
Reducing Memory Footprints in Explicit

Model Predictive Control using

Universal Numbers

Deepak Ingole ∗ Michal Kvasnica ∗ Himeshi De Silva ∗∗

John Gustafson ∗∗,∗∗∗

∗ Faculty of Chemical and Food Technology,
Slovak University of Technology in Bratislava, Slovakia,
(e-mail:{deepak.ingole, michal.kvasnica}@stuba.sk).

∗∗ Department of Computer Science,
National University of Singapore, Singapore,

(e-mail: himeshi@comp.nus.edu.sg).
∗∗∗ Agency for Science, Technology and Research, Computational

Resource Centre, Singapore, (e-mail: john-gustafs@acrc.a-star.edu.sg).

Abstract: Explicit Model Predictive Control (MPC) is an effective alternative to reduce the
on-line computational demand of traditional MPC. The idea of explicit MPC is to pre-compute
the optimal MPC feedback law off-line and store it in a form of look-up table which is to be used
in on-line phase. One of the main bottlenecks in an implementation of explicit MPC is memory
required to store optimal solutions. This limit its applicability to systems with few states, small
number of constraints, and short prediction horizons. In this paper, we present a novel way of
reducing the memory footprint of explicit MPC solutions. The procedure is based on encoding
all data (i.e., the critical regions and the feedback laws) as universal numbers (unums), which
can be viewed as a memory-efficient extension of IEEE floating point standard. By doing so,
we illustrate that the total memory footprint can be reduced by 80% without losing control
accuracy. An additional advantage of proposed approach is, it can be applied on top of existing
complexity reduction techniques.

Keywords: Explicit MPC, memory reduction, floating point numbers, universal numbers.

1. INTRODUCTION

Model Predictive Control (MPC) is an advanced control
strategy where a Constrained Finite-Time Optimal Con-
trol (CFTOC) problem is solved on-line at each sampling
interval to obtain the optimal open-loop control sequence.
However, only the first input from this sequence is ap-
plied to the plant and based on that input, the plant’s
current state is measured and sent back to the optimizer to
compute the next control sequence (Rawlings and Mayne,
2009, Chapter2). A major hurdle in the success of MPC
for real-time applications running on embedded platforms
is to solve MPC optimization problem within a sample
instant. To mitigate the hurdle of on-line computational
demand, a multi-parametric programming based approach
i.e. explicit MPC has been proposed in Bemporad et al.
(2002).

In explicit MPC, the optimal control law is pre-computed
off-line as a function of all possible initial states. For a large
class of MPC problems, such a control law can be shown
to take the form of a Piecewise Affine (PWA) function
defined over a polyhedral partition in the state space, that
maps state measurements onto the optimal control value
inputs. Having a pre-computed PWA function at the hand,
explicit MPC needs to evaluate the PWA function on-line
at each sample instant to compute optimal control ac-

tions based on the current state measurement (Bemporad
et al., 2002). The major advantages of explicit MPC are:
i) by using PWA function, on-line execution-time can be
achieved in the range of milli- to microseconds (Oberdieck
et al., 2016a), ii) MPC properties like closed-loop stability,
feasibility and safety can be verified prior to deploying the
control law on hardware, and iii) the PWA function evalu-
ation can be performed on simple embedded hardware like
a microcontroller, Programmable Logic Controller (PLC)
or Field Programmable Gate Array (FPGA) (Honek et al.,
2015).

However, to achieve such a simple and fast implementa-
tion, the data related to pre-computed PWA control law
needs to be stored on the embedded hardware. Although,
this aspect is less addressed in the literature, in fact it
plays a crucial role when implementing explicit MPC on
embedded devices with low-memory storage capacity and
restricted computational power. In the last few years, an
effort has been made to reduce the complexity of explicit
MPC which is mainly focused on two directions: first,
how to make feedback law simple; second, how to reduce
the number of bits needed to store data with required
accuracy.

The use of a model reduction technique has been pro-
posed in Hovland and Gravdahl (2008) which reduces the

Preprints of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright by the
International Federation of Automatic Control (IFAC)

12100



number of regions but with suboptimal control actions. It
needs longer control horizons as compared to the horizons
needed by original model to obtain good performance.
By approximating the optimal MPC feedback, one can
obtain less complex but suboptimal feedback function;
see e.g. Bemporad and Filippi (2001), Jones and Morari
(2009), Johansen and Grancharova (2003). All these tech-
niques lead to a suboptimal control law. The performance-
lossless complexity reduction techniques are represented
by Optimal Region Merging (ORM) (Geyer et al., 2008),
lattice representation (Wen et al., 2009), saturated re-
gion clipping (Kvasnica and Fikar, 2012), partial selec-
tion (Kvasnica et al., 2012), or region separation (Kvasnica
et al., 2013). A good overview of complexity reduction
techniques is demonstrated with the Multi-Parametric
Toolbox (MPT) in Kvasnica et al. (2015). In all of the
cases one can obtain less complex and performance-lossless
explicit MPC solution, but the downside is that these
techniques are limited to small systems due to the sig-
nificant pre-computing effort required to solve non-trivial
optimization problems.

A common drawback of all the aforementioned approaches
is, the data of simplified MPC feedback law needs to
be stored as Floating Point (FP) numbers in the IEEE
format, 32-bits for single precision and 64-bits for double
precision numbers. The bit size of numbers is thus constant
regardless of the values they store. One of the way of
reducing bit size of the underlying explicit MPC data was
presented in Szücs et al. (2011) where, the authors have
used Huffman encoding (Knuth, 1985) to compress some of
the data (specifically, integer indices to a set of unique half-
spaces). The procedure can thus be viewed as a variable-
size encoding. Since there is a one-to-one correspondence
between original data and their compressed counterparts,
the compressed feedback law exhibits the same properties
(e.g. control performance, closed-loop stability and con-
straint satisfaction) as the original one. An alternative was
presented by Suardi et al. (2016) where the authors have
proposed use of low precision arithmetic.

This paper aims at reducing the memory footprint of ex-
plicit MPC by using universal numbers (unums) (Gustafson,
2015) to represent the data associated with the optimal
MPC feedback law. This allows one to use an explicit
MPC for the number of systems that would otherwise be
excluded due to the high complexity of resulting explicit
controllers; that is, due to the lack of available memory
or powerful computing devices to make point location
algorithms faster. A key idea of unums is to store a real
number with a variable bit length format using six sub-
fields: sign bit, exponent, fraction, uncertainty bit, expo-
nent size, and fraction size. Basically, unum is a superset
of IEEE 754 floating point format (Muller et al., 2009)
that tracks whether a number is an exact float or lies in
the open interval between two exact floats. Compared to
the standard floating point formats; the variable size in
unum offers an ability to change its representative range,
precision, and the uncertainty bit indicates the exactness
of represented value. Thus, unums use fewer bits, obey
algebraic laws, and do not require rounding, overflow, and
underflow for proper operations (Gustafson, 2015, Chapter
3).

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Explicit MPC

Consider the class of discrete time Linear Time-Invariant
(LTI) systems

xk+1 = Axk +Buk (1)

where x ∈ R
n is the state vector, u ∈ R

l is the control
input, A ∈ R

n×n and B ∈ R
n×l and the pair (A, B) is

stabilizable. State and input variables are subject to the
polytopic constraints x ∈ X ⊆ R

n, u ∈ U ⊆ R
l where X

and U are polyhedral sets containing the origin in their
respective interior. The constrained finite time optimal
control problem for the LTI system in (1) is

min
UN

xT
NPxN +

N−1
∑

k=0

xT
kQxk + uT

kRuk (2a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1, (2b)

xk ∈ X , k = 0, . . . , N − 1, (2c)

uk ∈ U , k = 0, . . . , N − 1, (2d)

xN ∈ Xf , (2e)

x0 = x(t), (2f)

where Q ∈ R
n×n, R ∈ R

l×l and P ∈ R
n×n are the

weighting matrices, with conditionsQ � 0 and P � 0 to be
positive semidefinite, and R ≻ 0 to be positive definite. We
denote by N the prediction horizon, xk+1 as the vector of
predicted states at time instant k, UN = {u0, . . . , uN−1} as
the sequence of control actions, x0 as the initial conditions,
and Xf as the polyhedral constraint set for the terminal
state xN .

It is well known, see, e.g. (Borrelli et al., 2011, Chap-
ter 12), that by using the substitution xk = Akx0 +
k−1
∑

j=0

(

Ak−1−jB
)

uj the MPC problem (2) can be translated

into a multi-parametric quadratic problem (mp-QP) of the
form

min
UN

UT
NHUN + xT

0 FUN + xT
0 Y x0 (3a)

s.t. GUN ≤ w +Wx0, (3b)

where matrices H ∈ R
lN×lN , F ∈ R

n×lN , Y ∈ R
n×n, G ∈

R
q×lN , w ∈ R

q,W ∈ R
q×n and q is a number of inequali-

ties.

Furthermore, as demonstrated e.g. by Bemporad et al.
(2002), the mp-QP (3) admits a closed-form solution as
a function κ : Rn → R

lN that maps the initial conditions
x0 onto the sequence of optimal control inputs U⋆

N , i.e.,
U⋆
N = κ(x0). Moreover, provided that H ≻ 0 (which is

satisfied once R ≻ 0, Q � 0, P � 0), κ is a continuous
piecewise affine (PWA) function over polyhedral critical
regions:

κ(x) =











L1x+ g1 if x ∈ R1

...

LMx+ gM if x ∈ RM

(4)

where

Ri = {x ∈ R
n | Zix ≤ zi} i = 1, . . . ,M (5)

are the polyhedral regions with Zi ∈ R
ci×n, zi ∈ R

ci de-
scribing the half-spaces of the i-th region with ci being the
number of half-spaces of the i-th region, and Li ∈ R

lN×n,

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

12101



gi ∈ R
lN are locally optimal gains. Moreover, M denotes

the total number of regions. The data Zi, zi, Li, gi can be
computed e.g. by the Multi-Parametric Toolbox (Herceg
et al., 2013), the Hybrid toolbox (Bemporad, 2004), or the
POP toolbox (Oberdieck et al., 2016b).

Once the PWA function κ in (4) is constructed off-line, the
on-line implementation of MPC boils down to evaluation
of κ for a known value of x0 = x(t) (obtained either by
direct measurement or by estimation). Such an evaluation
is fast and simple since it does not involve divisions. Only
multiplication and addition are required to identify U⋆

N for
a given value of x0.

2.2 Problem Statement

To implement (4) as a feedback controller, one first needs
to store all its real-valued data (i.e., vectors/matrices Zi,
zi, Li, gi) in the memory of control hardware. The total
memory footprints of explicit solution in (4) expressed as
floating point numbers can be compactly given by

S(κ) = MlN(n+ 1) +
M
∑

i=1

ci(n+ 1), (6)

where first part represents the size of all Li, gi pairs 1

(which have constant dimensions for all regions), and the
second part represents memory footprints of all polyhedral
regions (with ci being the number of half-spaces 2 of the
i-th region). The bit size of κ is then B(κ) = bS(κ) where
either b = 32 or b = 64, depending either on single
precision or on double precision floating point numbers
are used.

Our objective is to reduce the bit size of a given explicit
controller in (4) by devising a more memory efficient
representation of floating point numbers contained in the
real-valued vectors/matrices Zi, zi, Li, gi. This can be
achieved by representing each floating point number as
a universal number with a variable size of its bit code.
In other words, instead of using a constant value of b as
the bit size of each floating point number, each number is
represented by bj bits with bj ≤ b. This needs to be done
in such a way that the variable-sized bit codes encode the
same information as fixed size floating point numbers, i.e.,
the encoding/decoding is done in a performance-lossless
fashion. In the next section we show how this can be
achieved using universal numbers.

3. UNIVERSAL NUMBERS

In this section, we will use different colors to specify
various bits in a number presentation.

3.1 IEEE 754 Floating Point Format

The IEEE 754 binary floating point is the most commonly
used representation for real numbers and it comprise
of three fields: sign (s), exponent (e) (true exponent +

1 In fact, if the MPC controller is implemented in a receding horizon
fashion, then only the first component of U⋆

N
, i.e., u⋆

0
, is required. In

such a case the matrices Li, gi can be truncated to just the first l

rows and the first part in (6) becomes Ml(n+ 1).
2 At this point we assume that only the non-redundant half-spaces
are stored, i.e., ci ≤ q where q is the number of constraints in (3b).

bias), and mantissa (m). A binary FP number can be
encoded using four formats: half precision (16-bits), single
precision (32-bits), double precision (64-bits), and quad
precision (128-bits). For detailed information about the
number conversions (real ⇄ FP), arithmetic operations,
and exception handling see, e.g. Zuras et al. (2008);
Muller et al. (2009). The IEEE 754 FP format has many
advantages but it comes with trade-offs like rounding
errors, overflow, underflow, and the “one size fits all” data
format using the same number of bits (16, 32, 64 or 128)
even if it is not necessary (Goldberg, 1991).

3.2 Universal Number Format

Unum format is a superset of IEEE 754 FP formats,
with six sub-fields instead of three. Fig. 1 shows the
general representation of unum format. The left three fields
are like IEEE FP format but with unums these fields
have better rules for handling special numbers like Not-
a-Number (NaN) and infinity. Also, unums can handle
overflow, underflow, and rounding in a much better way
than FP. The description of each field is given below:

1. Sign (s): in unum it is same as the sign bit in floating
point numbers. For positive numbers, sign is 0 and
for negative numbers it is 1.

2. Exponent (e): in unum it is like exponent in the
floating point number but its bit length is specified
by exponent size denoted by es; see below.

3. Mantissa (m): like the exponent, mantissa in unum is
same as in floating point numbers but its length
depends on the number of bits specified by mantissa
size denoted by ms; see below.

4. Uncertainty bit (ub): this bit in the unum is used to
indicate whether the number is exact or in an interval.
It is 0 if unum is exact and 1 if unum is in the open
interval between two exact unums.

5. Exponent size (es): the fields es and ms are self-
descriptive and their lengths offset by 1. The number
of bits in this field depends on “how many bits we
want to allocate to specifyes” i.e. the size of exponent
size (ess). For example, exponent value = 11112 in
binary needs 4-bits i.e. exponent size (es) = 4, which
is 1002 in binary, and ess = 3-bits (number of bits
needed to express (es) of 4-bits). The number of bits
in this field is in the range of 1-bit to 2ess-bits.

6. Mantissa size (ms): the number of bits in this field
depends on “how many bits we want to allocate to
specify ms” i.e. the size of mantissa size (mss). The
number of bits in this field is in the range of 1-bit to
2mss-bits.

The exponent sizes in IEEE FP format are 5 (1012) for
half precision, 8 (10002) for single precision, 11 (10112) for
double precision, and 15 (11112) for quad precision. Hence,
four bits suffice to cover all IEEE FP formats. There is
always at least one exponent bit and one mantissa bit.
Therefore, we keep an offset of one in the last two fields
of unum i.e. es − 1 and ms − 1. Because of this offset
in original exponent sizes, IEEE exponent sizes can be
represented as (1002), (1112), (10102), and (11102). In the
unum, four bits would be enough to specify any exponent
size ranging from 20-bit (fixed point format) to 24-bits
(more than IEEE FP quad format). As with the exponent

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

12102



es bits ms bits

s e m ub es - 1 ms - 1

Fig. 1. General representation of the universal number format with six sub-fields.

sizes, mantissa sizes in IEEE FP format are 10 (10102), 23
(101112), 52 (1011002), and 112 (11100002). So, seven bits
are enough to cover all IEEE mantissa sizes (again, offset
by one). This covers mantissa sizes from 20-bit to 27-bits.
The number of bits needed to specify the exponent size
size (zero to four) and mantissa size size (zero to seven)
in unum are called ess and mss respectively, and that
pair is called the Environment or env{ess,mss} and unum
with specific Environment is denoted as unum{ess,mss}
e.g. unum{2, 2}. User is free to define this pair based on
the needs of an application. The Environment can be as
small as {0, 0} or as large as computer memory and speed
permits (Gustafson, 2015, Chapter 4).

In the unum format, the set of last three fields (ub, es, and
ms) is called the utag and the number of bits in utag is
called utagsize which is equal to 1+ess+mss. As described
above, using env{4, 7} we can achieve the superset of IEEE
FP format with the utagsize equal to 1+4+7 = 12. Also,
the minimum number of bits in a unum is 3+utagsize and
the maximum is 2+ess+mss+2ess+2mss. At this stage, one
might wonder: How can the unum approach help to reduce
memory as compared to floating point, if it adds more bits
to the format? the main reason is that unum allows us to
specify exponent and mantissa using fewer bits compared
to the exponent and mantissa in IEEE FP formats.

3.3 Floating Point to Universal Number Conversion

Example 1: Represent a constant π in unum format.
The constant π is approximated to 11-decimal accuracy
as 3.1415926535 (Finch, 2003, Chapter 1). In general,
a floating point approximation of a real value can be
expressed as (Gustafson, 2015, Chapter 3)

(−1)s×



































22−2
es−1

×

(

m
2ms

)

if e = all 0 bits,

∞
if e and m are
all 1 bits,

21+e−2
es−1

×

(

1 + m
2ms

)

otherwise.

(7)

In binary IEEE 754 double precision, the constant π looks
as follows:

0 10000000000
10010010000111111011010101
00010000010001011101000100

In this representation we used 64-bits to store the approxi-
mated value of π. Here, we can see that even after using 64-
bits we are not getting the exact value of π and moreover
we wasted many bits.

Having the IEEE 64-bit representation of π at the hand,
one can be proceed to convert it to unum format. Assume
that we want to have a 4-bit exponent and a 4-bit mantissa
for the value of π, in unum it can be obtained by setting
env{2, 2}.

Similar to the FP expression, unum equivalent real value
of unum can be expressed as

(−1)s×











































22−2
es−1

×

(

m
2ms

)

if e = all 0 bits,

∞
if e, m, es,
and ms have
all bits = 1,

21+e−2
es−1

×

(

1 + m
2ms

)

otherwise.

(8)

This expression is the improved version of (7) which
does not waste the huge number of bits on NaN. Using
unum format the value of constant π can be represented
in only 11-bits as given below

0 1 1001 1 00 11

It is interesting to note that only 11-bits are used to store
the value of π which saved 53-bits compared to the IEEE
double precision format. Also, we can see that ub bit is 1
which means that the number is inexact and the real value
is an interval. To obtain interval values we use the Unit
of Least Precision (ULP) which is equal to the difference
between exact values in bit format that differs by one unit
in the last place. Mathematical meaning of the unum bit
format can be obtained from (8) which gives the value of
π as an open interval (3.125, 3.25).

3.4 Universal Number Arithmetic

Universal number arithmetic is somewhat similar to inter-
val arithmetic but, unum has additional complexity due
to the open versus closed endpoints, dynamic exponent,
mantissa sizes, and correct handling of math operations
(add, sub, mul, and div) that exceed the limits of unums in
a particular environment.

Addition/Subtraction: The addition of two real numbers
Z1 and Z2 can be perform by obtaining their ubounds like
[a, b] and [c, d] and then the addition of these two ubounds
is straightforward i.e., [a + c, b + d]. But, enough care is
needed to add open and closed intervals. If we want to
add the open interval (−∞, 0) to ∞, the correct answer
in unum is ∞ because the left endpoint “(−∞” indicates
some finite value. If we add ∞ to any finite value it results
in ∞. For addition of ubounds there are several rules and
special cases which are described in (Gustafson, 2015,
Chapter 9). Similar to addition, subtraction of ubounds
is carried out by simply adding the first argument to the
negative of second argument, i.e. Z1 − Z2 = Z1 + (−Z2).

Multiplication: For real intervals, if both ubounds are
closed intervals multiplication is simple as follows:

[a, b]× [c, d] = [minN ,maxN ] (9)

where N = (a× c, a× d, b× c, b× d). But, for unbounded
intervals (9) does not hold. To tackle with the multiplica-
tion of unbounded intervals we consider the multiplication
table for left and right endpoints defined in (Gustafson,
2015, Chapter 10). In a multiplication of conventional

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

12103



interval arithmetic the case 0 × ±∞ is undefined which
results in NaN but, in unum it has more information
about the endpoints and we get the following cases:

• The result of ∞ × (a, b) is [−∞,∞] and not NaN ,
where a and b are the endpoints of opposite sign.

• The result of 0× inexact∞ is 0 and inexact 0×∞ is
∞.

• The result of inexact 0 × a is a nonzero value, where
a is any finite nonzero number.

• The result of inexact 0 × inexact∞ is the entire
positive real number line.

For the multiplication of negative-negative and positive-
negative numbers, see (Gustafson, 2015, Chapter 10).

Compare Operators: The comparison Z1 ≤ Z2 or
(a, b) ≤ (c, d) is equivalent to checking b < c.

3.5 Universal Number matlab
R© Library

To encode the data of explicit optimizer in (4) (i.e., the
floating point numbers contained in vectors/matrices Zi,
zi, Li, gi) in the presented unum format, we have devel-
oped 3 an open-source matlab

R© library called munum. It
supports every environment from {0, 0} to {4, 7} which
covers all four IEEE 754 floating point formats. Moreover,
the library implements basic primitives (such as addition,
multiplication and comparison) of unums that can be used
to implement the unum-encoded explicit optimizer (4).
On the top of these basic math operations, library also
supports addition, subtraction, and multiplication of ma-
trices and vectors. These can be used directly in the point
location algorithms used in explicit MPC.

4. EXAMPLE: DOUBLE INTEGRATOR

We illustrate the efficiency of unum-based memory reduc-
tion technique with the following example. Consider the
discrete-time version of the double integrator system

xk+1 =

[

1 Ts

0 1

]

xk +

[

T 2
s

Ts

]

uk, (10)

with the sampling time Ts = 0.05s. Here, x1, x2 and u is
position, speed and input acceleration, respectively. This
system is subject to state and input constraints as follows

[

−5
−5

]

≤

[

x1

x2

]

≤

[

5
5

]

and− 1 ≤ u ≤ 1. (11)

The MPC problem (2) was solved parametrically for the
set of different prediction horizons (listed as the first
column in table 1) with Q = I2×2, R = 1, the terminal
penalty P = 5I2×2, and Xf = {xN | [−1 − 1]⊤ ≤
xN ≤ [1 1]⊤}. The explicit MPC controller is constructed
using the Multi-Parametric Toolbox (MPT). Finally, the
data of explicit optimizer in (4) were encoded into the
unum format using the matlab

R© library presented in
Section 3.5.

For each value of the prediction horizon, the memory foot-
prints taken by floating point and unum number format
were recorded. FP memory footprints were obtained by (6)
considering double precision format and unum with two
environments i.e., {2, 2} and {3, 2}. With env{2, 2} every

3 Available at https://bitbucket.org/kvasnica/munum

number can be stored in less than or equal to 14-bits, which
means that to store the explicit control law we will need
at most 21.87 % of the memory compared to the 64-bit
floating point format. The env{2, 2}, is sufficient to get
the required accuracy for the double integrator problem
but even if we use a higher environment like env{3, 2} then
the memory required will still be no more than 29.68 %.

Particular results for each value of the prediction horizon
are shown in table 1. As can be observe, the required
memory space can be reduced by ≈ 80% when using
the {2, 2} environment or by ≈ 78% when choosing the
{3, 2} environment. Interesting thing to notice is that the
byte size of the unum-encoded solution for N = 40 (75.8
kilobytes and 3359 regions) is roughly equal to the size of
floating point representation for N = 17 (75.3 kilobytes
and 643 regions). It follows that by using unums one can
fit more data into the same space and thus can be able to
use larger prediction horizons in explicit MPC.

5. CONCLUSIONS

In this paper, we have shown, how to reduce the memory
footprints of explicit MPC feedback law for the implemen-
tation on control devices with limited storage space. The
approach is based on representing the controller data by
unum format which takes fewer bits as compared to the
“one-size fits all” IEEE 754 floating point data format.
A matlab

R© library was developed to demonstrate the
feasibility of unums to reduce the memory size without
losing control accuracy. Further, the unum-based explicit
MPC is developed and employed for the double integrator
control problem with varying prediction horizons. The re-
sulting memory footprints are compared with those of the
floating point-based explicit MPC approach. The result
shows proposed memory reduction technique can reduce
memory footprints by 80 % as compared to the floating
point approach. With the use of appropriate environment
in unums, it is possible to use longer prediction horizons
while achieving small memory footprints.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the People Programme (Marie Curie Actions) of
the European Union’s Seventh Framework Programme
(FP7/2007-2013) under REA grant agreement no 607957
(TEMPO). Deepak Ingole and Michal Kvasnica gratefully
acknowledge the contribution of the Slovak Research and
Development Agency under the project APVV 0551-11
and the contribution of the Scientific Grant Agency of the
Slovak Republic under the grant 1/0403/15. We would
like to thank Dr. Simon Byrne from the Department of
Statistical Science, University College, London, United
Kingdom for helpful discussions.

REFERENCES

Bemporad, A. (2004). Hybrid Toolbox - User’s Guide.
Bemporad, A. and Filippi, C. (2001). Suboptimal explicit
MPC via approximate multiparametric quadratic pro-
gramming. In Decision and Control, 2001. Proceedings
of the 40th IEEE Conference on, volume 5, 4851–4856.
IEEE.

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

12104



Table 1. Comparison of memory footprints for floating point (64-bit) and universal number
based explicit MPC for double integrator system.

N Number of Total Number of Bits Memory[kB] Memory Savings [%]

Regions Numbers FP unum{2, 2} unum{3, 2} FP unum{2, 2} unum{3, 2} unum{2, 2} unum{3, 2}

2 13 195 12480 2459 2674 1.52 0.30 0.32 80.29 78.57

5 67 999 63936 12717 13864 7.80 1.55 1.69 80.10 78.31

7 123 1833 117312 23311 25396 14.32 2.84 3.10 80.12 78.35

10 237 3543 226752 44767 48759 27.67 5.46 5.95 80.25 78.49

12 333 4983 318912 62756 68352 38.92 7.66 8.34 80.32 78.56

15 507 7593 485952 95491 104002 59.32 11.65 12.69 80.34 78.59

17 643 9633 616512 120901 131670 75.25 14.75 16.07 80.38 78.64

20 877 13143 841152 163991 178651 102.67 20.01 21.80 80.50 78.76

23 1147 17193 1100352 213674 222800 134.32 26.08 28.41 80.58 78.84

25 1347 20193 1292352 250402 272815 157.75 30.56 33.30 80.62 78.89

30 1917 28743 1839552 354772 386613 224.55 43.30 47.19 80.71 78.98

40 3359 50373 3223872 621237 677107 393.53 75.83 82.65 80.73 78.99

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos,
E.N. (2002). The explicit linear quadratic regulator for
constrained systems. Automatica, 38(1), 3–20.

Borrelli, F., Bemporad, A., and Morari, M. (2011). Pre-
dictive control for linear and hybrid systems. Cambridge
February.

Finch, S. (2003). Mathematical constants. Cambridge
University Press.

Geyer, T., Torrisi, F.D., and Morari, M. (2008). Optimal
complexity reduction of polyhedral piecewise affine sys-
tems. Automatica, 44(7), 1728–1740.

Goldberg, D. (1991). What every computer scientist
should know about floating-point arithmetic. ACM
Computing Surveys (CSUR), 23(1), 5–48.

Gustafson, J. (2015). The End of Error: Unum Computing.
CRC Press.

Herceg, M., Kvasnica, M., Jones, C., and Morari, M.
(2013). Multi-parametric toolbox 3.0. In Proceedings of
the European control conference, EPFL-CONF-186265.

Honek, M., Kvasnica, M., Szũcs, A., Šimončič, P., Fikar,
M., and Rohǎl-Ilkiv, B. (2015). A low-complexity ex-
plicit mpc controller for afr control. Control Engineering
Practice, (42), 118–127.

Hovland, S. and Gravdahl, J.T. (2008). Complexity
reduction in explicit MPC through model reduction.
IFAC Proceedings Volumes, 41(2), 7711–7716.

Johansen, T.A. and Grancharova, A. (2003). Approximate
explicit constrained linear model predictive control via
orthogonal search tree. IEEE Transactions on Auto-
matic Control, 48(5), 810–815.

Jones, C. and Morari, M. (2009). Approximate explicit
MPC using bilevel optimization. In Control Conference
(ECC), 2009 European, 2396–2401. IEEE.

Knuth, D. (1985). Dynamic Huffman Coding. J. Algo-
rithms, 6(2), 163–180.

Kvasnica, M. and Fikar, M. (2012). Clipping-based com-
plexity reduction in explicit MPC. IEEE Transactions
on Automatic Control, 57(7), 1878–1883.

Kvasnica, M., Hled́ık, J., and Fikar, M. (2012). Reducing
the memory footprint of explicit MPC solutions by

partial selection. In 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC), 4537–4542. IEEE.

Kvasnica, M., Hled́ık, J., Rauová, I., and Fikar, M. (2013).
Complexity reduction of explicit model predictive con-
trol via separation. Automatica, 49(6), 1776–1781.

Kvasnica, M., Holaza, J., Takács, B., and Ingole, D. (2015).
Design and verification of low-complexity explicit MPC

controllers in MPT3. In Control Conference (ECC),
2015 European, 2595–2600. IEEE.

Muller, J., Brisebarre, N., De Dinechin, F., Jeannerod, C.,
Lefevre, V., Melquiond, G., Revol, N., Stehlé, D., and
Torres, S. (2009). Handbook of floating-point arithmetic.
Springer Science & Business Media.

Oberdieck, R., Diangelakis, N., Nascu, I., Papathanasiou,
M., Sun, M., Avraamidou, S., and Pistikopoulos, E.
(2016a). On multi-parametric programming and its
applications in process systems engineering. Chemical
Engineering Research and Design.

Oberdieck, R., Diangelakis, N.A., Papathanasiou, M.,
Nascu, I., and Pistikopoulos, E. (2016b). Pop–
parametric optimization toolbox. Industrial & Engi-
neering Chemistry Research, 55(33), 8979–8991.

Rawlings, J.B. and Mayne, D.Q. (2009). Model predictive
control: Theory and design. Nob Hill Pub.

Suardi, A., Longo, S., Kerrigan, E.C., and Constantinides,
G. (2016). Explicit MPC: Hard constraint satisfaction
under low precision arithmetic. Control Engineering
Practice, 47, 60–69.

Szücs, A., Kvasnica, M., and Fikar, M. (2011). A memory-
efficient representation of explicit MPC solutions. In
2011 50th IEEE Conference on Decision and Control
and European Control Conference, 1916–1921. IEEE.

Wen, C., Ma, X., and Ydstie, B.E. (2009). Analytical ex-
pression of explicit MPC solution via lattice piecewise-
affine function. Automatica, 45(4), 910–917.

Zuras, D., Cowlishaw, M., Aiken, A., Applegate, M.,
Bailey, D., Bass, S., Bhandarkar, D., Bhat, M., Bindel,
D., and Boldo, S. (2008). IEEE standard for floating-
point arithmetic. IEEE Std 754-2008, 1–70.

Preprints of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

12105


