DYNAMIC REAL-TIME OPTIMIZATION OF BATCH
MEMBRANE PROCESSES USING PONTRYAGIN’S
MINIMUM PRINCIPLE

R. Paulen, A. Sharma, M. Fikar

Faculty of Chemical and Food Technology
Slovak University of Technology in Bratislava



MOTIVATION IAM

@ Dynamic real-time optimization approaches are rarely robust
@ Robust optimization approaches are rarely real-time

@ Robust real-time optimization is rarely computationally efficient
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MOTIVATION IAM

@ Dynamic real-time optimization approaches are rarely robust
@ Robust optimization approaches are rarely real-time

@ Robust real-time optimization is rarely computationally efficient

@ We study robust dynamic real-time optimization of a class of batch
processes.
e Pontryagin’s minimum principle is used to tackle the problem of
computational efficiency
e Set-membership (guaranteed) parameter estimation and set-based
propagation is used to guarantee robustness
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DYNAMIC REAL-TIME OPTIMIZATION IAM

We study the problem of a form
tr
min  J(p):=  min Fo(x(t), p) + Fu(x(t), p)u(t) dt

u(t)elug,uul  u(delu,ult Jo

st x(1) = fo(x(1), p) + f,(x(0), p)u(t), x(0) = xo, x(t) = X¢

DynAmic Reat-tive Orrvization’ [N



DYNAMIC REAL-TIME OPTIMIZATION IAM

We study the problem of a form
ty
min  J(p):=  min Fo(x(t), p) + Fu(x(t),p)u(t)dt
u(t)elur,uy].k u(t)elug,uultr Jo
s.t. x(t) = fo(x(), p) + fu(x(1), pJu(t), x(0) = X0, X(&r) = Xs
Real-time implementation of the optimal control policy is tricky due to
unknown parameters p € P. Many ways to approach the problem:
o Off-line (nominal) optimization
@ Robust (worst-case) off-line optimization
@ On-line re-optimization based on available data

@ This talk: computationally efficient combination of the above
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DYNAMIC REAL-TIME OPTIMIZATION IAM

We study the problem of a form
tr

u(t)er{;er)uUL 7 (p):= u(t)eﬂnuu] , Fo(X(t),p) + Fu(x(t), p)u(t) dt

s.t. x(t) = fo(x(1), p) + fu(x( ). p)u(t), x(0)=x0, x(r)=Xx¢
One can use Pontryagin’s minimum principle in order to define the
state-feedback policy parameterized with =(p) := (t (), t(p), t:(p)) "

ug, te[0,4], S(x(t),p) >0,

uy, te[0,4], S(x(t),p) <O,
u(t,m(p)) = S us(x(t).p), te€ [t bl S(x(t),p) =0

u, t €[, ], S(xr,p) <

uy, t € [, ], S(xr,p) >

PAULEN, SHARMA, FIKAR DYNAMIC REAL-TIME OPTIMIZATION OF MEMBRANE PROCESSES 4/19



DYNAMIC REAL-TIME OPTIMIZATION IAM

State-feedback policy parameterized with 7(p) := (t(p), t2(p), t:(p))”

ug, te[0,4], S(x(t),p) >0,
uy, t [0, 4], S(x(t),p) <O,
u*(t,m(p)) == 4§ us(x(t),p), telti, ], S(x(t),p) =0,
uy, te b, t], S(xs,p) <O,
uy, te b, k], S(xs,p) >0

tr
xr = x(t) = x(L)+ | fo(x(t),p) + fu(x(t), p)u*(t)dt.

b
Switching function S(x(t), p) and singular control trajectory us(x(t), p):
a) found explicitly in certain cases, b) determined numerically or

c) approximated by low-order polynomial function.
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CONTROL UNCERTAINTY PARAMETERIZATION IAM

Using set propagation (e.g. Taylor models) one can project uncertainty
in the model parameters p € P into “uncertain” control policy
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Paulen, Villanueva, Chachuat. IMA J. of Mathematical Control and Information, 2016.
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CONTROL UNCERTAINTY PARAMETERIZATION IAM

Using set propagation (e.g. Taylor models) one can project uncertainty
in the model parameters p € P into “uncertain” control policy
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EXPLOITING KNOWN CONTROL UNCERTAINTY IAM

© No need to re-optimize until switching time t; is reached. Just take
measurements.
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EXPLOITING KNOWN CONTROL UNCERTAINTY IAM

© No need to re-optimize until switching time ¢; is reached. Just take

measurements.

© Update parameter uncertainty; project it into control uncertainty.
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t
We use set-membership (guaranteed) estimation (|y — ¢”p| < o)
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EXPLOITING KNOWN CONTROL UNCERTAINTY IAM

@ No need to re-optimize until switching time ¢; is reached. Just take
measurements.

© Update parameter uncertainty; project it into control uncertainty.

prc
02+ BcTrc

b+
y—c'p) B T
( A= 2+ﬂcTZc> <Z—m2w Z),

1
P, = [f)+ — diag (Zi) , b+ + diag <Zi>] .

We use set-membership (guaranteed) estimation (|y — ¢”p| < o)

b+ : (v —c"p),

E. Fogel, Y. Huang, Automatica, 1982.
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EXPLOITING KNOWN CONTROL UNCERTAINTY IAM

© No need to re-optimize until switching time t; is reached. Just take
measurements.

© Update parameter uncertainty; project it into control uncertainty.

© Re-optimize only when necessary. E.g. minimize variance of the
objective under the worst-case realization of p € P

min max ||7(p) — min J(p*)||3
ds(t.p)elup,uyl  pEP ” (,0) p* (p )”2
teT;, Vie{1,2,f}

Re-optimize when necessary — optimal mid-course correction
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LABORATORY MEMBRANE PLANT

___________________________________ i
coolant
uq
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membrane
The plant is highly automated; all process variables
(concentrations and flowrates) measured.
Experiments show significant batch-to-batch variations.
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BATCH PROCESS GOAL IAM

Initial state Final state
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PROCESS DESCRIPTION

— key membrane characteristic to model: permeate flow g(c1, ¢,)
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JAM

MODEL FITTING AGAINST EXPERIMENT

Generalized limiting flux model: Data fit with operation u = {0, 1}
p2 9.5
=piIn
q=p1 <C1Cgs> ol
__g:l 8
py € Py :=[1.86,3.91|L/h "l
po € P, :=[658.93,4117.15] g/L 65|
p3 c P3 = [_01 1 , 01 7] 0 0.2 0.4 tt;.:ne [:1.; 1 1.2 1.4

Fitting of parameters to the experimental data done using
set-membership estimation with error bound ¢ = 0.5L/h.
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PROCESS DESCRIPTION

ﬁ‘. ‘e- 0.0
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JAM

— concentrations dynamically adjusted by the water inflow u(t)q(-)

PAULEN, SHARMA, FIKAR

DYNAMIC REAL-TIME OPTIMIZATION OF MEMBRANE PROCESSES

15/19



OPTIMIZATION GOAL
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— find u(t) to minimize final (batch) time
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OPTIMAL OPERATION IAM

Model: dei(t)  cE(1) P2 _
dt ¢V 1in c165° (=)

deo(t) _ _area(t) ) <£) u(t)

dt G0 Vo
Optimality conditions:
us(x(t),p) :=1/(1 + ps),
S(x(t),p) := p1 (In(p2) —In(c1) — p3 In(c2) —p3s — 1) = 0.

ur, te [07 t1]7 S(C1(t)702(t)7p) > 07
u*(t,7(p)) == < us(ci (1), ca(t),p), te [ty ], S(ci(t), ca(t),p) =0,
uy, t e[k, t], S(circofp) >0,
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RESULTS IAM

@ true optimum: t; = 2.86h
@ robust operation, no adaptation: ty = 4.23h

@ proposed approach: t; = 2.87h

@ The proposed approach requires no re-optimization! Only one
control policy adaptation performed!
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CONCLUSIONS IAM

@ Dynamic real-time optimization combined with ideas from robust
optimization thanks to the use of guaranteed parameter estimation
and set-based propagation

o Computational tractability achieved with the use of Pontryagin’s
minimum principle and parameterization of the optimal control
policy

@ Application to minimum batch time problem of membrane
processes. Extensions to economic (multi-objective) operation.

@ Acknowledgement: H2020 MSCA-IF project (No. 790017) GuEst
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