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Abstract

This master thesis deals with the design of optimal control strategies that are used for
liquid level control in industrial storage tanks. In the process industry, we can come
into the contact with tanks of various geometry where the cross-section is dependent
on the level of the liquid. The most widespread tank types are of conical, spherical
and horizontal-cylindrical shapes. This thesis consists of four parts. The goal of
the first part is to derive a nonlinear dynamic mathematical model of each tank in
continuous and discrete time. After that, we will compare the step responses of linear
and nonlinear mathematical models. The second part of this thesis deals with the
design of simple control strategies represented by PID and LQ controllers. In the
third part, we will focus on the design of an advanced control strategies based on the
predictive controller (MPC). The last part describes the case studies, where all control
strategies are compared and evaluated.
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Abstrakt

Táto diplomová práca sa venuje návrhu optimálnych riadiacich algoritmov slúžiacich
na riadenie výšky hladiny v priemyselných zásobníkoch kvapaliny. V priemysle
sa často stretávame so zásobníkmi s rôznou geometriou, v ktorých výška hladiny
sa dynamicky mení v závislosti od prierezu daného zásobníka. Najrozšírenejšie sú
zásobníky kužel’ového, gul’ového a horizontálne valcového tvaru, ktorým sa budeme
podrobnejšie venovat’. Táto práca pozostáva zo štyroch častí. V prvej časti odvodíme
dynamické matematické modely jednotlivých zásobníkov kvapaliny v spojitom aj
diskrétnom čase a porovnáme odozvy lineárneho a nelineárneho modelu na skokové
zmeny. Druhá čast’ sa zaoberá návrhom jednoduchých riadiacich algoritmov reprezen-
tovaných PID a LQ regulátormi. V tretej časti sa budeme venovat’ návrhu pokročilého
riadenia pomocou prediktívneho regulátora (MPC). V poslednej časti porovnáme
jednotlivé prístupy riadenia v prípadových štúdiách a zhodnotíme výsledky.
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CHAPTER 1

Introduction

Chemical processes present many challenging control problems due to nonlinear dy-
namic behavior, uncertain and time varying parameters, constraints on manipulated
variable, interaction between manipulated and controlled variables, unmeasured and
frequent disturbances, dead time on input and measurements, etc [11].

Liquid level control in storage tanks is a basic problem in process industry. The goal
of this thesis is to design and evaluate several control strategies used for liquid level
control in industrial storage tanks of various geometry. Among the most frequent
storage tanks in the process industry are tanks of conical, spherical and horizontal
cylindrical shapes that cover the core of this work.

In the first part of this thesis, we will derive a dynamic mathematical model of each
tank in continuous and discrete time. Each storage tank represents a first order
SISO system with single input qin and single output qout that is the volumetric flow.
Then, we need to derive a linear mathematical model of each tank via calculating the
Jacobian in order to design the controllers. After that, we compare the step responses
of nonlinear and linear mathematical model in continuous and in discrete time.

The second part of this thesis consist of the theoretical base where various control
strategies are presented. First, we will focus on simple control strategies represented
by PID and LQ controllers. We derive the relations how to design such controllers and
what are their advantages and disadvantages. Then, we focus on an advanced control
strategy which is presented by a model predictive control (MPC). This part consists of
two MPC formulations, the first one for linear MPC with time-varying Kalman Filter
and the second one for nonlinear MPC.

The last part of this work deals with the simulation case studies. We will go through
the control with various controllers, particularly PID, LQ and MPC, and evaluate each
control via performance indexes like integral square error (ISE) criterion or calculation
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the sums of objective functions. At the end of this part we will show the simulation
for one of the tanks when using nonlinear MPC we are able to control on maximal
liquid level in the tank with respect all constraints.



CHAPTER 2

Mathematical Modeling

This chapter deals with the development of mathematical models of conical, spherical
and horizontal cylindrical tanks in continuous and discrete time. In order to derive a
mathematical model, we need to know the physical and chemical principles of the
studied process that are expressed by mass and enthalpy balances[5]. In this thesis,
we consider a continuous processes with mass accumulation represented by water
tanks of various geometry. Particular dynamical models are based on equations in [8].

The dynamical mathematical model of a tank with one inlet stream denoted as qin(t)

and one outlet stream given by qout(t) is given by a mass balance equation of the
following form

qin(t) = qout(t) +
dV (t)

dt
. (2.1)

The volume of the liquid inside the tank V (t) is given by relation

V (t) = f
(
F
(
h(t)

))
, (2.2)

where F (h(t)) represents the base of the tank that depends on the liquid level h(t) in
the tank. Also, it is known from Bernoulli’s principle that outlet stream is the function
of liquid level in the tank and can be expressed as follows

qout(t) = kv
√
h(t), (2.3)

where kv represents the valve coefficient. Once the assumptions (2.2) and (2.3) have
been accepted, we can rewrite the model in (2.1) to

qin(t) = kv
√
h(t) +

dV (t)

dh

dh(t)

dt
. (2.4)

After the substitution
dV (t)

dh
to F (h) we obtain the nonlinear mathematical model in

form

qin(t) = kv
√
h(t) + F (h)

dh(t)

dt
. (2.5)
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In general, the nonlinear state space model is given by the following relations

dx(t)

dt
= f (x(t), u(t), t) , (2.6a)

y(t) = g (x(t), u(t), t) , (2.6b)

where states are denoted as x ∈ Rnx , measured signals are denoted by y ∈ Rny and by
u ∈ Rnu is represented the vector of manipulated variables. In this thesis, we consider
the state x(t) is equal to the measured variable y(t) and is represented by the liquid
level h(t) in tank. The manipulated variable is the input stream qin(t).

Rewriting the model in (2.5) to general state space model form defined in (2.6) we get
a general nonlinear mathematical model of tank

dh(t)

dt
=
qin(t)− kv

√
h(t)

F (h)
, (2.7a)

y(t) = h(t), (2.7b)

with initial condition h(0) = hs, where the variable hs stands for the steady state value
of the process variable.

In steady state the level of the liquid in the tank is constant and time derivation of the
height of level is equal to zero. Then mathematical model of tank defined in (2.5) is in
steady state expressed as follows

qs
in = kv

√
hs. (2.8)

Let the input stream qsin in steady state be known. Then from (2.8) we can evaluate the
liquid level in steady state as

hs =

(
qs

in

kv

)2

. (2.9)

Linear state space model which is sufficiently accurate for simple control purposes is
expressed as

ẋ(t) = Ãx(t) + B̃u(t), (2.10a)

y(t) = Cx(t) +Du(t), (2.10b)

where Ã ∈ Rnx×nx , B̃ ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu with zero initial
conditions. All matrix elements of linear state space model are constant and therefore
the model is said to be time invariant. Matrices in (2.10) can be obtained by calculating
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the Jacobian based on the following relation

J =


∂ f1
∂ x1

· · · ∂ f1
∂ xn

...
. . .

...
∂ fm
∂ x1

· · · ∂ fm
∂ xn


xs,us

, (2.11)

where the subscript xs, us indicates that all entries in the matrix are calculated at the
stationary (linearization) points. However, in this thesis, we assume SISO systems.
Then matrices Ã, B̃, C and D are given as

Ã =
df(·)
dhs

∣∣∣∣∣
hs

, (2.12a)

B̃ =
df(·)
dqs

in

∣∣∣∣∣
qsin

, (2.12b)

C =
dg(·)
dhs

∣∣∣∣∣
hs

, (2.12c)

D =
dg(·)
dqs

in

∣∣∣∣∣
qsin

, (2.12d)

where the functions f(·) and g(·) represent the nonlinear mathematical model derived
in (2.6).

It is often practical to reformulate the mathematical model in continuous time to
discrete time in order to design an advanced discrete controllers like MPC. As we
defined the nonlinear state space model in continuous time in (2.13) we can also define
the nonlinear state space model in discrete time as follows

x(t+ Ts) = x(t) + Tsf(x(t), u(t), t), (2.13a)

y(t) = g (x(t), u(t), t) , (2.13b)

where the functions f(·) and g(·) are the same as in (2.7) and Ts stands for the sampling
time.

Whereas the linear mathematical model in continuous time (2.10) is defined as a set of
first order differential equation and equation of output, the discrete time formulation
can be expressed as a set of difference equation and output equation in a following
form

x(t+ Ts) = Ax(t) +Bu(t), (2.14a)

y(t) = Cx(t) +Du(t), (2.14b)
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where the matrices A and B are calculated by utilizing the following property

e

Ã B̃

0 0

Ts

=

[
M11 M12

0 I

]
, (2.15)

and then

A = M11, (2.16a)

B = M12. (2.16b)

The matrices C and D in discrete time are the same as in (2.10b). The discrete time
system matrices (A,B) can be calculated also via a zero-order hold discretization in
MATLAB.

To derive individual models for the conical, spherical and horizontal-cylindrical tanks,
we adopt the procedure from the Section 2.

2.1 Conical Storage Tank
We consider an inverted frustum of a right cone as a conical tank process that is
characterized by technological parameters in the Table 2.1.

Table 2.1: Technological parameters of the conical storage tank.

Variable Unit Value

R1 m 1.000
R2 m 0.200
hmax m 2.000
kv m2.5s−1 0.075

The geometrical representation of the conical tank is shown in the Fig. 2.1. The
mathematical model of such a process is derived by expressing the volume of the
frustum as a function of level of the liquid. Conical storage tank is characterized
by variables R1 and R2 which are radii of the bottom and upper base, and by the
maximal height of the storage tank hmax. The volume of the liquid inside the frustum
is given by

Vf(h(t)) =
πh(t)

3

(
r2

f (h(t)) +R2rf(h(t)) +R2
2

)
, (2.17)
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0

hmax

h(t)

R1

R2

rf

qin(t)

qout(t)

Figure 2.1: Illustration of the conically-shaped tank.

where the variable rf(h(t)) represents the radius of a disc representing the surface
of the liquid at level h(t). The radius rf(h(t)) is explicit function of the liquid level,
expressed as

rf(h(t)) = R2 +
R1 −R2

hmax
h(t). (2.18)

By substituting the expression in (2.18) to (2.17) we obtain

Vf(h(t)) =
πh(t)

3

(
3R2

2 + 3R2
R1 −R2

hmax
h(t) +

(
R1 −R2

hmax

)2

h2(t)

)
. (2.19)

Now, we can combine the expression for the volume in (2.19) and the general mass
balance model in (2.5), which results in

qin(t) = kv
√
h(t) + π

(
R2 + h(t)

R1 −R2

hmax

)2
dh(t)

dt
. (2.20)

Hence, the nonlinear dynamical mathematical model of conical storage tank with
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output equation based on (2.6) can be expressed as

dh(t)

dt
=

qin(t)− kv
√
h(t)

π

(
R2 + h(t)

R1 −R2

hmax

)2 , (2.21a)

y(t) = h(t), (2.21b)

with initial condition h(0) = hs. The liquid level in the tank in steady state is known.
Then based on the equation (2.8), we can calculate the inlet flow in steady state.
Linearized mathematical model of the conical storage tank that is defined in general
as (2.10), we obtain by calculating the Jacobian (2.12) as follows

Ã = −
h2

max

(
hmaxR2 kv − 3R1 h

s kv + 3R2 h
s kv + 4R1

√
hs qs

in − 4R2

√
hs qs

in

)
2
√
hs π (R1 hs −R2 hs + hmaxR2)

3 ,

(2.22a)

B̃ =
1

π

(
hs (R1 −R2)

hmax
+R2

)2 , (2.22b)

C = 1, (2.22c)

D = 0. (2.22d)

The nonlinear mathematical model of conical tank in discrete time is defined based
on (2.13), specifically

h(t+ Ts) = h(t) + Ts ·
qin(t)− kv

√
h(t)

π

(
R2 + h(t)

R1 −R2

hmax

)2 (2.23)

Linear mathematical model in discrete time is expressed by (2.14) where matrices A
and B are calculated from (2.15) and (2.16).

2.2 Spherical Storage Tank
The process considering in this section is represented by spherical storage tank with
technological parameters shown in Table 2.2 and the geometrical representation of
this storage tank is depicted in the Fig. 2.2.
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Table 2.2: Technological parameters of the spherical storage tank.

Variable Unit Value

R m 2.00
kv m2.5s−1 0.75

qin(t)

qout(t)

R

0

hmax

h(t)
rs

R− h

Figure 2.2: Illustration of the spherically-shaped tank.

The mathematical model of this process is derived by expressing the volume of the
spherical segment of one base as a function of liquid level. This process is characterized
by variable R, that represents the radius of the sphere. The volume of the liquid inside
the spherical tank is given by

Vs(h(t)) =
πh(t)

6

(
3r2

s (h(t)) + h2(t)
)
, (2.24)

where the variable rs(h(t)) represents the radius of a disc that is surface of the liquid
at level h(t). The radius as a function of the liquid level is expressed as

rs(h(t)) =

√
R2 − (R− h(t))

2 (2.25)

By substituting the expression in (2.25) to (2.24) we obtain

Vs(h(t)) =
πh(t)

3

(
3Rh(t)− h2(t)

)
. (2.26)
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Then, we combine the expression for the volume in (2.26) and the general mass balance
model defined in (2.5), which results

qin(t) = kv
√
h(t) + π

(
2Rh(t)− h2(t)

) dh(t)

dt
. (2.27)

Rewriting the model in (2.27) to general state space model form defined in (2.7), we
get a nonlinear mathematical model of spherical storage tank

dh(t)

dt
=

qin(t)− kv
√
h(t)

π (2Rh(t)− h2(t))
, (2.28a)

y(t) = h(t), (2.28b)

with initial condition h(0) = hs. The liquid level in the tank is known in steady
state. Then based on the equation (2.8), we can calculate the inlet flow in steady state.
Linearized mathematical model of the conical storage tank, that is defined in general
as (2.10), we obtain by calculating the Jacobian (2.12) as follows

Ã =
4qs

in (hs −R) + kv

√
hs (2R− 3hs)

2πhs2 (hs − 2R)
2 , (2.29a)

B̃ = − 1

πhs − 2πhsR
, (2.29b)

C = 1, (2.29c)

D = 0. (2.29d)

The nonlinear mathematical model of spherical tank in discrete time is defined based
on (2.13), specifically

h(t+ Ts) = h(t) + Ts ·
qin(t)− kv

√
h(t)

π (2Rh(t)− h2(t))
. (2.30)

Linear mathematical model in discrete time is expressed by (2.14) where matrices A
and B are calculated from (2.15) and (2.16).

2.3 Horizontal Cylindrical Storage Tank
In this section we will focus on the horizontal cylindrical storage tank that is given by
technological parameters in Table 2.3.

The geometrical representation of the horizontal cylindrical storage tank is shown in
the Fig. 2.3. The model of such a process is derived as processes before, by expressing
the volume of the circular segment as a function of level of the liquid.
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Table 2.3: Technological parameters of the horizontal cylindrical storage tank.

Variable Unit Value

R m 2.00
` m 4.00
kv m2.5s−1 0.75

`

qin(t)

qout(t)

R

Figure 2.3: Illustration of the horizontal cylindrically-shaped tank.

The tank is characterized by variables R which represents the radius of the upper and
bottom base of cylindrical tank and by ` that is the length of the cylindrical tank. The
volume of the liquid inside the tank as a function of h(t) is given by

Vc(h(t)) =

(
R2 arccos

(
R− h(t)

R

)
− (R− h(t))

√
2Rh(t)− h2(t)

)
`. (2.31)

Combining the expression for the volume in (2.31) and the general mass balance
defined in (2.5) we get

qin(t) = kv
√
h(t) + 2`

√
h(t)(2R− h(t))

dh(t)

dt
(2.32)

Rewriting the model in (2.32) to general state space model form defined in (2.7), we



12 Mathematical Modeling

get a nonlinear mathematical model of horizontal cylindrical storage tank

dh(t)

dt
=

qin(t)− kv
√
h(t)

2`
√
h(t)(2R− h(t))

, (2.33a)

y(t) = h(t), (2.33b)

with initial condition h(0) = hs. The level of the liquid in the tank in the steady state
is known. Then based on the equation (2.8), we can calculate the inlet flow in steady
state. Linearized mathematical model of the conical storage tank that is defined in
general as (2.10), we obtain by calculating the Jacobian (2.12) as follows

Ã =
2qs

in (hs −R)− kvh
s3/2

4`
(
2Rhs − hs2

)3/2 , (2.34a)

B̃ =
1

2`
√

2Rhs − hs2
, (2.34b)

C = 1, (2.34c)

D = 0. (2.34d)

The nonlinear mathematical model of horizontal cylindrical tank in discrete time is
defined based on (2.13) where the functions f(·) and g(·) are obtained in (2.33). Linear
mathematical model in discrete time is expressed by (2.14) where matrices A and B
are calculated from (2.15) and (2.16).

2.4 Analysis of the Step Responses
The step response of a system represents the time behavior of the outputs of a general
system when its inputs change between values in a short time. In order to simulate
the step responses of the nonlinear mathematical model in continuous time defined
in (2.7) it is necessary to solve a differential equation for the particular value of the
inlet stream. If we want to simulate the step responses of a linear mathematical model
in a continuous time it is necessary to calculate the matrices Ã, B̃, C and D defined
in (2.12). Regarding the step responses of the mathematical models in discrete time,
the difference equation defined in (2.13) has to be evaluated in every sampling time
Ts and compute the matrices of a linear state space model in discrete time defined
in (2.14) by utilizing the property given in (2.15).

In this section, we will analyze and compare the step responses of the linear and non-
linear mathematical model in continuous and discrete time for the conical, spherical
and horizontal cylindrical storage tank.
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2.4.1 Step Responses of the Conical Storage Tank
All technological parameters of the conical storage tank are summarized in the Ta-
ble 2.1. The liquid level in steady state is given as hs = 0.3 m. Based on the equa-
tion (2.8) we can calculate the inlet flow in steady state as qs

in = 0.041 m3s−1. Now,
when all variables in steady state are known, we can calculate the matrices of of linear
system (2.29) as follows

Ã = −0.0677, (2.35a)

B̃ = 0.9895, (2.35b)

C = 1, (2.35c)

D = 0. (2.35d)

Matrices of the linear state space model in discrete time A and B can be calculated ei-
ther by utilizing the property in (2.15) or by using the mathematical software MATLAB

via c2d command. Matrices C and D are the same as for the continuous time. Then

A = 0.8733, (2.36a)

B = 1.8507, (2.36b)

where the sampling time is set to Ts = 2 s.

0 50 100 150 200 250 300 350 400

0

0.6

1.2

t [s]

h
[m

]

dNL cNL dLTI cLTI

0 50 100 150 200 250 300 350 400

0

0.1

t [s]

q
[m

3
s−

1
]

qin bounds

Figure 2.4: Step responses of the conical storage tank.

As we can see, in the Fig. 2.4 the big difference between the linear and nonlinear
mathematical model is caused by a strong nonlinearity which is obvious from (2.21).
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The more we get further from the operating point, the bigger differences between the
nonlinear and linear model will be.

2.4.2 Step Responses of the Spherical Storage Tank
The same procedure will be adopt to the spherical storage tank. Technological parame-
ters are displayed in the Table 2.2. The liquid level in steady state is given as hs = 2 m

and the inlet flow in steady state is qs
in = 1.0607 m3s−1. Then we can calculate the

matrices of of linear system as

Ã = −0.0211, (2.37a)

B̃ = 0.0796, (2.37b)

C = 1, (2.37c)

D = 0. (2.37d)

Matrices of the linear state space model in discrete time A and B are calculated as

A = 0.9587, (2.38a)

B = 0.1558, (2.38b)

and the sampling time is set to Ts = 5 s.
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Figure 2.5: Step responses of the spherical storage tank.
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2.4.3 Step Responses of the Horizontal Cylindrical Storage Tank
Technological parameters for horizontal cylindrical storage tanks are displayed in the
Table 2.3. The liquid level in steady state is given as hs = 2 m and the inlet flow in
steady state is qs

in = 1.0607 m3s−1. The matrices of linear system are calculated as

Ã = −0.0166, (2.39a)

B̃ = 0.0625, (2.39b)

C = 1, (2.39c)

D = 0. (2.39d)

Matrices of the linear state space model in discrete time A and B are calculated as

A = 0.9674, (2.40a)

B = 0.1230, (2.40b)

and the sampling time is set to Ts = 5 s.
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Figure 2.6: Step responses of the horizontal cylindrical storage tank.

If we look closer to the spherical and horizontal cylindrical tank, their step responses
are very similar to each other since their mathematical models are similar too, however,
the nonlinearity is not so dominant as for the conical storage tank.
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CHAPTER 3

Simple Control Strategies

This chapter deals with the design of simple control strategies that are commonly
used in process industry mainly for their simplicity, robustness, implementation and
low costs[16]. We will focus on two control approaches, PID and LQ control. While
the PID controllers are mostly used for SISO systems, the LQ controllers represent the
optimal state controllers used for control of MIMO processes.

In general, the closed-loop system represents a set of technical instruments that are
used for the correct working of a measured process in automatic mode. The simplified
block scheme of such a loop is depicted in the Fig. 3.1. The closed-loop scheme consists

ProcessController
u

+ +
ew

−
y

d

Figure 3.1: Closed-loop system block scheme.

of four basic components: controller, actuator, process and measurement device. To
simplify the scheme, the actuator and the measurement device are included into the
controlled process. The signals shown in here scheme are w as a reference, e as a
control error, u as a manipulated (control) variable, d as a disturbance signal and y

as an output (controlled) variable. The most important requirements on closed-loop
system are stability, disturbance rejection, control performance and robustness to
parameter changes [16].
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3.1 PID Control
PID controller is by far the most widely used control algorithm in process industry.
There are estimates that probably more than 90% of all controllers are of PID type. A
lot of feedback loops are controlled via PID controllers. The main principle of the PID
controller is to process its input signal that is a control error [7]. In general, the PID
controller is defined by the following algorithm

u(t) = K

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

)
, (3.1)

where u represents the manipulated variable and e is the control error that is defined
as a difference between the reference and actual output value. The manipulated
variable is thus a sum of three terms. P - which is proportional to the error, I - that
is proportional to the integral of the error gives and D - which is proportional to
the derivative of the error. The parameters of the controller are proportional gain
K, integral time Ti and derivative time Td. The block scheme of process control via
PID controller based on the general closed loop system in Fig. 3.1 is displayed in the
Fig. 3.2.

ProcessSaturation+
y

I

P

D

u
+
ew

−

Figure 3.2: Block scheme of PID control.

Proportional Action

The control law for proportional (P) controller is defined as

u(t) = Ke(t). (3.2)

From the practical point of view, such a controller is able to proportionally work
only in a certain limited range of control errors since the manipulated variable can be
only in a range between umin and umax. Proportional behavior of the controller can
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be characterized either by its gain K. The proportional controller acts like an on-off
controller for large control errors. The proportional controller does not enforce an
offset free control in steady state.

Integral Action

The main principle of the integral action is to make sure that the process output is
coincident with the reference in steady state. A controller with integral action will
always give zero steady-state error. For large values of the integration time constant,
the response creeps slowly towards the reference. The smaller value of integral time
constant Ti the bigger changes of manipulated variable u are generated.

Derivative Action

The objective of the derivative action is to improve the closed-loop stability and rise
time. The derivative controller contains the derivative constant Td which "predicts"
the future value of the control error. The prediction is made by extrapolating the error
by the tangent to the control error curve. However, the ideal derivative controller is
not realizable. In order to use such a controller, we need to add the first order system
in series as a filter.

Integrator Windup

In process industry, there are control systems with a wide range of operating condi-
tions. This can lead to the situation that manipulated variable reaches the actuator
limits. In the case that this happens, the feedback loop is broken and the system
behaves as an open loop since the actuator will remain at its limit independently of
the control process output [2]. If the controller with integrating action is used, the
control error will continue to be integrated, hence, the integral term become very large.
Then it is required that the error has opposite sign for a long period before things
come back to normal. Typical symptoms of integrator windup are large overshoots
that are caused by delayed activity of the controller. In this thesis, we will implement
the integrator antiwindup based on the back-calculation method that is shown in the
Fig. 3.3. The modification is made by adding another feedback loop. The input to this
loop is the difference between the calculated and applied control action. In the case
that calculated control action is in range umin and umax, the difference is equal to zero
and the original controller remains. If not, it is necessary to change the integral action
until the control action is again at the desired value. The speed of the integral rewind
is given by the time constant Tb that is calculated based on the following empirical
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rule
Tb =

√
TiTd, (3.3)

where Ti and Td are defined in (3.1).
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Figure 3.3: Block scheme of PID control with antiwindup.

Controller Synthesis

In order to design a PID controller, we can choose from various methods. These
methods can be divided into two groups: analytical and experimental. Analytical
methods assume that the transfer function of the controlled process is known, whereas
the experimental methods require knowing the process dynamics in time. PID con-
troller synthesis can be performed also in mathematical software MATLAB using the
pidTuner command [19].

3.2 Optimal LQ Control
We consider a controllable continuous-time system with initial condition given as

ẋ(t) = Ãx(t) + B̃u(t), x(0) = 0, (3.4)

where matrices Ã and B̃ represent the linear state space model defined in (2.10) and
the infinite horizon cost function defined as

J =

∫ ∞
0

(xᵀ(t)Qxx(t) + uᵀ(t)Quu(t)) dt, (3.5)

where the matrices Qx and Qu set relative weights of state deviation and input usage
for which the following rules apply

Qx � 0, (3.6)

Qu � 0. (3.7)

The main objective of the optimal control is to find such a feedback control law defined
as

u(t) = −Kcx(t), (3.8)
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that minimizes the cost function (3.5) subject to the constraint (3.4). The gain matrix
Kc in (3.8) is given by the following relation

Kc = −Q−1
u B̃ᵀPc, (3.9)

where Pc � 0 satisfies algebraic quadratic matrix Riccati equation (ARE)

ÃᵀPc + PcÃ− PcB̃Q
−1
u B̃ᵀPc +Qx = 0. (3.10)

Matrices Qx and Qu can be designed in various ways, e.g.

Qx =
1

(xs)2
, (3.11a)

Qu =
1

(us)2
. (3.11b)

The detailed solution of ARE to get Kc can be found in [6] or using the mathematical
software MATLAB via lqr command. Since the Kc represents the constant matrix,
such a controller implements the proportional action. From the Section 3.1 we know,
that this action results in the steady-state control error. Our goal is to design such
a LQ controller which will be able to track the reference without an offset in steady
state. The control scheme with such a controller is depicted in the Fig. 3.4.

Process

−Kc

y

x
+

u−Ke

∫
+

ew

−

Figure 3.4: Block scheme of LQ control with integral action.

There are few possibilities how to get rid of a control error in steady-state. One of
them is to define an additional dynamics for the control error [1]. It means that the
difference between the reference and the output variable is equal to the new states
defined as ẋI(t). Now we can extend the system dynamics in (3.4) by the control error
dynamics that can be expressed in the matrix form as follows[

ẋ(t)

ẋI(t)

]
=

[
Ã 0

−C 0

] [
x(t)

xI(t)

]
+

[
B̃

0

]
u(t) +

[
0

I

]
w(t), (3.12)

from which we obtain a new state-space representation as

˙̄x(t) = Āx̄(t) + B̄u(t) +Mw(t), (3.13)
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where the matrices Ā and B̄ represent the extended matrices from (3.12). The cost
function defined in (3.5) will change to the following form

Je =

∫ ∞
0

(
x̄ᵀ(t)Q̄xx̄(t) + uᵀ(t)Quu(t)

)
dt. (3.14)

By minimizing the cost function (3.14) subject to (3.13) and solving the ARE

ĀᵀPe + PeĀ− PeB̃Q
−1
u B̄ᵀPe + Q̄x = 0, (3.15)

we obtain a new optimal control law with integral action defined as

u(t) = −K̄cx̄(t) = −
[
Kc Ke

] [ x(t)

xe(t)

]
, (3.16)

where K̄c contains the information how to achieve an offset free control via Ke. The
matrix Q̄x used in (3.15) is defined as

Q̄x =

[
Qx 0

0 Qe

]
, (3.17)

where the matrix Qe that penalizes the control error is properly chosen, usually 10

times higher than Qx.



CHAPTER 4

Model Predictive Control

As it was already mentioned in the Introduction, the main principle of the MPC is to
find an optimal control action with respect to the state, input and output constraints.
MPC control problem can be defined as an optimization problem which consists of a
quadratic cost function subject to equality and inequality constraints [10]. The solution
of such a problem is an optimal sequence of control actions over the prediction horizon.
However, only the first sample is applied to the system. This control strategy is called
receding horizon control [15]. In the Fig. 4.1 is shown a typical block diagram of a
closed loop system where the MPC is used as a controller.

w MPC

Unit Delay

Process yu?

x

Figure 4.1: Closed-loop implementation with the MPC.

4.1 Quadratic programming
The MPC formulation needs to be transformed into the standard form of quadratic
optimization problem in order to be solved using available solvers like GUROBI.
The quadratic programming is an optimization problem that consists of quadratic
cost function and all constraints are linear equalities or inequalities [3]. This class of



24 Model Predictive Control

optimization problems can be defined as

min
v

vᵀPv + qᵀv + r, (4.1a)

s.t. Feqv = geq, (4.1b)

Fv � g (4.1c)

where v ∈ Rn is a vector of optimization variables and P represents the Hessian which
is a square matrix of dimensions n×n. Next q ∈ Rn, Feq ∈ Rm×n, F ∈ Rp×n, geq ∈ Rm

and g ∈ Rp, where constants m and n represent the number of equality and inequality
constraints. For control purposes there is a requirement that the optimization problem
defined in (4.1) has a unique optimum since this problem results in control action and
we can not obtain more than one solution. In order to achieve this requirement, the
Hessian P must be a positive definite. When P � 0, then the quadratic problem is
convex and we know that convex quadratic problems have one unique optima.

4.2 Dense Approach to Reformulation
In order to obtain the sequence of optimal control inputs, the control problem has to be
defined firstly. As it was already mentioned in previous section, the MPC formulation
represents the quadratic optimization problem subject to linear equality and inequality
constraints. In this thesis, we will derive and use the following MPC formulation

min
u0,...,uN−1

N−1∑
k=0

(yk − wk)
ᵀ
Qy (yk − wk) +

N−1∑
k=0

∆uᵀkQu∆uk, (4.2a)

s.t. xk+1 = Axk +Buk + Exdk, (4.2b)

yk = Cxk +Duk + Eydk, (4.2c)

dk+1 = dk, (4.2d)

x0 = x̂(t), (4.2e)

d0 = d̂(t), (4.2f)

∆uk = uk − uk−1, (4.2g)

umin ≤ uk ≤ umax, (4.2h)

∆umin ≤ ∆uk ≤ ∆umax, (4.2i)

xmin ≤ xk ≤ xmax, (4.2j)

ymin ≤ yk ≤ ymax, (4.2k)

where k = 0, ..., N − 1. The quadratic cost function (4.2a) penalizes tracking error
yk − wk which we require to converge to zero, along with increments of the control
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action, denoted as ∆u. This ∆u represents the difference between the current value
of control action and the previous one. In this MPC formulation we require to have
an access to the previous control action uk−1 which represents the previous control
action already applied to the system. Since we used the formulation containing ∆uk
as a discrete-time integrator we are able to achieve an offset free control [20, 17, 18].
However, integrating behavior introduced by ∆u MPC formulation does not remove
offset in tracking when the MPC designed based on the linear system is used for
controlling nonlinear systems. We achieve an offset free control only in case when the
prediction model is identical with a real system. However, we rarely arrive at such
a situation and also, the process can be affected by disturbances which may not be
measurable. In order to avoid the model mismatch, we can extend the design model
by a set of disturbance signals which affect not only state variables but also output
variables. This procedure is called disturbance modeling and the control scheme with
MPC controller and estimation of variables is shown in the Fig. 4.2.

w MPC Process

Observer

yu?

x̂e

Figure 4.2: MPC control scheme with estimation of variables.

We consider an extended state space model in discrete time (4.2b) - (4.2d) where the
unmeasured disturbances d enter through the matrices Ex and Ey of appropriate
sizes. Also we assume that disturbances have a constant dynamics which is defined
by (4.2d). The estimated extended state vector is given as

x̂e =

[
x̂k
d̂k

]
, (4.3)

where x̂ represents the estimated state vector of the process and d̂ represents the
estimated unmeasured disturbances. We assume that the number of disturbances
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is the same as the number of controller outputs. There exist several options how to
obtain the estimated states and disturbances. One of them is to design a Luenberger
observer or the second option is to use a Kalman Filter. In this thesis we will consider
a time-varying Kalman Filter procedure which consists of two phases - prediction
phase and update phase [9]. The prediction phase is made up of two equations

x̂e,k|k−1 = Aex̂e,k−1|k−1 +Beuk, (4.4a)

Pk|k−1 = AePk−1|k−1A
ᵀ
e +Qd, (4.4b)

where x̂e,k|k−1 represents the predicted state estimate on the previous time step and
Pk,k−1 is a predicted value of the covariance matrix. The matrices Ae, Be, Ce and De

are defined as

Ae =

[
A Ex

0 I

]
, Be =

[
B

0

]
, Ce =

[
C Ey

]
, De =

[
D
]
. (4.5)

The update phase is represented by the following equations

εk = (ym,k − yL)−
(
Cex̂e,k|k−1 +Dewk

)
, (4.6a)

Sk = CePk|k−1C
ᵀ
e +Re, (4.6b)

Lk = Pk|k−1C
ᵀ
e S
−1
k , (4.6c)

x̂e,k|k = x̂e,k|k−1 + Lkεk, (4.6d)

Pk|k = (I − LkCe)Pk|k−1, (4.6e)

where the variable εk represents the estimation error, and it is calculated based on
the process measurements ym,k and the linearization point yL that is substracted from
the measurement. The time-varying Kalman Filter gain Lk is calculated based on
the (4.6b) and (4.6c). In order to determine the current estimate of the variables x̂e,k|k
the Kalman Filter gain Lk is used based on (4.6d). The covariance matrix P is updated
at the end of the update phase.

To obtain an optimal control action from the formulation (4.2) we need to reformulate
this optimization problem into the form that is given in (4.1). The reason for this step
is that solvers require standard formulation of optimization problems. There exist two
approaches how to obtain the quadratic programming form from the formulation (4.2)
- dense [13] and sparse [10] formulation of quadratic problem. In this thesis we will
focus on the dense approach to matrix reformulation.

We assume the full linear state space model in discrete time extended at disturbance
signals in order to calculate the future evolution of the states based on the initial
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condition x0, the first control action u0 and the first disturbance input d0

x1 = Ax0 +Bu0 + Exd0, (4.7a)

y0 = Cx0 +Dx0 + Eyd0. (4.7b)

Since the value of states at the first sample of prediction x1 is known from the (4.7a),
we can substitute the value of x1 for the next state and output predictions as

x2 = Ax1 +Bu1 + Exd1 =

= A (Ax0 +Bu0 + Exd0) +Bu1 + Exd1 =

= A2x0 +ABu0 +AExd0 +Bu1 + Exd1,

(4.8a)

y1 = Cx1 +Du1 + Eyd1 =

= C (Ax0 +Bu0 + Exd0) +Du1 + Eyd1 =

= CAx0 + CBu0 + CExd0 +Du1 + Eyd1,

(4.8b)

x3 = Ax2 +Bu2 + Exd2 =

= A
(
A2x0 +ABu0 +AExd0 +Bu1 + Exd1

)
+Bu2 + Exd2 =

= A3x0 +A2Bu0 +A2Exd0 +ABu1 +AExd1 +Bu2 + Exd2,

(4.9a)

y2 = Cx2 +Du2 + Eyd2 =

= C
(
A2x0 +ABu0 +AExd0 +Bu1 + Exd1

)
+Du2 + Eyd2 =

= CA2x0 + CABu0 + CAExd0 + CBu1 + CExd1 +Du2 + Eyd2.

(4.9b)

Adopting previous expressions, we obtained an explicit formula for calculating value
of states based on initial condition and future control actions as

xk+1 = Akx0 +

k−1∑
j=0

Aj (Buk−1−j + Exdk−1−j) , (4.10)

and explicit formula representing yk for an arbitrary k is given by

yk =


Cx0 +Du0 + Eyd0 if k = 0,

CAkx0 +

k−1∑
j=0

CAj (Buk−1−j + Exdk−1−j) +Duk + Eydk if k ≥ 1.
(4.11)

Expression (4.10) allows us to formulate the state prediction equation in matrix form
as

X = Ψxx0 + ΓxU + ΓdxD̃, (4.12)
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where

X =



x0

x1

x2

x3

...
xN


, U =



u0

u1

u2

u3

...
uN−1


= v, D̃ =



d0

d1

d2

d3

...
dN


, (4.13)

and

Ψx =



I

A

A2

A3

...
AN


, Γx =



0 0 0 0 . . . 0

B 0 0 0 . . . 0

AB B 0 0 . . . 0

A2B AB B 0 . . . 0
...

...
. . . . . . . . .

...
AN−1B AN−2B . . . A2B AB B


,

Γdx
=



0 0 0 0 . . . 0

Ex 0 0 0 . . . 0

AEx Ex 0 0 . . . 0

A2Ex AEx Ex 0 . . . 0
...

...
. . . . . . . . .

...
AN−1Ex AN−2Ex . . . A2Ex AEx Ex


. (4.14)

Using the (4.11), we obtain the expression for Y as a function of initial conditions x0

that can be formulated as

Y = Ψyx0 + ΓyU + Γdy
D̃, (4.15)

which represents the output prediction equation in matrix form. First we define

Y =



y0

y1

y2

y3

...
yN−1


, (4.16)
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and then

Ψy =



C

CA

CA2

CA3

...
CAN−1


Γy =



D 0 0 0 . . . 0

CB D 0 0 . . . 0

CAB CB D 0 . . . 0

CA2B CAB CB D . . . 0
...

...
. . . . . . . . .

...
CAN−2B CAN−3B . . . CAB CB D


, (4.17)

Γdy
=



Ey 0 0 0 . . . 0

CEx Ey 0 0 . . . 0

CAEx CEx Ey 0 . . . 0

CA2Ex CAEx CEx Ey . . . 0
...

...
. . . . . . . . .

...
CAN−2Ex CAN−3Ex . . . CAEx CEx Ey


. (4.18)

Based on the definition of ∆u per (4.2g), the stacked vector ∆U is given by

∆U =



∆u0

∆u1

∆u2

∆u3

...
∆uN−1


=



u0 − u−1

u1 − u0

u2 − u1

u3 − u2

...
uN−1 − uN−2


. (4.19)

Subsequently, we obtain
∆U = ΛU + λu−1, (4.20)

where

Λ =



Inu 0 0 0 . . . 0

−Inu Inu 0 0 . . . 0

0 −Inu
Inu

0 . . . 0

0 0 −Inu
Inu

. . . 0
...

...
. . . . . . . . .

...
0 0 . . . 0 −Inu

Inu


, λ =



−Inu

0

0

0
...
0


. (4.21)

In order to obtain final matrices of the quadratic problem (4.1) the origin objective
function can be reformulate as follows
N−1∑
k=0

(yk − wk)
ᵀ
Qy (yk − wk)+

N−1∑
k=0

∆uᵀkQu∆uk = (Y −W )
ᵀ

Φy (Y −W )+∆UᵀΦu∆U,

(4.22)
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in which the weighting matrices are given as

Φy =


Qy 0 0 0

0 Qy 0 0

0 0
. . . 0

0 0 0 Qy

 , Φu =


Qu 0 0 0

0 Qu 0 0

0 0
. . . 0

0 0 0 Qu

 (4.23)

where Φy ∈ R(Nny)×(Nny) and Φu ∈ R(Nnu)×(Nnu). The objective function also con-
tains the reference vector which is defined as

W =



w0

w1

w2

w3

...
wN−1


. (4.24)

Once cost function is introduced in matrix form and all matrices and vectors are
defined, vectors Y and ∆U are substituted into the cost function (4.22) with formu-
las (4.15) and (4.20) as follows(

Ψyx0 + ΓyU + Γdy
D̃ −W

)ᵀ
Φy

(
Ψyx0 + ΓyU + Γdy

D̃ −W
)

=

= xᵀ0Ψᵀ
yΦyΨyx0 + xᵀ0Ψᵀ

yΦyΓyU + xᵀ0Ψᵀ
yΦyΓdyD̃ − x

ᵀ
0Ψᵀ

yΦyW+

UᵀΓᵀ
yΦyΨyx0 + UᵀΓᵀ

yΦyΓyU + UᵀΓᵀ
yΦyΓdyD̃ − UᵀΓᵀ

yΦyW+

D̃ᵀΓᵀ
dy

Φyyx0 + D̃ᵀΓᵀ
dy

ΦyΓyU + D̃ᵀΓᵀ
dy

ΦyΓdyD̃ − D̃ᵀΓᵀ
dy

ΦyW−

W ᵀΦyΨyx0 −W ᵀΦyΓyU −W ᵀΦyΓdy
D̃ +W ᵀΦyW =

= UᵀΓᵀ
yΦyΓyU +

(
2xᵀ0Ψᵀ

yΦyΓy + 2D̃ᵀΓᵀ
dy

ΦyΓy − 2W ᵀΦyΓy

)
U+

xᵀ0Ψᵀ
yΦyΨyx0 + 2xᵀ0Ψᵀ

yΦyΓdy
D̃ − 2xᵀ0Ψᵀ

yΦyW − 2D̃ᵀΓdy
ΦyW+

D̃ᵀΓᵀ
dy

ΦyΓdy
D̃ +W ᵀΦyW,

(4.25a)

(∆U + λu−1)
ᵀ

Φu (∆U + λu−1) =

= UᵀΛᵀΦuΛU + UᵀΛᵀΦuλu−1 + uᵀ−1λ
ᵀΦuΛU + uᵀ−1λΦuλu−1 =

= UᵀΛᵀΦuΛU + 2uᵀ−1λ
ᵀΦuΛU + uᵀ−1λΦuλu−1.

(4.25b)

Expansion of respective parts of the cost function can be put together and then we
obtain a standard formulation of quadratic programming problem defined in (4.1)
with

P = Γᵀ
yΦyΓy + ΛᵀΦuΛ, (4.26a)
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q =
(

2xᵀ0Ψᵀ
yΦyΓy + 2D̃ᵀΓᵀ

dy
ΦyΓy − 2W ᵀΦyΓy + 2uᵀ−1λ

ᵀΦuΛ
)ᵀ
, (4.26b)

r = xᵀ0Ψᵀ
yΦyΨyx0 + 2xᵀ0Ψᵀ

yΦyΓdy
D̃ − 2xᵀ0Ψᵀ

yΦyW − 2D̃ᵀΓdy
ΦyW+

D̃ᵀΓᵀ
dy

ΦyΓdy
D̃ +W ᵀΦyW + uᵀ−1λΦuλu−1.

(4.26c)

By performing the substitution in (4.22), we are actually removing equality constraints
from optimization problem. The last step is to derive and reformulate only the remain-
ing inequality constraints into matrix formulation in order to obtain a standard form
of quadratic programming problem. Firstly, these constraints have to be rewritten
into the following form

xk ≤ xmax, (4.27a)

−xk ≤ −xmin, (4.27b)

uk ≤ umax, (4.27c)

−uk ≤ −umin, (4.27d)

yk ≤ ymax, (4.27e)

−yk ≤ −ymin, (4.27f)

∆uk ≤ ∆umax, (4.27g)

−∆uk ≤ −∆umin, (4.27h)

and then into the matrix form as follows

X ≤ Xmax, (4.28a)

−X ≤ −Xmin, (4.28b)

U ≤ Umax, (4.28c)

−U ≤ −Umin, (4.28d)

Y ≤ Ymax, (4.28e)

−Y ≤ −Ymin, (4.28f)

∆U ≤ ∆Umax, (4.28g)

−∆U ≤ −∆Umin. (4.28h)

Next step in this derivation is to substitute vectors X from (4.12), Y from (4.15)
and ∆U from (4.20), by straight forward mathematical modifications, we obtain the
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following expression

ΓxU ≤ Xmax −Ψxx0 − Γdx
D̃, (4.29a)

−ΓxU ≤ −Xmin + Ψxx0 + ΓdxD̃, (4.29b)

U ≤ Umax, (4.29c)

−U ≤ −Umin, (4.29d)

ΓyU ≤ Ymax −Ψyx0 − ΓdyD̃, (4.29e)

−ΓyU ≤ −Ymin + Ψyx0 + ΓdyD̃, (4.29f)

ΛU ≤ ∆Umax − λu−1, (4.29g)

−ΛU ≤ −∆Umin + λu−1. (4.29h)

Set of inequality constraints given in (4.29) are in standard form, which was introduced
in (4.1). In order to simplify the expression, we can write the left hand side matrix F
and right hand side vector g as follows

F =



Γx

−Γx

Inu

−Inu

Γy

−Γy

Λ

−Λ


, g =



Xmax −Ψxx0 − ΓdxD̃

−Xmin + Ψxx0 + Γdx
D̃

Umax

−Umin

Ymax −Ψyx0 − ΓdyD̃

−Ymin + Ψyx0 + ΓdyD̃

∆Umax − λu−1

−∆Umin + λu−1


, (4.30)

which is the form required by quadratic programming problems solvers.

4.3 Formulation of Nonlinear MPC problem
In the previous section, we formulated an optimization problem which consisted of the
quadratic objective function subject to the linear equality and inequality constraints.
Solving this optimization problem, we obtained a sequence of the optimal control
actions, however, only the first of them is applied to the process. Also, in order to
achieve an offset free control we had to assume an extended model of the process.
Here we are going to formulate another optimization problem which also consists of
quadratic objective function but the constraints are linear and nonlinear. Particularly,
the constraints representing the model behavior based on which the predictions are
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made is nonlinear [14]. The MPC formulation is given as

min
u0,...,uN−1

N−1∑
k=0

(yk − wk)
ᵀ
Qy (yk − wk) +

N−1∑
k=0

∆uᵀkQu∆uk, (4.31a)

s.t. xk+1 = f (xk, uk) , (4.31b)

yk = xk (4.31c)

x0 = x(t), (4.31d)

∆uk = uk − uk−1, (4.31e)

umin ≤ uk ≤ umax, (4.31f)

∆umin ≤ ∆uk ≤ ∆umax, (4.31g)

ymin ≤ yk ≤ ymax, (4.31h)

where k = 0, ..., N − 1. Such an optimization problem can not be reformulated to the
standard quadratic programming form since the constraint (4.31b) has a nonlinear
character. In order to solve this quadratic problem, we can choose from various
optimization methods which are able to handle nonlinear constraints. For solving
this optimization problem, we will use a built-in function in mathematical software
MATLAB called fmincon which implements four different algorithms: interior point,
sequential quadratic programming, active set and trust region reflective. We will
choose the interior point algorithm, which introduces logarithmic barriers in the
cost function to deal with nonlinear constraints [4]. Command fmincon finds a
constrained optimum of a function of several variables that is used as

fmincon(@(U) FUN,U0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS),

where the parameter FUN represents the quadratic objective function (4.31a) into
which we substitute the nonlinear constraint (4.31b) and linear constraints (4.31d)
- (4.31e). The next parameter is U0 which is the starting point for optimization. Pa-
rameters A and B represent the linear inequality constraints, in our case it is the
constraint (4.31g). Aeq and Beq represent the linear equality constraints which were
already were substituted into the objective function. LB and UB defines a set of lower
and upper bounds on the optimized variable U , so that a solution is found in the
range LB ≤ U ≤ UB. In the MPC formulation is such a constraint (4.31f). NONLCON rep-
resents the nonlinear constraint function that is (4.31h) and the parameter OPTIONS
gives us a possibility to choose what method will be used for optimization.
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CHAPTER 5

Simulation Case Studies

In this chapter, we will illustrate the design and analysis of the simple and advanced
control strategies explained in Chapters 3 and 4. The first section focuses on simple
control strategies represented by PID and LQ controllers, on their design and evalua-
tion, whereas the second section deals with the design of advanced MPC controllers
and their evaluation. In all simulations we use continuous time nonlinear model as a
controller process. For PID and LQ control we use Simulink model and for advanced
control we use ODE45 solver.

5.1 Simple control strategies
From the previous chapters, we know that there is a lot of methods how to design a PID
controller. These methods are divided into two groups - analytical and experimental.
In order to design a PID controller we need to know either mathematical model of
the controlled process or the dynamics of the process based on the experimental data.
We will design a PID controller in the mathematical software MATLAB via pidTuner
whose input represents the transfer function of the controlled process. Transfer
function can be obtained by the transformation from the state space model (2.10), or
via MATLAB using ss2tf command. pidTuner enables on-line controller tuning
through the graphical user interface. Hence, the controller is designed primary based
on the linear model, however, this controller can be applied to control the nonlinear
model with a little tuning.

Based on the process specification and our requirements, we have designed PI con-
trollers. Our target is to achieve an offset free control in steady state and without the
overshoot. It is obvious that we will need at least PI controller which is able to achieve
a control without offset in steady state. After that, we have to tune the controller in
order to ensure the control without the overshoot. The reason why we do not accept
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the overshoot during the control is simple - if the setpoint for the controlled variable
would be near the maximal height of the storage tank, the liquid inside the tank can
overflow. This can be a risky situation if the storage tank contains an acid, toxic and
expensive materials or if the storage tank is the pre-process for another technology,
like distillation column etc.

It is known that the constants of the PI controller are rarely designed in an optimal
way. In order to achieve an optimal control, we need to find such a controller that is
designed by the solving of the optimization problem. LQ controller is one of them
and the design of this controller is described in the section 3.2. We need to minimize
the objective function (3.14) subject to the process dynamics in order to achieve an
optimal control action which can be applied to the controlled process. Now, we are
going to take a closer look on the design and control performance of PID and LQ
control of the conical, spherical and horizontal cylindrical storage tank. We consider
a continuous PI and LQ control, where the simulation model is implemented in the
Simulink.

5.1.1 PID and LQ Control of the Conical Storage Tank
We designed a PI controller, based on (3.1) with the following parameters in order to
control a nonlinear mathematical model in continuous time

K = 0.52, (5.1a)

Ti = 0.05 s, (5.1b)

and the time constant Tb which represents the speed of the integral rewind is set as
Tb = 0.5 s.

An optimal LQ controller is designed as follows. We assume the extended system
defined in (3.13), where

Ā =

[
−0.0677 0

−1.0000 0

]
, B̄ =

[
0.9895

0

]
, M =

[
0

1

]
. (5.2a)

The weighting matrix Q̄x defined in (3.17) consists of matrices Qx and Qe, where the
matrix Qx penalizes the state variables and the matrix Qe penalizes the control error,
is chosen as

Q̄x =

[
0.0900 0

0 0.0010

]
, (5.3)

and the weighting matrix Qu which penalizes the control actions is designed as

Qu = 0.1. (5.4)
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By minimizing the cost function (3.14) subject to (3.13) and solving the ARE (3.15) we
obtain an optimal control law with integral action defined as (3.16), where

Kc = −0.9836, (5.5a)

Ke = 0.1000. (5.5b)
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Figure 5.1: Comparison of the PID and LQ control of the conical storage tank.

In the figure 5.1 is depicted the comparison of the continuous PID and LQ control
with integral action of the conical storage tank. For the evaluation of the designed
control strategies we can calculate the performance index represented by ISE criterion
which is defined as

ISE =

∫ tf

0

e2(t)dt, (5.6)

where the e stands for the control error. The value of the ISE criterion for PID control is
11.91 whereas for the LQ control it is 6.42. Based on these values, we can say that LQ
control shows a better performance and it is more suitable for the control of the conical
storage tank. The disadvantage of the LQ control is its implementation difficulty and
also we need to calculate the algebraic Riccati equation which requires some time.
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5.1.2 PID and LQ Control of the Spherical Storage Tank
The same procedure will be adopted for the spherical storage tank. Designed PI
controller has the following parameters

K = 1.6, (5.7a)

Ti = 0.052 s, (5.7b)

and the time constant representing the speed of the integral rewind is set as Tb = 0.5 s.
The matrices of the extended state space model for LQ control are calculated as

Ā =

[
−0.0211 0

−1.0000 0

]
, B̄ =

[
0.0531

0

]
, M =

[
0

1

]
. (5.8a)

The weighting matrices Q̄x and Qu are designed as follows

Q̄x =

[
1000 0

0 100

]
, Qu = 2. (5.9)

The constants of LQ controller Kc and Ke from (3.16) are calculated as

Kc = −28.6780, Ke = 7.5000. (5.10)
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Figure 5.2: Comparison of the PID and LQ control of the spherical storage tank.

The value of the ISE criterion for the PID control is 39.95 whereas for the LQ control it
is 21.87.
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5.1.3 PID and LQ Control of the Horizontal Cylindrical Storage
Tank

The PID controller used for the control of the horizontal cylindrical storage tank
consists of the following parameters

K = 2, Ti = 0.035 s, (5.11)

and the time constant representing the speed of the integral rewind is set as Tb = 0.5 s.
The matrices of the extended state space model for LQ control are calculated as

Ā =

[
−0.0166 0

−1.0000 0

]
, B̄ =

[
0.0625

0

]
, M =

[
0

1

]
. (5.12a)

The weighting matrices Q̄x and Qu are designed as follows

Q̄x =

[
0.2 0

0 0.0006

]
, Qu = 0.01. (5.13)

The constants of LQ controller Kc and Ke from (3.16) are calculated as

Kc = −5.0239, Ke = 0.2470. (5.14)
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Figure 5.3: Comparison of the PID and LQ control of the horizontal cylindrical tank.

The value of the ISE criterion for the PID control is 142.6 whereas for the LQ control it
is 127.3.
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5.2 Advanced Control Strategies
This section deals with the comparison of the linear and nonlinear model predictive
control of the conical, spherical and horizontal cylindrical storage tank. We consider
a discrete implementation of LTI and NL MPC and the controlled process will be
simulated via ODE45 solver. Linear MPC is designed using the YALMIP toolbox [12]
and solved via GUROBI, for nonlinear MPC, we constructed the optimization problem
which is being solved via fmincon.

5.2.1 MPC Control of the Conical Storage Tank
We consider an extended linear mathematical model in discrete time with distur-
bances (4.2b)-(4.2c), where the matrices A, B, C and D are calculated in (2.36) and
unmeasured disturbances enter into the process via matrices Ex and Ey as follows

Ex = 0, (5.15a)

Ey = 1. (5.15b)

We usually set the matrix Ex as a zero matrix in case that the process does not contain
unstable open loop dynamics. Since we often do not have an access to the future
values of disturbances, we can substitute dk into d0. The matrices of the Kalman Filter
are calculated based on (4.5) as follows

Ae =

[
0.8733 0

0 1

]
, (5.16a)

Be =

[
1.8507

0

]
, (5.16b)

Ce =
[
1 1

]
, (5.16c)

De = 0, (5.16d)

and the initial value for the covariance matrix P is chosen as

P =

[
1 0

0 100

]
. (5.17)

The weighting matrices Qd in the prediction phase (4.4b) and Re in the update
phase (4.6b) of the Kalman Filter are chosen as

Qd =

[
1 0

0 1000

]
, (5.18a)

Re = 0.001. (5.18b)
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The conical storage tank represents the SISO system where the liquid level is the state
variable as well as the output variable. Hence, the constraints for these variables are
the same. We can define the upper and lower bounds for all variables as follows

xmin = 0 m− hs, (5.19a)

xmax = 2 m− hs, (5.19b)

umin = 0 m3 s−1 − us, (5.19c)

umax = 0.15 m3 s−1 − us, (5.19d)

∆umin = −0.015 per sample, (5.19e)

∆umax = 0.015 per sample. (5.19f)

The weighting matrices Qy and Qu are the same for LTI and NL MPC which are
chosen as

Qy = 5 (5.20a)

Qu = 800. (5.20b)

The prediction horizon is set to N = 10. Also, we consider model predictive control
with trajectory preview setting. In the simulation, we consider step changes beginning
at the steady states defined in the Section 2.4.1.

In the Fig. 5.4 is depicted the liquid level control of the conical storage tank via linear
and nonlinear MPC. As we can see, all constraints are fulfilled in an optimal way.
Also, the MPC allows us to define the constraints on ∆u which represent the practical
aspect in the process industry. The biggest difference between the LTI and NL MPC is
that in case of NL MPC, we achieve a more precise setpoint tracking. This is caused
since the NL MPC was designed based on the model which is identical to the process.
Also we can see that LTI MPC shows a bigger overshoots than NL MPC with the
same settings of the weighting matrices. The last subfigure shows the behavior of
unmeasured disturbances. We can see, the cumulative unmeasurable disturbances
settles when the reference is reached.

In the Fig. 5.5 we can see the evolution of the estimation error in the update phase of
the Kalman Filter and the activity of the covariance matrix. The last two subfigures
deals with the optimization quality criteria - the value of the objective function and
the number of iterations necessary in each simulation step in order to converge to the
optima. We can compare the value of objective functions for LTI and NL MPC as

JMPC =

tf∑
i=0

(
N−1∑
k=0

(yk − wk)
ᵀ
Qy (yk − wk) +

N−1∑
k=0

∆uᵀkQu∆uk

)
i

, (5.21)
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Figure 5.4: Comparison of the LTI MPC with Kalman Filter and NL MPC control of
the conical storage tank.
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Figure 5.5: Estimation of disturbances, estimation error and covariance matrix of
Kalman Filter for the conical storage tank.
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where i represents the simulation step.

The final sum of the objective function for LTI MPC is JLTI = 59.1258 whereas the final
sum of the objective function for NL MPC is JNL = 45.1682. It means, that nonlinear
MPC is better then linear MPC by 23%. The figure with iterations has only informative
character for nonlinear MPC, however, we can see that the number of iteration is not
a big and we are able to solve this optimization problem in one sample time, which is
Ts = 2 s. It means that such a controller can be used in the process industry.

5.2.2 MPC Control of the Spherical Storage Tank
We consider an extended linear mathematical model in discrete time with distur-
bances (4.2b)-(4.2c), where the matrices A, B, C and D are calculated in (2.38) and
unmeasured disturbances enter into the process via matrices Ex and Ey as follows

Ex = 0, (5.22a)

Ey = 1. (5.22b)

We usually set the matrix Ex as a zero matrix in case that the process does not contain
unstable open loop dynamics. Since we often do not have an access to the future
values of disturbances, we can substitute dk into d0. The matrices of the Kalman Filter
are calculated based on (4.5) as follows

Ae =

[
0.9587 0

0 1

]
, (5.23a)

Be =

[
1.558

0

]
, (5.23b)

Ce =
[
1 1

]
, (5.23c)

De = 0, (5.23d)

and the initial value for the covariance matrix P is chosen as

P =

[
1 0

0 100

]
. (5.24)

The weighting matrices Qd in the prediction phase (4.4b) and Re in the update
phase (4.6b) of the Kalman Filter are chosen as

Qd =

[
30 0

0 750

]
, (5.25a)

Re = 0.01. (5.25b)
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The conical storage tank represents the SISO system where the liquid level is the state
variable as well as the output variable. Hence, the constraints for these variables are
the same. We can define the upper and lower bounds for all variables as follows

xmin = 0 m− hs, (5.26a)

xmax = 4 m− hs, (5.26b)

umin = 0 m3 s−1 − us, (5.26c)

umax = 2 m3 s−1 − us, (5.26d)

∆umin = −0.2 per sample, (5.26e)

∆umax = 0.2 per sample. (5.26f)

The wighting matrices Qy and Qu are the same for LTI and NL MPC which are chosen
as

Qy = 0.9, (5.27a)

Qu = 30. (5.27b)

The prediction horizon is set to N = 10. Also, we consider model predictive control
with trajectory preview setting. In the simulation, we consider step changes beginning
at the steady states defined in the Section 2.4.2.

In the Fig. 5.6 is depicted the liquid level control of the spherical storage tank via linear
and nonlinear MPC. As we can see, all constraints are fulfilled in an optimal way.
Also, as for the conical tank, the MPC allows us to define the constraints on ∆u which
represent the practical aspect in the process industry. The biggest difference between
the LTI and NL MPC is that in case of NL MPC, we achieve a more precise setpoint
tracking. This is caused since the NL MPC was designed based on the model which is
identical to the process. Also we can see that LTI MPC shows a bigger overshoots than
NL MPC with the same settings of the weighting matrices. The last subfigure shows
the behavior of unmeasured disturbances. We can see, the cumulative unmeasurable
disturbances settles when the reference is reached.

In the Fig. 5.7 we can see the evolution of the estimation error in the update phase of
the Kalman Filter and the activity of the covariance matrix. The last two subfigures
deals with the optimization quality criteria - the value of the objective function and
the number of iterations necessary in each simulation step in order to converge to
the optima. We can compare the value of objective functions for LTI and NL MPC
where the final sum of the objective function for LTI MPC is JLTI = 194.6417 whereas
the final sum of the objective function for NL MPC is JNL = 171.6715. It means, that
nonlinear MPC is better then linear MPC by 12%.
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Figure 5.6: Comparison of the LTI MPC with Kalman Filter and NL MPC control of
the spherical storage tank.
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Figure 5.7: Estimation of disturbances, estimation error and covariance matrix of
Kalman Filter for the spherical storage tank.
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5.2.3 MPC Control of the Horizontal Cylindrical Storage Tank
We consider an extended linear mathematical model in discrete time with distur-
bances (4.2b)-(4.2c), where the matrices A, B, C and D are calculated in (2.36) and
unmeasured disturbances enter into the process via matrices Ex and Ey as follows

Ex = 0, (5.28a)

Ey = 1. (5.28b)

We usually set the matrix Ex as a zero matrix in case that the process does not contain
unstable open loop dynamics. Since we often do not have an access to the future
values of disturbances, we can substitute dk into d0. The matrices of the Kalman Filter
are calculated based on (4.5) as follows

Ae =

[
0.9674 0

0 1

]
, (5.29a)

Be =

[
0.1230

0

]
, (5.29b)

Ce =
[
1 1

]
, (5.29c)

De = 0, (5.29d)

and the initial value for the covariance matrix P is chosen as

P =

[
1 0

0 100

]
. (5.30)

The weighting matrices Qd in the prediction phase (4.4b) and Re in the update
phase (4.6b) of the Kalman Filter are chosen as

Qd =

[
0.1 0

0 150

]
, (5.31a)

Re = 0.001. (5.31b)

The conical storage tank represents the SISO system where the liquid level is the state
variable as well as the output variable. Hence, the constraints for these variables are
the same. We can define the upper and lower bounds for all variables as follows

xmin = 0 m− hs, (5.32a)

xmax = 2 m− hs, (5.32b)

umin = 0 m3 s−1 − us, (5.32c)

umax = 0.1 m3 s−1 − us, (5.32d)

∆umin = −0.01 per sample, (5.32e)

∆umax = 0.01 per sample. (5.32f)
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The wighting matrices Qy and Qu are the same for LTI and NL MPC which are chosen
as

Qy = 0.08, (5.33a)

Qu = 0.57. (5.33b)

The prediction horizon is set to N = 10. Also, we consider model predictive control
with trajectory preview setting. In the simulation, we consider step changes beginning
at the steady states defined in the Section 2.4.3.

In the Fig. 5.8 is depicted the liquid level control of the horizontal cylindrical storage
tank via linear and nonlinear MPC. As we can see, all constraints are fulfilled in an
optimal way. Also, the MPC allows us to define the constraints on ∆u which represent
the practical aspect in the process industry. The biggest difference between the LTI
and NL MPC is that in case of NL MPC, we achieve a more precise setpoint tracking.
This is caused since the NL MPC was designed based on the model which is identical
to the process. Also we can see that LTI MPC shows a bigger overshoots than NL
MPC with the same settings of the weighting matrices. The last subfigure shows the
behavior of unmeasured disturbances. We can see, the cumulative unmeasurable
disturbances settles when the reference is reached.

In the Fig. 5.9 we can see the evolution of the estimation error in the update phase of
the Kalman Filter and the activity of the covariance matrix. The last two subfigures
deals with the optimization quality criteria - the value of the objective function and
the number of iterations necessary in each simulation step in order to converge to
the optima. We can compare the value of objective functions for LTI and NL MPC
where the final sum of the objective function for LTI MPC is JLTI = 178.9290 whereas
the final sum of the objective function for NL MPC is JNL = 148.3416. It means, that
nonlinear MPC is better then linear MPC by 16%.

5.2.4 Maximum Level Control via nonlinear MPC
In this section, we will present the nonlinear MPC control of liquid level in the conical
storage tank where the reference is set to the value hmax = 4 m with respect to all
constraints defined in (4.31). Such a control was not possible with linear MPC since
this MPC was design based on the linear model which is not identical with the real
(nonlinear) process.

Nonlinear MPC was designed based on the nonlinear mathematical model in dis-
crete time, however, we simulated the continuous model via ODE45. We chose the
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Figure 5.8: Comparison of the LTI MPC with Kalman Filter and NL MPC control of
the horizontal cylindrical storage tank.
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Figure 5.9: Estimation of disturbances, estimation error and covariance matrix of
Kalman Filter for the horizontal cylindrical storage tank.



52 Simulation Case Studies

0 25 50 75 100 125 150

0

0.5

1

1.5

2

t [s]

h
[m

]

ref NL MPC bounds

0 25 50 75 100 125 150

0

0.15

t [s]

q
[m

3
s−

1
]

0 25 50 75 100 125 150

−1.5

0

1.5

·10−2

t [s]

∆
q

[m
3

s−
1
]

0 25 50 75 100 125 150

0

1

2

3

4

5

t [s]

o
b

j

0 25 50 75 100 125 150

0
10
20
30
40
50
60
70

t [s]

it
e
ra

ti
o
n
s

Figure 5.10: Maximum Level Control of the Conical Storage Tank using NL MPC.
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weighting matrices Qy and Qu as follows

Qy = 0.945, (5.34a)

Qu = 100. (5.34b)

We considered the same constraints as for the comparison with linear MPC (5.19).
The prediction horizon was set to N = 10. The liquid level control is depicted in the
Fig. 5.10. We can see that we achieve an offset free control in steady state without
overshoots and with respect all constraints. If we look at the optimization performance
indexes, the sum of an objective function for the nonlinear MPC is JNL = 48.8402 and
the number of iterations is not so big. We are able to calculate the optimal control
action in every sample time, that is Ts = 2s.

Hence, we can see that using a NL MPC, we are able to utilize the whole work-
ing volume with respect to all constraints which is not possible with PID, LQ or
other traditional control approaches [8] which do not allow us to consider various
constraints.
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CHAPTER 6

Conclusions

In this master thesis, we designed and implemented simple (PID and LQ) and ad-
vanced (LTI MPC with Kalman Filter and NL MPC) control strategies which were
used for liquid level control in tanks with various geometry. We have shown, how to
derive a linear and nonlinear mathematical model in continuous and discrete time for
a conical, spherical and horizontal cylindrical storage tank. Then, we designed PID
and LQ controller for each tank and we evaluated the performance criterion (ISE) in
order to compare them. As we could see in the simulation figures, the LQ control was
able to achieve the reference sooner without overshoots and also, the value of ISE was
lower as for the PID control. If we could choose between these two approaches, the
optimal LQ control is a better choice.

The problem of above mentioned strategies is that they are not able to handle a
various constraints on manipulated, state and control variables or on technological
parameters of the process, like the maximal height of the storage tank. That is why we
designed a model predictive control which allowed us to consider these constraints.
We designed two types of MPC - linear and nonlinear. However, in order to achieve
an offset free control with linear MPC we had to assume an extended prediction
model with disturbances which were observed via time-varying Kalman Filter. If we
compare the LTI and NL MPC based on the simulations, we can say that NL MPC
did not show such a big overshoots as the linear MPC. In both of cases we achieved
the reference with respect to all constraints defined in MPC formulations. But, the
biggest advantage of the nonlinear MPC is the fact, that we are able to control on
the maximal height of the tank without overshoots and also with respect to all the
constraints defined in the optimization problem. Such a control is not able with any
other control strategy mentioned before. In process industry we often do not use the
full working volume, since we are not able to ensure such a good control as NL MPC
is. The disadvantage of such a control is that it is necessary to have a professional
solver which is able to compute the optimal control action that us applied to the
controlled process. However, as we could see in the simulation case studies, fmincon
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was able to solve the optimization problem in each sampling time wich was 2s− 5s.
It means, that such a controller is able to be used in the process industry.



APPENDIX A

Resumé

Predkladaná diplomová práca sa venuje návrhu a implementácii jednoduchých (PID
a LQ) a pokročilých (MPC) riadiacich stratégií, ktoré sú následne použité na riade-
nie výšky hladiny v zásobníkoch s rôznou geometriou. V praxi zvyčajne nevyuží-
vame celý objem zásobníkov na riadenie výšky hladiny, nakol’ko nie je jednoduché
navrhnút’ regulátor takej kvality, aby bolo možné využívat’ celý pracovný objem.
V tejto práci sa pozrieme bližšie na tento problém a pokúsime sa navrhnút’ také
regulátory, ktoré môžu byt’ reálne v praxi nasadené.

Ako už bolo spomenuté, technologický proces je reprezentovaný zásobníkom kva-
paliny, pričom uvažujeme až tri rôzne tvary týchto zásobníkov, a to kužel’ový, gul’ový
a horizontálne valcový zásobník. Na to, aby sme mohli navrhnút’ riadenie pre takýto
technologický proces, musíme získat’ jeho matematický model. Tento sme získali na
základe materiálovej bilancie zásobníka. Podrobnému odvodeniu matematickému
modelu jednotlivých zásobníkov sa venujeme v kapitole 2. Súčast’ou tejto kapitoly je
aj samotné porovnanie ako sa správa výška hladiny pri zmenách akčného zásahu.

Po odvodení matematických modelov môžeme pristúpit’ k návrhom riadenia. Ako
prvé riadenie je navrhnuté PID, ktoré predstavuje najrozšírenejší typ riadenia v pro-
cesnom priemysle. Následne je navrhnuté optimálne LQ riadenie, ktoré je založené
na minimalizácii kvadratického kritéria. Odvodeniu jednotlivých regulátorov sa
venujeme v kapitole 3.

Nakol’ko ani PID, ani LQ riadenie nie je schopné uvažovat’ ohraničenia na procesné
ako aj technologické veličiny, pristúpime k návrhu pokročilejších metód riadenia,
a to k prediktívnemu riadeniu. Podstata prediktívneho riadenia spočíva v mini-
malizácii kvadratickej účelovej funkcie vzhl’adom na stavové, vstupné a výstupné
ohraničenia. V tejto práci uvažujeme dva typy prediktívnych regulátorov - lineárne a
nelineárne. Lineárne MPC je zostavené na základe diskrétneho lineárneho modelu
v YALMIPe, pričom optimalizačný problém je riešený pomocou riešitel’a GUROBI.
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Vzhl’adom na to, že lineárny model nie je identický s reálnym procesom, pri riadení
nedosiahneme žiadanú veličinu v ustálenom stave. Tento jav sa v zahraničnej lit-
eratúre nazýva ako "model mismatch". Na to, aby sme dosiahli riadenie na žiadanú
hodnotu, potrebujeme tento predikčný model rozšírit’ o poruchy, ktoré si namodelu-
jeme. Tieto poruchy ako aj samotné stavy procesu sú následne odhadované pomocou
navrhnutého časovo premenlivého Kalmanovho filtra. Podrobné odvodenie formulá-
cie MPC ako aj Kalmanovho filtra je popísané v kapitole 4. Súčast’ou tejto kapitoly je
aj formulácia nelineárneho prediktívneho riadenia, ktorý nie je možné formulovat’ v
YALMIP toolboxe, nakol’ko tento pracuje len s lineárnymi ohraničeniami. Preto sme
na riešenie takéhoto optimalizačného problému zvolili riešitel’a v MATLABe, ktorý sa
nazýva fmincon.

5. kapitola je venovaná samotnej implementácií jednotlivých regulátorov na riadenie
zásobníkov kvapaliny, kde sú následne jednotlivé prístupy aj vyhodnotené na základe
rôznych kvalitatívnych ukazovatel’ov v prípadových štúdiách. Porovnávali sme
zvlášt’ jednoduché stratégie riadenia a zvlášt’ pokročilé metódy. V prípade PID a LQ
riadenia môžeme vidiet’, že LQ riadenie dosiahne žiadanú hodnotu rýchlejšie ako
PID riadenie a bez preregulovania. Lepšiu kvalitu riadenia potvrdzuje aj kvalitatívny
ukazovatel’ ISE, ktorého hodnota je v prípade LQ riadenia menšia. Čím menšia je
hodnota tohto ukazovatel’a, tým kvalitnejšie riadenie sme navrhli. V oboch prípadoch
sme regulátory navrhli na základe lineárneho modelu a následným ladením sme ich
použili na riadenie nelineárneho modelu.

V prípade pokročilejších metód riadenia, kedy riešime optimalizačný problém na
získanie optimálnych akčných zásahov, je na porovnanie lineárneho a nelineárneho
MPC použitý ako kvalitatívny ukazovatel’ hodnota účelovej funkcie počas trvania
simulácie. Teda vyhodnocuje sa suma hodnôt účelových funkcií v každom kroku
simulácie. Ako vyplýva z grafov jednotlivých priebehov riadenia, nelineárne MPC
reprezentuje vždy lepšiu alternatívu na riadenie výšky hladiny ako lineárne MPC. Je
to spôsobené tým, že nelineárne MPC je navrhnuté na základe nelineárneho modelu,
a teda lepšie opisuje správanie sa procesu. Ďalšou nespornou výhodou nelineárneho
prediktívneho riadenia je možnost’ riadit’ na maximálnu hodnotu výšky hladiny v
zásobníku bez preregulovania a s rešpektovaním všetkých ohraničení, a teda využí-
vat’ celý pracovný objem zásobníka na rozdiel od PID, LQ alebo iných tradičných
riadiacich algoritmov, ktoré tohoto nie sú schopné. Ďalej sme ukázali, že pri ne-
lineárnom MPC sme boli schopní vyriešit’ optimalizačný problém v rámci jednej
periódy vzorkovania, čo predstavuje 2 sekundy v prípade kužel’ového zásobníka
a 5 sekúnd v prípade gul’ového a horizontálne valcového zásobníka. Teda, takýto
MPC regulátor je možné použit’ v priemysle na riadenie výšky hladiny v zásobníkoch
kvapaliny.
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