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Abstract— In this paper we show how to synthesize sim-
ple explicit MPC controllers based on approximate dynamic
programming. Here, a given MPC optimization problem over
a finite horizon is solved iteratively as a series of problems
of size one. The optimal cost function of each subproblem is
approximated by a quadratic function that serves as a cost-to-
go function for the subsequent iteration. The approximation is
designed in such a way that closed-loop stability and recursive
feasibility is maintained. Specifically, we show how to employ
sum-of-squares relaxations to enforce that the approximate cost-
to-go function is bounded from below and from above for all
points of its domain. By resorting to quadratic approximations,
the complexity of the resulting explicit MPC controller is
considerably reduced both in terms of memory as well as
the on-line computations. The procedure is applied to control
an inverted pendulum and experimental data are presented to
demonstrate viability of such an approach.

I. INTRODUCTION

In recent years, safety, economic and environmental as-
pects play a crucial role in the controller design. For this
reason, Model Predictive Control (MPC) has become a
widespread control policy mainly due to its natural capability
of synthesizing feedback controllers for large systems, while
embedding all of the system’s constraints directly to the
optimization problem [1], [2]. The main drawback of this
control strategy, however, lies in the computational burden
associated with solving a given optimization problem at each
sampling instant.

One way of tackling this issue is to resort to explicit MPC,
introduced in [3]. Here, the underlying idea is to pre-calculate
the optimal solution for all feasible initial conditions via
parametric programming [4], [5]. For the type of problems
tackled in this paper (i.e., for linear systems subject to linear
constraints, and with quadratic performance objective to be
minimized), the explicit MPC feedback law takes a form of a
piecewise affine (PWA) function defined over polyhedral re-
gions [6], [7]. The advantage of such explicit solutions is that
the on-line calculation of the optimal control inputs reduces
to a mere function evaluation that can be performed with low
implementation effort even on simple control hardware, such
as on FPGAs, PLCs, or microcontrollers. However, the main
drawback is that the explicit MPC feedback law is often too
complex to be stored in the memory of the control hardware
because the number of polyhedral regions grows, in the worst
case, exponentially with the prediction horizon.
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Various approaches to reduction of the memory footprint
of explicit MPC solutions have been proposed in the litera-
ture. Generally, two categories of methods are considered.
In the first one, the explicit controller is replaced by its
simpler counterpart while preserving optimality. This can
be achieved, e.g., by discarding the polytopic partition and
exploiting the convex nature of the value function in the
point location problem [7], by encoding regions by primal
and dual optimizers [8], [9], by merging regions that share
the same feedback law [10], or by compressing the data
using universal numbers [11]. The second category of meth-
ods replaces the optimal (but complex) feedback law by a
function of lower complexity, e.g. by polynomials [12], [13],
barycentric functions [14], or by subdivision of regions into
hypercubes [15].

In this paper we propose a novel procedure of obtaining
explicit MPC feedback laws of small complexity, measured
by the number of polyhedral regions over which the feedback
law is computed. Specifically, we propose to solve the MPC
problem backwards in time using dynamic programming
(DP), as suggested in [16]. There, it is shown that the explicit
MPC feedback takes a form of piecewise affine function
if the MPC objective function consists of weighted 1 and
infinity norms. For quadratic performance indices (which
are more common in practice), however, the application of
DP is not straightforward as it involves solving, parametri-
cally, problems with piecewise quadratic (PWQ) cost-to-go
functions. Such cases can be solved either by introducing
binary variables, or by solving multiple parametric quadratic
programs (one for each region of the PWQ cost-to-go func-
tion). Both approaches, however, are ill-suited for practical
cases due to their computational burden. An alternative was
presented in [17] where the PWQ nature of the cost-to-
go function is tackled by solving parametric optimization
problems with a larger number of parameters, increasing both
the on-line computational load as well as the complexity
of the resulting solution. In this paper, such complications
are avoided by applying approximate dynamic programming.
Here, at each iteration of dynamic programming the PWQ
cost-to-go function is approximated by a convex quadratic
function, allowing each DP iteration to be solved as a single
parametric quadratic program with just the states of the
system as parameters, thus yielding a PWA feedback law.
The approximation is done in such a way that the resulting
feedback law provides guarantees of closed-loop stability and
satisfaction of hard constraints on states and inputs.

The contributions of the paper are as follows: 1) we for-
mally prove that approximate dynamic programming yields
a stabilizing feedback law by construction; 2) we show that
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the approximate feedback law is less complex than its opti-
mal counterpart; 3) we provide a computationally tractable
approach of finding, in each DP iteration, the approximate
cost-to-go function via convex semi-definite programming;
4) we show that the proposed scheme can also be applied
to reduce computational complexity of conventional on-
line MPC; and 5) we illustrate the complexity reduction
and control performance by means of experimental results
obtained by controlling an inverted pendulum on a cart.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this paper we aim to control a discrete-time linear time-
invariant system that is represented in the state-space domain
by

x(t+ Ts) = Ax(t) +Bu(t), (1)

with the state vector x(t) ∈ Rnx , input vector u(t) ∈ Rnu ,
sampling time Ts, and (A,B) controllable. Moreover, we
consider that the system (1) is restricted by

x(t) ∈ X , u(t) ∈ U , (2)

where X and U are non-empty sets that contain the origin
in their respective interiors.

To design an MPC feedback law u? = µ(x), µ :
Rnx → Rnu which drives states of the system (1) to the
origin, while providing asymptotic closed-loop stability and
recursive satisfaction of input and state constraints in (2), one
can consider constrained finite-time optimal control problem
(CFTOC) of the form

J?(x0) = min
u0,...,uN−1

`N (xN ) +

N−1∑
k=0

`(xk, uk) (3a)

s.t. xk+1 = Axk +Buk, (3b)
xk ∈ X , uk ∈ U , (3c)
xN ∈ XN, (3d)

with constraints (3b)−(3c) enforced for all k =
0, 1, . . . , N − 1. Here, xk and uk are, respectively, the pre-
dictions of states and inputs at the k-th step of the prediction
horizon N , initialized from x0 = x(t). Moreover,

`(xk, uk) = xᵀkQxxk + uᵀkQuuk (4)

is the stage cost,

`N (xN ) = xᵀkQNxk (5)

is the terminal penalty, and XN denotes the terminal set. We
make the following standard assumptions:

Assumption 2.1: The constraint sets X , U , XN are poly-
hedra, and QN = QᵀN � 0, Qx = Qᵀx � 0, Qu = Qᵀu � 0
are symmetric positive (semi) definite weighting matrices. �

Assumption 2.2: The terminal penalty function `N is
a Lyapunov function for system (1) subject to (2), i,e.,
`N (xN ) ≥ 0 for all xN , `N (xN ) = 0 for xN = 0,
and `N (xN+1) − `N (xN ) ≤ −α(xN ) for some convex
function α. Moreover, the terminal set XN ⊆ X is positively
invariant with respect to some terminal feedback law κN , i.e.,
∀x ∈ XN we have (Ax+ BκN (x)) ∈ XN and κN (x) ∈ U .

�

Under Assumption 2.1, the problem in (3) is a parametric
quadratic program (pQP) with a strictly convex quadratic
objective function and linear constraints. Under Assump-
tion 2.2, the receding horizon control action u?0 provides
assymptotic closed-loop stability of system (1) subject to
persistent satisfaction of the constraints in (2). We remark
that the conditions of Assumption 2.2 can be achieved
for instance by taking QN in (5) as the solution to the
discrete-time algebraic Riccati equation, κN (x) = Kx as
the associated LQR state-feedback controller, and computing
XN as the invariant subset of X subject to u = κN (x).

Lemma 2.3 ([18], [19]): The minimizer u?0 to (3) as a
function of the initial condition x0, i.e., u?0 = µ?

0(x0), is
a continuous piecewise affine (PWA) function of x0, i.e.,

µ?
0(x) := Fix+ fi if x ∈ Ri, (6)

with i = 1, . . . ,M , M denoting the number of polyhedral
regions

Ri = {x | Φix ≤ φi}, (7)

where Φi, φi, Fi, and fi are computed by solving (3) using
parametric programming. Moreover, the feasible set of (3),
i.e.,

X0 = {x0 | ∃u0, . . . , uN−1 s.t. (3b)− (3d) holds}, (8)

is a polyhedron and X0 = ∪iRi. Finally, the minimum
of (3a) subject to (3b)−(3d), i.e., the optimal value function
J?(x0), is a convex continuous piecewise quadratic (PWQ)
function

J?(x) := xᵀHix+ Eᵀi x+ hi if x ∈ Ri, (9)

defined over the same set of polyhedral regions. �

Remark 2.4: The on-line implementation of the PWA
feedback law (6), i.e., the process of obtaining u?0 = µ?

0(x(t))
for some x(t), can be done is several ways. The simplest
approach is to use sequential search. Here, we start with
i = 1 and check if Φix(t) ≤ φi. If all inequalities are
satisfied, i? = i and u?0 = Fi?x(t)+fi? is the optimal control
action for x(t). Otherwise we set i = i+ 1 and repeat. The
procedure terminates, in the worst case, after checking all
regions, i.e., for i = 1, . . . ,M . �

In this paper we aim at synthesizing a PWA feedback
law µ̃0 that is simpler than µ?

0, trades lower complexity
for suboptimality, but still guarantees closed-loop stability.
Formally:

Problem 2.5: We aim at computing a suboptimal feedback
law µ̃0(x0) such that:

1) µ̃0, when applied in the receding horizon fashion, en-
forces assymptotic closed-loop stability of the system
in (1) subject to constraints in (2) for all t ≥ 0;

2) µ̃0 is less complex than the optimal feedback law µ?
0,

i.e., it consists of fewer regions.
�

In what follows we will synthesize the suboptimal, yet
stabilizing, feedback law µ̃0 by approximate dynamic pro-
gramming. We stress that the computation of µ̃0 does not
require the construction of µ?

0.
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III. APPROXIMATE DYNAMIC PROGRAMMING

A. Exact Dynamic Programming
Dynamic programming (DP) is based on the Bellman’s

principle of optimality. In short, it says that instead of solving
one problem of size N as in (3), we can instead solve N
problems of size one iteratively backwards in time. The
problem that needs to be solved at each iteration is given
by

J?
k (xk) = min

uk

`(xk, uk) + J?
k+1(xk+1) (10a)

s.t. xk+1 = Axk +Buk, (10b)
uk ∈ U , xk ∈ X , (10c)
xk+1 ∈ Xk+1, (10d)

which for the first iteration (i.e., k = N − 1), is initialized
by J?

k+1 ≡ `N (cf. (5)), and Xk+1 ≡ XN (see (3d)).
Solving (10) parametrically at iteration k yields the cost-to-
go function J?

k (xk) as in (9), along with the corresponding
feedback law µ?

k(xk) as in (6). Hence iterating with k =
N − 1, N − 2, . . . , 0 yields at the end µ?

0(x0), the feedback
law that is equivalent to (6) obtained by solving (3) directly
as a single pQP. We remark that each DP iteration also yields
the corresponding feasible set Xk such that XN ⊆ XN−1 ⊆
· · · ⊆ X1 ⊆ X0 where X0 is the same as in (8).

B. Approximate Dynamic Programming
The difficulty of applying dynamic programming to solv-

ing MPC problems with the objective function in (3a)
composed of quadratic stage cost and quadratic terminal
penalty as in (4)−(5), stems from the fact that, already in the
first iteration with k = N − 1, J?

N−1 is a PWQ function as
in (9). Since J?

N−1 is used as a cost-to-go at the subsequent
iteration with k = N−2, the objective function in (10a), i.e.,
`(xN−2, uN−2) + J?

N−1(xN−1), becomes a PWQ function
and Lemma 2.3 no longer applies1.

Therefore in this section we show how to formulate the
DP iterations (10) in a way that each iteration is a convex
parametric quadratic program with a quadratic objective
function. This will be achieved by approximating the PWQ
cost function J?

k by a convex quadratic function Ĵk. The
approximation is performed in such a way that each DP
iteration yields a feedback law µ̃k(xk) that is closed-loop
stabilizing for the system in (1) subject to constraints in (2).

To construct the approximate feedback law, we apply
dynamic programming where the cost-to-go function is re-
placed by the approximate cost-to-go function Ĵ ≈ J̃ :

J̃k(xk) = min
uk

`(xk, uk) + Ĵk+1(xk+1) (11a)

s.t. xk+1 = Axk +Buk, (11b)
uk ∈ U , xk ∈ X , (11c)
xk+1 ∈ Xk+1, (11d)

1Problems of the form (10) with convex PWQ objective function could
be solved either as parametric mixed-integer QPs by introducing binary
variables, or by multiple pQPs (one pQP for each region), see [16]. However,
in the context of linear MPC with quadratic cost, doing so would be a
significant overkill both in terms of off-line construction of µ?, as well as
its on-line implementation.

initialized (for k = N −1) with ĴN ≡ `N from (5). Since in
the first iteration the cost-to-go function ĴN is a quadratic
function, solving (11) according to Lemma 2.3 yields a
PWQ function J̃k(xk) and a PWA feedback law µ̃k(xk)
(the tildes denote that the cost function and the feedback
law were obtained by solving (11) for an approximation of
the cost-to-go function). Assume now that at each iteration
k = N − 1, . . . , 1 there exists an approximate cost-to-go
function Ĵk as a convex quadratic function with

Ĵk(x) = xᵀH̃kx (12)

with H̃k = H̃ᵀk � 0 that satisfies

J̃k(x) ≤ Ĵk(x) ≤ J̃k(x) + `(x, µ̃k(x)), (13)

for all x ∈ dom(J̃k). The details about constructing Ĵk
satisfying (13) will be provided in Section III-C. Then we
can prove our first main result:

Theorem 3.1: Assume that all conditions of Assump-
tions 2.1 and 2.2 are satisfied, and consider dynamic pro-
gramming iterations for k = N − 1, . . . , 0 where at each
iteration we solve (11) with the approximate cost-to-go
function Ĵk+1 ≈ J̃k+1 bounded per (13). Then:

1) each instance of (11) is a convex parametric quadratic
program;

2) each cost function J̃k is a convex PWQ function;
3) each optimizer u?k = µ̃k(xk) is a PWA function;
4) each feasible set Xk is positively invariant;
5) each feedback law µ̃k provides closed-loop stability

of (1) subject to (2).
Corollary 3.2: Each feedback law µ̃k is persistently fea-

sible.
Remark 3.3: Since the constraints in (11b)−(11d) are the

same as in (10b)−(10d), solving (11) at iteration k by
Lemma 2.3 yields a polyhedral feasible set Xk that is iden-
tical to that obtained by solving the exact DP problem (10)
and hence dom(J̃k) = dom(Ĵk) = dom(J?

k ). �

We can therefore find an approximate solution to prob-
lem (3) by solving the dynamic programming iterations (11)
for k = N − 1, . . . , 0 as parametric quadratic programs.
Each iteration yields the cost function J̃k, which needs to be
approximated by Ĵk such that (13) holds. If this is possible,
Theorem 3.1 establishes that J̃k for k = N − 1, . . . , 0 are
Lyapunov functions, thus the associated minimizers µ̃k will
be closed-loop stabilizing for the system in (1) and will
enforce the constraints in (2). For the purpose of closed-
loop implementation in the receding horizon manner, only
µ̃0 is required, hence µ̃i, i = 1, . . . , N −1 can be discarded.

In the next section we show how to seek for the approx-
imate quadratic cost-to-go function Ĵk that is bounded as
in (13) by solving a convex optimization problem. Moreover,
the suboptimality of µ̃0 with respect to its optimal (but
complex) counterpart µ?

0 depends on the quality of the
approximation in (13). The closer Ĵk is to J̃k, the smaller is
the induced loss of optimality. Therefore we also show how
to find Ĵk that is as close as possible to J̃k while still being
bounded as in (13).
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C. Cost-to-go Approximation

Let J̃k be a convex PWQ cost function, obtained by
solving the problem (11) as a parametric QP at some iteration
k. Then, according to Lemma 2.3, J̃k takes the form

J̃k(x) = xᵀkH̃k,ixk + Ẽᵀk,ixk + h̃k,i if xk ∈ R̃k,i. (14)

Moreover, µ̃k is the associated PWA feedback law (the para-
metric representation of the primal optimizer u?k = µ̃k(xk))
with

µ̃k(x) = F̃k,ixk + f̃k,i if xk ∈ R̃k,i, (15)

where the polyhedral regions are given by

R̃k,i = {xk | Φ̃k,ixk ≤ φ̃k,i}, (16)

where i = 1, . . . , M̃k and M̃k is the number of regions
obtained at the k-th iteration. To simplify the notation, we
will henceforth drop the iteration index k from (14)−(16).

We aim at constructing the convex quadratic function

Ĵ(x) = xᵀĤx, (17)

with Ĥ = Ĥᵀ � 0 such that it is lower-bounded by J̃(x),
and upper-bounded by J̃(x)+ `(x, µ̃(x)), where `(·, ·) is the
stage cost in (3a), i.e.:

J̃(x) ≤ Ĵ(x) ≤ J̃(x) + `(x, µ̃(x)), ∀x ∈ dom(J̃). (18)

The difficulty of solving for Ĵ(x) stems from the fact that
the inequality has to hold for all x ∈ dom(J̃), i.e., for an
infinite number of points. In what follows we show how to
search for Ĥ in (17) by solving a convex sum-of-squares
(SOS) problem.

Consider a particular region R̃i = {x | Φ̃ix ≤ φ̃i} for
which µ̃(x) = F̃ix + f̃i and `(x, µ̃(x)) = xᵀQxx + (F̃ix +
f̃i)
ᵀQu(F̃ix+ f̃i). Then (18) holds ∀x ∈ R̃i if and only if

∀x ∈ R̃i : p
i
(x, Ĥ) ≥ 0, pi(x, Ĥ) ≥ 0, (19)

with

p
i
(x, Ĥ) = xᵀĤx− (xᵀH̃ix+ Ẽᵀi x+ h̃i), (20a)

pi(x, Ĥ) = xᵀH̃ix+ Ẽᵀi x+ h̃i + xᵀQxx+

+ (F̃ix+ f̃i)
ᵀQu(F̃ix+ f̃i)− xᵀĤx, (20b)

where (20a) represents the lower bound and (20b) corre-
sponds to the upper bound. Clearly, p

i
, pi are polynomials

in x and Ĥ . To enforce the validity of (19), and thus of (18),
for all x ∈ R̃i, we employ the well-known Positivstellensatz:

Lemma 3.4 (Positivstellensatz [20]): Let h(z), gj(z), j =
1, . . . , c be polynomials in z ∈ Rn. Then h(z) ≥ 0 holds
∀z ∈ {z | gj(z) ≥ 0, j = 1, . . . , c} if there exist non-
negative polynomials sj(z) ≥ 0, j = 1, . . . , c such that

h(z)−
c∑

j=1

sj(z)gj(z) ≥ 0. (21)

�

To see the relation between Lemma 3.4 and the problem
in (19), first note that x ∈ R̃i can be written as φ̃i−Φ̃ix ≥ 0
using the fact that R̃i is a polyhedron. Next, denote gj(x) :=

φ̃
(j)
i −Φ̃

(j)
i x, where Z(j) is the r-th row of the vector/matrix,

and let h(z) := [p
i
, pi]
ᵀ. Then (19) holds for all x ∈ R̃i,

thus Ĵ(x) being bounded per (18), follows directly from
Lemma 3.4, provided there exist non-negative polynomials
sj(x, Ĥ), j = 1, . . . , nr. Next we report our second main
result:

Theorem 3.5: Given are: (i) the polyhedral regions R̃i as
in (16), (ii) the convex PWQ function J̃ as in (14), and
the PWA feedback law µ̃ as in (15). There exists a convex
quadratic function Ĵ as in (17), lower/upper bounded as
in (18) for all x ∈ dom(J̃) = ∪iR̃i if there is a feasible
solution to

find Ĥ, sj,i(x, Ĥ), sj,i(x, Ĥ) (22a)

s.t. p
i
(x, Ĥ)−

ci∑
j=1

sj,i(x, Ĥ)gj,i(x) ≥ 0, (22b)

pi(x, Ĥ)−
ci∑

j=1

sj,i(x, Ĥ)gj,i(x) ≥ 0, (22c)

gj,i(x) = φ
(j)
i − Φ

(j)
i x, (22d)

sj,i(x, Ĥ) ≥ 0, sj,i(x, Ĥ) ≥ 0, (22e)

Ĥ � 0, (22f)

where all constraints have to hold for i = 1, . . . , M̃ , and for
each i, j = 1, . . . , ci, where ci is the number of defining
half-spaces of the i-th polyhedron.

Remark 3.6: The problem in (22) can be formulated and
solved as a convex semi-definite program. To see this,
recall (see, e.g., [21]) that a polynomial p(z) is globally
non-negative if it can be written as sum of squares, i.e.,
p(v) = vᵀQv where v is a vector of monomials and Q
is a symmetric, positive definite matrix. It follows that each
non-negativity constraint in (22) can in turn be translated
into a linear matrix inequality constraint, and (22) can be
formulated by YALMIP [22] and solved using semi-definite
programming packages, such as SeDuMi or MOSEK. �

Clearly, the approximation Ĵ satisfying (18) is not unique.
In the context of approximate dynamic programming, it is de-
sirable for Ĵ to be “as close as possible” to the lower bound,
i.e., to J̃ in some measure. By minimizing the distance of Ĵ
to J̃ we minimize the induced loss of optimality. We propose
two viable, cheap to implement options to achieve this goal.
The first one is based on replacing the feasibility objective
in (22a) by minimization of the trace of Ĥ . By doing so, we
inderectly minimize the quadrature of Ĵ in (17) and bring it
closer to the lower bound J̃ . The second option is to directly
minimize the approximation error, for instance the worst-case
error between Ĵ and J̃ . This can be done by minimizing a
scalar t subject to t ≥ Ĵ(x)− J̃(x) ∀x ∈ R̃i, i = 1, . . . , M̃ .
By using the PWQ nature of J̃ , this is equivalent to

t− p
i
(x, Ĥ) ≥ 0, ∀x ∈ R̃i, i = 1, . . . , M̃ , (23)

where p
i

is as in (20a). Thus by introducing the variable
t into (22), and by adding (23) into the constraints, one
obtains the approximation that minimizes the worst-case
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approximation error. The constraint (23) can be enforced
for all x ∈ R̃i via Lemma 3.4 and converted to an SDP
constraint according to Remark 3.6.

D. Complete Algorithm

The approximated stabilizing PWA feedback law µ̃0 that
solves Problem 2.5 can be obtained in a dynamic program-
ming fashion as follows:

• Initialization: set ĴN ≡ `N and let XN be as in (3d),
cf. Assumption 2.2.

• DP iterations: for each k = N − 1, . . . , 1 do
1) solve the pQP (11) with the approximate cost-to-

go function Ĵk+1 and the terminal set Xk+1; obtain
the PWQ cost function J̃k, the PWA feedback law
µ̃k, and the feasible set Xk = ∪iR̃k,i;

2) solve problem (22) as a convex SDP according to
Remark 3.6, obtain Ĥk and let Ĵk = xᵀĤkx.

• Final step: solve the pQP (11) with Ĵ1 as the cost-to-go
function and X1 as the terminal set, obtain the receding
horizon feedback law µ̃0.

Therefore we need to solve N pQP problems of the
form (11), together with N−1 approximation problems (22)
required to find Ĵk for k = N − 1, . . . , 1 (notice that the
approximation is not needed in the final step since the last
one that is used is Ĵ1).

IV. CASE STUDY

We aim to control an inverted pendulum mounted at a cart,
shown in Fig. 1 and described in more details in [23]. The
continuous-time dynamics of the system, linearized around
the upright unstable equilibrium point, is given by

ẋ(t) =

 0 1 0 0
3g
2l
−b 0 0

0 0 0 1
0 0 0 0

x(t) +

 0
3
2l
0
1

u(t) (24)

with the state vector x = [Θ Θ̇ d ḋ]ᵀ. Here, Θ is the
angle of pendulum from its upright position in radians, Θ̇
is the angular velocity in radians per second, d is the cart’s
position in metres, ḋ is the cart’s velocity in metres per
second, and u is acceleration of the cart in m s−2. More-
over, g = 9.8067 m s−2 represents gravitation acceleration,
l = 0.21 m is the length of the pendulum, and b = 1 s−1

is the friction factor that was identified experimentally. The
dynamics in (24) was subsequently discretized with sampling
time Ts = 0.02 s and converted to the form of (1).

The system operates under hard state and input constraints−0.1920−3.1416
−0.2500
−0.8500

 ≤ x(t) ≤

0.19203.1416
0.2500
0.8500

 , −10 ≤ u(t) ≤ 10. (25)

Since the pendulum’s angle is expressed in radians, the first
constraint translates to −11◦ ≤ Θ ≤ 11◦, which is the range
of validity of the linearization in (24).

The control objective is to reject disturbances and to sta-
bilize the states of the system towards the origin. Two MPC
controllers were considered, both with prediction horizon
N = 4, Qx = diag(104, 1, 102, 1) and Qu = 10 in (4), QN

Fig. 1. Inverted pendulum on a cart. 1: pendulum, 2: moveable cart with
incremental rotary encoder, 3: stepper motor as an actuator and incremental
rotary encoder attached on it, 4: micro-controller board and stepper motor
driver, 5: limit switches, 6: leading rods.

chosen as the solution of the discrete-time Riccati equation,
and XN being the positively invariant subset subject to the
corresponding LQR controller. With this setting, QN and XN

satisfy all conditions of Assumption 2.2.
The first controller, denoted as µ?

0, was computed by
solving the CFTOC problem (3) according to Lemma 2.3
by a parametric programming solver contained in the Multi-
Parametric Toolbox [24]. The optimal parametric receding
horizon feedback law µ? was obtained after 36 seconds and
it consisted of 351 polyhedral regions Ri. The total memory
footprint of the optimal feedback law, i.e., the space occupied
by vectors and matrices Φi, φi, Fi, fi, was 73 kilobytes,
cf. (6) and (7).

The second controller, denoted by µ̃0, was obtained by
applying approximate dynamic programming per the proce-
dures of Section III. The SDPs were solved by Mosek. The
total time of the overal approximate dynamic programming
procedure was 82 s and the resulting approximate, yet stabi-
lizing feedback law µ̃0 consisted of only 47 regions. Thus
the complexity, measured in terms of number of regions, was
reduced by a factor of 7.5 from 351 to 47 regions. The total
memory footprint of µ̃0 was 13.6 kilobytes, a reduction by
a factor of 5.4 compared to µ?

0.
Both controllers were then used to gather experimental

data to asses their respective performance. To this end, eval-
uation of the PWA feedback law µ?

0 and µ̃0 for a given value
of the state measurements was implemented in Matlab using
the sequential search approach described in Remark 2.4. The
calculated optimal control inputs were then transmitted to
the pendulum via a serial interface. Each experiment started
with the pendulum in its upright unstable equilibrium and
with the cart in rest. Subsequently, a disturbance of 5 m s−2

was added to the control action every 2 s for the duration of
4 sampling periods, i.e., for 80 ms. The experimental results
are depicted in Figure 2. One can observe that performance
of the optimal controller µ?

0 and its approximate counterpart
µ̃0 are very similar. Both controllers reject disturbances and
stabilize the pendulum in its upright position while respecting
constraints. The worst-case implementation time of µ?

0, i.e.,
the time required to calculate u?0 = µ?

0(x(t)) by evaluating
the PWA function in (6) via sequential search, was 3.23 ms.
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(a) Profile of the pendulum’s angle Θ(t).

0 1 2 3 4 5 6

−10

−5

0

5

10

t [s]

u
[m

s−
2

]

(b) Acceleration of the cart u(t).

Fig. 2. State and input profiles for the approximate feedback law µ̃0
obtained via approximate dynamic programming (solid lines) and for the
optimal controller constraints on the control input.

On the other hand, the worst-case runtime of µ̃0 was only
1.04 ms. This decrease is due to the fact that µ̃0 is defined
over fewer regions and the sequential search of Remark 2.4
converges faster. We remark that the chattering visible in the
profiles in Fig. 2 is caused by rotational encoders having
only a finite precision.

V. CONCLUSIONS

We have shown that QP-based MPC problems can be
solved in dynamic programming fashion by considering a
quadratic approximation of the cost-to-go function. More-
over, when the approximation is bounded as in (13) in
each DP iteration, the resulting approximate feedback law
provides guarantees of closed-loop stability and recursive
feasibility by construction. Moreover, since each DP iteration
technically corresponds to solving an MPC problem with the
prediction horizon equal to one, the approximate feedback
law is simpler than its optimal counterpart. By means of
an experimental case study we have demonstrated that 1)
a considerable reduction of the controller complexity could
indeed be achieved both in terms of memory as well as the
on-line implementation effort, and 2) that the approximate
feedback law, for the specific case study of this paper,
features low suboptimality.
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