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Abstract

This paper studies a dynamic real-time optimization in the context of model-based time-optimal

operation of batch processes under parametric model mismatch. A class of batch membrane sep-

aration processes is in the scope of the presented applications. In order to tackle the model-

mismatch issue, a receding-horizon policy is usually followed with frequent re-optimization. The

main problem addressed in this study is high computational burden that is usually required by

such schemes. We propose an approach that uses parametrized conditions of optimality in the

adaptive predictive-control fashion. The uncertainty in the model predictions is treated explicitly

using reachable sets that are projected into the optimality conditions.

Keywords: real-time optimization, Pontryagin’s minimum principle, membrane processes, pa-

rameter estimation

1. Introduction

In this paper we consider a real-time implementation of a control policy that optimizes a process

by assigning dynamic degrees of freedom such that a certain performance index is optimized:

min
u(t)∈[uL,uU ],tf

J := min
u(t)∈[uL,uU ],tf

∫ tf

0
F0(x(t), p)+Fu(x(t), p)u(t)dt (1a)

s.t. ẋ(t) = f 0(x(t), p)+ f u(x(t), p)u(t), x(0) = x0, x(tf) = xf, (1b)

where t is time with t ∈ [0, tf], x(t) is an n-dimensional vector of state variables, p is an m-

dimensional vector of model parameters, u(t) is a (scalar) manipulated variable, F0(·), Fu(·),
f 0(·), and f u(·) are continuously differentiable functions, x0 represents a vector of initial con-

ditions, and xf are specified final conditions. We note here that an inclusion of multi-input and/or

state-constrained cases is a straightforward extension but it is not considered in this study for sake

of simplicity of the presentation. We also note that the specific class of input-affine systems is a

suitable representation for a large variety of the controlled objects (Hangos et al., 2006).

The presented problem was studied in many previous works using on-line or batch-to-batch adap-

tation of the optimality conditions (Francois and Bonvin, 2013) or by design of robust controller

for tracking the conditions of optimality (Nagy and Braatz, 2003). Recently, several advanced

robust strategies were presented in the framework of model predictive control (Lucia et al., 2013).
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This paper proposes an adaptation of these approaches to the problem of dynamic real-time op-

timization of batch processes. This task is not straightforward because if one uses a receding-

horizon control strategy, the prediction horizons need to be quite long, because of the presence of

terminal constraints, which might compromise the real-time feasibility of the scheme.

We base the presented methodology on parameterization of the optimal operation using the con-

ditions of optimality given by Pontryagin’s minimum principle. This makes the dynamic decision

problem (1) to boil down to identification of switching times of the optimal control policy. Such

approach reduces computational burden while allowing for the use of sufficiently long prediction

horizons when projecting the parametric uncertainty in controller performance and feasibility, par-

ticularly w.r.t. terminal time conditions. Robustness w.r.t. parametric uncertainty is addressed by

taking into account the imprecision of parameter estimates such that it is projected into the uncer-

tainty of the switching times. In order to improve performance of such a controller, i.e., to reduce

conservatism introduced by uncertain switching times, we use on-line parameter estimation.

2. Preliminaries

2.1. Conditions for Optimality

Pontryagin’s minimum principle can be used (Srinivasan et al., 2003) to identify the optimal solu-

tion to (1) via enforcing the necessary conditions for minimization of a Hamiltonian

H := µL(uL − u)+ µU(u− uU)+ F0 +λ T f 0
︸ ︷︷ ︸

H0(x(t),λ (t),p)

+
(
Fu +λ T f u

)

︸ ︷︷ ︸

Hu(x(t),λ (t),p)

u, (2)

where λ (t) is a vector of adjoint variables, and µL(t) and µU(t) are corresponding Lagrange mul-

tipliers. The optimality conditions of (1) can then be stated as (Srinivasan et al., 2003): ∀t ∈ [0, tf]

∂H

∂u
:= Hu(x(t),λ (t), p)− µL(t)+ µU(t) = 0, (3)

H(x(t),λ (t), p,u(t),µL(t),µU(t)) = 0, H0(x(t),λ (t), p) = 0, x(tf)− xf = 0. (4)

The condition H = 0 arises from the transversality, since the final time is free (Pontryagin et al.,

1962), and from the fact that the optimal Hamiltonian is constant over the whole time horizon,

as it is not an explicit function of time. The condition H0 = 0 is the consequence of the former

two conditions. Since the Hamiltonian is affine in input (see (2)), the optimal trajectory of control

variable is either determined by active input constraints or it evolves inside the feasible region.

Assume that for some point t we have Hu = 0 and uL < u(t) < uU . It follows from (3) that the

optimal control maintains Hu(t) = 0. Such control is traditionally denoted as singular. Further

properties of the singular arc, such as switching conditions or state-feedback control trajectory

can be obtained by differentiation of Hu with respect to time (sufficiently many times) and by

requiring the derivatives to be zero. The time derivatives of H and H0 must be equal to zero as

well. Earlier results on derivation of optimal control for input-affine systems (Srinivasan et al.,

2003) suggest that it is possible to eliminate λ (t) from the optimality conditions and thus arrive at

analytical characterization of switching conditions between singular and saturated-control arcs.

As the optimality conditions obtained by the differentiation w.r.t. time are linear in the adjoint

variables, the differentiation of Hu (or H0) can be carried out until it is possible to transform the

obtained conditions to a pure state-dependent switching function S(x(t), p). It is usually conve-

nient to use a determinant of the coefficient matrix of the equation system Aλ = 0 for this. The

singular control us(x(t), p) can be found from differentiation of switching function w.r.t. time as

dS

dt
=

∂S

∂xT

dx

dt
=

∂S

∂xT
( f 0 + f uus) = 0 ⇒ us(x(t), p) =−

∂S

∂xT
f 0

/
∂S

∂xT
f u. (5)
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The resulting optimal-control policy is then given as a step-wise strategy (Paulen et al., 2015) by

u∗(t,π) :=







uL, t ∈ [0, t1], S(x(t), p)> 0,

uU , t ∈ [0, t1], S(x(t), p)< 0,

us(x(t), p), t ∈ [t1, t2], S(x(t), p) = 0,

uL, t ∈ [t2, tf], S(xf, p)< 0,

uU , t ∈ [t2, tf], S(xf, p)> 0,

(6)

xf = x(t2)+

∫ tf

t2

f 0(x(t), p)+ f u(x(t), p)u∗(t)dt, (7)

where π := (pT , t1, t2, tf)
T is the vector that parameterizes the optimal control strategy. Note that

the presented optimal-control strategy determines implicitly the switching times t1, t2 and the

terminal time tf as functions of model parameters p.

2.2. Set-membership estimation

In order to estimate model parameters we will assume the model being linear in parameters as

ŷ(p) = cT p, (8)

where ŷ is the prediction of the plant output y and c is a so-called regressor vector. The linearity of

the model in parameters is not restrictive, the presented methodology applies to systems that are

non-linear in parameters too. We will further assume that the measurement noise is bounded with

|y− ŷ(p)| ≤ σ . (9)

Under these assumptions a recursive set-membership estimation scheme was presented in Fogel

and Huang (1982), which over-bounds the set of all parameter values that satisfy (9) as an ellipsoid

(p− p̂)TV−1(p− p̂)≤ 1, (10)

where p̂ is the expected true value of the parameters and V is parameter covariance matrix. Upon

receiving a new measurement y, p̂ and V are updated by

p̂+ = p̂+
β d

1+β g
V c̃, V+ =

(

1+β −
β d2

1+β g

)(

V −
β

1+β g
V c̃c̃TV

)

, (11)

where c̃ := c/σ , g := c̃TVc̃, d := y/σ − c̃T p̂. The parameter β ∈ (0,1) can be selected in order to

minimize trace or determinant of the covariance matrix V (Fogel and Huang, 1982). The updated

bounds of parameters (parameter confidence intervals) can be found via

P+ :=

[

p̂+− diag

(

V
1
2
+

)

, p̂++ diag

(

V
1
2
+

)]

. (12)

3. Dynamic real-time optimization

As the optimal control structure is a function of uncertain parameters, the uncertainty should be

taken into account when devising a real-time implementation of the optimal control on the process.

We will assume a bounded uncertainty p ∈ P := [pL, pU ] with a nominal realization p0 := mid(P).

Given the structure of the optimal-control policy (6) one can project the parametric uncertainty

into uncertainty of the switching times and singular control as

ti(p) ∈ [tL
i (P), t

U
i (P)] := Ti, ∀i ∈ {1,2, f}, (13)

us(t, p) ∈ [uL
s (t,P),u

U
s (t,P)] :=U∗(t),∀t ∈ [t1(p), t2(p)], (14)
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Figure 1: Diafiltration process scheme.
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Figure 2: Comparison of data and model predictions.

using some set-theoretic technique for calculating reachable sets (Chachuat et al., 2015). Here

a particular technical advantage can be exploited i.e., that the integration of in (7) can be done

backwards in time from the final condition. As the batch processes exhibit inherently unstable

dynamics, their backward integration is stable. Such a feature can readily be exploited by modern

bounding approaches for parametric ordinary differential-algebraic equations.

The result (13) then in practice establishes a parametric solution to the real-time optimization

problem. Its implementation can be performed in a robust fashion to determine the parameters of

the optimal-control structure that lead to the best performance in the worst case. We can then solve

min
us(t,p)∈U∗(t),∀t∈[t1(p),t2(p)]

ti∈Ti , ∀i∈{1,2,f}

max
p∈P

‖J (p)−J (p0)‖
2
2 s.t. (6), (7), (15)

for a given x(0) = x0 and P, where we propose to minimize variance of the objective under the

worst-case realization of p ∈ P.

In order to reduce conservatism of a robust scheme, parameter estimation can be used for exploita-

tion of data gathered along the process run. The employed parameter estimation scheme should

take into account noise in measurements and, if applied recursively for each newly gathered mea-

surement set, it should result in a sequence of the confidence intervals

Pk ⊆ Pk−1 ⊆ ·· · ⊆ P1 ⊆ P0 ⊆ P. (16)

The problem (15) can then be resolved with the initial state conditions x(k) = xk and with up-

dated parameter bounds Pk in shrinking-horizon fashion. Once the optimal value of the objective

function of (15) reaches ‖J (P)−J (p0)‖
2
2 < ε , the calculated control actions can be imple-

mented, e.g., with a feedback scheme (Francois and Bonvin, 2013), until the terminal conditions

are met. Note that due to the parametrization of the optimal-control policy, the re-estimation and

re-optimization do not need to be run at every sampling time but on a much coarser time scale

given by range of uncertainty in the sampling times Ti. Sophisticated strategies can then be used

to evaluate the trade-off between real-time feasibility and performance.

4. Case study

We consider a case study of time-optimal control of a batch diafiltration process from Paulen et al.

(2012). The scheme of the plant is shown in Fig. 1. The goal is to process a solution with initial

volume (V0) that is fed into the feed tank at the start of the batch and that comprises two solutes

of initial concentrations c1,0 and c2,0. At the end of the batch, the prescribed final concentrations
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c1,f and c2,f must be met. The transmembrane pressure is controlled at a constant value. The

temperature of the solution is maintained around a constant value using a heat exchanger. The

manipulated variable u(t) is the ratio between fresh water inflow into the tank and the permeate

outflow qp that is given by

qp = γ1 ln

(
γ2

c1c
γ3

2

)

= γ1 (ln(γ2)− ln(c1)− γ3 ln(c2)) . (17)

and is measured at intervals of one minute with the measurement noise that is determined experi-

mentally and bounded by σ = 0.5L/h. The model of the permeate flux can be reduced to another

widely used limiting flux model if γ3 = 0, so this example offers to study both parametric and non-

parametric plant-model mismatch. The measurement of qp is used for inferring the values of the

parameters γ1,γ2,γ3. Note that this leads to linear parameter estimation problem with the regressor

c= (1, ln(c1), ln(c2))
T and parameters p̂= (γ1 ln(γ2),γ1,γ1γ3)

T , from which the values of γ1,γ2,γ3

follow directly. Concentrations of both components c1(t) and c2(t), where the first component is

retained by the membrane and the second one can freely pass through, are measured as well and

filtered prior to estimation.

The objective is to find a time-dependent input function u(t), which guarantees the transition from

the given initial c1,0,c2,0 to final c1,f,c2,f concentrations in minimum time. This problem can be

formulated as:

J ∗ = min
u(t)∈[0,∞)

∫ tf

0
1dt, (18a)

s.t. ċ1 =
c2

1qp

c1,0V0

(1− u), c1(0) = c1,0, c1(tf) = c1,f, (18b)

ċ2 =−
c1c2qp

c1,0V0

u, c2(0) = c2,0, c2(tf) = c2,f, (18c)

qp = γ1 (ln(γ2)− ln(c1)− γ3 ln(c2)) . (18d)

The parameters of the problem are c1,0 = 50g/L, c1,f = 110g/L, c2,0 = 5.3g/L, c2,f = 1g/L,

V0 = 21L. The extremal values of u(t) stand for a mode with no water addition, when u(t) = 0

and pure dilution, i.e., a certain amount of water is added at a single time instant, u(t) = ∞.

The preliminary run of the laboratory apparatus with u(t)= 0 for 0.75h and u(t)= 1 for 0.65h was

used to gathered data which were subsequently used in set-membership estimation to determine the

confidence intervals of parameters as γ1 = [1.86,3.91]L/h, γ2 = [4.1163,0.6589]× 103g/L, γ3 =
[−0.11,0.17]. The value of β used for the estimation is 0.5. Particularly the value of lower bound

of γ3 points to a potentially strong structural plant-model mismatch. We note for completeness that

the particular advantage of used the set-membership estimation is that the assumption γ3, which

one might like to use in this case, could be easily incorporated in the estimation.

The nominal (parametrized) optimal control of this process can be identified using Pontryagin’s

minimum principle (Pontryagin et al., 1962) as (6) where the singular control and the respective

switching function can be found explicitly (Paulen et al., 2012) as

us(x(t), p) :=
1

1+ γ3

, S(x(t), p) := γ1 (ln(γ2)− ln(c1)− γ3 ln(c2)− γ3 − 1) . (19)

For the given nominal parameters of the problem, the optimal control sequence is u∗= {0,0.9333,∞}
with switching times tf = 2.86h. This operation is taken as a base case for evaluation of the dis-

cussed control schemes.

It is clear that the real-time optimality of the operation is strongly influenced by accuracy of

the parameter estimates, mostly γ2 and γ3 since γ1 can be factored out from S(·). Preliminary
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numerical tests with optimal experiment design (OED) methodology (Gottu Mukkula and Paulen,

2017) showed that for the most accurate estimation of γ2 the manipulated variable u(t) = 0 and,

on the other hand, the best estimation accuracy of γ3 is reached when u(t) = 1. This shows

mutual benefit of the optimal control strategy u∗ = {0,0.9333,∞} and estimation of γ2, and a

potential conflict of accurate estimation of γ3 and the optimal control policy. This can also be seen

from (17) and (18c), where it is clear that when a controller applies u(t) = 0, the parameter γ3 is

unidentifiable as the concentration c2(t) remains constant. The OED studies also showed that the

best time to measure the plant outputs is in the beginning of the operation. This stems from the

absolute error of the measurement (see (9)) and from the that fact the measured permeate flux is

highest in the beginning of the operation and drops dramatically with the increase of c1(t).

The real-time optimal operation using on-line adaptation of parameters reached the final time of

operation 2.87h, which is practically the same performance as the optimal operation, while its

counterpart without parameter estimation reached the operation time 4.23h, which clearly too

conservative. This result show the significant benefits of the proposed scheme.

5. Conclusion

We have presented a methodology for dynamic real-time optimization of batch processes (with

particular application to membrane systems) via parametrization of the optimal controller using

Pontryagin’s minimum principle. The employed parametrization greatly reduces the computa-

tional burden in order to guarantee feasibility of the operation. In order to address parametric

plant-model mismatch issue, we have suggested a robust approach, which consisted in projec-

tion of the plant uncertainty into optimality conditions. This again greatly reduces computational

burden. As the uncertainty in parameters can greatly affect the optimality of the batch, we have

proposed an adaptive scheme that makes use parameter estimation and, as shown in the case study,

can greatly assist in reducing conservativeness of the real-time scheme.
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R. Paulen, M. Fikar, G. Foley, Z. Kovács, P. Czermak, 2012. Optimal feeding strategy of diafiltration buffer in batch

membrane processes. Journal of Membrane Science 411-412, 160–172.
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