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Abstract

The objective of this thesis is to operate membrane processes optimally in theory followed by in

experiments. The research work comprises mathematical modeling, simulation, optimization, and

implementation of optimal operation of batch membrane diafiltration processes.

The purpose of membrane separation is to increase the concentration of the product (macro-

solute) and decrease the concentration of impurities (micro-solute). A combination of semi-permeable

membrane and diluant addition (diafiltration), is used to serve the purpose.

The optimal operation implemented in this research is model based, and hence the modeling of

membrane processes forms the first part of this work. Modeling of different configurations of membrane

processes has been done, with some new model derivations to help the research field. The batch

open-loop and closed-loop diafiltration configurations are studied. The modeling section also includes

dynamically fitting the existing models to the experimental data, to obtain the optimal parameter

values.

The modeling is followed by the simulation and implementation of optimal operation. Implemen-

tation involves performing the optimal operation on a laboratory scale membrane separation plant.

The aim of optimization is to find analytically the addition rate of solvent (diluant) into the feed tank

in order to reach the final concentrations whilst minimizing costs.

The objectives to be minimized are processing time, or diluant consumption, or both for batch

open-loop diafiltration processes. Pontryagin’s minimum principle is utilized to attain the analytical

solution for optimal operation. The optimal operation derivation is verified experimentally on a

plant using nanofiltration form of membrane separation. Case studies are implemented showing the

optimal operation and its comparison with the current or traditional industrial strategies of membrane

separation.

In case of batch closed-loop diafiltration processes the objectives to be minimized are time, or

diluant consumption, or power, or a combination of them. The numerical methods of orthogonal col-

locations, and control vector parameterization are applied to obtain the optimal operation strategies.

Case studies are studied in simulation. The inferences are established regarding the advantages and

disadvantages of batch closed-loop over open-loop configuration.

Keywords

Membrane separation, Modeling, Optimal operation, Nanofiltration, Diafiltration, Pontryagin’s mini-

mum principle, Batch implementation.



Abstrakt

Ciel’om tejto dizertačnej práce je návrh optimálneho riadenia membránových procesov a jeho overenie

v laboratórnych podmienkach. Výskum pozostáva z matematického modelovania, simulácie, optima-

lizácie a implementácie optimálneho riadenia pre membránové diafiltračné procesy.

Zmyslom filtrovania za pomoci membrán je zvýšenie koncentrácie produktu (makrozložky) a zńı-

ženie koncentrácie nečistôt (mikrozložky). To je dosiahnuté použit́ım polopriepustných membrán a za

pomoci rozpúšt’adla (diafiltrácia).

Optimálne riadenie implementované v tejto práci je založené na modelovańı a modelovanie mem-

bránových procesov tvoŕı prvú čast’ tejto práce. Súčast’ou je modelovanie rozličných konfigurácíı mem-

bránových procesov s následným odvodeńım nových modelov za účelom posunutia oblasti výskumu

danej problematiky. Taktiež študujeme vlastnosti diafiltračných konfigurácíı so zatvoreným (closed-

loop) a otvoreným obehom (open-loop) pre spracovanie v dávkach. Práca obsahuje aj dynamické

párovanie existujúcich modelov s dátami źıskanými z experimentov za účelom źıskania optimálnych

hodnôt parametrov.

Modelovanie je nasledované simulácou a implementáciou optimálneho riadenia. Implementácia za-

hŕňa vykonanie optimálnych operácíı riadenia v laboratórnych podmienkach na zariadeńı vykonáva-

júcom membránovú filtráciu. Ciel’om optimalizácie je analyticky nájst’ mieru pridávania rozpúšt’adla

do vstupnej nádrže za cielom dosiahnutia finálnej koncentrácie pri čo najmenš́ıch prevádzkových ná-

kladoch.

Ciel’om je minimalizovat’ procesný čas, rozpúšt’adlo, alebo kombináciu týchto velič́ın pre diafil-

tračné procesy s otvoreným obehom pre spracovanie v dávkach. Využ́ıvame Pontrjaginov prinćıp

minima za účelom dosiahnutia analytického riešenia pre optimálne riadenie. Výsledné odvodené opti-

málne riadenie je následne overené experimentom na zariadeńı s použit́ım nanofiltračnej formy mem-

bránovej filtrácie. Pŕıpadové štúdie sú implementované, ukazujúc optimálne riadenie a jeho porovnanie

so súčasnými a tradičnými priemyselnými postupmi membránovej filtrácie.

V pŕıpade vsádzkovej diafiltrácie so zatvoreným obehom je ciel’om minimalizovat’ čas spracovania,

spotrebu rozpúšt’adla, výkonu alebo kombinácie týchto velič́ın. Použit́ım numerických metód ortogo-

nálnej kolokácie a parametrizácie vektora riadenia źıskavame optimálne prevádzkové stratégie. Taktiež

študujeme simulačné pŕıpadové štúdie. Zistenia sú zhodnotené na záver v porovnańı výhod a nevýhod

konfigurácíı so zatvoreným a otvoreným obehom pre vsádzkové procesy.

Kl’účové slová

Membránová separácia, modelovanie, optimálne riadenie, nanofiltrácia, diafiltrácia, Pontrjaginov prin-

ćıp minima, vsádzkové procesy.
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Chapter 1
Introduction

Most of the products that we require in our modern lives exist, or are manufactured in combination

with other products or unwanted impurities. The objective of separation is to get these product/s

purified from these impurities or byproducts. Separation is used throughout our life, in order to

separate eatables from non-eatables, drinkable from non-drinkables, etc. We can even do it through our

senses, for example visually. In current era, most of the manual actions and works have been replaced

by machines. It applies to the separation process too. Separation is done industrially at large scale now.

Chemical, petrochemical, food, biotechnology, and agriculture industries use separation techniques

intensively. The other use of separation in most industries is to clean the effluent water for reuse. The

separation can be achieved using techniques like solvent based extraction, distillation, supercritical

fluid extraction, sedimentation aided with coagulants and flocculants, etc. The other technique that

is widely admired, accepted, and used in industries for separation is membrane filtration.

Membrane separation process as described in Cheryan (1998) and Zeman (1996) is the separation of

two or more different molecules from a solution, or from each other in a solution, using semi-permeable

membranes. These membranes are specific filters, designed in order to pass certain molecules, and

retain others, based on their size, charge, and ionic properties. Membranes have found numerous

applications in water purification (Mallevialle et al., 1996), desalination, TOC (total organic carbon)

minimization, juice clarification, product separation and purification (Crespo et al., 1994). The various

driving forces for separation in membrane processes are concentration gradient, pressure, and electric

potential. The governing principle of separation is based on the molecular size differences of the

solutes which pass through the perm-selective membrane with different rates. The process is usually

designed to increase the concentration of the valuable product/s, and to decrease the concentration

of impurities.

The advantages of membrane aided separation over other techniques are:

1. Compared to distillation, membrane processes do not require high temperatures for separation.

Hence, they prevent denaturation of valuable bio-products, like anti-bodies, vitamins, and other

heat-labile products.

2. The solvent based extraction of product/s adds up the cost of solvent, compared to membrane
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filtration. It also requires an additional step to remove this used solvent from the extracted

product.

3. Membrane based processes do not require chemicals (coagulants, flocculants) for separation. It

is much faster and gives higher product purity when compared to these chemical counterparts.

Once the process has been industrialized, the next demand is to automate the process and to

control it. The first priority is to operate in a way that the required range of product purity is

obtained. The next operational priority is to minimize the production/processing/separation costs

to accomplish the first priority. Hence, modeling, control, and optimization is performed to achieve

the required concentration of product/s, with assurance of cost minimization and minimum manual

efforts. There are various methods in theory to design the control strategy to achieve these objectives

of product quality and costs. These methods can design the control and automation strategy based on

the prior knowledge of the process, i.e. the process model, input, output and state boundaries. The

other way to control can be based on statistical data, intensive knowledge and experience, or trial and

error method, i.e. try different inputs and study the results. This thesis uses the process knowledge

(model, constraints) based derivation of optimal control strategy (both analytical and numerical).

The designing of automation and control strategy is followed by validation. Validation establishes

that the control strategy developed meets our desired objectives or not. This validation can be

simulation based, i.e. we apply the control strategy to a model and then simulate the model to observe

and study the results, or it can be experimental. We present the results of both, i.e. simulation based

and experimental validation.

We study automation, modeling, optimization, and control of membrane aided separation pro-

cesses. Two diafiltration (DF) membrane separation types are considered:

1. batch diafiltration (batch open-loop DF),

2. batch diafiltration with partial recirculation (batch closed-loop DF).

DF is a technique where membrane separation is combined with external addition of a diluant (e.g.

pure water), to reduce impurities. These processes are considered operating under constant trans-

membrane pressure (TMP) and temperature.

The optimal operation of batch DF process is achieved by controlling the addition of diluant

into the system in order to attain the desired separation and final required concentrations, whilst

minimizing processing costs.

The batch open-loop DF optimization problem is a non-linear dynamic optimization problem. As

it is a control-affine problem, Pontryagin’s minimum principle (Pontryagin et al., 1962) will be utilized

to obtain the optimal operation strategies analytically. In literature, several case studies are solved

analytically and numerically in Paulen and Fikar (2016) to optimally operate membrane separation

process using diluant rate as the input. These case studies show the comparison between the traditional

approaches towards membrane operation, and the optimal membrane operation approaches. The

existing models of separation are used in this book (Paulen and Fikar, 2016) from literature. The

study is completely in simulation and presents no experimental results. In this thesis batch open-loop

DF will be studied in laboratory conditions, and the separation rate will be dynamically modeled based
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on experimental data (Sharma et al., 2017a, 2018). Further, this experimental model will be used to

find the optimal strategy to minimize the processing time, or diluant consumption, or a weighted

combination of both. The optimal strategies will be firstly shown in simulation. After simulation,

selected case studies will be implemented on a membrane separation plant, and verified experimentally.

The traditional industrial strategy will also be performed on the plant to achieve the same objectives,

and to compare with the implemented optimal strategies.

In case of batch closed-loop DF there are two manipulated variables: diluant addition rate and

recirculation ratio. This process can aim at operation with the objective to minimize time, or to

minimize the power required to achieve the separation, or to minimize the diluant addition or multi-

objective. This is again a non-linear dynamic optimization problem, but is found to be not affine

w.r.t. control inputs. Hence, only theoretical and simulation studies will be presented for this process

in thesis.

Thesis Contributions

The aim of this thesis is to study mathematical modeling and optimal control of batch diafiltration

processes in theory and in laboratory practice. The optimal control is studied using methods of

dynamic optimization and provides improvements compared to traditional operations. The main

contributions of this thesis can be summarized as follows:

• Study of batch closed-loop DF processes: mathematical modeling, numerical optimization, and

case studies together with comparison to batch open-loop DF (Sharma et al., 2015, 2017b).

• Implementation and verification of optimal operation strategy in laboratory conditions for batch

open-loop DF processes, comparison of the proposed optimal strategies with the traditional

ones (Sharma et al., 2018, 2019).

Some partial results were obtained for parameter estimation problems for open-loop diafiltration using

experimental data (Sharma et al., 2016a, 2017a, 2018).

Additionally, I also contributed as a team member to results in optimal control of membrane

processes subject to fouling (Jelemenský, 2016, Jelemenský et al., 2015a,b, 2016).

The thesis is presented here in two parts. The first part comprises the theory on membrane

separation processes (Chapter 2) and optimal control (Chapter 3). Both analytical and numerical

methods are presented, along with benefits and drawbacks of each technique.

The second part includes thesis contributions: new developments in modeling and optimal control

of membrane processes.

Chapter 4 will present the batch open-loop DF processes. The process modeling is going to be

discussed. The membrane plant used will be described after the modeling section. This will cover the

experimental procedures to obtain the results along with the details of the hardware (plant) and its

automation, visualization, and basic control. The parameter estimation problem will be solved next

to obtain models based on experimental results. The second part of the chapter will deal with the

optimal control of open-loop batch DF. This will include problem definition (objective function) for

optimizing the process based on the process model, constraints, and desired objectives. This will be
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followed by the solution to this optimal control problem. Simulation of case studies will be presented

further, to study the effects of optimal strategies. Finally, the results of optimal operation of batch

open-loop DF process is going to be shown in experimental conditions, together with the discussion

on these results.

Chapter 5 will present the batch closed-loop DF processes. It will cover mathematical derivation

of model equations for batch DF with partial recirculation. Alternative model derivations and model

simplifications will be also presented. Next, the optimal control problem to minimize th processing

costs is going to be defined and solved using numerical techniques. Simulation case studies will be

presented to demonstrate the optimal strategies.



Part I

Theoretical Background





Chapter 2
Membrane Process

In this chapter, basic idea, types and forms of membranes and membrane separation techniques are

discussed. Generally, membrane separation is passing the solution to be separated through a semi-

permeable membrane. The solution consists of solutes to be separated. The membrane can allow

complete passage, partial passage, or no passage at all to a solute, depending on its molecular size

and mass. The stream that passes through the membrane is called permeate, while the membrane

rejected stream is retentate.

On the basis of flow of feed to the membrane, the membrane separation processes can be classified

as dead-end (Fig. 2.1(a)): where the flow of feed is perpendicular to the membrane surface, and cross-

flow filtration (Fig. 2.1(b)): where the flow is parallel to the membrane surface. All the liquid that

is introduced in dead-end mode passes through the membrane. Hence, there is no retentate stream

in dead-end mode (Li and Li, 2015). On the contrary, flow is tangential rather than direct into the

filtration media for cross-flow mode. Cross-flow mode utilizes a high fluid circulation rate tangential

to the membrane to minimize the accumulation of particles at the membrane surface (Li, 1972).

The significant advantages of cross-flow filtration over dead-end are:

• fouling is minimized,

pressure

(a) Dead-end

flow flow

(b) Cross-flow

Figure 2.1: Classification of membrane processes, based on flow to the membrane.
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• fouling minimization results in longer membrane life,

• higher permeate flow rates, as the pores are not directly clogged by the solutes,

• due to quick formation of solid particle layer over the membrane, dead-end mode cannot be used

for continuous processing and is only used to process batches, while the cross-flow mode is ideal

for both batch and continuous processing.

Next, we discuss other types of membrane separation processes based on various criteria.

2.1 Membrane Separation – Processing Modes

This section classifies membrane processes based on their mode of operation. This translates to

differences in membrane plant designs, w.r.t. inflows and outflows of the system.

2.1.1 Batch Separation

In batch processing mode the feed is added to the tank initially, and no further inclusion of feed

solution is permitted until the final objective is attained, and process is stopped. This mode is used

mostly when only concentrating the product is the objective. One of the many current applications

of batch separation includes; purification and fractionation of wastewater coming from olive oil indus-

tries (Cassano et al., 2013).

2.1.2 Continuous Separation

Unlike batch mode where the feed is only added initially, in continuous mode the feed is added

continuously into the feed tank. One of the classes of continuous separation is multi-stage continuous

processing (Fig. 2.2). As presented in Ramaswamy et al. (2013), this plant comprises several feed

and bleed modules in series. Two classes of pumps are required for each module: a feed pump and a

re-pressurizing pump (R-pump). This mode helps in achieving higher flux when compared to classical

continuous or feed and bleed mode. A minimum of 3 modules is usually applied, and most common

industrial range is 6-7.

2.1.3 Diafiltration

Diafiltration can be used for separation of two or more solutes from one another (e.g. separation of a

salt/s from protein/s or sugar/s or both, separation of sugar/s from protein/s, or indeed separation

of one protein/sugar from another protein/sugar), and especially for reducing the concentration of

micro-solute (impurity), by the addition of a diluant. Hence, it can be used for concentrating product

or reducing impurity, or both. The membrane used should allow easy passage of the solute desired in

the permeate while substantially retaining the other solute. A set-up used for batch diafiltration is

shown in Fig. 2.3.

The batch membrane diafiltration plant studied in this thesis consists of the following crucial parts

(Fig. 2.3):
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permeate

retentate

feed tank

feed

feed

pump

R-pump R-pump R-pump

Figure 2.2: Multi-stage continuous filtration.

• feed tank – it is the source for the feed solution, and as it is a batch process no feed is added

during the run,

• feed pump (P1) – it is the pump that forces the solution from feed tank towards the membrane,

• membrane (M) – it is the source for the separation of solutes (product and impurity),

• diluant pump (P3) – it is needed to force the diluant into the tank at controlled rate.

Diafiltration can also be carried out in a continuous fashion using the set-up shown in Fig. 2.4. Its

simplest configuration is known as single-pass diafiltration. Continuous diafiltration, on the contrary

to batch diafiltration, realizes a steady-state separation in which the product (i.e., the final retentate)

is not concentrated in the feed vessel as filtration progresses, but is continuously withdrawn from the

system during the entire course of filtration.

2.1.4 Feed & Bleed

Feed and bleed mode can be operated as a single loop system (one membrane module), or multi-loop

system (multiple modules). In feed and bleed, the retentate is partially bled off and a part stays in the

circulation loop. Nothing returns to feed tank in feed and bleed mode. They are generally operated

in continuous manner, with fresh feed being pumped into the loop to balance the retentate bleed and

permeation. In feed and bleed mode membrane always encounters the highest concentration and this

results in lowest flux. Multi-loop feed and bleed design is the most common configuration in food

processing applications. The scheme of this mode is shown in Fig. 2.5.

2.2 Membrane Separation – Plant Configurations

This classification is based on the structure of the plant and its hardware setup.
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feed tank

P3

M     

retentate

  permeate

P1

diluant

Figure 2.3: Schematic representation of a batch diafiltration process.

overall permeate

overall retentate

diluant

feed

Figure 2.4: Multi-stage continuous diafiltration.
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Figure 2.5: Feed and bleed operation mode.

2.2.1 Batch Plant – Open-loop Configuration

As shown in Fig 2.6(a), a batch membrane separation unit generally consists of a feed tank containing

solution with the solutes to be separated, a semi-permeable membrane for performing the separation,

and a feed pump to push the feed towards the membrane at desired pressure. Through the membrane

the feed gets separated in two streams: retentate stream, i.e. the concentrated stream with macro-

solute/s, which returns back to the feed tank, and the permeate stream comprising of micro-solute/s

or just solvent, that leaves the system. In this configuration, the retentate is completely recycled back

to the feed tank and hence it is also known as open loop batch (Fig 2.6(a)). A batch concentration

process is usually operated at constant transmembrane pressure. Due to the continuous increase of

solute concentration in the feed, the permeate flux declines with time.

2.2.2 Batch with Partial Recirculation Plant – Closed-loop Configuration

As in batch plant, this configuration too has a feed tank, a semi-permeable membrane, and a feed

pump. Besides these, closed-loop configuration additionally has a recirculation loop, and a recircula-

tion pump (Fig. 2.6(b)).

In this configuration, the feed goes to the membrane from tank and the retentate returns back

to the tank but some portion of the retentate flow can be directed back through a recirculation pipe

(Fig. 2.6(b)) and pump to the membrane. The retentate splitting ratio could range between 0 and 1.

This system or membrane operation according to Todaro and Vogel (2014), Mallevialle et al. (1996),

is also called Batch closed loop operation. The process in a way is also similar to fed-batch with

recirculating loop operating mode given in Foley (2011), and feed and bleed operating mode given

in Todaro and Vogel (2014), as there is a feed going in. It can be still categorized inside semi-batch

or batch as it is not the feed itself but is a diluant; which is not continuous; and is fed at discrete

intermittent times to attain optimal operation. Closed loop batch or topped-off batch as mentioned

in Cheryan (1998) is used when permeate is the required product, for e.g., fruit juice clarification and
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(a) Complete recycle of retentate
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feed
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(b) Partial recycle of retentate

Figure 2.6: Batch membrane filtration with complete (open-loop) and partial recirculation (closed-

loop) of retentate.

microfiltration of whey. The batch closed-loop operation has following advantages over traditional

batch (open-loop) operating mode:

1. This configuration provides a controlled and defined flow rate, irrespective of the degree of fouling

and changes in feed composition (Rapaport, 2006).

2. The pipe diameter can be smaller than in conventional batch (Cheryan, 1998, Rapaport, 2006).

3. The feed tank size can also be smaller for the closed-loop setup as part of the solution volume is

permanently inside the loop. This reduces problems of foaming Cheryan (1998), Tamime (2012).

Temperature and quality of sensitive retentate products can be maintained which can be difficult

in open-loop batch (AWWA, 2005).

4. For large systems with remote tankage this setup can save quite a lot of large piping and with a

small pressurizing feed pump, a large amount of energy by keeping the loop pressure high (Dow

Water & Process Solutions, Jornitz and Meltzer, 2007, Rapaport, 2006).

5. In membrane bioreactors, partial recycle of retentate resulted in higher nutrient uptake, which

helped producing a higher biomass concentration (Bilad et al., 2014).

2.2.3 Series Membrane Assembly Units

In this setup, as one membrane is not enough for achieving the separation goals; many membranes

are connected in series, and the output of one is the input for the next membrane. In desalination,

the series connection of reverse osmosis membranes is applied extensively. In practice there are 6 to 7

membrane modules in series. The saline or seawater passes through the first module. About 90% of it
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membrane 1
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permeate

retentate

(a) Series
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permeate

retentate

(b) Parallel

Figure 2.7: Multi-membrane assembly connections.

is rejected and it enters the second membrane module as a concentrated feed. The separation occurs

in the second module and again the concentrated retentate stream passes on to the next module, and

so on. The pressure difference and the flow rate is the maximum through the first membrane, and it

reduces at each next membrane, and hence minimum at the last membrane module. The schematic

representation can be studied from Fig. 2.7(a). The clean water recovery is at maximum in the first

membrane module, and at minimum in the last one connected in series.

2.2.4 Parallel Membrane Assembly Units

In this setup, many semi-permeable membranes are connected in parallel. In this connection of

membrane modules, the same feed goes to all membranes at any time instance during the processing

(Fig. 2.7(b)). The retentates recombine and are recycled back to the feed reservoir, while the permeates

may recombine and leave the system, or leave the system individually. If series and parallel connections

are compared (Yu et al., 2015); parallel connection is inferior to series connection in separation quality

and performance, but parallel is preferred when higher separation capacities and lower flow resistance

is needed. Demmer and Nussbaumer (1999) published a work concluding that modules connected in

parallel increase the flux, but on the sacrifice of performance. A similar comparison of parallel and

series connections of membranes for membrane distillation was done by Khalifa et al. (2017). Again,

parallel connection was found better than series in case of permeate flux. The combination of parallel

and series connections is preferred and considered optimal.

2.3 Membrane Types

The pressure based membrane processes can be divided according to membrane pore size into microfil-

tration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). A brief description

of these membrane types is given in Fig. 2.8 and in Table 2.1.
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Figure 2.8: Membrane types w.r.t. pore size and filterable/retained components.

Table 2.1: Typically applied pressures and pore sizes for different types of pressure-driven membrane

processes.

Applied pressure [bar] Pore size [µm] MWCO [dalton]

Microfiltration 0.2 – 3.5 10 – 0.05 ≥ 3× 105

Ultrafiltration 1 – 10 0.05 – 0.002 5× 103 to 5× 106

Nanofiltration 5 – 40 0.002 – 0.001 200 to 400

Reverse Osmosis 10 – 100 < 0.001 ≤ 100
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2.3.1 Microfiltration

Microfiltration (MF) membranes are characterized by pore size of 10 – 0.05µm. The pressure required

is minimum for microfiltration, i.e. 0.2 – 3.5 bar. Microfiltration is usually used as pre-treatment for

other separation processes, and is used in combination with ultrafiltration and reverse osmosis. The

most prominent use of microfiltration membranes pertains to the treatment of potable water. In

biological fluids, it is mostly used for removing micro-organisms. In milk processing it is again used for

removing the pathogenic micro-organisms, but unlike pasteurization it does not denature the proteins

because of high temperature. Khemakhem et al. (2009) suggested new microfiltration membranes

that support extreme temperatures and are applied in cuttlefish effluent treatment. Another common

application of microfiltration is separating oil–water emulsions (Cui et al., 2008).

2.3.2 Ultrafiltration

Ultrafiltration (UF) membranes have pore size of 0.05 – 0.002µm. The pressure required for ultrafil-

tration ranges between 1 – 10 bar. Ultrafiltration is frequently used in chemical, pharmaceutical, and

beverage industries. The most common application of ultrafiltration is purification and concentration

of proteins. The most important medical application of ultrafiltration is blood dialysis. Ultrafiltration

is used extensively in the dairy industry; particularly in the processing of cheese whey (Verasztó et al.,

2013) to obtain whey protein concentrate (WPC), and lactose-rich permeate. The general applications

of UF can be studied from Jönsson and Träg̊ardh (1990). One of the recent advances in UF includes

developing membranes such that fouling is minimized and performance is enhanced (Abdel-Karim

et al., 2018). The recent discovered application of UF includes waste-water extraction/filtration of

nutrients specific to micro-algae growth (Sandefur et al., 2016).

2.3.3 Nanofiltration

Nanofiltration (NF) membrane having pore size smaller than microfilter and ultrafilter is basically

used for partial demineralization of liquids. The membrane pore size between 0.5 and 2 nm and

operating pressures between 5 and 40 bar. NF is used to achieve a separation between sugars, other

organic molecules and multivalent salts on one hand, and monovalent salts and water on the other.

NF membranes have a slightly charged surface. As the dimensions of the pores is slightly larger than

the size of ions, charge interaction plays a dominant role in separation. This effect can be used to

separate ions with different valences. Mohammad et al. (2015) outlines the current developments in

the field of NF along with its future prospects.

2.3.4 Reverse Osmosis

The reverse osmosis (RO) membrane has the smallest pores of all membranes. Because of the small

pore size only water can pass through. This is the reason why RO membranes are mainly used for

water treatment. Therefore, all species like viruses, proteins, and others are retained and pure water

is obtained from separation. RO membranes are also often used in households where they serve for

cleaning water which is obtained from rain or from polluted piping. Further, RO technology has found
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also its use in cosmetic, pharmaceutical, medical, and semiconductor production. Main applications

of RO membranes are desalination of seawater and purification of liquids where the water is unwanted

impurity (Lee et al., 2011). The typical characteristics of these membranes are summarized in Table 2.1

(MWCO = molecular weight cut-off).

2.4 Nanodiafiltration

In combination with nanofiltration, diafiltration is applied in this thesis for the experimental valida-

tions. This combination of NF and DF, i.e. nanodiafiltration, is abbreviated as NDF (Chandrapala

et al., 2016). NDF applications include water softening, wastewater treatment, vegetable oil process-

ing, beverage, dairy (Chen et al., 2017), juice and sugar industry (Conidi et al., 2017, Salehi, 2014).

In production of lactose from cheese whey, NDF concentrates lactose molecules while passing and

reducing salts (Das et al., 2016, Yin et al., 2011). NDF is also used for removal of lactic acid from acid

dairy whey, for better crystallization of lactose (Chandrapala et al., 2016). This concentrated lactose

is a commonly used material in the pharmaceutical industry as a carrier of drugs, e.g., in inhalations

for asthma patients (Boerefijn et al., 1998). Besides pharmaceutical industry, in food and beverage

industry lactose is emerging widely as a source for epilactose, galacto-oligosaccharides (Cohen et al.,

2017, Verasztó et al., 2013), lactitol, lactobionic acid, and other important derivatives (Gutiérrez et al.,

2012).

2.5 Membrane Material

The material that the membrane is made of, also effects the separation. It can decide the chemical

charge, thermal, and other properties of membrane. Membrane material should be chosen based on the

separation requirements, such as temperature needed during separation, cleaning agents used before

and after use, charge of ions (polarity), etc.

2.5.1 Organic Membranes

These can comprise natural organic polymers, or synthetic organic polymers, or both. The exam-

ples of natural polymers include rubber, wool and cellulose, while the synthetic polymers include

polytetrafluoroethylene (PTFE), polyamide-imide (PAI), and polyvinylidenedifluoride (PVDF).

Cellulose acetate membrane is used for all types of membrane separations, i.e. MF, UF, NF, and

RO. The synthetic organic membranes are mostly used for MF and UF, but polyimide membrane is

applied to all 4 membrane types.

2.5.2 Inorganic Membranes

Inorganic membranes are made of materials such as ceramic, carbon, silica, zeolite, various oxides

(alumina, titania, zirconia) and metals such as palladium, silver and their alloys. Inorganic membranes

can be porous or dense (non-porous). The well known application of inorganic membranes is in the

field of gas separation (hydrogen from gas mixture).
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The inorganic membranes are more expensive than the organic membranes, but they can provide

higher temperature stability, resistance to solvents, resistance to chemicals. Hence, they are preferred

when membrane needs to be sterilized after each use, or cleaned by strong chemicals.

In addition, research advancements have been achieved in developing hybrid membranes, which

comprise both inorganic and organic components. Bipolar membranes with charge specificity have

also been developed. So, a cation exchange and an anion exchange membrane are laminated together

to make this bipolar membrane. These membranes are currently used in treating concentrated salt

solutions.





Chapter 3
Optimal Control Theory

In this section, the theory regarding the optimization of membrane separation process is described.

Dynamic optimization results in optimal state and control trajectories to attain certain objective. The

thesis deals with constrained non-linear dynamic optimization problem. The membrane separation

system studied exhibits non-linear dynamics.

In Section 3.1, the constrained dynamic optimization problem is defined, along with a general

discussion on solving such a problem. Section 3.3 deals with analytical method of finding optimal

control while the next two sections after that, i.e. 3.4 and 3.5 are dedicated to numerical techniques

of solving such an approximation of this problem.

3.1 Optimization Problem

The dynamic optimization (optimal control) problem comprises of an objective functional, the model

representing the process, and may have constraints over states and control inputs. This problem in

general can be defined as

min
u(t)

J = G(tf,x(tf)) +

∫ tf

t0

F (τ,x(τ),u(τ))dτ (3.1a)

s.t.

ẋ(t) = f(t,x(t),u(t)), x(t0) = x0, x(tf) = xf, (3.1b)

umin < u(t) < umax, (3.1c)

where x(t) ∈ R
nx is the state vector and u(t) ∈ R

nu is the control vector, respectively. Variables nx,

nu denote the dimensions of the state and control vectors, respectively. The problem defined above

aims at minimization of a scalar objective functional comprising of G (evaluated at the final time tf )

and F (evaluated over a period of time [t0, tf]), subject to system state differential equations, initial,

terminal conditions, and constraint over the control vector.

The objective functional stated above (3.1a) is called the Bolza form. If the objective functional

37
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is only defined at the final time then it is the Mayer form, i.e.

min
u(t)

J = G(tf,x(tf)). (3.2)

Similarly, if the objective functional is evaluated over the entire time interval then it is known as the

Lagrange form, i.e.

min
u(t)

J =

∫ tf

t0

F (τ,x(τ),u(τ))dτ. (3.3)

The three forms defined above are interconvertible as stated in Bellman (1963).

3.2 Optimization Problem – Solution

In this thesis, the optimization is achieved using optimal control theory approaches studied from Hull

(2003), and Bryson, Jr. and Ho (1975).

In general, the techniques to solve the optimization control problem can be classified into direct

and indirect methods. In the former approach, the optimal control problem is firstly discretized, and

then solved. The basic idea of direct optimization methods is to discretize the control problem, and

then apply nonlinear programming (NLP) techniques to the resulting finite-dimensional optimization

problem. In the latter one (indirect method), discretization is not required, but a prior knowledge of

the solution structure is required. In case the cost function is of non-differentiable nature, the direct

methods of dynamic optimization are used.

Another classification includes analytical methods and numerical methods to solve optimal control

problems. Analytical methods include dynamic programming, variational calculus and Pontryagin’s

minimum principle. While, the numerical methods can be based on:

• discretization of control, e.g. control vector parameterization (CVP) method (Balsa-Canto et al.,

2001, Goh and Teo, 1988), and control vector iteration (CVI) method,

• and on complete discretization, i.e. both states and control trajectories are parameterized e.g.

orthogonal collocation (OC) (Biegler, 2007).

The analytical method of Pontryagin’s minimum principle, and numerical methods of CVP and

OC are approached and discussed further.

3.3 Pontryagin’s Minimum Principle

This dynamic optimization method is classified into the indirect approaches. This is an analytical way

of finding the solution to our problem, and leads to a global solution. This requires the cost function

to be of differentiable nature. This principle as formulated in Pontryagin et al. (1962) is an extension

of calculus of variations.

Pontryagin’s Minimum Principle (PMP) finds the optimal control strategy while satisfying the

so called necessary conditions of optimality (NCO) (Bryson, Jr. and Ho, 1975, Hull, 2003). These
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necessary conditions of optimality are based on the Hamiltonian function. This Hamiltonian function

using (3.1) can be defined as:

H(t,x,u,λ) = F (t,x,u) + λT f(t,x,u), (3.4)

where λ ∈ R
nx is the vector of adjoint variables.

The Pontryagin’s minimum principle states that in order to find the optimal control, the Hamil-

tonian function must be minimized, i.e.

H(t,x,u∗,λ) ≤ H(t,x,u,λ), (3.5)

where u∗ stands for optimal control, subject to NCO

λ̇T = −∂H

∂x
, λf

T =
∂G

∂xf

, (3.6)

ẋT =
∂H

∂λ
, x(t0) = x0. (3.7)

The derivation to these conditions can be studied in detail from Hull (2003).

This principle holds true for both autonomous (implicit function of time) or non-autonomous

systems (explicit function of time). In this thesis, the states and objective functions both are assumed

not to be explicit functions of time, hence we consider autonomous situation. The Hamiltonian can

then be rewritten as:

H(x,u,λ) = F (x,u) + λT f(x,u), (3.8)

and for autonomous systems if the final time is free, the following condition holds as well

H(x,u,λ) = 0, ∀t ∈ [t0, tf ]. (3.9)

We will further assume that the system and cost function are affine in control. The control affine

optimal control problem can be stated as

min
u(t)

J =

∫ tf

t0

F0(x) + Fu(x)u dτ (3.10a)

s.t.

(3.6), (3.7), (3.1c), (3.10b)

ẋ(t) = f0(x) + fu(x)u. (3.10c)

The Hamiltonian for such a problem is:

H(x,u,λ) = F0(x) + Fu(x)u+ λT
(

f0(x) + fu(x)u
)

, (3.11)

This Hamiltonian is thus also affine in control

H(x,u,λ) = H0(x,λ) +Hu(x,λ)u, (3.12)

If the control variable is bounded; as in (3.1c), then it minimizes the Hamiltonian if it lies on its

boundaries, in the form of bang-bang control. If Hu is positive, then the minimum of H is achieved

using umin, if negative; using umax. The special case is the singular case when

Hu = 0, us, (3.13)
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where us ∈ [umin,umax] is the singular control, and needs to be derived. The necessary conditions of

optimality form a two point boundary value problem (TPBVP), which in general is very difficult to

solve.

The next sections deal with the direct approaches of solving optimization problems. In direct

approach, an approximation of the original dynamic optimization problem is done.

3.4 Control Vector Parameterization

Control vector parameterization (CVP) is an example of direct numerical methods for solving dynamic

optimal control problems. CVP involves repeated solutions of differential equations. It is also known

as direct sequential method. It is an approximation (discretization) of continuous control trajectory

over finite time intervals. The approximation can be done using piecewise constants, piecewise linear

functions, or any other parameterized functions, over time intervals.

Consider Fig. 3.1 representing a continuous trajectory of control. This original control profile

u(t)

t

Figure 3.1: Continuous control trajectory.

can be discretized by for e.g. approximated constants (Fig. 3.2(a)), or linear functions (Fig. 3.2(b)),

over time intervals. In Fig. 3.2(a), u1 . . . u3, represents constant control inputs, while in Fig. 3.2(b)

u1 . . . u7 represent linear functions. The original continuous trajectory from Fig. 3.1 is represented by

black dashed line Fig. 3.2. So, the discretized piecewise-constant control can be expressed as

u(t) = ui, ti−1 ≤ t < ti (3.14)

where ui represents the constant control value over the time interval ∆ti, as defined in Fig. 3.2(a).

This length of time interval can be defined as ∆ti = ti − ti−1. If number of intervals, i.e. NI = 3,
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u(t)

t

u1

u2

u3

∆t1 ∆t2 ∆t3

(a) Approximation using constant values

u(t)

t

u1

u2

u3

u4

u5

u6

u7

∆t1 ∆t2 ∆t3 ∆t4 ∆t5 ∆t6 ∆t7

(b) Approximation using linear functions

Figure 3.2: Discretized control trajectories.

it results in 6 degrees of freedom to our optimization problem (3 piecewise constant ui + 3 ∆ti).

Similarly, the linear discretization can be expressed as

u(t) = ui−1 +
ui − ui−1

ti − ti−1
(t− ti−1), i = 1, . . . , NI . (3.15)

In thesis, approximation of control trajectory by constant values over time intervals is stud-

ied (3.14). The approximated piecewise-constant control can also be written as follows:

u(t) =

NI
∑

i=1

ui χ[ti−1,ti)(t), (3.16)

where

χ[ti−1,ti) :=







1, if t ∈ [ti−1, ti),

0, if t /∈ [ti−1, ti).
(3.17)

Hence, with the help of CVP we can transform the infinite dimensional problem of finding con-

tinuous trajectory of u(t), to a finite dimensional problem. This is done by using a set of parameters

y ∈ R
ny (ny = number of optimized parameters) consisting of constant control inputs and correspond-

ing time intervals, i.e.

y = [u1, . . . ,uNI
,∆t1, . . . , ,∆tNI

]. (3.18)

The approximation problem defined above over the vector of optimized parameters y is a NLP. In this

problem, a finite set of variables needs to be found, such that the objective cost function is minimized.

This problem can also be subjected to a set of constraints. In general, algorithms for NLP (sequential

quadratic programming) use the cost and constraint gradients to generate search directions to improve

optimization. In order to do this we need to compute the partial derivatives of cost function. There

are three methods for finding the gradients according to Rosen and Luus (1991), i.e. :
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• finite differences method,

• sensitivity method (variational method), and

• adjoint variables (costate) method.

These methods are described next.

3.4.1 Finite Differences Method

In this method of computing gradients, a minute variation/perturbation is given to each optimized

variable (yi) followed by evaluating the objective function (3.1), and it can be written as:

∇yi
J =

J (y, yi +∆yi)− J (y)

∆yi
(3.19)

If the set of parameters to be optimized is large, this method of computing gradients requires to

integrate large amount of functions. This method is less accurate when compared to adjoint and

sensitivity methods for calculating gradients because of the choice of value of small change/variation

given to the optimized variable, and due to the need of higher order gradients for non-linear systems.

Finite differences method is easily implementable as no additional differential equations are to be

evaluated, which will be added in the other two methods, presented further. This method is the

default gradient calculator in fmincon (a nonlinear programming solver in MATLAB).

3.4.2 The Sensitivity Method

The method is based on so called sensitivities. These sensitivities are the partial derivatives of states

with respect to decisive or optimized parameters y. They are defined as:

si =
∂x

∂yi
, si(0) = 0, i = 1 . . . ny (3.20)

Now, the cost function and state equations are not explicit functions of y, i.e. ∆ti and ui, and hence

for ẋ = f(t,x,u), we need to define the partial derivative as:

∂ẋ

∂yi
=

∂f

∂x

∂x

∂yi
+

∂f

∂u

∂u

∂yi
. (3.21)

The sensitivity then can be formulated as:

ṡi =
∂f

∂x
si +

∂f

∂u

∂u

∂yi
. (3.22)

This generates a large set of differential equations, as each optimized parameter results in a set of

differential equations, depending on number of states. This initial value sensitivity equation can be

solved by forward integration, for e.g. ode45 in MATLAB.

After defining the sensitivities, and using (3.1) and (3.22) the gradient of the objective function in

general can be calculated as:

∂J
∂yi

=
∂G

∂x

∣

∣

∣

tf
si +

tf
∫

t0

∂F

∂x
si +

∂F

∂u

∂u

∂yi
dt. (3.23)
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Thus, to solve sensitivities and for computing gradients, we need to solve and integrate additional

nx×ny differential equations. Hence, this method is not preferred when the set of optimized parameters

is large, as integration is the most time consuming part of numerical optimization.

3.4.3 Adjoint Method

This method is suggested and applied when the set of optimized parameters is large. The Hamiltonian

function H (3.4) is used in this method. The gradient of the objective function can be evaluated as

given in (Paulen, 2010), i.e.

∂J
∂tf

=
∂G

∂tf
+H(tf),

∂J
∂ti

=
∂G

∂ti
+H(t−i )−H(t+i ), (3.24)

∂J
∂ui

=Ju(ti−1)− Ju(ti),

where

J̇u =
∂H

∂u
, Ju(tf) = 0. (3.25)

The final gradients of objective function w.r.t. time intervals ∆ti can be written as:

∂J
∂∆ti

=

NI
∑

i=1

∂J
∂ti

, i = 1 . . .NI . (3.26)

The solution is thus obtained by backward integration of costates initiating with the final condi-

tions, from necessary conditions of optimality (3.6). This is to initiate the integrator. While forward

integration of state equations is done with the initial state conditions.

The forward integration of the system is performed, and the solution is stored and then the

backward integration of the adjoint system is done with the state approximation. This method is

better than others when computing gradients for a system with large number of optimized parameters,

but it leads to complexity in implementation, due to bi-directional integration.

3.5 Orthogonal Collocation

This method of numerical optimization transforms the original dynamic optimization problem (3.1)

to a parametric optimization. Unlike CVP where only the control trajectory is parameterized, ap-

proximation of both state (x) and control (u) profiles is done in orthogonal collocations (OC).

Orthogonal polynomials replace the original trajectory of states and control for the approximation

in this method (Lagrange polynomials). The approximation is made over collocation points, for both

state and control. The roots of Legendre polynomials determine the distribution of these collocation

points (Cuthrell and Biegler, 1987, Lauw-Bieng and Biegler, 1991, Čižniar, 2005).

Let us consider the system of ordinary differential equations (3.1b), with finite numbers of elements

NI in time t ∈ [ti, ti+1]. Then we approximate both states and control by polynomials x̂, and

polynomials û, respectively. This approximation should be exact at the collocation points (Fig. 3.3).
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The state and control variables approximated through Lagrange polynomials are defined as

x̂i(t) =

Kx
∑

k=0

x̂k,iφk(t) φk(t) =

Kx
∏

r=0,r 6=k

t− tr,i
tk,i − tr,i

, (3.27)

ûi(t) =

Ku
∑

j=1

ûj,iθj(t) θj(t) =

Ku
∏

r=1,r 6=j

t− tr,i
tk,i − tr,i

, (3.28)

for i = 1, . . . , NI , (3.29)

where Kx and Ku are the number of collocation points on states and control, respectively. Hence the

vector of optimized parameters y consists of parameters of approximated states (x̂k,i), approximated

controls (ûj,i), and time intervals (∆ti), i.e.

y = [x̂k,i, ûj,i,∆ti], k = 0, . . . ,Kx, j = 1, . . . ,Ku, i = 1, . . . , NI , (3.30)

x̂0,i−1

x̂1,i−1

x̂2,i−1

x̂0,i x̂1,i
x̂2,i x̂0,i+1

x̂1,i+1

x̂2,i+1

x̂i+2

ˆ1

ti−1

ti ti+1

ti+2
∆ti

û1,i−1 û2,i−1 û1,i û2,i û1,i+1 û2,i+1

Figure 3.3: Distribution of time intervals and collocation points for state and control variables for

Kx = Ku = 2

In Fig. 3.3 we can study an example of approximation points when Kx = Ku = 2, and NI = 3.

The collocation points on states are depicted using red cross. As Ku = 2, the control trajectory comes

out to be a linear approximation in time. This control trajectory is represented in red dashed line.

So, the original state equations (3.1b) describing the system can be approximated over the collo-

cation points as the following residual equation,

∑

x̂k,iφ̇k(τk)−∆tif (tk,i, x̂k,i, ûj,i) = 0, k = 0, . . . ,Kx, j = 1, . . . ,Ku, i = 1, . . . , NI , (3.31)

where we consider each finite element normalized as τ ∈ [0, 1], i.e. the collocation points are placed

between this range [0, 1], at values according to roots of Legendre polynomials. Basic algebraic cal-

culations are required for the implementation and solution of these stated residuals, and hence avoid
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any kind of integration. The objective problem is transformed to:

min
x̂k,i,ûj,i,∆ti

{

G(x̂tf ,NI
) +

NI
∑

i=1

∫ ti,f

ti,0

F (x̂k,i, ûj,i, t) dt

}

, (3.32)

s.t.
∑

x̂k,iφ̇k(τk) = ∆tif(tk,i, x̂k,i, ûj,i), (3.33)

x̂0,1(t1,0) = x0, x̂Kx,NI
(tNI ,f) = xf , (3.34)

x̂i(ti,0) = x̂i−1(ti−1,f ), (3.35)

ûj,i ∈ [ûmin, ûmax], (3.36)

where k = 0, . . . ,Kx i.e. for each state collocation point, j = 1, . . . ,Ku (for each control collocation

point), i = 1, . . . , NI (for each time interval). The accuracy of approximation, and the speed of solving

the optimization problem depends on the number of collocation points. Generally higher number of

collocation points means higher precision, and longer solving time.

The OC method of numerical optimization is faster than CVP, as no integration needs to be

performed. The accuracy is inferior to CVP as states are approximated, but significant differences are

only found for large systems. For smaller systems with few states (as for batch DF in our research),

the differences in results of optimization (costs, and optimized parameters) between CVP and OC are

negligible.

There exist several software packages for implementing such numerical techniques of solving dy-

namic optimization problems in various programming environments. MATLAB packages such as OC

based Dynopt (Čižniar et al., 2005) or CVP based DOTcvp (Hirmajer et al., 2008) and ACADO (Houska

et al., 2011) are among those available freely. CasADi (Andersson, 2013) is a toolkit for nonlinear

numerical optimization, depending on C++ library. It uses either collocation approach, or shooting

based approach with the integration of ODE/DAE system. PROPT (Rutquist and Edvall, 2010) from

TOMLAB is another toolbox that uses collocation methods for solving optimal control problems and

is possible to be implemented using MATLAB. It is not for free but a free trial version can be used

with MATLAB.

Finally, to summarize and compare the above explained numerical approaches. In general, OC

produces a large sparse NLP formulation and is of infeasible type, where solution is obtained only if

optimum is found. In CVP a large fraction of time and memory is spent in integrating the solution

of differential equations, at each iteration. On the contrary, OC coverts the differential equations to

algebraic ones using polynomial functions, and hence is faster than CVP method. However, CVP

method can exploit robustness and efficiency of modern ODE solvers. Some of these are capable to

provide sensitivity information used for evaluation of a more accurate gradient information (Hirmajer

and Fikar, 2006).
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Chapter 4
Open-Loop Batch Diafiltration

This chapter is dedicated towards the research contributions of this thesis, in the field of open-loop

diafiltration. This chapter includes firstly the process mathematical modeling, then followed by the

detailed description about the membrane plant utilized, and its basic control. Next part is the ex-

perimental modeling via parameter estimation. Then the optimal control formulation and results

of laboratory experiments conclude this chapter. The research work published in Sharma et al.

(2017a), Sharma et al. (2018), Sharma et al. (2016b) and Sharma et al. (2019) by the author is

the source for this chapter.

The basic description of open-loop DF plant was presented in subsection 2.1.3. The detailed

diagrammatic view with process variables is presented here in Fig. 4.1 to better understand the

modeling part. The diluant inflow rate qin is the external input. This flow rate can be defined in

relation to permeate flow rate qp: variable α is the ratio between inflow of diluant to the feed tank,

and permeate outflow, i.e. α = qin/qp. This dimensionless variable α represents the process input.

4.1 Mathematical Modeling

In this chapter, the mathematical modeling of batch open-loop diafiltration membrane processes is

presented. This model has been adapted from literature (Kovács et al., 2009b). The model is described

by ordinary differential equations, representing the concentrations, and the feed tank volume, i.e. the

states.

4.1.1 Modeling Assumptions

To derive the model, we will assume the following:

• The process operates at controlled constant transmembrane pressure i.e.

∆P =
Pf + Pr

2
− Pp, (4.1)

is constant, where Pf, Pr, and Pp are the membrane inlet, retentate (outlet), and permeate side

pressure, respectively.

49
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• Density of the processed solution is assumed as constant.

• The ability of the membrane to reject a particular component is defined by a rejection coefficient

Ri as

Ri(c1, . . . , c,m) = 1− cp,i
ci

, i = 1, . . . ,m. (4.2)

where m is the number of components and ci, cp,i, are the concentrations of ith component

entering the membrane, and in the permeate, respectively.

Rejection coefficients are dimensionless numbers that represent the membrane’s rejection towards

a solute and can take values from the interval [0, 1]. This coefficient in general varies during

the process and is a function of concentrations of the solutes, temperature and pressure. As the

plant operates under constant pressure and temperature conditions, the rejection coefficients

can be modeled as functions of concentrations.

This coefficient could be defined by models such as Donnan steric partitioning model (Cuartas-

Uribe et al., 2007, Schaep et al., 1999) as a function of permeate flux for uncharged solutes, or

by Kedem-Spiegler model (Spiegler and Kedem, 1966) as a function of qp and ∆P . We assume

in this study ∆P being constant. Therefore, for simplicity, this coefficient can be assumed to be

either a constant or a function of the concentrations, and can be determined experimentally as

given in Kovács et al. (2009a).

These assumptions can be easily maintained in practice, and are important in order to maintain the

product quality.

4.1.2 Model Derivation

In this section, the derivation of the ODE’s from the mass balance is presented. These ODE’s describe

the dynamics of concentration of solutes, irrespective of number of components (m). The rate of change

of total volume in the system (refer Fig. 4.1) can be represented as:

dV

dt
= αqp − qp, (4.3)

where V is the volume of the solution inside (refer Fig. 4.1) the feed tank, and is changing according

to the rate of diluant into the tank (αqp) and rate of permeate leaving the system (qp). The permeate

flow qp can be determined experimentally as a function of concentrations of components ci entering

the membrane

qp(A, c1, . . . , cm) = AJ(c1, . . . , cm), (4.4)

where A represents the effective membrane area. J(·) stands for the permeate flux subject to unit

membrane area and is also a function of concentrations (ci). This permeation model qp is non-linear,

in all the cases studied in this thesis.

The concentration change for a component i during the processing (refer Fig. 4.1) can be obtained

from the mass balance as:
d(ciV )

dt
= −cp,iqp, (4.5)
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Figure 4.1: Batch DF process flow scheme

The solute leaves the system in the permeate flow with the concentration cp,i. The ability of the

membrane to reject a particular component can be taken from (4.2) as

Ri = 1− cp,i
ci

. (4.6)

The use of (4.6) to replace cp,i, leads the derivation from mass balance (4.5) to,

dci
dt

V + ci
dV

dt
= −(1−Ri)ciqp, (4.7)

which can be rewritten using (4.3) to

dci
dt

= −ci
αqp
V

+Rici
qp
V
. (4.8)

4.1.3 Model

The final model for batch DF comprises tank dynamics, and the dynamics of component’s concen-

trations. The ODE for tank volume with initial and final conditions can be rewritten using (4.3)

as:

V̇ = (α− 1)qp, V (0) = V0, V (tf ) = Vtf . (4.9)

The mass balance for the concentration dynamics for each solute with initial and final conditions can

be given as

ċi =
ciqp
V

(Ri − α), ci(0) = ci,0, ci(tf ) = ci,f , i = 1, 2, . . . ,m. (4.10)

In general, there are m (component concentrations ci) + 1 (tank volume) equations, with m being

the number of components. The number of unknown variables on the other hand is m + 1 (con-

centrations, volume) +1 (α), and hence the degree of freedom is 1. This mathematical model helps
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connecting the diluant addition rate, i.e. α, to the concentration of solutes, and to the volume of the

feed tank.

Furthermore, two component/solute solution has been used for all experimental batch open-loop

work. The solutes used are lactose (c1) and NaCl (c2). The experiments in this thesis are for concen-

trating lactose and reducing NaCl’s concentration, using NDF.

The NDF model for the two component solution using the general model derived above, can be

described by the following three differential equations

dc1
dt

=
c1qp
V

(R1 − α), c1(0) = c1,0, (4.11a)

dc2
dt

=
c2qp
V

(R2 − α), c2(0) = c2,0, (4.11b)

dV

dt
= (α − 1)qp, V (0) = V0, (4.11c)

where the constants R1, R2 are rejection coefficients of lactose and NaCl respectively.

It was observed during our preliminary experiments that the rejections for both lactose and NaCl

stay around constant values. Ri = 0 implies that the ith solute passes through the membrane without

any resistance. This is the case for the used membrane as it does not resist to a free passage of NaCl,

hence R2 = 0. On the contrary, Ri = 1 means that the membrane blocks the solute completely and

its concentration in the permeate is zero, which is the property of membrane regarding rejection of

lactose. Because of R1 = 1 (at any time, mass of lactose stays constant),

c1V = c1,0V0 ⇒ c1 =
c1,0V0

V
. (4.12)

Eq. (4.12) can be used to eliminate volume from the model (4.11). This transforms the general model

from three to two differential equations, i.e.

dc1
dt

= c21
qp

c1,0V0
(1− α), c1(0) = c1,0, (4.13a)

dc2
dt

= −c1c2
qp

c1,0V0
α, c2(0) = c2,0. (4.13b)

4.1.4 Diluant Input Modes

The dilution rate or input (α ≥ 0) as discussed, is the dynamic degree of freedom for the NDF

process. The classical operation of batch NDF or DF mostly uses piece-wise constant α using three

simple modes (Foley, 2006, Jaffrin and Charrier, 1994):

• No diluant input (α = 0), i.e. concentration mode (C): in this mode, the volume decreases (4.11c),

and the mass of lactose is constant. As a result, the concentration of lactose increases (4.11a),

while the concentration of NaCl stays constant (4.11b).

• The diluant inflow equals the outflow of permeate (α = 1), i.e. constant volume diafiltration

mode (CVD): lactose concentration remains constant (4.11a), as does the volume (4.11c), while

NaCl concentration decreases in this mode due to dilution done by adding pure water as dilu-

ant (4.11b).
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• Diluant flow-rate is less than the outflow of permeate (0 < α < 1), i.e. variable volume di-

afiltration mode (VVD): volume decreases in this mode (4.11c), and hence lactose concentra-

tion increases (4.11a), while due to the dilution of solution, NaCl concentration decreases as

well (4.11b).

In addition to these three modes, Lutz (2015), Paulen and Fikar (2016) have proposed two new basic

modes:

• Dynamic volume diafiltration (DVD): this is similar to VVD mode as diluant flow-rate is less

than the outflow of permeate, but unlike VVD α is not a constant but is varying with time

(0 < α(t) < 1).

• Pure dilution mode (D): in this mode a certain amount of diluant is instantaneously added to

the solution. This can be represented by α = ∞. Lactose and NaCl concentrations decrease

proportionally in pure dilution mode. Due to the nature of this step, it can be done without the

plant/process running (no energy used), and takes negligible amount of time.

Combination of different modes results in different costs and time to achieve certain concentration of

product and impurities (Paulen et al., 2013).

4.2 Laboratory Membrane Plant

The modeling, optimal control problem and its solution, for batch open-loop DF were discussed previ-

ously in this chapter. Next step is to implement this theory in practice, i.e. to prove it experimentally.

This section describes the membrane plant utilized to achieve these experimental objectives. The

plant has also been used in education process (Sharma et al., 2016b).

The laboratory membrane separation plant used for performing nanodiafiltration experiments in

this research work is shown in Fig. 4.2. This multi-membrane plant provides possibilities to use with

or without diafiltration;

1. ultrafiltration or,

2. nanofiltration or,

3. reverse osmosis.

This choice of filtration is made by manually opening and closing the respective valves on the plant

(NDF in this research work).

NFW-1812F nanofilter membrane manufactured by Synder Filtration, USA, with a cut-off range

300–500Da, and a membrane area of A = 0.465m2 was used to perform the experiments.

The following steps describe the procedure of experiments.

1. The initial feed volume is added to the feed tank comprising the initial concentrations of so-

lutes/components (c1,0 for lactose and c2,0 for NaCl) to be separated.
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Figure 4.2: P&I diagram of the laboratory nanodiafiltration process.
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2. At a fixed pumping power, resulting in certain pressure, the feed is pushed towards the membrane

in cross-flow mode. The operation is started in the total recirculation mode, i.e. both the

permeate and the retentate return to the feed tank. The concentrations and volume hence stay

constant. This is done to stabilize:

• The transmembrane pressure (TMP) (4.1), where the membrane inlet pressure is measured

using sensor PIRCA01, and retentate pressure using PIRCA02,

• The temperature of the solution,

• The hydrodynamic conditions, and to eliminate the initial fouling (Sharma et al., 2016a,

2017a).

As soon as all the physical parameters settle around or exhibit constant desired values, the experiment

is started by letting the permeate leave the system towards permeate tank.

The measurements of all physical variables can be seen online for any given sampling time. These

values can be stored for later calculations, or for online calculations while the experiments are running.

HMI designed using WinCC environment (CITATION), and Simulink based HMI are used for this

data visualization, storage, etc.

The permeate flow-rate is measured using sensor FT02 (see Fig. 4.2). The concentration of NaCl

(c2 [kg/m
3]) in the retentate is inferred from the conductivity measurements (sensor QT01), as the

contribution of lactose to conductivity of the solution is negligible. The calibration curve obtained is

represented by using the experimentally obtained linear model

c2 = 0.0007×QT [µS/cm]− 0.6949, (4.14)

where QT represents the actual retentate conductivity.

The experiments done for this solution of lactose and NaCl (Sharma et al., 2016a, 2017a, 2018)

show that the retentate comprises lactose and NaCl, while the permeate contains NaCl only.

Lactose concentration (c1 [kgm
−3]) at each sampling instance is calculated from the known initial

mass, and the actual volume/level in the feed tank (LISA01). This is due the properties of the used

membrane (Synder, 2014), that is designed to completely retain lactose in the system. Hence, the

mass of lactose in the system, at any time during the experiment stays constant. Consequently, the

concentration of lactose at any time is given by (4.12).

4.2.1 Communication and Operation

Various techniques have been implemented on the plant, for efficient communication between the

sensors and the computer. The detailed description of techniques for this communication via signal

transfer between various sensors and operator (PC) is presented here.

In Fig. 4.3 we can see the overall communication setup of the laboratory membrane process. This

communication is done in two ways, i.e. by using programmable logic controller (PLC), and industrial

network router (INR). The PLC is responsible for obtaining the basic data and for the control tasks.

This is because PLC is connected directly to the sensors and actuators of the membrane plant. The

PLC is also connected to the industrial Ethernet network, which is used as the main communication
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network within the laboratory, where the plant and all supplementary control devices are located.

The second industrial device that extends the network usage of membrane plant is the industrial

network router eWON Flexy 203 (eWON, 2014), that can be described as a coupler for the industrial

controllers. The objectives of this INR are:

• industrial protocol translation;

• direct access to PLC program variables (read/update);

• data acquisition from PLC;

• server-side script runtime environment;

• data and event logging;

• process security and alarms;

• FTP and web server.

As this industrial router is not dependent on the used protocols, it allows universal communication

with most of the industrially used equipments. The other important feature of INR is that it allows

to access the internal program variables of PLC, through common HTTP, and hence allows to extend

the plant’s control system by various control environments that are capable of HTTP communication.

These are e.g. web-based applications and visualizations, MATLAB, Python programs, etc. Since the

used industrial network is connected to wide area network, this allows the users to connect to INR

from different locations, either to use direct connection through (local PC or WiFi), or indirectly from

a remote location through the Internet.

This aids in remote setup and functioning of laboratory. Operators do not need to install the

appropriate software (MATLAB/Simulink, WinCC) on their computers and will communicate with

the process through the Internet, where the visualization scheme is a part of a Web page.

MATLAB/Simulink and WinCC based visualizations are developed and used for operating the

plant. From the visualization environment, the signals of physical variables (temperature, pressure,

valve opening, etc.) are firstly sent to INR, and finally through PLC these signals are actuated on to

the hardware.

A good visualization scheme is very important for controlling the process (Fig. 4.4). The visu-

alization is not only for effective reading of data from the sensors, but it also allows to control the

individual parts of the process (e.g. pumps, valves, agitator). The visualization developed in this

work, allows the operator to directly implement the process constraints for the pump, valve, feed level

etc. Trends, alarms, and shut-down rules have also been implemented for safety purposes.

These processes are highly influenced by operating parameters, such as temperature and pressure.

The automation and control of these parameters is described next.

4.2.2 Pressure (TMP) Control

Pressure must be maintained between specific ranges, due to following reasons:
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Figure 4.4: Human Machine Interface (HMI) designed using WinCC flexible environment, to run and

control the membrane plant.

• the theory applied in this thesis is based on the assumption of constant pressure,

• pressure fluctuations result in oscillating measurements of other quantities, for e.g. flow rates,

• uncontrolled pressure changes will most likely lead to hardware damage,

and hence the identification and control of the pressure is a necessity. The pressure could be changed

by two actuators, i.e., the feed pump and the retentate side valve (V1). This valve can be opened in

the range 0–100%. To protect the feed pump, its rotational speed is kept constant, while the retentate

valve is used for TMP control.

The TMP control is achieved using a pressure controller (PC). A proportional controller is imple-

mented to perform this regulation. TMP (4.1) is calculated based on the inlet and outlet pressure

of the membrane and is computed in the controller part. The controller actuates the corresponding

opening of the valve V1 based on the current measurement based calculated TMP, and reference TMP.

Fig. 4.5 shows an example where the desired TMP, i.e. 24 bar (dashed red line) and the measured

TMP (solid blue line) are compared. The designed controller was sufficiently good to maintain TMP

at desired value, with an acceptable error margin of 0-5 % from set point, and despite of changing

concentration (increase in lactose from 80 to 450[kg/m3]).

4.2.3 Temperature Control

The temperature of the solution (retentate, permeate) increases as the experiment progresses. The

high pressure pump on the membrane inlet generates heat and is one of the reasons for this increase in

temperature. The other reason for heat generation is due to the fluid dynamics resulting in molecular
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Figure 4.5: Control of transmembrane pressure.

frictional heat, and viscous heat. Therefore, the temperature needs to be controlled and maintained

in a safe zone.

As shown in Fig. 4.2, the plant is equipped with a heat exchanger in order to cool the retentate

returning to the feed tank. The plant has temperature sensors on both retentate and permeate sides.

The temperature of the solution is maintained at a constant value using the heat exchanger with

cooling water and a temperature controller (TC). Fig. 4.6 shows an example where the controller is

trying to maintain the retentate temperature (solid blue line) near the referenced or desired set-point

(dashed red line).

The designed controller was sufficiently good to maintain the temperature within limits, but it can

be observed that there exist oscillations. Due to imperfection of the employed valve, the temperature

cannot be held constant and has an average deviation of ±0.6 ◦C. This causes minor fluctuations in

measurements of other process variables in experiments.

4.2.4 Diluant Addition

The experiments in this thesis include diafiltration (NDF). This diluant (reverse osmosis water) ad-

dition for NDF is done using additional pumps. Diluant addition at a controlled rate is extremely

important for this research. Hence, flow ratio controller (FFC in Fig. 4.2) has been implemented to

pour diluant into the feed tank precisely based on calculations. This calculation can be based on the

measurement of volume inside feed tank (level control), or the amount of permeate leaving the system
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Figure 4.6: Control of temperature.

per unit time (permeate flow rate based control).

The level/volume measurement sensor (LISA01) of the feed tank is constrained in the range 0.003–

0.032m3 (3–32L). The controller directly manipulates inlet flows to the tank as shown in Fig. 4.7(a)

using the level transmitter as sensor.

The diluant addition can also be changed indirectly by manipulating the ratio between the diluant

inflow and permeate flow (Fig. 4.7(b)), i.e. α. In this case, the permeate flow sensor (FIRC02) is used

to indirectly account the decrease in system volume, and accordingly the pumps adjust the flow rate

of diluant.

In Fig. 4.8, an example is presented for controlling the level inside the feed tank. The objective

is to maintain the level of tank at a constant value of 0.00324 m3 (3.24 L), using permeate flow rate

based control. This is done by putting α = 1 (inflow = outflow) in the visualization scheme. Based on

the permeate flow rate measurement fluctuations (FIRC02), we can observe the corresponding minor

fluctuations in measured feed volume. An average deviation of 0.00005 m3 (50 mL) has been measured

during the experiments.
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4.3 Experimental Modeling

The permeate flow rate (qp) present in the model equations is generally a function of concentration,

pressure and temperature for a given membrane. In this thesis, the batch membrane operation is

done by maintaining constant pressure and temperature. Therefore, the permeate flow rate is only

a function of concentrations. This relation needs to be identified and parameterized experimentally

in order to develop the further research on this process. This experimental modeling work has been

published in Sharma et al. (2016a, 2017a, 2018).

Two different models were fitted with the permeate flow rate data i.e., a function of lactose and

NaCl concentration:

• Limiting flux (LF) model: This model has been taken from Balannec et al. (2005), Blatt et al.

(1970), Tang and Leckie (2007). The model defines the permeate flow rate as a function of time-

varying lactose (macro-solute) concentration and the parameters, i.e. mass transfer coefficient

(γ1 mh−1) and limiting concentration of lactose (γ2 mh−1).

qp = k A ln

(

clim
c1

)

= A (γ1 + γ2 ln(c1)) , (4.15)

This model is used as the dependence of permeate flow on NaCl concentration is quite low.

This can be inferred from studying the CVD part of experiment (Fig. 4.9), where the NaCl is

decreasing, but the magnitude of change in qp is very small.

Two such models have been fitted. Firstly, by taking the complete experimental data (both C

and CVD modes), i.e. LF1. Secondly, as this model is only a function of c1, and c1 is not varying
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a lot during the second part of experiment (CVD mode in Fig. 4.10), hence a model was fitted

using only the data from the first part of experiment, i.e. LF2.

• Generalized limiting flux (GLF) model: Based on the preliminary experiments, a form of the

model of qp used in this work is defined as generalized limiting flux model (GLF), (Rajagopalan

and Cheryan, 1991)

qp = A (γ1 + γ2 ln(c1) + γ3 ln(c2)) , (4.16)

It incorporates concentrations of both solutes and can be reduced to the limiting flux model

with γ3 mh−1 = 0.

The optimal parameter estimation problem to fit the flow rate data to the permeate flow rate

model and the concentration data to state values can be formulated as:

4.3.1 Problem Definition

min
γ1,γ2,γ3

N
∑

i=1





(qp(ti)− qp,m(ti))
2

δqp
+

2
∑

j=1

(cj(ti)− cj,m(ti))
2

δcj



 (4.17a)

s.t.

ċ1 = c21
qp

c1,0V0
(1− α), (4.17b)

ċ2 = −c1c2
qp

c1,0V0
α, (4.17c)

c1(0) = c1,0, c2(0) = c2,0, (4.17d)

qp = (4.16) or (4.15), (4.17e)

where qp,m(ti), c1,m(ti), and c2,m(ti) represent measured permeate flow-rates and concentrations of

the solutes at measurement times (ti). The number of observations or data points is represented by N .

In the model equations volume V has been replaced using (4.12). The weighting of each term in the

objective function is represented by coefficients δqp , δc1 , δc2 , which are set to experimentally observed

variances of the corresponding measurements.

Note, that in contrast to other standard least-squares approaches that would fit the permeate flow-

rate (4.16) or (4.15) against the measurements of concentrations, the employed estimation procedure

incorporates the mass balance equations (4.17b)–(4.17d), which serves the purpose of data reconcilia-

tion against the errors in concentration measurements. Such approach results in consistent and more

precise parameter estimates.

4.3.2 Problem Solution

Based on our experimental results it is clear that at constant temperature and TMP; NF permeation

rate depends on concentrations of both lactose and NaCl, i.e. qp = qp(c1, c2). The membrane fouling

occurs only for a short initial period and stabilizes quickly. The lactose molecules being larger in

size have significantly larger effect on the permeate flow when compared to NaCl molecules. Data
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Table 4.1: Parameters of the models.

model GLF LF1 LF2

γ1 3.0 2.8 3.4

γ2 1109.9 1246.7 723.7

γ3 0.1 - -

from an NDF experiment that concentrated lactose from 40 kg/m3 to 120kg/m3, (C mode) and that

reduced NaCl from 3.35 kg/m3 to 1 kg/m3 (CVD mode) was used to perform the fitting of models from

literature of such kind. The experiment was done in total recirculation mode (permeate returns to

feed tank, volume and concentrations remain constant) until fouling got constant, and then permeate

was allowed to leave the system. 56 data points of flow rate were used to perform model fitting. The

sample time was 0.025h.

The above non-linear least-squares problem was implemented and solved using MATLAB, and the

states were integrated using an ode45 solver.

4.3.3 Results

The resulting parameters are given in Table 4.1 and the permeate flow rates and concentrations in

Figs. 4.9–4.11. It can be observed that the GLF model fits the data better than the LF models,

especially in the second part of the experiment with α = 1. This is expected as the GLF model can

accommodate the variations in the concentration c2(t). The value of sum of squared errors was at the

minimum for GLF model, increased slightly for LF1 model, and was maximum for LF2 model. The

comparison of the estimation between LF1 and LF2 models shows that for C mode the LF2 model

fits the data better, but when simulated for CVD mode the results were worst. It concretes that even

though LF model is solely a function of c1, still data for both C and CVD modes are required for

fitting the complete NDF data. The measured and the simulated concentrations were satisfactorily

corresponding to each other, for all fitted models (Fig 4.10, 4.11).
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Figure 4.9: Permeate flow rate measurements vs simulated estimated models.
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Figure 4.10: Comparison of lactose concentration: measured vs simulated data based on estimated

models.
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models.
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4.4 Optimal Control

The objective of the membrane process optimization is to find a time-dependent input function α(t),

which results in the increase of lactose concentration from initial value c1,0 to final value c1,f and in

the simultaneous reduction of the salt concentration from c2,0 to final value c2,f, whilst minimizing

the operating costs.

4.4.1 Problem Formulation

The operating costs can be minimized in various ways. The most common is minimization of the

processing time

t∗f = min
α(t)

tf = min
α(t)

∫ tf

0

1 dt, (4.18)

where tf denotes the time needed to bring the process from the given initial concentrations to desired

final ones. Time minimization results in reduction of costs by decreasing the consumption of electric

energy (mainly used for running the pumps) and labor costs.

Another generally used cost function deals with the overall diluant consumption. It is given as the

total volume of the diluant addition to reach the desired concentrations i.e.

V ∗
D = min

α(t)
VD = min

α(t)

∫ tf

0

q0 dt = min
α(t)

∫ tf

0

αqp dt. (4.19)

In order to incorporate both processing time (tf) and diluant consumption (VD), a weighted objec-

tive function can be defined. The resulting optimal control problem can be formulated as:

J ∗ = min
α

wTtf + wDVD, (4.20a)

s.t.

ċ1 = c21
qp

c1,0V0
(R1 − α), c1(0) = c1,0, (4.20b)

ċ2 = c1c2
qp

c1,0V0
(R2 − α), c2(0) = c2,0, (4.20c)

c1(tf) = c1,f, c2(tf) = c2,f, (4.20d)

qp = qp(c1, c2). (4.20e)

The non-negative weighting coefficients wT, wD represent the weight (or price) for a unit of processing

time and diluant consumption, respectively. The process engineer can decide on the values of these

coefficients based on the prevailing costs of respective quantities or based on known unit costs. One

can opt for time (wD = 0 /em3) or diluant (wT = 0/eh) minimization, or shift in-between these

goals, by changing the values of these coefficients.

4.4.2 Problem Solution

The theoretical analysis of the optimal operation of batch membrane processes can be found in Paulen

and Fikar (2016) and it is based on Pontryagin’s minimum principle (Pontryagin et al., 1962).

The optimal diluant addition strategy consists of three successive operation modes, where the first

and the last mode corresponds to operation with α being saturated on constraints (either concentration
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or pure dilution mode). The second mode is characterized by the singular curve equation (S = 0) and

diluant rate α, which are functions of both solute’s concentrations (Paulen and Fikar, 2016)

S = wT

(

qp +
∂qp
∂c1

c1 +
∂qp
∂c2

c2

)

+ wDq
2
p = 0, (4.21)

α =
∂S
∂c1

c1
∂S
∂c1

c1 +
∂S
∂c2

c2
. (4.22)

The middle mode for the lactose-salt system for the GLF model (4.16), using singular curve (4.21)

and singular control equation (4.22) is given as

S(c1, c2) = AwT(γ1 + γ2 + γ3 + γ2 ln c1 + γ3 ln c2)

+A2 wD(γ1 + γ2 ln(c1) + γ3 ln(c2))
2 = 0,

(4.23)

α =
γ2

γ2 + γ3
= 0.914. (4.24)

Hence, the optimal middle mode for this system with GLF model is VVD. The optimal concentration

of macro-solute (lactose) to switch to the middle mode can be derived from (4.23) for the following

three cases:

1. Multi-objective i.e. wT > 0 and wD > 0:

c∗1 = exp



−
γ1 + γ3 ln(c2) +

wT−√
wT

√
(wT+(γ2−γ3)4AwD)

2AwD

γ2



 , (4.25)

2. Time-optimal i.e. wT > 0 and wD = 0:

c∗1 = exp

(

−γ1 + γ2 + γ3 + γ3 ln(c2)

γ2

)

, (4.26)

3. Diluant-optimal i.e. wT = 0 and wD > 0:

c∗1 = exp

(

−γ1 + γ3 ln(c2)

γ2

)

. (4.27)

The first and the third mode are either C (α = 0) or D (α = ∞) mode. This depends on initial and

desired final concentrations w.r.t. to the singular curve (the sign of S(c1,0, c2,0) and S(c1,f, c2,f)). In

the first section one takes the mode that brings the concentrations of the solutes to the singular curve

(S(c1, c2) = 0 or c∗1). Hence, if the initial concentration of macro-solute is less than optimal switching

concentration, then we need to use C mode to increase macro-solute’s concentration to reach there.

On the contrary, we need to reduce macro-solute’s concentration using D mode if initial concentration

of macro-solute is more than optimal switching concentration. These cases for initial mode are:

α =



















0 (C mode), if c1,0 < c∗1,

∞ (D mode), if c1,0 > c∗1, and

αs, if c1,0 = c∗1.

(4.28)

The third section starts at singular curve and chooses the mode that finishes at the desired final

concentrations. That is, if the macro-solute is over-concentrated than its final concentration at the
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end of second (singular) section, then D mode needs to be applied to dilute the solution and reach

the final concentrations. On the contrary, if the macro-solute was not concentrated enough during the

previous two modes, C mode needs to be applied again to reach the final concentrations.

Now, for the limiting flux model (4.15), using the same general singular curve (4.21) and singular

control equation (4.22), the optimal switching condition and control can be given as

S(c1, c2) = wTAk
(

ln
clim
c1

− 1
)

+wD A2 k2 ln
(clim

c1

)2

= 0,
(4.29)

α =
∂S
∂c1

c1
∂S
∂c1

c1
= 1. (4.30)

Therefore, the optimal middle control in case of limiting flux is CVD. Note: the optimality of CVD

in minimum-time (time-optimal) case was previously found by Ng et al. (1976).

For limiting flux model, the optimal switching concentration of lactose to the middle mode can be

found analytically for;

1. Multi-objective i.e. wT > 0 and wD > 0:

c1 = clim exp

(

wT −
√

w2
T + 4kAwTwD

2AkwD

)

, (4.31)

2. Time-optimal i.e. wT > 0 and wD = 0:

c1 =
clim
e

, (4.32)

3. Diluant-optimal i.e. wT = 0 and wD > 0:

c1 = clim. (4.33)

The modes to be applied in first and third section depend on the initial and final conditions w.r.t. the

singular curve.

The middle optimal control for both models is constant, but different. The singular curve is also

different for the models, and this translates into changes in start and end points (concentrations) of

the middle mode.

4.5 Optimal Control – Case Studies

The purpose of case studies is to demonstrate both in simulations and experimentally, the proposed

optimal membrane separation strategy (section 4.4) using batch open-loop NDF, and its advantages

to existing (traditional) industrial strategies. This work has been published in Sharma et al. (2019)

and Sharma et al. (2018).

Lactose monohydrate (M = 360.31 g/mol) is the purified and concentrated product while sodium

chloride (M = 58.44 g/mol) is the impurity to be removed. Reverse osmosis water is used as a solvent

to prepare solutions, and also as the diluant for DF.
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Figure 4.12: Concentration diagram for case studies along with the singular curve (S = 0).

For the first two case studies (case study 1 and 2), the process initial conditions are as follows:

the volume of the solution V0 = 0.032m3, the lactose concentration c1,0 = 48 kg/m3 and the salt

concentration c2,0 = 6kg/m3. The difference in case study 1 and 2 lies in the final concentrations.

We will study two possible final concentration sets:(c1,f, c2,f) = (155 kg/m3, 1 kg/m3) and (c1,f, c2,f) =

(470 kg/m3, 3 kg/m3). These initial and final points are shown in Fig. 4.12 together with the singular

curve (4.23) for minimum time settings (wD = 0). The final points are chosen so that they are

positioned to the left and to the right of the singular curve, respectively.

As the initial point is located to the left of the singular curve, the optimal initial operation mode

for both cases is the C mode. When the final point lies to the left of the singular curve, the optimal

terminal (third) operation mode is the D mode. In the opposite case another C mode is used to finish

the processing.

Case study 3 is different from case study 1 and 2 in both initial and final conditions. This case study

is presented to confirm the optimality results with different sets of starting and desired concentrations

of lactose and NaCl.

4.5.1 Case Study 1

Three strategies were experimentally tested:

Traditional two step strategy C-CVD: (α = {0, 1}): pure NF using the C mode until lactose

concentration increases to the desired final value (c1 = c1,f = 155 kg/m3) followed by the CVD

mode to reduce NaCl concentration to the final value (c2 = c2,f = 1kg/m3).

Time-optimal strategy C-VVD-D: (α = {0, 0.914,∞}), wD = 0: The concentration mode is used

to keep the salt concentration constant c2 = c2,0 = 6kg/m3 and to increase the lactose concen-
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Figure 4.13: Case study 1: Permeate flow-rate measurements of traditional and optimal strategies.

tration to c1 = exp
(

− (γ1 + γ2 + γ3 + γ3 ln c2)/γ2
)

= 311.2 kg/m3, which follows from (4.23).

Then, the VVD mode is applied until the condition c1/c2 = c1,f/c2,f is met. This ends the

separation process and an appropriate amount of water is added to the solution.

Economically optimal strategy C-VVD-D: (α = {0, 0.914,∞}), wT = 1e/h, wD = 0.2e/m3.

The only difference to the time-optimal strategy is the lactose concentration to be reached in

the concentration mode. The singular curve (4.23) is shifted to the right in the concentration

diagram and the VVD mode is applied when c1 = 438.2 kg/m3. This switching concentration is

found numerically using the values of wT, wD from (4.23).

The switching concentration of lactose is quite high in both of the optimal cases. The solubility of

lactose at the given temperature is lower than that of our requirements (Yalkowsky et al., 2016).

However, as lactose is totally retained by the membrane, so it does not effect significantly our optimal

strategy and the process of separation. Moreover, due to high flow rate of retentate returning to the

tank, the solution was continuously mixed/stirred, and lactose was not observed to be settled at the

bottom or segregated in pipes. Hence, the only significant variable effected by lactose concentration

is qp, and that we have studied and modeled in this thesis.

Measurements from the conducted experiments are presented in the permeate flow-rate diagram

(Fig. 4.13) and in the concentration diagram (Fig. 4.14). The permeate diagram shows that although

the duration of the concentration mode is the shortest in the classical strategy, the subsequent CVD

mode makes the final processing time the longest.

The concentration diagram (Fig. 4.14) shows initial and final points (green and red circles, respec-

tively) as well as solid lines indicating dilution mode at the end of processing with optimal strategies.

Table 4.2 summarizes experimentally obtained values of final processing times and water consump-

tion. Relative values ∆tf,∆VD take the maximum value in the column as 100% and show reduction
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Figure 4.14: Case study 1: Concentration measurements of lactose and NaCl for traditional and op-

timal strategies.

Table 4.2: Experimental results: comparison of total processing time and diluant consumption for

different scenarios in case study 1.

Strategy tf [h] ∆tf [%] VD × 10−3 [m3] ∆VD [%] Cost [e]

traditional (C-CVD) 6.53 100.00 10.69 100.00 6.53

time-optimal 6.04 92.50 9.16 85.61 6.04

economically optimal 6.40 98.01 7.96 74.39 6.40

in other experiments (e.g. time-optimal takes only 92.5% of time required by C-CVD approach).

The cost in the table is calculated by taking the price per unit of time and diluant volume from the

economically optimal strategy (wT = 1e/h, wD = 0.2e/m3).

We can notice that the traditional strategy is worse in both the indicators compared to the proposed

optimal ones. These take 92-98% of the processing time and 74-86% of the diluant consumption.

Although the economically optimal strategy is close to the traditional one in the terms of the processing

times, its diluant usage is significantly lower.

It is interesting to compare these experimental results with simulations/predictions based on the

model. Table 4.3 shows the same information as Table 4.2. We can clearly see that the permeate

model parameters fitted are not perfect and some discrepancies can be observed. When the processing

times are compared, the differences are between 5-10%. Diluant consumption shows larger differences

indicating that the model parameter estimation might be improved.
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Table 4.3: Simulation results: comparison of total processing time and diluant consumption for dif-

ferent scenarios in case study 1.

Strategy tf [h] ∆tf [%] VD × 10−3 [m3] ∆VD [%] Cost [e]

traditional (C-CVD) 6.15 100.00 17.75 100.00 9.70

time-optimal 5.72 93.00 10.10 56.40 7.74

economically optimal 5.80 94.31 8.91 50.20 7.58

Overall, the C mode takes longer time in experiments than in simulations, whereas CVD/VVD

takes shorter duration in experiments when compared to simulations. Note that economic difference

between both optimal strategies is practically negligible, which is due to chosen unit prices.

It is worth noting that besides reducing processing time and diluant consumption, the optimal

strategies can be applied with existing setup comparable to the industrial standard and without any

new hardware. Also, no on-line optimization/calculations are required: the switching concentrations

and control is found out prior to the start of an experiment.

Further improvement can be achieved by re-estimating the model parameters while performing

the separation (online parameter estimation). This may result in implementation of a truly real-

time optimal strategy, but at the expense of online optimization/calculations, and hardware/software

modifications.

4.5.2 Case Study 2

Three strategies were implemented and compared:

Traditional two step strategy C-CVD: (α = {0, 1}): pure NF using the C mode till lactose con-

centration increases to the desired final value (c1 = c1,f = 470 kg/m3) followed by the CVD

mode to reduce NaCl concentration to the final value (c2 = c2,f = 3kg/m3).

Traditional three step strategy C-CVD-C: (α = {0, 1, 0}): using the limiting flux model (Ng

et al., 1976), apply the concentration mode until lactose concentration increases to (c1 = clim/e =

458 kg/m3) followed by the CVD mode to reduce NaCl concentration to the final value (c2 =

c2,f = 3kg/m3). The third step is again the C mode to concentrate lactose to its desired final

concentration c1 = c1,f = 470 kg/m3.

Time-optimal strategy C-VVD-C: (α = {0, 0.914, 0}), wD = 0: The concentration mode is used

to increase the lactose concentration to c1 = 311.2 kg/m3 which follows from (4.23). Then, the

VVD mode is applied until NaCl concentration equals to the final value (c2 = c2,f = 3kg/m3).

The third step is again the C mode to concentrate lactose to its final concentration c1 = c1,f =

470 kg/m3.

The experimental results are shown in Figs. 4.15, 4.16 and Table 4.2. The permeate flow-rate

diagram, (Fig. 4.15) shows that all three strategies started at a similar initial flow rate due to the

identical initial concentrations. The initial trajectory of flow rate during the C mode is the same for
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Figure 4.15: Case study 2: Permeate flow-rate measurements of traditional and optimal strategies.
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Figure 4.16: Case study 2: Concentration measurements of lactose and NaCl for traditional and op-

timal strategies.
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Table 4.4: Experimental comparison of total processing time and diluant consumption for different

scenarios in case study 2.

Strategy tf [h] ∆tf [%] VD × 10−3 [m3] ∆VD [%] Cost [e]

traditional (C-CVD) 6.54 100 2.37 75.72 7.01

limiting flux 6.38 97.75 2.65 84.76 6.91

time-optimal: GLF 6.34 97.00 3.13 100.00 6.97

all three of them. The flow-rate trajectory is different in the later part due to difference in inputs for

different strategies. The flow-rate in the three step strategies reduces, then stays around a constant

value, and finally reduces again. On the other hand, for the C-CVD two step strategy, the flow-

rate reduces while concentrating lactose and increases slightly while reducing NaCl. However, only

negligible differences can be observed in the final processing times.

When comparing the concentration diagrams, both traditional strategies apply the CVD step

at higher lactose concentration whereas the optimal strategy switches to the VVD mode earlier

(Fig. 4.16). The initial and final concentrations are represented by same markers as in case study 1.

Table 4.4 presents experimental results for processing time and diluant consumption. As also

observed from figures, time-optimal strategy does not bring much improvement and there is no reason

to abandon classical strategies in this case. The simulation results are not shown here but they confirm

these implications. Relative values ∆tf and ∆VD compare time and diluant consumptions.

Simulation results for diluant minimization show consumption of only VD = 1.63×10−3m3 i.e. 48%

of diluant needed by the time optimal strategy. This strategy is C-VVD-D, and takes the longest to

get to the final concentrations (tf = 7.2 h). The switching concentration to D mode for this strategy is

very high (917 kg/m3) and unattainable on this plant, for the given initial conditions of concentrations

and feed volume. Therefore, realistic practical approach to diluant consumption minimization would

concentrate the solution as much as working conditions allow.

4.5.3 Case Study 3

The experiment objective was to drive the lactose concentration from 50 kg/m3 to 110 kg/m3, and

to reduce the NaCl concentration from 5.3 kg/m3 to 1 kg/m3, using NDF. The initial volume of the

solution was 0.021m3. The three strategies were implemented, i.e.

Traditional two step strategy(α = {0, 1}) : concentrate using C mode till lactose increases to

final concentration (c1 = c1,f = 110 kg/m3), then using CVD mode reduce NaCl to reach the

final objective (c2 = c2,f = 1kg/m3).

Time-optimal for GLF model(α = {0, αs, ∞}) :

1. Use C mode to drive from initial concentrations to reach singular surface (S = 0), i.e.

concentrate till lactose concentration (c1) is 332.7 kg/m
3.
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2. Stay on the singular surface using singular control αs, till the condition c1/c2 = c1,f/c2,f is

met. The separation process ends with this step.

3. The final step is to get the final concentrations using D mode, and it practically takes negli-

gible amount of time. This is represented by the continuous line to the final concentrations

(red circle) in Fig. 4.17.

Time-optimal for LF1 model(α = {0, αs, ∞}) :

1. Use C mode to drive from initial concentrations to reach singular surface (S = 0), i.e.

concentrate till lactose concentration (c1) is γ2/e = 458.6 kg/m3.

2. Stay on the singular surface using singular control αs, till the condition c1/c2 = c1,f/c2,f is

met.

3. The final step is to get the final concentrations using D mode, as in for GLF model

(Fig. 4.17).

The volume measurement device on the plant is constrained by 0.003-0.032m3. As we use volume

measurement to get the concentration of lactose (4.12), hence for the given initial volume of 0.021m3,

the maximum concentration of lactose is constrained to 340kg/m3. The implementation of LF1

strategy was thus compromised, and instead of concentrating lactose to 458.6 kg/m3, we concentrated

to 340kg/m3.

The results and comparison of the three strategies is quantified and represented in Figs. 4.17

and 4.18 and Table 4.5. Figure 4.14 shows evolution of concentrations c1(t) and c2(t), where the

initial and final points are marked as green and red circle, respectively. The dilution mode, which is

present for optimal strategies derived from GLF and LF1 model, is represented by solid lines. It is

clear that all three strategies were able to drive the solution to the desired concentrations of lactose

and NaCl.

The permeate flow rate diagram (Fig. 4.18) shows that all strategies started at similar initial flow

rate as the initial concentrations were identical. The trend of decrease in flow rate as the concentration

of lactose increased is also same for all three of them. The reason behind the reduction of time with

time-optimal strategy (Table 4.5) is the step when NaCl concentration is reduced. It can be observed

in the flow rate figure that although due to over-concentrating lactose in optimal strategies the C

mode takes longer time (t1 in Table 4.5), as a result the time for CVD in case of LF1 and VVD

in case of GLF reduces (t2 in Table 4.5). This reduction results in overall reduction of time (tf in

Table 4.5) as we stop the process after CVD/VVD, and do the instantaneous D mode to reach the

desired concentrations. The optimal strategies took 87-90% of the time taken by traditional strategy

(∆tf in Table 4.5), which directly translates to cost percent in this case study.

The results of case study 3 also confirm that models fitted were good enough but were still not

perfect, in context of time-optimal operation. As we can see from the equation for S (4.23), that

during the VVD mode the permeate flow rate should be constant, i.e. qp = γ1 (γ3 + 1). Now, if we

look at the experimental values of qp from Fig. 4.13, we observe that during the VVD mode for optimal

GLF operation the permeate flow is varying. This may result from the differences in model parameters

from one batch to another, and because the optimal switchings were done based on concentration and
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Figure 4.17: Concentration measurements of lactose and NaCl for traditional and optimal strategies,

along with the initial and final conditions.
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Figure 4.18: Permeate flow rate measurements of traditional and optimal strategies.
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Table 4.5: Comparison of time taken by traditional and optimal strategies.

Strategy t1 [h] t2 [h] tf [h] ∆tf [%]

traditional 1.75 2.53 4.28 100

GLF 3.08 0.66 3.74 87

LF1 3.35 0.50 3.85 90

not on qp. As discussed in previous cases studies this could be avoided by estimating the model while

performing the experiment (online parameter estimation).

In these 3 case studies, despite of the fact that experimental results were not identical to simula-

tion/expected results, it was experimentally demonstrated and proved the optimal operation strategies

resulted in economic benefits.



Chapter 5
Closed-Loop Batch Diafiltration

In this chapter, the mathematical modeling and optimal control of batch with partial recirculation of

retentate mode of diafiltration, is presented. This thesis work has been published in Sharma et al.

(2017b) and Sharma et al. (2015).

The batch process with recirculation possesses the units of an open-loop DF plant, as given at

page 26. Besides these, the following additional parts are installed on batch closed-loop DF plant:

• recirculation loop – this loop aids in the partial recirculation of retentate,

• recirculation pump (P2) – the pump that forces the partially recycled retentate in the recircu-

lation loop,

• recycle valve (V1) – the valve to split the retentate, and is representing as actuator for splitting

or recirculation ratio. In this work it is denoted by s.

5.1 Mathematical Modeling

The section below describes the modeling for the closed-loop DF system, and the ODE’s describing

the dynamics of concentration of solutes.

5.1.1 Modeling Assumptions

To derive the model, we will assume the following in addition to the modeling assumptions made for

deriving batch open-loop model (Section 4.1.1):

• The piping and construction of the plant is considered to be unaltered during the run and hence

for closed-loop DF the loop volume VL is constant. The flow rate inside the loop qL is also

constant (Fig. 5.1).

• The number of the components to be separated is two, thus there is a macro-solute and micro-

solute. A generalization to the model with more components is straightforward and will not be

considered here.

79
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• The rejection coefficient Ri from (4.2) can written for closed-loop batch DF as

Ri = 1− cp,i
cL,i

, i = 1, 2. (5.1)

where cL,i, cp,i, are the concentrations of ith component entering the membrane from loop and

leaving the membrane as permeate, respectively.

• We assume for initial conditions of the process that the liquid of the volume V0 and the compo-

nent concentrations c1,0, c2,0 resides in the feed tank and in the piping.

5.1.2 Model Derivation

The batch closed-loop diafiltration configuration provides two dimensionless variables as manipulated

inputs:

• diluant addition rate α ≥ 0

• partial recycle ratio s ∈ [0, 1], i.e. the splitting factor for retentate recirculation. The flow of the

retentate from the membrane qr is thus distributed into two streams: one returning to the feed

tank sqr, while the other to the loop (1− s)qr (Fig. 5.1).

The whole process model can be divided into two parts: recirculation loop and feed tank.

Modeling of Recirculation Loop with Membrane Module

As VL is constant, the mass balance of the loop given under the assumption of constant density of the

liquid in the loop can be written as

dVL

dt
= q1 − qp − sqr = 0, (5.2)

where q1 is the flow rate out of the tank and towards the recirculation loop, and sqr is the fraction of

the retentate that returns to the tank.

The permeate flow rate qp as in open-loop batch DF, is usually determined experimentally as a

nonlinear function of concentrations of components entering the membrane (cL,1, cL,2), i.e.

qp(cL,1, cL,2) = AJ(cL,1, cL,2), (5.3)

where A and J(·) stand for the effective membrane area and permeate flux subject to unit membrane

area.

As there is no accumulation of mass in the membrane module, the overall and component mass

balance of the membrane module give

qL = qr + qp, (5.4)

qLcL,i = qrcr,i + qpcp,i, (5.5)

where cr,i is the concentration of ith component in retentate.

The retentate flow qr in (5.2) can be replaced using (5.4) to get

q1 = qp + s(qL − qp) = sqL + qp(1− s). (5.6)
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Figure 5.1: Batch diafiltration with partial recirculation process flow scheme

The change in concentration of a component inside the loop (cL,i) can be derived from mass balance

of a solute, i.e.

dcL,iVL

dt
= cL,i

dVL

dt
+ VL

dcL,i
dt

= q1cT,i − sqrcr,i − qpcp,i, (5.7)

where cT,i is the concentration of ith component inside the feed tank.

The differential equation that describes the evolution of component concentration inside the loop

can then be obtained by substituting qrcr,i from (5.5) and cp,i from (4.2) into (5.7), and by using the

assumption that VL is constant, i.e.

VL
dcL,i
dt

= q1cT,i − s[qLcL,i − qpcL,i(1 −Ri)]− qpcL,i(1−Ri)

= q1cT,i + cL,i[−qp + qpRi − qLs+ qps− qpRis]

= cT,i[sqL + qp(1− s)] + cL,i[−qp + qpRi − qLs+ qps− qpRis], i = 1, 2. (5.8)
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Modeling of Feed Tank

The total mass balance in the feed tank gives

dVT

dt
= αqp + sqr − q1. (5.9)

In the equation above, qr is replaced using (5.4), and q1 using (5.6) to yield

dVT

dt
= αqp + s(qL − qp)− sqL − qp(1− s), (5.10a)

= (α− 1)qp. (5.10b)

This equation representing the change of volume is identical to the standard batch open-loop config-

uration and can also be obtained directly from the overall mass balance of the process.

The mass balance of a component in the feed tank yields

dcT,iVT

dt
= cT,i

dVT

dt
+ VT

dcT,i

dt
= sqrcr,i − q1cT,i. (5.11)

Substituting dVT/dt from (5.10b), qrcr,i from (5.5), and cp,i from using (4.2) gives

VT
dcT,i

dt
= s[qLcL,i − qpcL,i(1−Ri)]− q1cT,i − cT,i[αqp − q1 + s(qL − qp)]. (5.12)

Finally, substituting for q1 from (5.6) we get the final equation

VT
dcT,i

dt
= scL,i[qL − qp(1−Ri)]− cT,i[αqp + s(qL − qp], i = 1, 2. (5.13)

5.1.3 Complete Model

The complete model can then be described by the following system of ordinary differential and algebraic

equations:

dVT

dt
= (α− 1)qp, VT(0) = V0 − VL (5.14a)

VT
dcT,1

dt
= cL,1s(qL − qp + qpR1)− cT,1[s(qL − qp) + αqp], cT,1(0) = c1,0, (5.14b)

VT
dcT,2

dt
= cL,2s(qL − qp + qpR2)− cT,2[s(qL − qp) + αqp], cT,2(0) = c2,0, (5.14c)

VL
dcL,1
dt

= cT,1[sqL + qp(1− s)]

+ cL,1[−qLs− qp − qpR1s+ qps+ qpR1], cL,1(0) = c1,0, (5.14d)

VL
dcL,2
dt

= cT,2[sqL + qp(1− s)]

+ cL,2[−qLs− qp − qpR2s+ qps+ qpR2], cL,2(0) = c2,0. (5.14e)

The total liquid volume is given by an algebraic equation as

V = VT + VL. (5.14f)

Similarly, the total concentration of a component is influenced by its respective tank and loop con-

centrations, and can be written as

ci =
VTcT,i + VLcL,i

VT + VL
i = 1, 2. (5.14g)
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The model (5.14) thus comprises 5 differential and 3 algebraic equations. The model variables

are the tank and total volumes (VT, V ), the tank, loop, and total concentrations (cT,1, cT,2, cL,1, cL,2,

c1, c2). There are two degrees of freedom: diluant rate α and recirculation ratio s that serve as

manipulated variables. The permeate flow qp as well as the rejection coefficients R1, R2 are functions of

loop concentrations defined by (5.3), (4.2). Note that this model is nonlinear and affine in manipulated

variables.

5.1.4 Model Simplifications

We will discuss three possible model simplifications and abstractions here. The first two will have

implications on optimal control and operation of the process.

In the first case, the complete model boils down to the classical batch diafiltration model (open-

loop) if there is no recirculation and the whole retentate stream returns to the tank (s = 1). In that

case, it follows from Fig. 5.1 that q1 = qL, V = VT, VL = 0, and ci = cT,i = cL,i. The resulting model

contains three differential equations

dV

dt
= (α− 1)qp, V (0) = V0, (5.15a)

V
dc1
dt

= c1qp(R1 − α), c1(0) = c1,0, (5.15b)

V
dc2
dt

= c2qp(R2 − α), c2(0) = c2,0. (5.15c)

In the second case, the whole recirculation loop with the membrane module can be thought of as

an abstraction of a membrane with some different properties. Note that in this case the recirculation

ratio s is an inner variable of the process and the abstraction will hide it. This means, that the closed-

loop process shown in Fig. 2.6(b) can be replaced with the open-loop process shown in Fig. 2.6(a)

with only one manipulated variable α.

The third case discusses a situation when VT is significantly greater than VL. This means that the

recirculation loop has only a small influence on the overall process and its dynamics can be neglected.

Therefore, the original system of 5 differential equations can be replaced by three differential and two

algebraic equations

dVT

dt
= (α− 1)qp, VT(0) = V0 − VL, (5.16a)

VT
dcT,1

dt
= cL,1s(qL − qp + qpR1)− cT,1[s(qL − qp) + αqp], cT,1(0) = c1,0, (5.16b)

VT
dcT,2

dt
= cL,2s(qL − qp + qpR2)− cT,2[s(qL − qp) + αqp], cT,2(0) = c2,0, (5.16c)

0 = cT,1[sqL + qp(1− s)]

+ cL,1[−qLs− qp − qpR1s+ qps+ qpR1], cL,1(0) = c1,0, (5.16d)

0 = cT,2[sqL + qp(1− s)]

+ cL,2[−qLs− qp − qpR2s+ qps+ qpR2], cL,2(0) = c2,0. (5.16e)

Clearly, the model can be rewritten with three differential equations only—the loop concentrations

can be derived from the algebraic equations and substituted back to differential ones. However, that

would break the model structure being affine in manipulated variables.
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Simulations with the model (5.16) have confirmed that its behavior is close to the full model (5.14)

if the assumptions are satisfied.

5.1.5 Alternate Configuration Model – Input to the Loop

An alternate closed-loop membrane process configuration often used in the industry introduces diluant

directly to the loop instead of the tank. The aim is to rapidly decrease the macro-solute concentration

and to slow down concentration-polarization effects on the membrane.

The derivation of the complete model is analogous as before and it is omitted here. The differential

equations (5.14) change as follows

dVT

dt
= (α− 1)qp, VT(0) = V0 − VL, (5.17a)

VT
dcT,1

dt
= cL,1s(qL − qp + qpR1)− cT,1s(qL − qp), cT,1(0) = c1,0, (5.17b)

VT
dcT,2

dt
= cL,2s(qL − qp + qpR2)− cT,2s(qL − qp), cT,2(0) = c2,0, (5.17c)

VL
dcL,1
dt

= cT,1[sqL + qp(1− s− α)]

+ cL,1[−qLs− qp − qpR1s+ qps+ qpR1], cL,1(0) = c1,0, (5.17d)

VL
dcL,2
dt

= cT,2[sqL + qp(1− s− α)]

+ cL,2[−qLs− qp − qpR2s+ qps+ qpR2], cL,2(0) = c2,0. (5.17e)

We can observe that the equation for VT remains unchanged. As expected, there is an increase of

concentrations in the tank cT,i by cT,iαqp/VT and the solutes in the loop are diluted by cT,iαqp/VL,

i = 1, 2.

Another difference between these processes concerns diluant rate addition α. If the diluant is

introduced to the feed tank, it is practically unconstrained from above i.e. α ≥ 0. On the other hand,

direct addition to the loop prevents the values of α > 1 as it is not possible to insert more diluant

than the withdrawn permeate.

Negligible differences were found when simulations of both models (5.14) and (5.17) with various

values of process parameters were compared. Therefore, it seems that the diluant insertion point does

not play any significant role and both process configurations can be used without loss of performance.

Therefore, the model (5.14) will be used.

5.1.6 Effect of Loop Parameters

The influence of parameters qL and VL was studied by simulating the model (5.14) and comparison

was made to open-loop batch configuration (5.15). The following points could be summarized, at

constant pressure, temperature, and for all admissible values of s

• within the practical bounds, the constant loop flow rate qL has a negligible effect over the

model/concentrations,

• the closed-loop model is equivalent to the open-loop one if the loop volume VL is within 1% of

the initial feed volume V0,
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• as the ratio VL/V0 increases the concentrations reached after certain amount of time deviate

from the open-loop equivalents.

5.2 Optimal Control

The process optimization of batch closed-loop DF as in batch open-loop DF, can aim at minimizing

the processing time (4.18), and/or diluant consumption (4.19).

In addition, the batch closed-loop configuration has the potential to reduce the power requirements

of the separation process. Therefore, a goal can be defined as minimization of the power required by

the pumps.

The pumping power required for a batch membrane process with a single feed pump (open-loop)

is given as (Zeman, 1996)

Efeed = q1 Pf. (5.18)

If a recirculation pump is used, the recycle stream only needs to be re-pressurized to Pf to com-

pensate for the pressure loss due to flow through the membrane module, δP = Pf − Pr. The total

power required by the process with recirculation (closed-loop) is given as

Etotal = qL δP + q1 (Pf − δP ), (5.19)

where the first term represents the recirculation pump compensating for membrane pressure drop, and

the second term represents the feed pump taking care of the rest of pressure requirements. Note that

qL will in general be much larger than q1. Thus, the pumping power is reduced roughly by a factor

of δP/Pf. The actual value of this pressure ratio will be highly process dependent, but reductions in

pumping power on the order of 50% for closed-loop configuration are possible (Zeman, 1996). However,

the implementation of an extra pump (recirculation pump) adds up to the total costs.

The overall power required for separation can then be given as

JP =

∫ tf

0

(

qL δP + q1 (Pf − δP )
)

dt. (5.20)

Note, however, that qL is constant by the assumption while δP and Pf do not vary significantly due

to operation at constant transmembrane pressure (4.1). Therefore, the power minimization problem

can be simplified to

J ∗
P = min

α(t),s(t)

∫ tf

0

q1 dt. (5.21)

5.2.1 Problem Formulation

We aim at minimization of a weighted sum of the total processing time, electric power, and the

overall diluant consumption. The goals are to process the solution with initial volume V0, to increase

the macro-solute concentration from c1,0 to c1,f, and simultaneously to decrease the micro-solute

concentration from c2,0 to c2,f. The time-varying optimized variables are non-negative diluant ratio

α(t), and recirculation ratio s(t) constrained between 0 and 1. The optimal control problem can then
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be defined as follows

J ∗ = min
α(t),s(t)

∫ tf

0

wT + wEq1 + wDαqp dt (5.22a)

s.t. (5.14), (5.22b)

VT(0) = V0 − VL, (5.22c)

cT,i(0) = ci,0, i = 1, 2, (5.22d)

cL,i(0) = ci,0, i = 1, 2, (5.22e)

ci,fVf = cT,i(tf)VT(tf) + cL,i(tf)VL, i = 1, 2, (5.22f)

α(t) ∈ [0, ∞), s(t) ∈ [0, 1]. (5.22g)

The non-negative weighting coefficients wT, wE, wD represent the weight (or price) for a unit of pro-

cessing time, processing power, and diluant consumption, respectively.

5.2.2 Problem Solution

The optimization problem (5.22) can be solved using optimal control theory Hull (2003), Paulen and

Fikar (2016). Two approaches are possible: analytical or numerical methods.

Optimal solutions for batch open-loop processes have been developed in Paulen and Fikar (2016),

Paulen et al. (2015). These are based on Pontryagin’s minimum principle (Pontryagin et al., 1962)

and explicit analytical results can be found only for small systems with two differential equations.

The complexity of the model (5.14) implies the use of numerical methods to solve the prob-

lem (5.22).

For closed-loop DF optimization, we apply both CVP and OC approaches. The control variables

α(t) and s(t) are considered to be piece-wise constant (PWC) on time intervals of variable length.

Next, let us explore the power minimization in more detail. As it was derived in (5.21), the power

consumption is closely related to overall volume treated by the feed pump P1. This can be minimized

if two events are met: (i) return of the retentate to the feed tank should be as small as possible (s = 0)

and (ii) minimization of the diluant consumption. Therefore, we can expect that the optimal power

operation will be closely related to optimal diluant usage with total recirculation.

5.3 Optimal Control – Case Studies

We present three case studies differing in permeate flow models that are taken from literature. These

demonstrate different aspects of optimization and optimal operation.

In all cases, we consider that the membrane is completely impermeable to the macro-solute. There-

fore, its rejection coefficient as defined by (4.2) is R1 = 1. The micro-solute completely passes the

membrane, thus R2 = 0.

5.3.1 Limiting Flux Model

In the first simulation, the aim is to process the solution of a volume 0.105m3 from the initial point

[c1,0, c2,0] = [10, 31.5]molm−3, to the final point [c1,f, c2,f] = [100, 10]molm−3.
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The limiting flux model as used in (4.15) for permeate flow is assumed

qp = kA ln

(

clim
cL,1

)

, (5.23)

where the limiting concentration is clim = 319molm−3, mass transfer coefficient is k = 0.0172mh−1,

membrane area is A = 1m2. The flow rate inside the loop taken from the ultrafiltration experimental

data of Verasztó et al. (2013) is qL = 0.25m3 h−1 and the loop volume is VL = 0.005m3. The list of

combinations of wT, wE and wD used here is given as:

1. Minimum time scenario (wT = 1, wE = 0, and wD = 0).

2. Almost minimum time scenario (wT = 1, wE = 0.4, and wD = 0).

3. Multi-objective scenario (wT = 0.39, wE = 1, and wD = 0).

4. Almost minimum power scenario (wT = 0.01, wE = 1, and wD = 0).

5. Minimum power scenario (wT = 0, wE = 1, and wD = 0).

6. Minimum diluant scenario (wT = 0, wE = 0, and wD = 1).

The minimum time, minimum diluant, and minimum power scenarios can be considered as inter-

esting extreme cases. The minimum time requirement is often imposed on membrane processing. As

we will see, the minimum diluant/power represent limit cases only and are practically unattainable.

The weighting coefficients for the almost minimum time and almost minimum power scenarios are

chosen such that the respective quantity increases within 10% of the theoretical minimal value.

To have both objectives minimized, multi-objective scenario was implemented. The weights were

chosen to have minimization of both objectives (time and power) equally, as much as possible (Fig. 5.5).

The theoretical results for optimal operation of batch open-loop configuration predict (Paulen and

Fikar, 2016, Paulen et al., 2013, 2015) that it will consist of three step strategy of time-varying α

with modes: C, CVD, and dilution: α = (0, 1,∞). The switching concentration from C to CVD of

the macro-solute, for minimum time scenario is given by c1 = clim/e and increases towards clim for

minimum diluant/power problem.

Optimal operation for batch closed-loop configuration was calculated numerically using the method

of orthogonal collocations implemented in package Dynopt (Čižniar et al., 2005). Several values for

number of optimized intervals (finite elements) were tried to reveal the structure of the optimal

solution. It was found that three intervals were sufficient and the further increase of their number did

not lead to any substantial improvement in optimal value of the cost function.

Fig. 5.2, 5.3, and 5.4 show optimal total concentration (c1, c2) trajectories and optimal profiles of

manipulated variables, α and s, respectively, for different considered scenarios. Green circle and red

cross in concentration trajectories denote the initial and final concentration points, respectively.

The results confirm an agreement of the trajectory of concentrations and diluant rate α with the

batch open-loop configuration.

The trajectory of control input s is shown in Fig. 5.4. As the dilution (last) step is performed after

the process has been stopped, the control s is not optimized during it. If the objective is to minimize
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Figure 5.2: Evolution of component (c1 and c2) total concentrations for different scenarios.
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Table 5.1: Comparison of total processing time, volume needed to be pumped, and diluant consump-

tion for different scenarios.

Scenario wT wE wD JT JP JD

[e h−1] [ehm−3] [ehm−3] [h] [m3] [m3]

Minimum time 1 0 0 2.71 0.6797 0.0103

Almost minimum time 1 0.4 0 2.76 0.5108 0.0101

Multi-objective 0.39 1 0 3.02 0.2473 0.0095

Almost minimum power 0.01 1 0 5.05 0.1116 0.0077

Minimum power 0 1 0 6.46 0.1021 0.0076

Minimum diluant 0 0 1 6.46 0.1021 0.0076

the batch time, s is 1 and thus the process reduces to a pure batch process without recycle. Therefore,

batch open-loop configuration is optimal for time minimization and recirculation only increases capital

costs. On the other side, if the sole objective is to minimize energy, the recycle valve is fully open

(s = 0) all the time.

The optimal values of recirculation ratio s for the first and second step decrease as the objective

of minimization moves from time minimization to power minimization. Note also that the power and

diluant consumption minimization scenarios coincide, as it was predicted above.

The results of optimal control obtained coincide with the logic of respective minimizations. As

seen in concentration diagram, the switching towards CVD mode for power minimization occurs later

than in time minimization case, so as to reduce the volume of diluant needed to be pumped. The

switching concentration and duration of CVD/VVD mode (diluant pumped) have an inverse relation

based on the condition c1/c2 = c1,f/c2,f. If C mode is longer, the CVD mode is shorter and vice versa.

As C mode is longer, lower reduction in micro-solute is required to achieve c1/c2 = c1,f/c2,f during

CVD mode, and hence lower volume of diluant is consumed.

The recycle valve is completely open (s = 0) towards the loop and closed towards the tank for

power minimization, in order for the feed pump to have the least volume to be pumped. Although

this total recirculation saves pumping power, the duration of CVD step increases at the same time.

Table 5.1 shows a comparison of partial processing costs JT,JD,JP ((4.18)–(5.21)) using different

scenarios. We can observe that the processing time and power are opposing objectives and cannot be

minimized simultaneously. Minimum value of one of them results in maximum value of the other one.

The almost minimum time gave similar results to minimum time scenario as seen in Table 5.1, and

almost minimum power also gave similar results to minimum power scenario. The volume needed to

be pumped did not increase substantially (9%) but the process time is reduced by 1.41 hours (20%

reduction).

The Pareto front representation of the relation between these opposing objectives, i.e. time and

power is depicted in Fig. 5.5. It can be observed that reduction of the power required is achieved

at the expense of processing time, and vice versa. The utopia point (marked as hexagon) would be

the perfect result for both objectives, as power and processing time both are minimum at this point.

Practically, however, it is not possible to have minimum of both objectives. Hence, a multi-objective
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Figure 5.5: Pareto front diagram to depict the relation between optimized results, when moving from

minimum time to minimum power.

optimal scenario located between both of them could be a good option.

With minimum power and time being extreme points, more realistic strategies are denoted by

almost minimum scenarios. Thus, almost minimum time does not change the processing time much

but greatly reduces the power (and diluant consumption). The same holds for the almost minimum

power where the processing time is much reduced with only a slight increase of power needed. This is

documented in both Table 5.1 and Fig. 5.5.

Let us now consider the situation when the final concentration of the macro-solute is increased

to 170molm−3. The theoretical results for time-optimal operation of batch open-loop configuration

predict (Paulen and Fikar, 2016, Paulen et al., 2013, 2015) that it will consist of a three-step strategy

of time-varying α with modes: C, CVD, and C: α = (0, 1, 0) with the same switching concentration

as before.

Optimal operation for batch closed-loop configuration was calculated numerically using both the

method of orthogonal collocations as well as control vector parametrization. The results confirm the

observation from the first simulation part and are not repeated here.

We have also studied the effect of parametrization of the recirculation ratio s, and its effect on the

final value of the cost function. We have found that the optimum is not particularly sensitive to s –

if constant value is assumed over the whole processing time, the cost function increases by less than

1%. This is perfectly adequate in industrial conditions.

5.3.2 Separation of Lactose and Proteins

A case study taken from Rajagopalan and Cheryan (1991) is solved here where lactose is separated

from proteins using ultrafiltration. The permeate flow rate model determined experimentally can be
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described as follows:

qp(cL,1, cL,2) = 63.42− 12.439 ln cL,1 − 7.836 ln cL,2, (5.24)

where cL,1 represents the concentration of proteins in the loop and cL,2 represents the concentration

of lactose in the loop. The aim is to process the solution of a volume 104 dL from the initial point

[c1,0, c2,0] = [3.3, 5.5] g dL−1 to the final point [c1,f, c2,f] = [9.04, 0.64] g dL−1. The process parameters

are the flow rate inside the loop qL = 400 dLh−1 and the loop volume VL = 4dL.

We study again different scenarios with the following weights:

1. Minimum time scenario (wT = 1, wE = 0, and wD = 0).

2. Almost minimum power scenario (wT = 0.23, wE = 0.77, and wD = 0).

3. Minimum power scenario (wT = 0, wE = 1, and wD = 0).

4. Minimum diluant scenario (wT = 0, wE = 0, and wD = 1).

The theoretical results for optimal operation of batch open-loop configuration suggest (Paulen and

Fikar, 2016, Paulen et al., 2012, 2015) that it will consist of the three-step strategy of time-varying α

with modes: C, VVD, and dilution: α = (0, 0.61,∞).

Numerical optimization with the minimum power/diluant scenario gave the same and practically

non-feasible solutions. The optimal operation occurs with qp → 0 and takes infinite time to reach the

desired concentrations (Table 5.2). Hence, the reason to implement almost minimum power scenario

is to minimize power but in a practically feasible fashion. Otherwise, the results in Table 5.2 are

consistent with the previous case.

Numerical diluant strategy of α agrees with the theory and the results for scenarios 1 and 2 are

shown in Figs. 5.6, 5.7, and 5.8. Green circle and red cross in concentration trajectories denote the

initial and final concentration points, respectively. The recirculation ratio s for the minimum time

scenario is equal to one and for the almost minimum power is almost zero.

As inferred in the previous case study, to minimize power/diluant, the C mode takes longer than

the C mode of time minimization scenario (Fig. 5.7). Again, it follows from the inverse relation

between the switching concentration and the end point of the CVD/VVD mode. The switching to

VVD mode is at higher concentration resulting in reduction of diluant consumption (during VVD) to

meet the condition c1/c2 = c1,f/c2,f.

This can also be comprehended in the sense of volume in the system. As C mode gets longer, the

volume gets lower and macro-solute concentration increases while micro-solute concentration stays

constant. Hence lower volume of diluant is needed to be pumped to reduce the same concentration of

micro-solute, but for a lower volume of feed (solution remaining in the process after C mode).

Similar to previous case, due to s ≈ 0 in almost minimum power scenario (5.8), the time taken by

VVD mode is longer than the time taken by VVD mode of minimum time scenario. The other reason

for the longer time duration of VVD step in minimum power scenario is the lower permeate flux due

to higher concentration of macro-solute (c1) reached during C mode.

It can been studied from Table 5.2 that the difference in power consumption is quite large when the

minimum time and the almost minimum power scenarios are compared. To investigate the main source
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Figure 5.6: Separation of lactose from proteins: total concentration diagram.
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0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

 

 
minimum time
almost minimum power

time [h]

s

Figure 5.8: Separation of lactose from proteins: optimal values of control s.



5.3. OPTIMAL CONTROL – CASE STUDIES 93

of power reduction, we have simulated the process with optimal α from the almost minimum power

scenario but in open-loop strategy (s = 1) and assuming identical initial and final concentrations.

The processing time was close to the minimum time scenario but the power consumption was

similar to the one for the minimum time case. Hence, optimization of solely α will not lead to

significant power reduction. The recirculation ratio s is the decisive factor, and needs to be optimized

when power minimization is a part of the objective.

5.3.3 Separation of Albumin and Ethanol

The last case study investigates separation of albumin and ethanol presented in Jaffrin and Charrier

(1994). The permeate flow rate model determined experimentally as a function of both concentrations

can be described as follows:

qp(cL,1, cL,2) =
1

b1 + b2 cL,1 + b3 cL,2 + b4 cL,1 cL,2 + b5 c2L,1 + b6 c2L,2
, (5.25)

where cL,1 and cL,2 represent the concentration of albumin and ethanol inside the loop, respectively.

The experimental values of the permeate flow coefficients are given in Jaffrin and Charrier (1994).

The aim is to process the solution of a volume of 0.0699m3 from the initial point [c1,0, c2,0] =

[15, 193.4] kgm−3, to the final point [c1,f, c2,f] = [80, 0.1] kgm−3. The process parameters are VL =

0.0033m3, qL = 0.18m3 h−1. The original study assumes upper limit on diluant ratio αmax = 1.

Theoretical analysis (Paulen and Fikar, 2016, Paulen et al., 2011, 2015) of the batch open-loop

process for the given initial and final conditions states that the optimal diluant ratio strategy depends

strongly on the type of the cost function to be minimized. For the minimum time problem it is a three

step strategy of time-varying α = (1, α(t), 1) with singular control being a complex function of time.

For the minimum diluant it is a two step strategy α = (0, 1).

The four cases of multi-objective optimization were investigated: minimum time, minimum diluant,

minimum power, and multi-objective with wE = 1 and wT = 0.2. The weights were chosen similarly to

the multi-objective scenario of the limiting flux model, i.e. to get into the mid range of both minimum

time and minimum power.

The total concentration of ethanol and albumin along with optimal control (α, s) evolution is

depicted in Figs. 5.9, 5.10 and 5.11, respectively. The dots in Fig. 5.10 and 5.11 specify the final time

points. The optimal strategy consists of two time intervals for all scenarios. It can be observed that

Table 5.2: Separation of lactose from proteins: comparison of individual cost functions for different

scenarios.

Operation wT wE wD JT JP JD

[e h−1] [e h dL−1] [e h dL−1] [h] [dL] [dL]

Minimum time 1 0 0 4.65 1860 50

Almost minimum power 0.23 0.77 0 26.8 112 38

Minimum power 0 1 0 165.2 107.8 37

Minimum diluant 0 0 1 165.2 107.8 37
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Table 5.3: Separation of albumin and ethanol: comparison of individual cost functions for different

scenarios.

Operation wT wE wD JT JP JD

[e h−1] [e hm−3] [e hm−3] [h] [m−3] [m−3]

Minimum time 1 0 0 2.54 0.457 0.113

Multi-objective 0.2 1 0 3.08 0.262 0.085

Minimum power 0 1 0 5.47 0.132 0.075

Minimum diluant 0 0 1 5.47 0.132 0.075

except the minimum time scenario, the other two follow in accordance with the theory the traditional

two step C-CVD operation with control α being 0 in the first step in order to concentrate (C) albumin

and then constant volume diafiltration (CVD) with α = 1 to reduce the concentration of ethanol.

The optimal minimum time scenario differs slightly from the theory: it starts with variable vol-

ume diafiltration (VVD) to increase albumin and simultaneously reduce ethanol and then continues

with CVD until the final concentrations were met. This behavior is however in accordance with the

numerical results found in (Paulen and Fikar, 2016, Paulen et al., 2011). The approximation of ana-

lytical three step diluant strategy for minimum time i.e. [CVD, VVD, CVD] was also tested and the

optimal cost function value was practically the same as the numerical optimum of VVD followed by

CVD strategy. This shows that the objective value is not very sensitive to the first CVD step of the

analytical approach.

The control s too, according to the theory in this thesis and earlier case studies is on maximum

(s = 1) in order to minimize time, and on minimum (s = 0) in order to minimize power. In other

cases, it lies between the maximum and minimum.

Table 5.3 provides the values of different minimization objectives. The time as in other case

studies is maximum for minimum power scenario and the converse applies for the power minimization

problem. The diluant consumption was identical for minimum power and minimum diluant scenario,

along with power consumption.
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Figure 5.9: Separation of albumin and ethanol: total concentration diagram.
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Figure 5.10: Separation of albumin and ethanol: optimal values of control α.
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Figure 5.11: Separation of albumin and ethanol: optimal values of control s.





Chapter 6
Conclusions

In this doctoral thesis investigation of optimal operation of batch diafiltration membrane processes has

been researched. The following highlights comprise the contributions of this thesis towards research

on membrane process optimization:

1. Modeling of batch (open-loop) and batch with recirculation (closed-loop) types of membrane

diafiltration processes.

2. Comparison of these two types of diafiltration configurations based on economical benefits they

bring to separation.

3. Modeling of filtration rates using experimental data. The dynamic optimization problem was

solved to find optimal parameters of filtration models.

4. Optimal operation of batch open-loop DF was proposed using Pontryagin’s minimum principle

to find the optimal diluant addition rate. It was experimentally verified using the experimental

filtration models estimated. The numerical optimization was performed for batch closed-loop DF

to find the optimal diluant addition rate and recirculation ratio. Case studies were performed

to study the optimal operation for both batch configurations.

The results based on the previous findings, and on this research work showed that the optimal operation

consists of a three step strategy for both open-loop and closed-loop batch configurations. To be precise,

three piece-wise constant inputs were found to satisfy the optimization objectives. The first and the

last step use either pure filtration or pure dilution and the middle step is characterized by staying on

singular surface where singular control is applied.

In both open-loop and closed-loop batch processes, multi-objective NLP problem was formulated.

The batch open-loop DF optimization problem aimed at minimizing processing time and diluant

consumption, while batch closed-loop aimed at minimization of power consumption, processing time,

and diluant consumption.

Experimental results of case studies for batch open-loop NDF to remove salt and concentrate lactose

proved that optimal strategies improve the economics by reducing both processing time and diluant

consumption, when compared to classical industrial strategies. In addition, the implementation of
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these optimal strategies does not require any alteration in current hardware and software setup in

industries.

Numerical optimization results of case studies for closed-loop batch DF showed that power and

diluant minimizations are equivalent. The same set of optimal controls can be implemented to min-

imize diluant and power consumption. Time minimization on the other hand was achieved on the

expense of higher diluant and power consumption.

The comparison of open-loop and closed-loop batch DF was done based on optimization results of

case studies. It was concluded that for time minimization, recirculation is not required, only open-loop

batch DF is enough. The configuration with possibility of partial recirculation (closed-loop) is useful

when power minimization is a part of our optimal control problem.

Future work motivation can be summarized in the following items

• Online model estimation: Another part of the research that can be experimented with to get

better results, is online estimation of filtering models. In this research the model was estimated

parameters were optimally obtained from process data, offline. Then this model was used to find

the optimal strategy offline, followed by its implementation on plant. The future work will be to

estimate the model parameters online, calculate the optimal strategy and steer the experiment

optimally based on these online calculations, i.e. real-time optimal strategy implementation.

• Membrane types: The optimal operation experimental verification done was based on nanodi-

afiltration of lactose and salt solution. As this optimal operation theory is universal for all batch

diafiltration processes, it would be interesting in future to verify it with other membranes, and

for other solutes. These experiments will concrete the results of our optimal control strategy,

and also help in scaling the level of improvements coming from optimal operation, based on a

variety of experiments.

• Rejection coefficients: In current research the rejection of lactose and NaCl by the membrane was

considered to be constant. In future, the optimal strategy could be designed and implemented

considering these rejection coefficients as functions of concentrations. This will help in calculating

more precise concentrations, leading to more exact optimization results.

• Experiments – partial recirculation: The experimental verification of the optimal control strategy

designed and simulated in current work for batch closed-loop diafiltration.
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Z. Kovács, M. Fikar, and P. Czermak. Mathematical modeling of diafiltration. Hungarian Journal of

Industry and Chemistry, 37, 2009b.

T. Lauw-Bieng and L. T. Biegler. Simultaneous solution and optimization strategies for parameter

estimation of differential-algebraic equation systems. Industrial & Engineering Chemistry Research,

30:376–385, 1991.

K. P. Lee, T. C. Arnot, and D. Mattia. A review of reverse osmosis membrane materials for desali-

nation—development to date and future potential. Journal of Membrane Science, 370(1–2):1 – 22,

2011.

N.N. Li. Recent Developments in Separation Science. Number v. 1-2 in CRC uniscience series. CRC

Press, 1972.

X. Li and J. Li. Dead-end filtration. In E. Drioli and L. Giorno, editors, Encyclopedia of Membranes,

pages 1 – 3. Springer Berlin Heidelberg, 2015.

H. Lutz. Ultrafiltration for Bioprocessing. Woodhead Publishing, 2015.

J. Mallevialle, P. E. Odendaal, AWWA Research Foundation, M.R. Wiesner, Lyonnaise des eaux

Dumez (Firm), and South Africa. Water Research Commission. Water Treatment Membrane Pro-

cesses. McGraw-Hill, 1996.

A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, and N. Hilal. Nanofil-

tration membranes review: Recent advances and future prospects. Desalination, 356:226 – 254,

2015.

P. Ng, J. Lundblad, and G. Mitra. Optimization of solute separation by diafiltration. Separation

Science and Technology, 11(5):499–502, 1976.

R. Paulen. Global dynamic optimization of processes. Minithesis, 2010.

R. Paulen and M. Fikar. Optimal Operation of Batch Membrane Processes. Springer, 2016.



BIBLIOGRAPHY 103
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Resumé

V tejto dizertačnej práci sa zaoberáme optimálnym riadeńım vsádzkových diafiltračných membráno-

vých procesov. Membránové procesy majú široké uplatnenie v chemickom, potravinárskom a farmace-

utickom priemysle a taktiež pri spracovańı odpadových vôd v prakticky všetkých druhoch priemysel-

nej výroby. Prinćıp membránovej separácie je založený na vel’kosti molekúl rôznych zložiek roztokov.

Diafiltrácia je frakčná metóda, ktorá využ́ıva externé rozpúšt’adlo spolu s rôznymi technikami mem-

bránovej separácie (napr. ultrafiltrácia, nanofiltrácia, mikrofiltrácia a reverzná osmóza) za účelom

zńıženia obsahu nečistôt (napr. soĺı) a na zvýšenie koncentrácie produktu (napr. protéınov enzýmov

alebo farb́ıv) v roztoku.

V rámci práce skúmame vsádzkové diafiltračné membránové procesy bez recirkulácie (open-loop) a

s recirkuláciou (closed-loop). V oboch pŕıpadoch predpokladáme, že celý proces pracuje pri konštant-

nom tlaku a konštantnej teplote. Počiatočný roztok sa pridá do nádrže a dodáva sa na membránu

pomocou čerpadla. Membrána je navrhnutá tak, aby zadržala látky s vel’kou molekulovou vel’kost’ou

(makrozložka) a umožnila prechod menš́ıch čast́ıc (mikrozložky) cez membránu. Čast’ roztoku, ktorá je

zadržaná membránou (retentát), je privádzaná spät’ do nádrže. Čast’, ktorá prechádza cez membránu

a je vypustená zo systému, sa nazýva permeát.

Riadiacou premennou pre diafiltračné procesy je množstvo pridávaného rozpúšt’adla (najčasteǰsie

voda) a definovaného pomerom α medzi vstupným tokom rozpúšt’adla a výstupným tokom permeátu.

Existuje niekol’ko tradičných módo, ktoré sú odlǐsné v hodnote α. Najznámeǰsie takéto módy sú

• koncentračný mód (α = 0)

• diafiltračný mód s konštantným objemom α = 1,

• diafiltrácia s klesajúcim objemom α = (0, 1),

• mód riedenia α = ∞ .

V pŕıpade diafiltrácie s recirkuláciou je pŕıtomná d’aľsia riadiaca veličina, t.j. recirkulačný pomer (s).

Môže sa pohybovat’ medzi 0−1 a reprezentuje deliaci faktor medzi nádržou a obehom. s = 0 znamená,

že žiadna látka sa nevracia do nádrže, zatial’ čo s = 1 znamená úplný návrat do nádrže. 0 < s < 1

znamená čiastočnú recirkuláciu.

Hlavným ciel’om membránovej separácie je dosiahnut’ požadovanú koncentráciu produktu a ne-

čistôt. V tejto práci sa snaž́ıme je dosiahnut’ tento ciel’ a zároveň minimalizovat’ produkčné náklady.
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Pri membránových separačných procesoch existuje niekol’ko druhov optimalizačných funkcíı, ktoré

poznáme, ako napŕıklad: minimalizácia času, minimalizácia spotreby rozpúšt’adla a minimalizácia

spotreby energie.

V pŕıpade vsádzkovej diafiltrácie bez recirkulácie bola hlavným ciel’om tejto práce implementácia

stratégie optimálneho riadenia vyvinutého našou skupinou na laboratórnej membránovej separačnej

stanici. Táto stratégia bola analyticky odvodená pomocou Pontrjaginovho prinćıpu minima a je možné

ju nájst’ jej podrobný popis v Paulen and Fikar (2016). Základné parametre implementácie boli na-

sledovné:

1. Všetky koncentrácie sa môžu merat’ kedykol’vek bez toho, aby bolo potrebné vzorky uchovat’.

2. Teplota a tlak môžu byt’ regulované na úrovni konštantnej žiadanej hodnoty.

3. Bezpečnostné opatrenia sú implementované tak, aby automaticky upravovali alebo dokonca za-

stavili proces pri dosiahnut́ı nebezpečných úrovńı hodnôt.

4. Zariadenie môže byt’ ovládané na dial’ku.

5. Všetky merania sa ukladajú a uchovávajú v pravidelných časových intervaloch.

6. Počas experimentov je možné implementovat’ analyticky nájdenú stratégiu riadenia.

Vyššie uvedené otázky boli riešené riadeńım zariadenia cez PLC pomocou Matlab a WinCC HMI.

Ďaľśım dosiahnutým ciel’om bolo nájdenie vhodných prietokových modelov, ktoré sa hodia pre

experimenty vykonané na tejto stanici. Tento ciel’ bol dosiahnutý vykonańım dynamického prispôso-

benia modelov uvedených v odbornej literatúre experimentálnym údajom.

Po pŕıprave zariadenia a źıskańı uspokojivých parametrizovaných prietokových modelov bolo d’al-

š́ım ciel’om vykonat’ a otestovat’ optimálnu stratégiu riadenia. Experimentálne sme uskutočnili nie-

kol’ko pŕıpadových štúdíı, ktoré sme následne porovnali s klasickými priemyselnými stratégiami na

minimalizáciu času spracovania, minimalizáciu spotreby rozpúšt’adla a váženej kombinácie oboch pŕı-

stupov.

V pŕıpade vsádzkovej diafiltrácie s recirkuláciou sme v odborej literatúre nenašli žiadnu podrobnú

štúdiu týkajúcu sa matematického modelovania a riadenia pre tento spôsob filtrácie. Prvým krokom

bolo teda rozsiahle štúdium dostupnej literatúry. Potom sme uskutočnili matematické modelovanie

na základe materiálovej bilancie vstupov a výstupov zo systému. Takto odvodený model sme potom

zjednodušili a skúmali sa aj jeho d’aľsie varianty. Potom sme na nájdenie optimálnej stratégie použili

numerické dynamické optimalizačné techniky za účelom minimalizácie spotreby času, minimalizácie

spotreby rozpúšt’adla, spotreby energie, alebo ich váženej kombinácie. Pŕıpadové štúdie boli riešené

pomocou simulácíı za účelom štúdia výsledkov implementácie takejto optimálnej stratégie riadenia.

Závery boli vyvodené pre diafiltračné procesy. V pŕıpade experimentálnej validácie optimálnej

operácie pre diafiltráciu bez recirkulácie boli výsledky pozit́ıvne. Optimálne stratégie boli lepšie ako

klasické stratégie, ktoré sú v súčasnosti použ́ıvané v priemysle. Úspešná bola aj optimalizácia riadenia

diafiltrácie s recirkuláciou. Výsledky tiež naznačujú, že vsádzková diafiltrácia s recirkuláciou neprináša

žiadne výhody (až na spotrebu energie) a môže byt’ nahradená klasickou vsádzkovou diafiltračnou

konfiguráciou bez recirkulácie.
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