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Abstract: In this paper, a time-optimal strategy is implemented for batch membrane separation
of lactose-salt solution. Parameters of the flow-rate model are estimated by solving a dynamic
optimization problem that minimizes the difference between experimental and simulated system
outputs. The estimated flow-rate models are used to formulate an optimal control problem
(OCP) which minimizes the batch time using diluant addition rate as the control input. This
time-optimal strategy is found analytically and is validated using experiments, where lactose
is concentrated and concentration of salt is reduced. The processing time is compared with
classical industrial strategy to emphasize on the outcomes.
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1. INTRODUCTION

Membranes in industry separate, concentrate, remove im-
purities, and clarify solutions. They are an important part
of food, chemical, and biotechnology industries. Based on
the component size and operating parameters, the mem-
brane separation processes are divided into micro- (MF),
ultra- (UF), nanofiltration (NF) and reverse osmosis. NF
retains molecules with molecular mass of 200–1,000g/mol.
The applied pressure range for NF is 3–50bar (Artuğ,
2007).

NF applications include water softening, waste-water
treatment, vegetable oil processing, beverage, dairy (Chen
et al., 2017), juice and sugar industry (Salehi, 2014; Conidi
et al., 2017). In production of lactose from cheese whey,
NF concentrates lactose molecules while passing salts (Das
et al., 2016). This concentrated lactose is a commonly used
material in the pharmaceutical industry as a carrier of
drugs, e.g., in inhalations for asthma patients (Boerefijn
et al., 1998). Besides pharmaceutical industry, in food and
beverage industry lactose is emerging widely as a source for
epilactose, galacto-oligosaccharides (Verasztó et al., 2013;
Cohen et al., 2017), lactitol, lactobionic acid, and other
important lactose derivatives (Gutiérrez et al., 2012).

Diafiltration (DF) is a technique that uses MF, UF, and
NF to lower the concentration of impurities with the help
of a diluant. In combination with NF, DF is applied
to lower the concentration of salts (Yin et al., 2011).
This combination of NF and DF, i.e. nanodiafiltration,
abbreviated as NDF by Chandrapala et al. (2016) (NDF
is used further in this paper) is also used for removal of
lactic acid from acid dairy whey, for better crystallization

of lactose. Time-optimal operation to concentrate lactose
and remove salt using NDF, is the objective of this study.

The model that relates the membrane permeation rate and
solute concentrations holds utmost importance in order
to implement the time-optimal strategy. Modeling of per-
meate flow based on solute concentrations for membrane
processes has been dealt before in the literature; e.g. Jaf-
frin and Charrier (1994) fitted permeate flux as an inverse
polynomial function of albumin and ethanol concentra-
tions and van den Berg and Smolders (1990) researched on
various resistance, gel-polarization, and osmotic pressure
models. All these and most of the other modeling works
done in past are for UF, and not much of research has been
done in modeling the permeation of NDF. Regarding time-
optimal control of membrane separation processes, only
simulation studies (Fikar et al., 2010; Jelemenský et al.,
2015) using the existing models have been done.

In our recent study (Sharma et al., 2016), existing
flux/permeation models with fouling from Hermia (1982)
were fitted to experimentally obtained data for the studied
solution, but the model included only lactose concentra-
tion. In Sharma et al. (2017), fitting of models from litera-
ture and a novel model as a function of both concentrations
was done. The fitting approach was static and the optimal
operation shown in simulation studies.

This paper describes dynamic fitting of permeate flow
over the solution components (lactose and NaCl), by op-
timally estimating the parameters of models from litera-
ture. These models are used to design optimal operation
strategy to minimize processing time, using Pontryagin’s
minimum principle. Finally, this time-optimal operation
is implemented on a pilot-scale plant for validation and
is compared with classical industrial strategy. The NDF
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Fig. 1. Nanodiafiltration process scheme.

experiments are done to concentrate lactose (product),
and to reduce the concentration of NaCl (impurity). This
implementation of time-optimal membrane operation and
its comparison with classical industrial approach is the
prime novelty of this research.

2. PROCESS DESCRIPTION

2.1 Materials

Lactose monohydrate (M = 360.31g/mol) and sodium
chloride (M = 58.44 g/mol) manufactured by Centralchem
(Slovakia) were used as solutes and reverse osmosis water
was used as a solvent to prepare solutions. The plant
has an NFW-1812F nanofilter membrane manufactured by
Synder Filtration, USA, with a cut-off range 300–500Da,
and a membrane area of A = 0.465m2.

2.2 Plant Description & Methods

The scheme of the plant is shown in Fig. 1. The batch
starts with adding initial feed volume (V0) to the feed
tank comprising initial concentrations of lactose and NaCl
(c1,0, c2,0). The pump at certain trans-membrane pressure
forces the feed towards the membrane in cross-flow mode,
where the solution separates into two streams. The concen-
trated/rejected one is called retentate and it comprises lac-
tose and NaCl. The stream passing through the membrane
is called permeate, and it contains NaCl. The permeate
flow rate is measured in L/h using sensor FT02.

The concentration of NaCl (c2) in the retentate is inferred
from the conductivity measurements (sensor QT01) using
the experimentally obtained linear model

c2 [g/L] = 0.0007×QT [µS/cm]− 0.6949. (1)

Lactose concentration (c1) is inferred from the mass bal-
ance in the feed tank using the level measurement (sensor
LT). This is described in the next section. The trans-
membrane pressure (TMP) defined as,

TMP =
Pfeed + Pretentate

2
− Ppermeate = 20 bar, (2)

is controlled at a constant value during the experiment.
This control is achieved using a pressure controller (PC).

The pressure could be changed by two actuators, i.e., the
pump and the retentate side valve. To protect the pump
and keep it at a constant rotational speed, the retentate
valve opening is used as the manipulated input. The tem-
perature of the solution is maintained around a constant
value of 27 ◦C using a heat exchanger and a temperature
controller (TC). Due to imperfection of the employed
valve, the temperature cannot be held constant and has
variance of ±1 ◦C. This causes fluctuations in permeate
flow and in induced concentration measurements.

The diluant (water) addition for NDF is done using
another pump. The dilution rate is the input variable for
NDF process and it is defined as

α = q0/qp, (3)

where q0 and qp denote the inflow of the diluant into the
feed tank and permeate outflow, respectively.

The classical control of batch DF mostly uses piece-wise
constant α using three simple modes (Jaffrin and Charrier,
1994; Foley, 2006), i.e.

• No diluant input (α = 0), i.e. concentration mode
(C): in this mode, due to no diluant inflow, the
volume decreases. As a result, the concentration of
lactose increases, while the concentration of NaCl
stays constant.

• The diluant inflow equals the outflow of permeate
(α = 1), i.e. constant volume diafiltration mode
(CVD): lactose concentration remains constant while
NaCl concentration decreases in this mode.

• Diluant flow rate is less than the outflow of permeate
(0 < α < 1), i.e. variable volume diafiltration mode
(VVD): volume decreases in this mode, and hence lac-
tose concentration increases, while due to the dilution
of solution, NaCl concentration decreases.

In addition, Lutz (2015); Paulen and Fikar (2016) have
proposed two new basic modes:

• Dynamic volume diafiltration (DVD): this is similar
to VVD mode, but unlike VVD α is not a constant
but is varying with time (0 < α(t) < 1).

• Pure dilution mode (D): a certain amount of diluant
is instantaneously added to the solution. This can be
symbolically represented by α = ∞. Both lactose and
NaCl concentrations decrease in pure dilution mode.

2.3 Process Model

The standard DF model with two solutes can be described
by three differential equations (Paulen and Fikar, 2016)

dc1
dt

=
c1qp
V

(R1 − α), c1(0) = c1,0, (4a)

dc2
dt

=
c2qp
V

(R2 − α), c2(0) = c2,0, (4b)

dV

dt
= (α− 1)qp, V (0) = V0, (4c)

where V is the actual volume in the feed tank and the
constants R1, R2 are rejection coefficients of the respective
solutes. These are dimensionless numbers in the interval
[0, 1]. Ri = 0 implies that the ith solute passes through
the membrane without any resistance. On the contrary,
Ri = 1 means that the membrane blocks the solute
completely and its concentration in the permeate is zero.
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NF membrane blocks lactose completely, hence R1 = 1.
This is in compliance with the data from the membrane
producer (Synder, 2014). The value R1 = 1 therefore
implies that the amount/mass of lactose in the system (for
our batch process) remains constant, and its concentration
can be inferred from the actual volume using;

c1V = c1,0V0 ⇒ c1 =
c1,0V0

V
. (5)

2.4 Permeate Flow Modeling and Parameter Estimation
from Experimental Data

Based on experiments and on our previous results (Sharma
et al., 2016, 2017) it is clear that at constant temperature
and TMP; NF permeation rate depends on concentra-
tions of both lactose and NaCl, i.e. qp = qp(c1, c2). The
membrane fouling occurs only for a short initial period
and stabilizes quickly. The lactose molecules being larger
in size have significantly larger effect on the permeate
flow when compared to NaCl molecules. Data from an
NDF experiment that concentrated lactose from 40g/L to
120 g/L, (C mode) and that reduced NaCl from 3.35 g/L
to 1 g/L (CVD mode) was used to perform the fitting of
models from literature of such kind. The experiment was
done in total recirculation mode (permeate returns to feed
tank, volume and concentrations remain constant) until
fouling got constant, and then permeate was allowed to
leave the system. 56 data points of flow rate were used to
perform model fitting. The sample time was 0.025h.

Two different models were fitted with the permeate flow
rate data i.e., a function of lactose and NaCl concentration:

• Limiting flux (LF) model: This model has been taken
from Tang and Leckie (2007); Blatt et al. (1970). The
model defines the permeate flow rate as a function
of time-varying lactose (macro-solute) concentration
and the parameters, i.e. mass transfer coefficient (γ1)
and limiting concentration of lactose (γ2).

qp = γ1 ln

(

γ2
c1

)

= γ1 (ln γ2 − ln c1) . (6)

This model is used as the dependence of permeate
flow on NaCl concentration is quite low. This can be
inferred from studying the CVD part of experiment
(Fig. 2), where the NaCl is decreasing, but the mag-
nitude of change in qp is very small.
Two such models have been fitted. Firstly, by

taking the complete experimental data (both C and
CVD modes), i.e. LF1. Secondly, as this model is only
a function of c1, and c1 is not varying a lot during
the second part of experiment (CVD mode in Fig. 3),
hence a model was fitted using only the data from the
first part of experiment, i.e. LF2.

• Generalized limiting flux (GLF) model: This model
has been taken from Rajagopalan and Cheryan (1991)
and is defined as

qp = ln

(

γ2
c1c

γ3

2

)γ1

= γ1 (ln(γ2)− ln(c1)− γ3 ln(c2)) .

(7)
It incorporates concentrations of both solutes and can
be reduced to the limiting flux model with γ3 = 0.

The optimal parameter estimation problem to fit the flow
rate data to the above models and the concentration data

Table 1. Parameters of the models.

model GLF LF1 LF2

γ1 3.0 2.8 3.4

γ2 1109.9 1246.7 723.7

γ3 0.1 - -

to state values can be formulated as:

min
γ1,γ2,γ3

(qp − qp,m)
2

δ1
+

(c1 − c1,m)
2

δ2
+

(c2 − c2,m)
2

δ3
(8a)

s.t.

ċ1 = c21
qp

c1,0V0
(R1 − α), (8b)

ċ2 = c1c2
qp

c1,0V0
(R2 − α), (8c)

c1(0) = c1,0, c2(0) = c2,0, (8d)

c1(tf) = c1,f, c2(tf) = c2,f, (8e)

qp = (6) or (7), (8f)

with the given profile of α(t). The experimental flow
rate and states are represented by qp,m and c1,m, c2,m
respectively. The weighing of each term in the objective is
represented by coefficients, δ1, δ2, and δ3, which are set to
experimentally observed variances of corresponding mea-
surements. The above non-linear least-squares problem
was implemented and solved using MATLAB, and the
states were integrated using an ode45 solver. The resulting
parameters are given in Table 1 and the permeate flow
rates and concentrations in Figs. 2–4. It can be observed
that the GLF model fits the data better than the LF
models, especially in the second part of the experiment
with α = 1. This is expected as the GLF model can
accommodate the variations in the concentration c2(t).
The value of sum of squared errors was at the minimum
for GLF model, increased slightly for LF1 model, and was
maximum for LF2 model. The comparison of the estima-
tion between LF1 and LF2 models shows that for C mode
the LF2 model fits the data better, but when simulated
for CVD mode the results were worst. It concretes that
even though LF model is solely a function of c1, still data
for both C and CVD modes are required for fitting the
complete NDF data. The measured and the simulated
concentrations were satisfactorily corresponding to each
other, for all fitted models (Fig 3, 4).

3. PROCESS OPTIMIZATION

The objective is to find a time-dependent input function
α(t), which guarantees the transition from the given initial
c1,0, c2,0 to final c1,f, c2,f concentrations in minimum time.
This time-optimal problem can be formulated as:

J ∗ = min
α(t)∈[0,∞)

∫ tf

0

1 dt (9a)

s.t.

ċ1 = c21
qp

c1,0V0
(R1 − α), c1(0) = c1,0, (9b)

ċ2 = c1c2
qp

c1,0V0
(R2 − α), c2(0) = c2,0, (9c)

c1(tf) = c1,f, c2(tf) = c2,f, (9d)

Eq. (6) or (7). (9e)
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Fig. 2. Permeate flow rate measurements vs simulated
estimated models.
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Fig. 3. Comparison of lactose concentration: measured vs
simulated data based on estimated models.
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Fig. 4. Comparison of NaCl concentration: measured and
simulated data based on estimated models.

As the LF2 model was not very efficient in tracking the
experimental data from the CVD part of the experiment,
hence it has been excluded from the optimization study,
and only GLF and LF1 models are used.

The analytical approach towards finding an input strategy
that minimizes the batch time of the diafiltration process
is taken from Paulen and Fikar (2016). This approach
is based on Pontryagin’s minimum principle (Pontryagin
et al., 1962). The optimal strategy can be described as
a switching non-linear feedback control that consists of
three arcs. The first and the third one are on the input
boundaries, while the middle one is a sensitivity arc
derived from the singular control. This singular/sensitivity
arc can in general be represented as

S = qp +
∂qp
∂c1

c1 +
∂qp
∂c2

c2 = 0. (10)

The equation S = 0 marks the switching condition from
minimum/maximum input to the input implemented dur-
ing the singular arc, i.e.

αs =
∂S
∂c1

c1
∂S
∂c1

c1 +
∂S
∂c2

c2
. (11)

The resulting S and αs for both GLF and LF1 models can
be formulated as,

(1) GLF model :

S = qp − γ1 (γ3 + 1) = 0, (12)

αs =
1

1 + γ3
= 0.91. (13)

(2) LF1 model :

S = qp − γ1 = 0, (14)

c∗1 = γ2/e, (15)

αs = 1. (16)

Here c∗1 stands for the switching concentration of lactose,
and can be derived from (14). As discussed above, these
three-step optimal strategies consists of control arcs on the
admissible boundaries. The singular control arc also results
in a constant αs in the second step for both the models.
So the optimal input is a piece-wise constant strategy. The
second step derived is a CVD mode for the LF1 model
and a VVD mode for the GLF model. As we can see the
numerical values of αs are similar for both the models.

3.1 Case study

The experiment objective was to drive the lactose concen-
tration from 50 g/L to 110 g/L, and to reduce the NaCl
concentration from 5.3 g/L to 1 g/L, using NDF. The ini-
tial volume of the solution was 21L. The three strategies
were implemented, i.e.

(1) traditional (α = {0, 1}): concentrate using C mode
till lactose increases to final concentration (c1 =
c1,f = 110g/L), then using CVD mode reduce NaCl
to reach the final objective (c2 = c2,f = 1g/L).

(2) optimal (α = {0, αs, ∞}):
(a) Use C mode to drive from initial concentrations

to reach singular surface (S = 0), for both
GLF and LF1 models; i.e. concentrate till lactose
concentration (c1) is 332.7 g/L for GLF, and
γ2/e = 458.6 g/L in case of LF1.
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optimal strategies.

(b) Stay on the singular surface using singular control
αs, till the condition c1/c2 = c1,f/c2,f is met. The
separation process ends with this step.

(c) The final step is to get the final concentrations
using D mode, and it practically takes negligi-
ble amount of time. This is represented by the
continuous line to the final concentrations (red
circle) in Fig. 5.

The volume measurement device on the plant is con-
strained by 3-32L. As we use volume measurement to get
the concentration of lactose (5), hence for the given initial
volume of 21L, the maximum concentration of lactose is
constrained to 340 g/L. The implementation of LF1 strat-
egy was thus compromised, and instead of concentrating
lactose to 458.6 g/L, we concentrated to 340 g/L.

The results and comparison of the three strategies is
quantified and represented in Figs. 5 and 6 and Table 2.
Figure 5 shows evolution of concentrations c1(t) and c2(t),
where the initial and final points are marked as green
and red circle, respectively. The dilution mode, which is

Table 2. Comparison of time taken by tradi-
tional and optimal strategies.

Strategy t1 [h] t2 [h] tf [h] ∆tf [%]

traditional 1.75 2.53 4.28 100

GLF 3.08 0.66 3.74 87

LF1 3.35 0.50 3.85 90

present for optimal strategies derived from GLF and LF1

model, is represented by solid lines. It is clear that all three
strategies were able to drive the solution to the desired
concentrations of lactose and NaCl.

The permeate flow rate diagram (Fig. 6) shows that all
strategies started at similar initial flow rate as the initial
concentrations were identical. The trend of decrease in flow
rate as the concentration of lactose increased is also same
for all three of them. The reason behind the reduction of
time with time-optimal strategy (Table 2) is the step when
NaCl concentration is reduced. It can be observed in the
flow rate figure that although due to over-concentrating
lactose in optimal strategies the C mode takes longer time
(t1 in Table 2), as a result the time for CVD in case of
LF1 and VVD in case of GLF reduces (t2 in Table 2). This
reduction results in overall reduction of time (tf in Table 2)
as we stop the process after CVD/VVD, and do the
instantaneous D mode to reach the desired concentrations.
The optimal strategies took 87-90% of the time taken by
traditional strategy (∆tf in Table 2).

Besides minimizing time, this analytically derived optimal
strategy holds the benefit, i.e. no extra hardware needs
to be installed on the existing plant. No on-line calcula-
tions/optimizations are required: the switching concentra-
tions and control need to be found out prior to the start
of experiment.

The models fitted were good enough but were still not
perfect, in context of time-optimal operation. As we can
see from the equation for S (12), that during the VVD
mode the permeate flow rate should be constant, i.e. qp =
γ1 (γ3 + 1) . Now, if we look at the experimental values
of qp from Fig. 6, we observe that during the VVD
mode for optimal GLF operation the permeate flow is
varying. This may result from the differences in model
parameters from one batch to another, and because the
optimal switchings were done based on concentration and
not on qp. This could be avoided by estimating the
model while performing the experiment (online parameter
estimation). This may result in implementation of a truly
real-time time-optimal strategy, but on the expense of
online calculations/estimations.

4. CONCLUSION

We have presented a control strategy for the time-optimal
operation of diafiltration processes in order to concentrate
lactose and reduce the concentration of NaCl. Based on
the experiments with lactose and NaCl, parameters of
two permeate flux models were estimated. The first model
being a function of both lactose and NaCl concentrations
(generalized limiting flux), while second one as a function
of only lactose concentration (limiting flux). Based on the
fitted models, a time-optimal control problem was formu-
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lated. The solution was found by employing the analytical
solution from our earlier work, using Pontryagin’s min-
imum principle. The presented approach was then tested
on a case study. The optimal and the traditional industrial
strategies were implemented on a pilot scale membrane
separation unit. The time-optimal strategies were found
to consist of three steps, i.e. bang-bang on the boundaries
and singular control in the middle step. The performance
of the time-optimal strategies was compared with tra-
ditional two-step operational strategy. The quantitative
results show that the proposed approach is successful and
at least 10% faster than traditional industrial strategy to
reach the desired concentrations. The future step would
be to study and experiment on cases with different initial
conditions such that the analytical singular surface for
limiting flux optimal strategy is attainable.
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(2015). Time-optimal operation of multi-component
batch diafiltration. Computers & Chemical Engineering,
83, 131 – 138.

Lutz, H. (2015). Ultrafiltration for Bioprocessing. Wood-
head Publishing.

Paulen, R. and Fikar, M. (2016). Optimal Operation of
Batch Membrane Processes. Springer.

Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V.,
and Mishchenko, E.F. (1962). The Mathematical Theory
of Optimal Processes. Wiley, New York.

Rajagopalan, N. and Cheryan, M. (1991). Process opti-
mization in ultrafiltration: Flux-time considerations in
the purification of macromolecules. Chemical Engineer-
ing Communications, 106(1), 57–69.

Salehi, F. (2014). Current and future applications for
nanofiltration technology in the food processing. Food
and Bioproducts Processing, 92(2), 161 – 177.
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