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MOTIVATION

Dynamic real-time optimization approaches are rarely robust

Robust optimization approaches are rarely real-time

Robust real-time optimization is rarely computationally efficient
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MOTIVATION

Dynamic real-time optimization approaches are rarely robust

Robust optimization approaches are rarely real-time

Robust real-time optimization is rarely computationally efficient

We study robust dynamic real-time optimization of a class of batch

processes.

Pontryagin’s minimum principle is used to tackle the problem of

computational efficiency

Set-membership (guaranteed) parameter estimation and set-based

propagation is used to guarantee robustness
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DYNAMIC REAL-TIME OPTIMIZATION

We study the problem of a form

min
u(t)∈[uL,uU ],tf

J (p) := min
u(t)∈[uL,uU ],tf

∫ tf

0

F0(x(t),p) + Fu(x(t),p)u(t)dt

s.t. ẋ(t) = f0(x(t),p) + fu(x(t),p)u(t), x(0) = x0, x(tf ) = xf
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u(t)∈[uL,uU ],tf

∫ tf

0

F0(x(t),p) + Fu(x(t),p)u(t)dt

s.t. ẋ(t) = f0(x(t),p) + fu(x(t),p)u(t), x(0) = x0, x(tf ) = xf

Real-time implementation of the optimal control policy is tricky due to

unknown parameters p ∈ P. Many ways to approach the problem:

Off-line (nominal) optimization

Robust (worst-case) off-line optimization

On-line re-optimization based on available data

This talk: computationally efficient combination of the above
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DYNAMIC REAL-TIME OPTIMIZATION

We study the problem of a form

min
u(t)∈[uL,uU ],tf

J (p) := min
u(t)∈[uL,uU ],tf

∫ tf

0

F0(x(t),p) + Fu(x(t),p)u(t)dt

s.t. ẋ(t) = f0(x(t),p) + fu(x(t),p)u(t), x(0) = x0, x(tf ) = xf

One can use Pontryagin’s minimum principle in order to define the

state-feedback policy parameterized with π(p) := (t1(p), t2(p), tf (p))
T

u∗(t , π(p)) :=


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

uL, t ∈ [0, t1], S(x(t),p) > 0,

uU , t ∈ [0, t1], S(x(t),p) < 0,

us(x(t),p), t ∈ [t1, t2], S(x(t),p) = 0,

uL, t ∈ [t2, tf ], S(xf ,p) < 0,

uU , t ∈ [t2, tf ], S(xf ,p) > 0,

x x t

∫ tf

f x t p f x t p u∗ t dt
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DYNAMIC REAL-TIME OPTIMIZATION

State-feedback policy parameterized with π(p) := (t1(p), t2(p), tf (p))
T

u∗(t , π(p)) :=


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




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





uL, t ∈ [0, t1], S(x(t),p) > 0,

uU , t ∈ [0, t1], S(x(t),p) < 0,

us(x(t),p), t ∈ [t1, t2], S(x(t),p) = 0,

uL, t ∈ [t2, tf ], S(xf ,p) < 0,

uU , t ∈ [t2, tf ], S(xf ,p) > 0,

xf = x(tf ) := x(t2) +

∫ tf

t2

f0(x(t),p) + fu(x(t),p)u
∗(t)dt .

Switching function S(x(t),p) and singular control trajectory us(x(t),p):

a) found explicitly in certain cases, b) determined numerically or

c) approximated by low-order polynomial function.
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CONTROL UNCERTAINTY PARAMETERIZATION

Using set propagation (e.g. Taylor models) one can project uncertainty

in the model parameters p ∈ P into “uncertain” control policy

u
(t
)

t
uL

uU

t1 t2 tf

Paulen, Villanueva, Chachuat. IMA J. of Mathematical Control and Information, 2016.
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CONTROL UNCERTAINTY PARAMETERIZATION

Using set propagation (e.g. Taylor models) one can project uncertainty

in the model parameters p ∈ P into “uncertain” control policy

u
(t
,P

)

t
uL

uU

[t1, t1](P) [t2, t2](P) [tf , tf ](P)

Paulen, Villanueva, Chachuat. IMA J. of Mathematical Control and Information, 2016.
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EXPLOITING KNOWN CONTROL UNCERTAINTY

1 No need to re-optimize until switching time t i is reached. Just take

measurements.

u
(t
)

uL

uU

t

[t1, t1](P) [t2, t2](P) [tf , tf ](P)

Paulen, Villanueva, Chachuat. IMA J. of Mathematical Control and Information, 2016.
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EXPLOITING KNOWN CONTROL UNCERTAINTY

1 No need to re-optimize until switching time t i is reached. Just take

measurements.

2 Update parameter uncertainty; project it into control uncertainty.
y

t p1

p2

P+

P0

We use set-membership (guaranteed) estimation (|y − cT p| ≤ σ)
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EXPLOITING KNOWN CONTROL UNCERTAINTY

1 No need to re-optimize until switching time t i is reached. Just take

measurements.

2 Update parameter uncertainty; project it into control uncertainty.

p̂+ := p̂ +
βΣc

σ2 + βcTΣc
(y − cT p̂),

Σ+ :=

(

1 + β −
β(y − cT p̂)2

σ2 + βcTΣc

)(

Σ−
β

σ2 + βcTΣc
ΣccTΣ

)

,

P+ :=

[

p̂+ − diag

(

Σ
1
2
+

)

, p̂+ + diag

(

Σ
1
2
+

)]

.

We use set-membership (guaranteed) estimation (|y − cT p| ≤ σ)

E. Fogel, Y. Huang, Automatica, 1982.
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EXPLOITING KNOWN CONTROL UNCERTAINTY

1 No need to re-optimize until switching time t i is reached. Just take

measurements.

2 Update parameter uncertainty; project it into control uncertainty.

3 Re-optimize only when necessary. E.g. minimize variance of the

objective under the worst-case realization of p ∈ P

min
ũs(t,p)∈[uL,uU ]

ti∈Ti , ∀i∈{1,2,f}

max
p∈P

‖J (p)− min
p∗

J (p∗)‖2
2

Re-optimize when necessary → optimal mid-course correction
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LABORATORY MEMBRANE PLANT
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coolant
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tank

retentate

The plant is highly automated; all process variables

(concentrations and flowrates) measured.

Experiments show significant batch-to-batch variations.
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BATCH PROCESS GOAL

Initial state

x0 = [c1,0 ; c2,0]

⇒

Final state

xf = [c1,f ; c2,f]

product c1 ↑ impurities c2 ↓ water
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PROCESS DESCRIPTION

product

impurities

q(c1, c2)

– key membrane characteristic to model: permeate flow q(c1, c2)
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MODEL FITTING AGAINST EXPERIMENT

Generalized limiting flux model:

q = p1 ln

(

p2

c1c
p3

2

)

p1 ∈ P1 := [1.86,3.91]L/h

p2 ∈ P2 := [658.93,4117.15]g/L

p3 ∈ P3 := [−0.11,0.17]

Data fit with operation u = {0,1}
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Fitting of parameters to the experimental data done using

set-membership estimation with error bound σ = 0.5 L/h.
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PROCESS DESCRIPTION

u(t)q(·)

product

impurities

q(c1, c2)

– concentrations dynamically adjusted by the water inflow u(t)q(·)
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OPTIMIZATION GOAL

u(t)q(·)

product

impurities

q(c1, c2)

– find u(t) to minimize final (batch) time
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OPTIMAL OPERATION

Model: dc1(t)

dt
=

c2
1(t)

c1,0V0
p1 ln

(

p2

c1c
p3

2

)

(1 − u(t))

dc2(t)

dt
= −

c1(t)c2(t)

c1,0V0
p1 ln

(

p2

c1c
p3

2

)

u(t)

Optimality conditions:

us(x(t),p) := 1/(1 + p3),

S(x(t),p) := p1 (ln(p2)− ln(c1)− p3 ln(c2)− p3 − 1) = 0.

u∗(t , π(p)) :=



















uL, t ∈ [0, t1], S(c1(t), c2(t),p) > 0,

us(c1(t), c2(t),p), t ∈ [t1, t2], S(c1(t), c2(t),p) = 0,

uU , t ∈ [t2, tf ], S(c1,f , c2,f ,p) > 0,
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RESULTS

true optimum: tf = 2.86 h

robust operation, no adaptation: tf = 4.23 h

proposed approach: tf = 2.87 h

The proposed approach requires no re-optimization! Only one

control policy adaptation performed!
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CONCLUSIONS

Dynamic real-time optimization combined with ideas from robust

optimization thanks to the use of guaranteed parameter estimation

and set-based propagation

Computational tractability achieved with the use of Pontryagin’s

minimum principle and parameterization of the optimal control

policy

Application to minimum batch time problem of membrane

processes. Extensions to economic (multi-objective) operation.
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