6.3c)

More details about this particular nonlinear model as well as operation of the
boiler-turbine unit itself can be found in [Dimeo and Lee, 1995].

The reference governor presented in this part of this thesis is based on a lin-
earization of the nonlinear dynamics in (6.1), followed by conversion of the
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continuous-time model into the discrete-time domain. Specifically, let

x =
[
p PN ρ

]ᵀ − xL, (6.4a)

u =
[
u1 u2 u3

]ᵀ − uL, (6.4b)

y =
[
p PN h

]ᵀ − yL, (6.4c)

denote, respectively, the vector of states, control actions, and measured outputs,
expressed as deviations from respective linearization points xL, uL, and yL.
Then the linear time-invariant (LTI) approximation of the system in (6.1) in the
discrete-time domain is given by

x(t+ Ts) = Ax(t) +Bu(t), (6.5a)

y(t) = Cx(t) +Du(t), (6.5b)

where Ts is the sampling time. For this purpose we assume that Ts = 2 s.

The linearization point was selected as

xL =
[
107.97 66.62 428.00

]ᵀ
, (6.6a)

uL =
[
0.34 0.69 0.44

]ᵀ
, (6.6b)

yL =
[
107.97 66.62 3.13

]ᵀ
, (6.6c)

and corresponds to the steady state where the turbine generates 66.62 MW of
power with drum pressure of 107.97 kg cm−2, and liquid density 428.00 kg m−3.

Then, using the first-order Taylor approximation of the nonlinearities in (6.1)
and by applying the forward Euler discretization, we arrive at the following
matrices of the LTI model in (6.5):

A =




0.9950 0 0
0.1255 0.8187 0
−0.0134 0 1


 , (6.7a)

B =




1.7955 −0.6963 −0.2993
0.1168 25.6134 −0.0195
−0.0120 −2.7733 3.3200


 , (6.7b)

C =




1 0 0
0 1 0

0.0063 0 0.0047


 , (6.7c)

D =




0 0 0
0 0 0

0.2530 0.5120 −0.0140


 . (6.7d)

Worth noting is that the D matrix is non-zero, which is a consequence of direct
feedthrough of control inputs in the output equation (6.2).
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6.3 Modeling of the Closed-Loop System
We assume that the boiler-turbine system is controlled by three interconnected
PI controllers as shown in Fig. 6.3. Their coefficients, as reported by Dimeo and
Lee [1995], are as follows:

R1 = 11.119s+ 0.003
s

, (6.8a)

R2 = 0.004s+ 0.009
s

, (6.8b)

R3 = 1.163s+ 0.019
s

. (6.8c)

Furthermore, local gains k12 = 0.0292, k13 = 0.1344, k21 = 0.0468, k23 =
0.0875, k31 = 0.0842 and k32 = 0.0699 are introduced to improve the control
performance.

Boiler-
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System

R2(s)

R1(s)

R3(s)

+

+

+

−
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−

w1

w2

w3

u1

u2

u3

y2

y3

y1

k21

k31

k12

k13

k23

k32

Figure 6.3: Interconnected PI controllers as proposed by Dimeo and Lee [1995].

To deal with the technological constraints (6.3), Dimeo and Lee [1995] have
proposed to include additional rate limiters and antiwind-up in the closed-
loop logic. Here, however these constraints will be enforced by the reference
governor, hence the modeling of the closed-loop system will be done exactly
in the same fashion as reported in the Section 4.1.2.1. If we consider the model
of the set of PI controllers as in (4.11) and the sampling time Ts = 2 s, the state
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space model of the PI controllers is

Ar =




1 0 0
0 1 0
0 0 1


 , (6.9a)

Br =




2 0 0
0 2 0
0 0 2


 , (6.9b)

Cr =




0.0033 0 0
0 0.0093 0
0 0 0.0186


 , (6.9c)

Dr =




11.1185 0.0468 0.0842
0.0292 0.0040 0.0699
0.1344 0.0875 1.1631


 . (6.9d)

Note, that the Dr is a full matrix, which is a consequence of using local gains
kij in the setup of Fig. 6.3. Next, the matrices of the closed-loop system ACL,
BCL, CCL, and DCL are be evaluated in accordance with (4.18). These matrices
are then used in the next section for the control strategy design.

6.4 Control Strategies
In this section we will focus on the particular controller design. First, we
will design the MPC-RG strategy, where we utilize theoretical basis from the
Section 4.1. This section is followed by design of a Direct-MPC strategy, in order
to compare the difference in control performance.

6.4.1 MPC-based Reference Governor
The MPC-based reference governor is design based on the linearized model
of boiler-turbine unit and its closed-loop representation. Moreover, in order
to reject the offset and design model and process mismatch, we introduce the
disturbance modeling (Section 3.2) to enforce the reference tracking properties.
To further introduce the reader to the implementation details of the time-varying
Kalman filter and the MPC-based reference governor, a complex block diagram
si drawn in the Fig. 6.4.

The particular design model used for the MPC design as well as the Kalman
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Figure 6.4: MPC-based reference governor implementation with the time-
varying Kalman filter.

Filter design is of the form

x̃k+1 = ACLx̃k +BCLwk, (6.10a)

uk = CCL,ux̃k +DCL,uwk, (6.10b)

yk = CCL,yx̃k +DCL,ywk + Eydk, (6.10c)

dk+1 = dk. (6.10d)

Next, in order to design the time-varying Kalman filter (Eq. (3.20) and (3.19)) an
aggregated disturbance model is derived. Particularly, define a state vector

x̂e =
[

ˆ̃x
d̂

]
, (6.11)

based on which the model in (6.10) is re-arranged to

Ae =
[
ACL 0

0 I

]
, Be =

[
BCL

0

]
, (6.12a)

Ce =
[
CCL,u 0
CCL,y F

]
, De =

[
DCL,u

DCL,y

]
. (6.12b)
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The MPC-based reference governor is designed as a prediction problem over a
finite horizon N and it is given by

min
w0,...,wN−1

N−1∑

k=0

(
‖yk − r‖2

Qy
+ ‖∆wk‖2

Qw
+ ‖∆uk‖2

Qu

)
(6.13a)

s.t. x̃k+1 = ACLx̃k +BCLwk, (6.13b)

uk = CCL,ux̃k +DCL,uwk, (6.13c)

yk = CCL,yx̃k +DCL,ywk + Eyd0, (6.13d)

ymin ≤ yk ≤ ymax, (6.13e)

umin ≤ uk ≤ umax, (6.13f)

∆umin ≤ ∆uk ≤ ∆umax, (6.13g)

x̃0 = ˆ̃x(t), u−1 = u(t− Ts), w−1 = w(t− Ts), d0 = d̂(t). (6.13h)

The optimization problem is initialized by the estimate of the state vector ˆ̃x(t),
and by estimate of the disturbance d̂(t), which can be extracted from the Kalman
filter procedure via (3.22). Moreover, in the objective function (6.13a) we not
only penalize the tracing error by the first term, but also the fluctuations in the
shaped reference ∆w and the slew rates ∆u. Based on that, we require in the
initialization variables w−1, and u−1.

6.4.2 Direct-MPC Strategy
The Direct-MPC controller is design in order to compare the MPC-RG strategy
with the situation when the PI loops are substituted by the optimal controller.
We assume, that the manipulated variables are obtained by solving following
optimization problem at each sampling instant

min
u0,...,uN−1

N−1∑

k=0

(
‖yk − r‖2

Wy
+ ‖∆uk‖2

Wu

)
(6.14a)

s.t. xk+1 = Axk +Buk, (6.14b)

yk = Cxk +Duk + Eyd0, (6.14c)

ymin ≤ yk ≤ ymax, (6.14d)

umin ≤ uk ≤ umax, (6.14e)

∆umin ≤ ∆uk ≤ ∆umax. (6.14f)

Problem (6.14) is similar to (6.13), but we directly optimize the control inputs u
of (6.5) instead of the shaped reference w. Moreover, the predictions are based
on the model of the nominal system in (6.5). The MPC problem (6.14) can
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be implemented in a receding horizon fashion similarly as was described in
Section 3.1.2. Its initial conditions, i.e., x0 and d0, are obtained by estimation by
introduction the time-varying Kalman Filter per Section 3.2.

6.5 Case Study
In this section we demonstrate the performance and viability of the proposed
reference governor setup in a simulation study involving the nonlinear model
of the boiler-turbine system in (6.1). Three cases are considered. In the first case
the boiler is controlled solely by the interconnected PI controllers as shown in
Fig. 6.3. In the second case the references for the inner PI controllers are shaped
in an optimal fashion using the reference governor described in Section 6.4.1
and in Fig. 6.4. We refer to this scenario as the MPC-RG setup. Finally, the
last case considers that the plant is directly controlled by an MPC regulator,
bypassing the inner PI loops. This scenario will be referred to as Direct-MPC
and is discussed in Section 6.4.2, and shown in Fig. 3.1.

In all three scenarios, the sampling time was set to Ts = 2 s and problems (6.13)
and (6.14) were formulated for the prediction horizon N = 30. The following
tuning of penalty matrices used in (6.13a) was used:

Qy = diag
(
[101 10−2 101]

)
, (6.15a)

Qw = I3 · 10−4, (6.15b)

Qu = I3 · 10−3. (6.15c)

The associated Kalman filter was tuned with

P0 = I9, (6.16a)

Qe = I9 · 10−4, (6.16b)

Re = I6 · 10−2. (6.16c)

In case of the Direct-MPC setup, represented by (6.14), we have used

Wy = diag
(
[102 10−1 102]

)
, (6.17a)

Wu = I3 · 10−3. (6.17b)

The tuning of the associated time-varying Kalman filter was chosen as

P0 = I6, (6.18a)

Qe = diag
(
[101 102 101 10−1 101 10−1]

)
, (6.18b)

Re = diag
(
[101 101 10−5]

)
. (6.18c)
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Figure 6.5: Measurements profiles. The green color depicts the reference signal.
The pink color show the performance of set of PI controllers, the red
lines depicts the performance using RG-MPC strategy, and the blue
dashed is used for Direct-MPC setup
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Both optimization-based strategies were required to enforce following con-
straints:

umin =
[
0 0 0

]ᵀ − uL, (6.19a)

umax =
[
1 1 1

]ᵀ − uL, (6.19b)

along with constraints on the slew rate of control inputs:

∆umin =
[
−0.014 −4 −0.1

]ᵀ s−1, (6.20a)

∆umax =
[
0.014 0.04 0.1

]ᵀ s−1. (6.20b)

In all simulations involving one of the MPC strategies, the respective QP opti-
mization problems were formulated using YALMIP Löfberg [2004] and solved
using the Gurobi solver.

The first simulation scenario involves a step change in the requested generated
power. Specifically, a +5 MW step change w.r.t. to the steady state PN,L =
66.62 MW is performed at time 50 s. The objective is to keep the other two
controlled outputs, i.e., the pressure p and the liquid level in the drum h at their
steady-state values.

Closed-loop simulation profiles of the controlled outputs of the boiler-turbine
system under the three scenarios are shown in Fig. 6.5. As can be observed,
the power output signal exhibits noticeable oscillations when the system is
controlled purely by the PI controllers. On the other hand, once their respective
references are shaped via the reference governor, a much smoother tracking
of the power reference is achieved. Worth noting is that by employing the
disturbance modeling principle, perfect tracking of the references is achieved
despite the controlled system (represented by the nonlinear plant in (6.1)) being
different from the prediction model (represented by the LTI system (6.5)).

The corresponding profiles of the shaped references, generated by solving
the QP (6.13) at each sampling instant, are shown in Fig. 6.6. Moreover, the
performance of the proposed reference governor setup is almost identical to
that one of the direct MPC. A similar conclusion can be drawn from the profiles
of the liquid level in the boiler. The control actions of all three control strategies
are shown in Fig. 6.7. As can be seen, the PI controllers are less aggressive such
that they avoid hitting the constraints. The RG-MPC and Direct-MPC strategies,
on the other hand, are explicitly aware of the constraints.

To quantify the performance of the three discussed control strategies, we have
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evaluated two criteria. The first one, represented by

Ju = 1
Nsim

Nsim∑

k=1
‖uj(k)‖1, (6.21)

quantifies the amount of energy consumed by the individual control strategy.
Here, Nsim is the number of simulation steps, u(k) denotes the control action
at the k-th simulation step, and ‖u(k)‖1 =

∑3
j=1 |uj(k)| is the 1-norm of u(k).

Similarly,

Jy = 1
1

Nsim

∑Nsim
k=1 ‖y(k)− r(k)‖1

(6.22)

quantifies the tracking performance.

Values of these performance criteria for each of the three considered control
strategies are compared graphically in Fig. 6.8. Note that the values are normal-
ized such that the PI strategy has Ju = 1 and Jy = 1.
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Figure 6.8: Control strategies comparison.

As expected, the pure PI-based strategy exhibits the worst performance both
with respect to energy consumption as well as in terms of tracking performance.
This is a consequence of the conservative tuning of such PI controllers with the
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objective to avoid hitting constraints. The best performance is achieved by the
Direct-MPC setup, since it bypasses the internal dynamics of the PI controllers.
The proposed reference governor-based scheme allows the PI controller to stay
as a part of the closed-loop system, but significantly improves their performance
by a suitable choice of the shaped references. Specifically, compared to the pure
PI strategy, RG-MPC reduces the energy consumption by 27% and improves the
tracking performance by 48%.

To demonstrate the effect of tuning parameters used in (6.14a), besides the
baseline setup of (6.15) we have also considered two different selection of the
weighting matrices:

Qy = diag
(
[102 10−1 102]

)
, Qw = I3 · 10−4, Qu = I3 · 10−5, (6.23a)

Qy = diag
(
[5 · 101 10−1 101]

)
, Qw = I3 · 10−5, Qu = I3 · 10−5. (6.23b)

The first tuning in (6.23a) puts a higher emphasis on tracking of references since
the Qy matrix is ten times as large as in (6.15). Moreover, Qw and Qu were
decreased by a factor of 10. The second choice in (6.23b) allows the shaped
reference to follow the user-supplied reference less tightly by further decreasing
Qw. As a consequence, the MPC-RG has more “freedom” in the choice of the
shaped reference. In all cases, prediction horizon N = 30 was used as was the
case in the baseline scenario.

The aggregated quality criteria (6.21) and (6.22) evaluated for these re-tuned RG-
MPC strategies are depicted visually in Fig. 6.8. Moreover, concrete values of the
quality criteria are reported in Table 6.1. Besides the aggregated quality criteria
Ju and Jy computed per (6.21) and (6.22), respectively, the table also reports
tracking performance of the three controlled outputs. Specifically, Jy,p related to
the quality with which the drum pressure reference is tracked. Similarly, Jy,PN is
the quality of the tracking for the nominal power and Jy,h relates to the quality
of tracking of the liquid level reference.

Two main conclusions can be drawn from the results in Table 6.1. First, the best
overal performance is achieved by using the tuning in (6.23a) which, however,
is only marginally better than the baseline tuning of (6.15). The third alternative
per (6.23b) is slightly worse with respect to output tracking and significantly
worse w.r.t. energy consumption. The second conclusion is that all RG-MPC
tunings provide a very good tracking quality of the nominal power PN, even
compared to the Direct-MPC setup, cf. the penultimate column of Table 6.1.
Specifically, with the tuning in (6.23a), the tracking quality criterion Jy,PN is
only by 1.2% worse compared to Direct-MPC. Even with the tuning in (6.23b),
which yields the worst tracking of the power reference, the deterioration of
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Table 6.1: Quality criteria for various control strategies. Lower values of Ju and
higher values of Jy are better. The values are normalized with respect
to the PI strategy.

Strategy Ju Jy Jy,p Jy,PN Jy,h

PI 1.0000 1.0000 1.0000 1.0000 1.0000
Direct-MPC 0.3874 2.0741 7.5113 2.0341 5.7237
RG-MPC with (6.15) 0.7284 1.4897 0.7565 1.9189 0.1605
RG-MPC with (6.23a) 0.7173 1.5415 0.7652 2.0095 0.1601
RG-MPC with (6.23b) 0.8689 1.3494 0.7868 1.8572 0.1205

performance is only by 8.7%. On the other hand, by using only the PI controllers,
the power tracking performance drops by 50.8% compared to Direct-MPC. Since
the nominal power is considered the most important quality in practice, this
demonstrates that RG-MPC can indeed significantly improve control quality
even when inner PI controllers are included in the loop and can even achieve
comparable results to Direct-MPC setups.

6.6 Concluding Remarks
This part of the thesis we have shown how to improve safety and performance
of conventional control strategies by a suitable modification of their references.
This was achieved by predicting the future evolution of the closed-loop system
composed of the controlled plant and a set of interconnected PI controllers. By
optimizing over the future predictions we have obtained shaped references
which, when fed back to the inner controllers, lead to constraints satisfaction
and improved tracking performance. The shaped references were computed
by solving a convex quadratic programming problem at each sampling instant.
The unmeasured states, as well as disturbances capturing the plant-model mis-
match, were estimated using a time-varying Kalman filter. The case study has
demonstrated that process safety and performance can indeed be significantly
improved. The results of the proposed reference governor setup were also
compared to a scenario where the inner controllers are bypassed and the plant
is directly controlled by a model predictive control strategy.

By applying optimization on top of existing PI controllers, reference governors
can be viewed at as “trojan horses” for application of MPC-based strategies
to plants where complete revamp of the control architecture is not desired.
This reduces the cost of implementation and, most importantly, allows human
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operators to stay comfortable with existing control architecture.

As a final note, we recognize two main area, where the MPC-RG can be further
improved. The first one includes incorporation of a more detailed prediction
model, preferably a nonlinear one. This, on the one hand, would result in further
increase of control quality. On the other hand, however, computational obstacles
associated with solving nonlinear optimization problems would need to be
addressed. The second direction is to assume more complex inner controllers.
For instance, one can assume that the coefficients of the PI controllers change
based on a look-up table. This would result in a switching in the controller
tuning. Such a behavior can be efficiently tackled in the context of hybrid
systems [Bemporad and Morari, 1999] at the expense of arriving at a more
complex optimization problem.

The chapter 5 and this chapter discussed the design and application of MPC-
based reference governor based on the state-space representation of the process
and PID controllers. The subsequent chapter moves from the inner PID loop to
a loop consisting of “on/off” controller.



CHAPTER 7

Temperature Control in Buildings

This chapter discusses the application of the MPC-based reference governor,
which improves the behavior of the closed-loop system consisting of a relay
controller. The theoretical basis for this strategy is covered in the Section 4.2.
In this chapter, we describe the particular mixed-integer linear problem for-
mulation for the MPC-RG problem (4.47). We test the viability of the strategy
on the simulation-based case study involving a thermostatically controlled
temperature in the building.

7.1 Challenges in Thermal Comfort Control
The main reason to study the control approaches in connection with the thermal
comfort is to decrease the astronomical energy requirements which goes to the
heating, ventilation and air-conditioning (HVAC) systems. It has been reported,
that almost 40% of the global energy use goes to HVAC systems [Parry et al.,
2007]. Therefore it is of imminent importance to design such control systems
which attain comfortable thermal conditions while minimizing the energy con-
sumption. Several control strategies which aim at achieving such a goal have
been proposed in the literature. One of the most promising approach is repre-
sented by Model Predictive Control (MPC), which allows to explicitly account
for minimization of the energy consumption while maintaining thermal comfort
criteria as presented in [Oldewurtel et al., 2012, Ma et al., 2012], and in [Drgoňa,
Kvasnica, Klaučo, and Fikar, 2013]. Suitability of the MPC-based strategies has
been well-documented in several scientific publications [Castilla et al., 2011,
Cigler et al., 2012b]. In particular, authors in [Široký et al., 2011] report that
energy savings under MPC outperform those of intelligent thermostats, ranging
from 17% in non-insulated buildings up to 28% in insulated ones.

When we speak about the thermal comfort, we usually mean the temperature
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inside an office. Almost all strategies aim to achieve suitable temperature
conditions while reducing the energy consumption of the heater or the AC
unit. However, keeping the temperature constant does not imply that occupants
of the building perceive it as the optimal scenario. In fact, there are other
factors which influence perception of the thermal comfort including, but not
limited to, the relative air humidity, the air movement, the clothing, or the
metabolic rate. Therefore the so-called Predicted Mean Vote (PMV) index was
introduced by Fanger [1970] as an alternative way of expressing the thermal
comfort, standardized in ISO [2006]. The PMV index is a complex, nonlinear
relation between various building’s parameters and the perceived thermal
comfort. The value of the PMV index is dimensionless and its zero value
corresponds to most comfortable conditions. Values between ±1 correspond to
slightly cold/warm conditions, PMV = ±2 expresses cool/warm perception,
and values above ±3 indicate unpleasantly cold/hot conditions in the building.
The intriguing property of the PMV index is that it can remain constant even if
the indoor temperature changes, for instance when the change of temperature
is compensated by the change of air humidity.

Since the PMV index is generally viewed as a superior indicator of thermal
comfort, various authors have proposed to formulate MPC with the PMV index
in mind [Castilla et al., 2011, Cigler et al., 2012a, Klaučo and Kvasnica, 2014].
Focusing on the PMV index requires also a significant change of the sensor
layout, which can be a costly process. One of the aims of this thesis is to provide
solutions, which avoid exactly the process of changing the control infrastructure.
Therefore, we will look at traditional control setups in residential or office
buildings where the temperature measurement is the only variable available
to us. In the traditional setups, the entire control scheme consist of a single
thermostat connected to central heating system or to an AC unit.

However, conventional thermostats are considered “dumb” since they base
their decisions only on the measurements of the indoor temperature. More re-
cently, so-called “intelligent” thermostats started to attract attention due to their
ability to provide thermal comfort while mitigating the energy consumption.
Examples include, but are not limited to, Nest1, Emme2 or Ecobee3. Compared
to conventional thermostats, these advanced solutions provide higher energy
savings by applying algorithms which estimate the habits of household’s occu-
pants, especially with respect to occupancy predictions. Although promotional
materials of the aforementioned solutions claim a 10% to 15% reduction of the

1http://www.nest.com
2http://www.getemme.com
3http://www.ecobee.com

http://www.nest.com
http://www.getemme.com
http://www.ecobee.com
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cost of heating, independent reports are more skeptical. Specifically, Herter
[2010] concludes that it is difficult to claim energy savings beyond those ob-
tainable with a conventional programmable thermostat (that has been properly
programmed) combined with the provision of energy use information.

Results presented in this thesis originate in Drgoňa, Klaučo, and Kvasnica [2015],
in which we aim to improve the behavior of the “dumb” thermostat by an MPC-
based reference governor strategy. This strategy will provide an optimal set
point to the thermostat, so the thermal comfort will be maintained while we
minimize the overall energy expenditures.

7.2 Mathematical Background
The validation of the proposed improvements in control of the indoor tem-
perature involves a simulation study based on a linear time invariant model
which employ real historical profiles of disturbances. The prediction model was
obtained by zero order hold discretization of continuous time model

ẋ(t) = Ãx(t) + B̃u(t) + Ẽd(t), (7.1a)

T (t) = Cx(t). (7.1b)

The system matrices Ã, B̃, Ẽ and C were extracted from the ISE toolbox by van
Schijndel [2005]:

Ã = 10−3 ·




−0.020 0 0 0.020
0 −0.020 0.001 0.020
0 0.001 −0.056 0

1.234 2.987 0 −4.548


 (7.2a)

B̃ = 10−3 ·




0
0
0

0.003


 , Ẽ = 10−3 ·




0 0 0
0 0 0

0.055 0 0
0.327 0.003 0.001


 , (7.2b)

C =
[
0 0 0 1

]
(7.2c)

The four state variables are as follows: x1 is the floor temperature, x2 denotes
the internal facade temperature, x3 is the external facade temperature, and x4
represents the indoor temperature. All states are in ◦C. The control input u is
the heat flow injected into the building, often denoted as q. According to Fig. 4.5,
the heat flow is either zero, i.e. umin = 0 W, or equal to umax = qmax = 4000 W.
The model features three disturbances: d1 is the external temperature in ◦C, d2
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is the heat generated by appliances and by the occupants of the building in W ,
and d3 is the heat generated by the solar radiation in W. The sampling time of
Ts = 2.5 min was used.

7.3 MPC-based Reference Governor Synthesis
The upgrade in the home thermostat system consist of including an MPC-based
reference governor. The particular control structure proposed in depicted on
the Fig. 7.1. To design the MPC-based reference governor, we adopt the control
structure from (4.29). The objective function is set to

`z =
N−1∑

k=0
uk, (7.3)

which enforces the minimization of the spent energy to achieve comfortable
temperatures inside the room. Naturally, if such a objective function would be
used, the MPC-based governor will provide such reference w to the thermostat
that the injected heat to the room will be u = 0 W. In the control design for
thermal comfort inside residential buildings is standard practice to provide a
temperature interval called comfort zone via constraints, i.e, T ∈ {w− θ, w+ θ}.
Hence, we will change the constraint (4.29e) to

w − θ ≤ Tk ≤ w + θ. (7.4)

BuildingRelay
q

Reference
Governor

w

x

T

d

r

inner loop

Figure 7.1: Reference governor scheme with a relay-based controller.

Furthermore, we extend the prediction model in (4.29b) by state disturbances as
suggested in (7.1). Finally, we modify the thermostat control law given by (4.29f)
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to

u =
{
qmax if z = 1
0 if z = 0.

(7.5)

Since the variable umin = 0, then the logic rule in (7.5) can be directly translated
to

u = zqmax, (7.6)

hence the part of the MIP (4.47d)-(4.47g) will boil down to (7.6). After these
particular modifications, the final structure of the MPC-based reference governor
in the form on the optimal control problem is given as

min
w0,...,wN−1

N−1∑

k=0
uk (7.7a)

s.t. xk+1 = Axk +Buk + Edk, (7.7b)

Tk = Cxk (7.7c)

r − θ ≤ Tk ≤ r + θ, (7.7d)

uk = qmaxzk, (7.7e)

wk + γ − Tk ≤Ma(1− δa,k), (7.7f)

wk + γ − Tk ≥ ε+ (ma − ε)δa,k, (7.7g)

Tk − wk + γ ≤Mb(1− δb,k), (7.7h)

Tk − wk + γ ≥ ε+ (mb − ε)δb,k, (7.7i)

δ1,k ≤ zk, (7.7j)

δ1,k ≤ (1− δa,k), (7.7k)

zk + (1− δa,k) ≤ 1 + δ1,k, (7.7l)

δ2,k ≤ (1− zk), (7.7m)

δ2,k ≤ δb,k, (7.7n)

(1− zk) + δb,k ≤ 1 + δ2,k, (7.7o)

δ3,k ≥ δ1,k, (7.7p)

δ3,k ≥ δ2,k, (7.7q)

δ3,k ≤ δ1,k + δ2,k, (7.7r)

zk+1 = δ3,k. (7.7s)

With the decision variables xk, Tk, wk, uk, all of which are continuous, along
with binary variables δa,k, δb,k, δ1,k, δ2,k, δ3,k, and zk. We remind that for the
index k holds k = {0, . . . , N − 1}. Note, that all constraints in (7.7) are linear
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in the decision variables. Moreover, the objective function (7.7a) is also linear,
hence the problem (7.7) can be solved as a mixed-integer linear program. Scalars
Ma, ma, Mb, Mb are chosen with respect to the lemma 4.1.

The closed-loop implementation (see Fig. 7.1) of the proposed reference governor
strategy is characterized by following steps:

1. Measure (or estimate) current values x(t) of the state variables of the
building’s thermal model in (7.1) and current disturbances d(t).

2. Create an instance of (7.7) with x0 = x(t) and d0 = d(t).

3. Solve (7.7) using a MILP solver and obtain w?0 , . . . , w?N−1.

4. Communicate w?0 to the relay-based thermostat as its setpoint.

5. Repeat at the next sampling instant from step 1.

The MILP (7.7) can be formulated in MATLAB using YALMIP [Löfberg, 2004]
and solved by GUROBI, CPLEX of MOSEK.

7.4 Performance Comparison
The first simulation study concerns a 1 hour window from 7:00 do 8:00 on the
first day for which the disturbance profile can be seen in Fig. 7.2. First, the
building was controlled purely by the relay-based thermostat whose setpoint is
constantly set to r = w = 21◦C. The profile of the indoor temperature can be
seen in Fig. 7.3(a). The thermostat switches on and off according to the rules
presented in the Section 4.2.1. Throughout the 1 h window, the thermostat stays
in the “on” state for 22.5 min and consumes 1.5 kW h of electricity overall, as
can be seen in Fig. 7.3(b). Subsequently, the reference governor was enabled
and implemented according to Section 7.3. The simulation results are reported
in Fig. 7.4. As can be seen, the reference governor modulates the reference in
such a way that it allows the thermostat to keep the indoor temperature close
to the r − θ boundary of the thermal comfort zone. As a consequence, less
heating energy is required to satisfy the thermal comfort constraint (7.4), cf.
Fig. 7.4(c). Specifically, under the optimally modulated setpoint in Fig. 7.4(b),
the thermostat stays in the “on” state for 12.5 min and consumes 0.83 kW h of
energy, hence providing significant reduction of energy consumption compared
to the conventional thermostat.
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Figure 7.2: 7-days disturbance profiles.
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Figure 7.3: Indoor temperature controlled only by the thermostat.
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Figure 7.4: Indoor temperature controlled by a thermostat with the setpoint
optimally modulated by the reference governor.
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Figure 7.5: Energy savings overview

The second scenario concerns a seven day window with disturbance profiles as
in Fig. 7.2. The objective here is to assess performance of the proposed strategy
over a longer time span. We have performed closed-loop simulations for two
cases. In the first one the building was controlled solely by the thermostat whose
setpoint was constantly w = 21 ◦C. Then the reference governor was enabled
and the simulation was repeated. Performance of both strategies is assessed by
measuring the time the heater stays on, i.e., delivering q = qmax power. Daily
savings of energy consumption obtained by modulating the reference in an
optimal fashion allows to save between 9% to 17% of energy, as reported in
Fig. 7.5.

7.5 Concluding Remarks
This chapter presented a design on the MPC-based governor to improve the
behavior of conventional thermostats. The supervising controller was designed
by taking into account the switching dynamics of the thermostat as well as
approximation of the thermal dynamics of the single-zone building. We have
shown the transformation of the MPC-like design to the MILP.



CHAPTER 8

Conclusions and Future Remarks

8.1 Thesis Summary
In this thesis, we investigated the properties and benefits of MPC-based refer-
ence governors. We have shown, how to derive the models of the closed-loop,
upon which is the MPC-based governor designed. In this thesis, we distinguish
between three main cases of the closed-loop systems

1. a system with a linear process controlled by set of PID controllers,

2. a system with a linear process controlled by a relay-based controller,

3. a multiple-system composition controlled by decoupled MPC controllers.

For each of the case, we formulate the control problem in the form of a con-
strained finite time optimization problem. These optimization problems belong
to a family of quadratic optimization problems with linear constraints, and
in the case of the relay-based inner controller, we arrived at a QP with binary
variables.

All of the aforementioned optimization problems can be solved in reasonable
time via state-off-the-art solvers. We offer two simulation-based case stud-
ies, where we combine the tractable solution of the optimization problems to
govern the closed-loop systems. The first case study involves a set of PI con-
troller controlling the boiler-turbine unit, and the second case study shows
the improvements in the thermostats behavior. Moreover, we also utilize the
parametric programming to obtain the explicit solution to the QP, which was
subsequently implemented on a micro-controller to improve the performance
of the process of a magnetically suspended ball. Using mentioned case studies
and experimental research, we show that the MPC-based governor improves
the performance of the closed-loop in regarding constraint enforcement as well
as in tracking the reference.
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8.2 Future Research Avenues
This last section of this thesis is devoted to establishing future research goals.
In here, we will focus on three main fronts. First, is the part of the modeling
of the closed-loop systems. By further exploring the types of control loops in
the industry, we may find following closed-loop systems, which need to be
modeled. They include

• closed-loops with a set of gain-scheduled PID controllers,

• closed-loops with fuzzy logic and other rule-based controllers,

• closed-loops with a combination of several types of controllers.

Depending on the choice of the model of the closed-loop system, the structure
of the MPC-based governor changes. With the exploration of models of closed-
loop systems is closely related the analysis of the entire MPC-RG strategy with
inner controllers. By analysis, we mean rigorous proofs of recursive feasibility
and stability of the MPC-RG strategy. This proves to be quite challenging in the
case of the on/off inner controller, which leads to an MPC-based governors in
the form of a mixed-integer linear programming problem.

The second avenue we may explore is the formulation of optimization problems
and its solutions. By adopting procedures from parametric programming, or by
reformulating the control problems, we may achieve easier implementability, or
we can decrease the demand on computational and memory requirements. To
be more specific, lets consider a case of the thermostatically controlled tempera-
ture in the building. If the MPC-RG, which is formulated as an MILP, can be
accommodated in a simple device like Arduino, owners of residential building
and households would be motivated to upgrade their thermostats, without
actually modifying the instrumentation. Of course, the saving in terms of one
building can be disputable, but the global repercussions can be dramatic. Es-
pecially in the explicit MPC-RG strategies arises an opportunity to develop a
tunable explicit MPC controller. Consider a case that we have a process which is
controlled by a PID controller and on top of that we are running MPC-based
governor in the form of an explicit MPC controller. If for some reason the tuning
of the PID changes, we would need to recompute the solution to the explicit
MPC. This can be avoided, by including the constants of the PID controller
as parameters of the explicit MPC, which however leads to a bilinear MPC
formulation at best.

The third possibility of future research lies in utilizing cloud-based computation
services. Here, we suggest moving MPC-based governors to an online service.
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Then, the entire communication between the lower layer of control and the
process itself would be Internet-dependent. This poses more challenges in
Informatics than in the control theory. Moreover, in connection with Internet
of Things, this can be a promising research topic. As a final note, the concept
of a cloud-based MPC was published by Klaučo et al. [2014], where among
other things, an explicit MPC was designed via machine learning procedure. By
adopting these machine learning procedures, we may actually provide the MPC
and MPC-RG strategies in the cloud as a service to whoever desire to improve
control performance of almost any arbitrary process.
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19. Holaza, J.; Valo, R.; Klaučo, M.: A Novel Approach of Control Design of the pH
in the Neutralization Reactor. Editors: M. Fikar and M. Kvasnica, In Proceedings
of the 20th International Conference on Process Control, Slovak Chemical Library,
Štrbské Pleso, Slovakia, 2017.
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M.: Explicit Model Predictive Control of a Fuel Cell. In The European
Conference on Computational Optimization, Leuven, Belgium, vol. 4,
2016.

GAI - Technical Reports:
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APPENDIX C

Resumé

Predkladaná dizertačná práca sa venuje rozšírenej aplikácií prediktívneho ri-
adenia, ktorou je použitie tohto optimálneho riadenia na riadenie vnútornej
slučky, ktorá už obsahuje stabilizujúci regulátor. Tento stabilizujúci regulátor je
člen riadiacej slučky, ktorý je zodpovedný za poskytovanie akčných zásahov do
akčného člena. Tento akčný zásah je určený na základe referencie, ktorá však
je poskytnutá optimalizáciou. Zo zahraničnej literatúry je tento typ riadiacej
stratégie známy pod pojmom optimization-based reference governor. Konkrétnejšie
sa však v tejto práci venujeme prípadu, kedy tento nadradený riadiaci člen
je vo forme prediktívneho regulátora (z angličtiny – model predictive control
(MPC)). Vtedy budeme hovorit’ o MPC-based reference governors (MPC-RG), resp.
Supervízory na báze MPC. Pre bližšiu ilustráciu, si pozrime obr. 1.1, na ktorom
je znázornená schéma takéhoto pokročilého riadenia. Medzi hlavné výhody
takejto stratégie riadenia patria

• zvýšenie bezpečnosti prevádzky,

• zabezpečenie dodržania technologických ohraničení optimálnym spô-
sobom,

• systematické znižovanie energetických nárokov a zvyšovanie produkcie.

Okrem vyššie spomenutých výhod, má použitie MPC-RG ešte jednu dôležitú
výhodu. Tou je fakt, že v prípade nasadzovania tejto stratégie, nie je potrebné
menit’ súčasnú riadiacu infraštruktúru a teda je možné ponechat’ už existujúce
regulačné obvody.

Vzhl’adom na fakt, že MPC supervízory sú optimálne riadiace stratégie, tak
v tejto dizertačnej práci ako prvé uvedieme základné typy optimalizačných
problémov (kapitola 2), ktoré sa neskôr využijú pri formulovaní MPC ria-
diacich schém. Bližšie si predstavíme problémy lineárneho a kvadratického pro-
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gramovania. Tieto problémy je potom možné efektívne riešit’ pomocou rôznych
profesionálnych nástrojov ako sú softwarové balíky GUROBI1, CPLEX2, alebo
MOSEK3. Ďalej predstavujeme optimalizačné problémy zmiešaného celočísel-
ného programovania, ktoré sa taktiež využívajú pri formulovaní MPC superví-
zorov pre špecifické kategórie uzavretých riadiacich obvodov. Posledná čast’
kapitoly o optimalizácii je venovaná parametrickému riešeniu kvadratických
optimalizačných problémov. Toto parametrické programovanie sa používa v prí-
pade, že MPC supervízor je potrebné implementovat’ na zariadenia s obmedzenou
výpočtovou kapacitou, čo znemožňuje použitie balíkov ako je GUROBI a.i.

V rámci prehl’adu súčasnej literatúry uvádzame aj teoretické princípy fungo-
vania MPC regulátorov, ktorým je venovaná kapitola 3. V tejto kapitole ro-
zoberáme základné formulácie MPC riadenia, ich štruktúru a možnosti rozšíre-
nia o modelovanie porúch a Kalmanov filter za účelom poskytnutia riadenia na
žiadanú hodnotu.

Teoretické prínosy tejto dizertačnej práce sú opísané v kapitole 4. V začiatku
kapitoly je načrtnutý všeobecný problém riadenia pomocou MPC supervízora v
rovnici (4.1). Jedna čast’ teoretických výsledkov sa zameriava práve na refor-
muláciu tohto všeobecného optimalizačného problému, na takú formáciu, ktorú
vieme efektívne riešit’ pomocou dostupných softwarových balíkov. Konkrétne
ide o matematické modelovanie uzavretej slučky, ktorá je vyjadrená pomocou
rovníc (4.1b), (4.1c) a (4.1d). V sekciách kapitoly 4, rozoberieme nasledovné
prípady uzavretých regulačných obvodov pozostávajúcich z:

1. PID regulátorov, predstavené v podkapitole 4.1, ktorej výsledky a apliká-
cie su publikované v [Klaučo et al., 2017, Klaučo and Kvasnica, 2017],

2. on/off regulátorov, predstavené v podkapitole 4.2, odpublikované v [Dr-
goňa et al., 2015],

3. lokályuch MPC regulátorov, bližšie rozvedené v podkapitole 4.3, a pub-
likované v Holaza et al. [2017].

V každom z týchto troch prípadov, najskôr odvodíme model uzavretej regu-
lačnej slučky, čiže určíme rovnice (4.1b), (4.1c) a (4.1d). Na základe týchto mod-
elov potom zostavíme jednotlivé MPC supervízory. V podkapitole 4.1, ukazu-
jeme ako pretransformujeme zákon riadenia daný PID regulátorom v tvare

1www.gurobi.com
2www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
3www.mosek.com

www.gurobi.com
www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
www.mosek.com
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prenosovej funkcie do stavového opisu, čo nám následne umožní naformulovat’
MPC-RG problém ako rozšírené MPC riadenie, podobne ako to bolo uvedené
v kapitole 3. Výsledný MPC-RG optimalizačný problém je potom v tvare
kvadratického optimalizačného problému (z angličtiny - quadratic program-
ming (QP)) alebo vo forme lineárneho programovania (z angličtiny - linear
programming (LP)), podl’a toho aký typ kvalitatívneho kritéria si zvolíme. Sek-
cia 4.2 sa venuje modelovaniu uzavretého riadiaceho obvodu, ktorý pozostáva
z riadeného procesu a z on/off regulátora. V prípade on/off regulátora je model
uzavretej slučky vyjadrený pomocou binárnych premenných, ktoré výrazne
ovplyvňujú celú štruktúru MPC supervízora. Výsledný optimalizačný problém,
ktorý reprezentuje MPC-RG stratégiu je navrhnutý ako zmiešaný celočíselný
optimalizačný problém (z angličtiny - mixed-integer (MI) problem). V závislosti
od vol’by kvalitatívneho kritéria riadenia, t.j. účelovej funkcie, je tento prob-
lém bud’ klasifikovaný ako MILP, v prípade lineárnej účelovej funkcie alebo
MIQP, v prípade kvadratickej účelovej funkcie. Oba typy prípadov zmiešaných
celočíselných optimalizačných problémov sa dajú efektívne riešit’ pomocou
dostupných profesionálnych softwarových balíkov ako je GUROBI, CPLEX
alebo MOSEK. Limitujúcim faktorom na rýchle výpočty, na rozdiel od QP/LP
problémov, je v prípade MI problémov počet binárnych premenných. Zložitost’
riešenia MI problémov v princípe rastie exponenciálne s počtom binárnych
premenných. Podkapitola 4.3 rozoberá návrh MPC supervízora pre uzavreté
regulačné obvody vprípade, že primárny regulátor je jednoduchý MPC reg-
ulátor. V tomto prípade uvažujeme scenár, že máme niekol’ko uzavretých
regulačných obvodov, ktoré navzájom nie sú prepojené, avšak zdiel’ajú rovnaké
zdroje, ktorý reprezentuje vstupný signál do týchto jednotlivých procesov. Tento
prípad je štandardným scenárom v priemyselných aplikáciách. V tomto prípade
modelovanie uzavretej slučky je samotným optimalizačným problémom, ktorý
ked’ skombinujeme s MPC-RG prístupom, dostaneme takzvanú viacúrovňovú
optimalizáciu (z angličtiny – bilevel optimization). Tieto typy optimalizačných
úloh sa nedajú triviálne riešit’. V tejto práci ukážeme dva prístupy, ako sa
vysporiadat’ s týmto typom úloh, aby sme dostali relatívne l’ahko riešitel’ný
problém. Prvý prístup predpokladá rozpísanie vnútorného optimalizačné=ho
problému pomocou Karush-Kuhn-Tuckerovych (KKT) podmienok optimality.
Ak sa aplikuje tento spôsob, vo výsledku dostaneme jeden optimalizačný prob-
lém, ktorý pozostáva z nelineárnych hraničení reprezentujúcich KKT systém.
Tieto KKT podmienky sa dajú následne pretransformovat’ pomocou binárnych
premenných do lineárnych ohraničení. Vo výsledku teda dostaneme optimaliza-
čný problém v tvare zmiešaného-celočíselného programovania, ktorý už vieme
riešit’ efektívnejšie. Druhý prístup predpokladá, že vnútorný MPC problém
vyriešime najprv explicitne, t.j. dostaneme analytické riešenie problému v tvare
PWA funkcie, ktorú následne opät’ pomocou binárnych premenných zapíšeme
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ako model do MPC-RG problému. Opät’ dostávame MIQP optimalizačný prob-
lém.

V druhej časti tejto dizertačnej práce sa bližšie pozrieme na aplikáciu MPC-RG
stratégií. V kapitole 5 ukážeme návrh MPC-RG stratégie na riadenie levitu-
júcej guličky v magnetickom poli. V tomto prípade používame aj parametrické
riešenie tohto MPC-RG problému aby sme ho boli schopní implementovat’ na
mikročipe. Experimentálne výsledky ukazujú, že zavedením MPC-RG stratégie
sa výrazne zlepší regulačný pochod, a zároveň ukazujeme akým optimálne
dodržanie fyzikálnych ohraničení, ako sú limity na akčný zásah, alebo limit na
polohu levitujúcej guličky. Ďalšou aplikáciou MPC-RG prístupu (kapitola 6),
je zlepšenie regulačných pochodov energeticky náročného technologického
zariadenia, ktorým je parná turbína. Primárne je táto turbína riadená troma
PID regulátormi. Ak však navrhneme MPC-RG stratégiu, tak sme schopní
zlepšit’ výkonnost’ až o 30%, pri rovnakých energetických nárokoch. V posled-
nej kapitole 7 sa venujeme zlepšovanie tepelného komfortu pomocou MPC
supervízora, ktorý riadi termostat. Termostat je v princípe on/off regulátor. Tak-
tiež zavedením MPC supervízora ukazujeme, že energetická úspora pomocou
tejto stratégie dosahuje až 17%.

V závere práce sú zhodnotené teoretické prínosy ako aj aplikačné výsledky.
Taktiež sú v závere dizertačnej práce načrtnuté aj budúce témy na d’alší výskum.
Medzi tie hlavné body patrí modelovanie iných typov uzavretých slučiek a pre-
pojenie MPC-RG stratégií s prístupmi strojového učenia.
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