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Abstrakt

Táto práca sa zaoberá dynamickou optimalizáciou procesov. Pozostáva v hl’adańı opti-
málnych profilov riadiacich a stavových velič́ın, ktoré optimalizujú danú účelovú funkciu
vzhl’adom k daným obmedzeniam. Bola vyvinutá metóda ortogonálnej kolokácie na koneč-
ných prvkoch, ktorá bola implementovaná do MATLABu. Pôvodné problémy optimalizácie
sú tak konvertované do NLP problémov, na riešenie ktorých možno použit’ l’ubovolný pro-
gram na riešenie úlohy nelineárneho programovania. Gradienty účelovej funkcie ako aj
funkcie obmedzeńı sú poč́ıtané analyticky.



Abstract

This work deals with dynamic optimisation of processes. It consists in searching for optimal
profiles of decision variables which optimise a given performance index under specified
constraints. The method of orthogonal collocations of finite elements has been developed
and implemented within MATLAB environment. The original optimisation problems are
then converted into NLP problems which are solved using appropriate NLP solvers, i.e.,
SQP methods. The gradients of the performance index as well as of the constraints needed
in the NLP solver are analytically computed using formal calculus. Several application are
succesfully tested.
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Chapter 1
Introduction

Optimisation problems are ubiquitous in the mathematical modeling of real world systems
and cover a very broad range of applications. These applications arise in all branches of
Engineering, Computer Science, Economics, Finance, Operations Research and Manage-
ment Science, Chemistry, Materials Science, Astronomy, Physics, Structural and Molecular
Biology, and Medicine.

Since the second world war, there has been an explosive growth in theory and techniques
in all facets of optimisation. These include: combinatorial optimisation, complementary
and variational inequalities, constraint logic programming, convex optimisation, nonsmooth
optimisation, deterministic global optimisation, stochastic global optimisation, goal pro-
gramming, multi-objective optimisation, semi-infinite programming, bilevel and multilevel
linear and nonlinear optimisation, nonlinear unconstrained and constrained optimisation,
cone programming, dynamic programming, generalized geometric programming, general-
ized convexity, game theory, interval analysis, financial optimisation, parallel optimisation,
dynamic optimisation, optimal control, mixer-integer nonlinear optimisation, integer pro-
gramming, linear programming, semidefinite programming, network optimisation, robust
optimisation, stochastic programming, scheduling, planning, logistics, telecommunications,
modeling systems and optimisation test problems and software.

However, the solution of optimisation problems with differential and algebraic equation
(DAE) models still remains a difficult problem. At present, optimisation problems with
nonlinear algebraic equations can be solved in straightforward way as nonlinear programs.
On the other hand, unconstrained problems with differential equation models can be han-
dled through calculus of variations. However, models that combine both of these features
are currently optimised by imposing some level of approximation to the problem.

Current methods for handling these problems either apply an approximation to the con-
trol variable profile or to both the state and control profiles. A straightforward approach
adopted by [18] is to parametrise the control profile (e.g., piecewise constant) over variable-
length finite elements and to solve the differential equations with this parameterisation.
A nonlinear programming (NLP) algorithm is then applied to the control parameters in an
outer calculation loop. This feasible path approach requires the repeated and expensive
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solution of the DAE systems. Also, state variable inequality constraints cannot be handled
in a straightforward way. Finally, the quality of the solution is strongly dependent on the
parameterisation of the control profile. Early studies with the second approach, parame-
terisation of both the state and control profiles, were reported by [15, 19]. Here state and
control profiles and the differential equations were parameterised by use of some method
of weighted residuals (e.g., orthogonal collocation). This leads to a large NLP formulation
with algebraic equality constraints. However, since NLP algorithms were less developed at
that time, this approach either was inefficient when compared to feasible path methods or
was restricted to specialised one(e.g. linear problems).

With advances in NLP methods through the development of Successive Quadratic Pro-
gramming (SQP), these NLP’s could be solved more efficiently and could handle nonlinear
state and control profile constraints in a straightforward manner. Large problems have
been solved by [17] with orthogonal collocation on finite elements and piecewise constant
approximations to the control profile. In order to obtain accurate finite element solutions,
however, additional constraints were imposed by [4, 5] in the NLP formulation in order
to enforce accurate state profiles. They classified the role of finite elements in terms of
knot locations and breakpoints that allowed discontinuities for control profile. This led to
a formulation that enforced the accurate solution of the differential equations and allowed
a general description of the control profile.

The purpose of this work is to develop and discuss a NLP formulation for optimal
control problems using orthogonal collocation on finite elements method that leads to the
accurate solution of the general differential-algebraic optimal control problem (DAOP).

Chapter 2 deals with dynamic optimisation in general. The chapter starts with several
dynamic optimisation problem definitions. In the second part, several approaches to the
solution of this problems are described. Finally, this chapter ends with the NLP problem
formulation.

Chapter 3 contains description of the function dynopt, the main function of the collection
of functions which extend the capability of MATLAB Optimisation Toolbox, specifically
of the constrained nonlinear minimisation routin fmincon. The chapter starts with tables
listing general descriptions of all the input and output arguments and the parameters in
the optimisation options structure, continues with the function description, and ends with
some tutorial.

Chapter 4 presents and discuss the examples from literature sloved by dynopt.
Chapter 5 presents conclusions for this work and also it presents the goals for a future

work.

2



Chapter 2
Dynamic Optimisation

This chapter deals with dynamic optimisation in general. The chapter starts with several
dynamic optimisation problem definitions. In the second part, several approaches to the
solution of this problems are described. Finally, this chapter ends with the NLP problem
formulation.

2.1 Optimisation Problem Statement

The objective of dynamic optimisation is to determine, in open loop control, a set of de-
cision variable time profiles (pressure, temperature, flow rate, current, heat duty, . . . ) for
dynamic system that optimise a given performance index (or cost functional or optimisa-
tion criterion)(cost, time, energy, selectivity, . . . ) subject to specified constraints (safety,
environmental and operating constraints). Optimal control refers to the determination of
the best time-varying profiles in closed loop control.

2.1.1 Cost Functional

The performance index (cost functional or optimisation criterion) can in general be written
in one of three forms as follows:

Bolza form

J (u(t)) = G(x(tf ), tf) +

∫ tf

t0

F(x(t), u(t), t)dt (2.1)

Lagrange form

J (u(t)) =

∫ tf

t0

F(x(t), u(t), t)dt (2.2)
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2.2. OPTIMAL CONTROL PROBLEM SOLUTIONS

Mayer form
J (u(t)) = G(x(tf), tf) (2.3)

where

J represents optimisation criterion.

G represents the component of objective function evaluated at final conditions.
∫ tf

t0
Fdt represents the component of the objective function evaluated over a period of

time.

x(t) represents state profile vector.

u(t) represents control profile vector.

2.1.2 Process Model Equations

The behaviour of many of processes can in general be described by a set of ordinary
differential equations (ODE) as follows:

ẋ(t) = f (x(t), u(t), t), x(t0) = x0 over t0 ≤ t ≤ tf (2.4)

This ODE system forms equality constraint in optimal control problem.

2.1.3 Constraints

Constraints to be accounted for typically include equality and inequality infinite dimen-
sional, interior-point, and terminal-point constraints [8]. Moreover, they may be written
in the following canonical form similar to the cost form (2.1):

Ji(u(t)) = Gi(x(ti), ti) +

∫ ti

t0

Fi(x(t), u(t), t)dt (2.5)

where ti ≤ tf , i = 1, . . . , nc, and nc is the number of constraints.

2.2 Optimal Control Problem Solutions

There are several approaches that can solve optimal control problems. These can be devided
into analytical methods that have been used originally and numerical methods preferred
nowadays.

4



2.2. OPTIMAL CONTROL PROBLEM SOLUTIONS

Figure 2.1: Graphical interpretation of Bellman’s principle of optimality

2.2.1 Analytical Methods

One can choose from a whole series of methods to solve optimal control problems. The
most important are:

• Dynamic Programming (Bellman’s principle of optimality),

• Pontryagin’s principle of minimum (maximum),

• Variational Calculus

Dynamic Programming

Dynamic Programming (DP) is very general method for treating variety of optimisation
problems [1, 21] often used in analysis and design of automatic control systems. This
method is based on the principle of optimality first formulated by Bellman.

Bellman’s principle of optimality can simply be formulated as follows: “If there is an
optimal way from A to C, then each partial way from B to C is also optimal”.

Consider following optimal control problem in Bolza form:

J (u(t)) = G(x(tf ), tf) +

∫ tf

t0

F(x(t), u(t), t)dt (2.6a)

ẋ(t) = f(x(t), u(t), t), x(t0) = x0 (2.6b)

It is supposed, that this optimal control problem (2.6) has a solution. Consider the following
function, also called Bellman’s function, defined as:

V(x(t), t) = min
u(t)

[

G(x(tf ), tf) +

∫ tf

t0

F(x(t), u(t), τ)dτ
]

(2.7)

Differentiating (2.7) leads to Bellman’s partial differential equation (2.8)

− ∂V
∂t

= min
u(t)

[

F(x, u, t) +
(∂V

∂x

)T

f(x, u, t)
]

(2.8)
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2.2. OPTIMAL CONTROL PROBLEM SOLUTIONS

which must satisfy the boundary condition

V(xf , tf) = G(xf , tf ) (2.9)

Bellman’s partial differential equation (2.8) together with boundary condition (2.9) repre-
sent necessary conditions for obtaining minimum of the optimisation problem (2.6).

Substitution of optimal control variable u∗ into Bellman’s partial differential equa-
tion (2.8) leads to formulation also known as Hamilton-Jacobi-Bellman’s partial differential
equation:

− ∂V
∂t

= F(x, u∗, t) +
(∂V

∂x

)T

f (x, u∗, t) (2.10)

By treating optimal control problems it is convenient to define Hamiltonian function as
follows:

H
(

x, u,
∂V
∂x

, t
)

= F(x, u, t) +
(∂V

∂x

)T

f (x, u, t) (2.11)

after the substitution of (2.11) into (2.8), Bellman’s partial differential equation takes form:

− ∂V
∂t

= min
u(t)

H
(

x, u,
∂V
∂x

, t
)

(2.12)

Pontryagin’s Principle of Minimum

Another very efficient approach to solution of optimal control problems is presented via
Pontryagin’s principle of minimum (PMP) [1, 14, 21]. There is a very close relationship
between DP and PMP, which consider two totaly different approaches to the solution of
the optimal control problems.

Consider the before mentioned control problem (2.6), and mark ∂V
∂x

in (2.11) as adjoint
variable λ(t). The appropriate Hamiltonian function takes following form:

H
(

x, u, p, t
)

= F(x, u, t) + λT f (x, u, t) (2.13)

Bellman’s partial differential equation (2.12) takes after the substitution following form:

− ∂V
∂t

= min
u(t)

H
(

x, u, λ, t
)

(2.14)

Differentiating left and right side of ∂V
∂x

= λ(t) with respect to x separately gives

− ∂2V
∂x∂t

=
∂H
∂x

+
∂2V
∂x2

∂H
∂λ

(2.15a)

λ̇ =
∂2V
∂x2

ẋ +
∂2V
∂t∂x

(2.15b)
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2.2. OPTIMAL CONTROL PROBLEM SOLUTIONS

From this follow canonical differential equations of the principle fo minimum (2.17)

ẋ =
∂H
∂λ

(2.16a)

λ̇ = −∂H
∂x

(2.16b)

Necessary conditions for the optimisation problem (2.6) using Pontryagin’s principle of
minimum can be then formulated as follows:

• optimality condition for the control variable:

0 =
∂H
∂uT

, ∀t ∈ [t0, tf ] (2.17a)

• definition of adjoint variables:

λ̇
T

= − ∂H
∂xT

, ∀t ∈ [t0, tf ] (2.17b)

• terminal conditions for adjoint variables:

λT (tf ) =
∂G
∂xT

∣

∣

∣

tf

(2.17c)

Variational Calculus

Dynamic Programming and Pontryagin’s principle of minimum are more general and ef-
fective than classic variational calculus. The elementary terms of variational calculus are
obtained from Bellman’s partial differential equation [21].

The classical variational calculus problem for the constraint (2.4) follows from the Euler-
Lagrange differential equation

∂L
∂x

− d

dt

(∂L
∂ẋ

)

= 0 (2.18)

where L is the Lagrange function defined as

L(x, ẋ, u, λ, t) = F(x, u, t) + λT [f(x, u, t) − ẋ] (2.19)

Necessary conditions for the optimisation problem (2.6) using the Euler-Lagrange dif-
ferential equation can then be formulated as follows:

• optimality condition for the control variable:

0 =
∂L
∂uT

, ∀t ∈ [t0, tf ] (2.20a)

• definition of adjoint variables:

λ̇
T

= − ∂L
∂xT

, ∀t ∈ [t0, tf ] (2.20b)

• terminal conditions for adjoint variables:

λT (tf ) =
∂G
∂xT

∣

∣

∣

tf

(2.20c)
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2.2. OPTIMAL CONTROL PROBLEM SOLUTIONS

2.2.2 Numerical Methods

Optimality conditions mentioned in section 2.2.1 are in general case not able to provide op-
timum since the resulting two point boundary value problem (TPBVP) or Bellman’s partial
differential equation is difficult to solve numerically. Computational methods are therefore
needed. We will concentrate ourselves to numerical solution of the problem by Pontryagin’s
approach. The numerical methods used for the solution of dynamic optimisation problems
can then be grouped into two categories:

• indirect methods

• direct methods

Indirect Methods

The objective of these methods is to solve the TPBVP, thus indirectly solving the dynamic
optimisation problem (2.1), (2.4). The most well known methods in this category are:

Boundary Condition Iteration (BCI) attempts to find the missing boundary con-
ditions λ(t0) by minimising the error in the boundary conditions so that equa-
tions (2.17b),(2.4) can be integrated together forward in time. It is worth noticing
that this method may lead to instabilities due to the fact that the costate equa-
tions (2.4) are integrated forward in time in the opposite direction of their natural
boundary conditions.

Control Vector Iteration (CVI) here the state equations (2.4) are integrated forward
using a guess for the control variable profiles, and then the adjoint equations (2.17b)
are integrated backward. Equations (2.17a) are then used locally to update the
guessed profiles of control variables at a discrete number of points, and globally as
a termination criterion. The main advantage of this method is that the adjoint
equations (2.17b) are integrated backward, (e.g., in the same direction of their nat-
ural boundary conditions). However, this approach has slow convergence for many
problems.

Direct Methods

In this category, we discuss two strategies:

Sequential Method often called control vector parameterisation (CVP), consists in an
approximation of the control trajectory by a function of only few parameters and
leaving the state equations in the form of the original ODE/DAE system [8]. Mostly,
piece-wise constant control profiles are used. Hence, infinite dimensional optimisa-
tion problem in continuous control variables is transformed into a finite dimensional
nonlinear programming (NLP) problem which can be solved by any gradient-based
method (e.g., an SQP method). The cost functional evaluation is carried out by
solving an initial value problem (IVP) of the original DAE system and gradient of
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2.3. NLP FORMULATION PROBLEM

the performance index as well as of the constraints with respect to the parameters
u may be evaluated by solving either the adjoint equations (2.17b) or the sensitiv-
ity equations. Moreover this method is feasible type method, e.g., the solution is
improved at each iteration.

Simultaneous Method often called total discretisation method, uses the discretisation
of both the control and state variables using polynomials of which the coefficients
become the decision variables in a much larger NLP problem [4]. Implementation of
this method is subject of this work. Unlike CVP method, the simultaneous method
does not require the solution of IVPs at every iteration of the NLP. The method
is however of infeasible-type, e.g., the solution is available only once the iterative
process has converged.

2.3 NLP Formulation Problem

As mentioned before, the optimal control problem will be solved by complete parametrisa-
tion of both the control and the state profile vector [10, 11]. That means, that the initial
linear control and state profiles are approximated by linear combination of some basis
functions. It is expected here, that the basis functions are known so only the coefficients
of linear combination of these fundamentals have to be optimised. In addition, each con-
trol sequence segment is defined on time interval, which length itself can be the optimised
variable. It is supposed that the optimised dynamic model can be described by an ODE
system.

Consider the following general control problem for t ∈ [t0, tf ]:

min
u(t)

{G(x(tf), tf) +

∫ tf

t0

F(x(t), u(t), t)dt} (2.21)

such that

ẋ(t) = f(x(t), u(t), t)

x(t0) = x0

h(u(t), x(t)) = 0

g(u(t), x(t)) ≤ 0

x(t)L ≤ x(t) ≤ x(t)U

u(t)L ≤ u(t) ≤ u(t)U

where

h – equality design constraint vector,

g – inequality design constraint vector,

x(t)L, x(t)U – state profile bounds,

9



2.3. NLP FORMULATION PROBLEM

ζi−1 ζi ζi+1 ζi+2

∆ζi

xi−1,0 xi−1,1 xi−1,2 xi,0 xi,1 xi,2 xi+1,0 xi+1,1 xi+1,2 xi+2,0

ui−1,1 ui−1,2 ui,1 ui,2 ui+1,1 ui+1,2

Figure 2.2: Finite-element collocation discretisation for state profiles, control profiles and element
lengths

u(t)L, u(t)U – control profile bounds.

In order to derive the NLP problem the differential equations are converted into alge-
braic equations using collocation on finite elements. Residual equations are then formed
and solved as a set of algebraic equations. These residuals are evaluated at the shifted
roots of Legendre polynomials. The procedure is then following: Consider the initial-value
problem over a finite element i with time t ∈ [ζi, ζi+1]:

ẋ = f (t, x(t), u(t)) t ∈ [t0, tf ] (2.22)

The solution is approximated by Lagrange polynomials over element i, ζi ≤ t ≤ ζi+1 as
follows:

xK+1(t) =

K
∑

j=0

xijφj(t); φj(t) =

K
∏

k=0,j

(t − tik)

(tij − tik)
(2.23)

in element i i = 1, . . . , NE

uK(t) =

K
∑

j=1

uijθj(t); θj(t) =

K
∏

k=1,j

(t − tik)

(tij − tik)
(2.24)

in element i i = 1, . . . , NE

Here k = 0, j means k starting form 0 and k 6= j, NE represents the number of elements.
Also xK+1(t) is a (K +1)th degree piecewise polynomial and uK(t) is Kth degree piecewise
polynomial. The difference in orders is due to the existence of the initial conditions for
x(t), for each element i. Also, the Lagrange polynomial has the desirable property that
(for xK+1(t), for example):

xK+1(tij) = xij (2.25)

which is due to the Lagrange condition φk(tj) = δkj , where δkj is the Kronecker delta. This
polynomial form allows the direct bounding of the states and controls, e.g., path constraints
can be imposed on the problem formulation.

By using K point orthogonal collocation on finite elements as shown in Figure 2.2,
and by defining the basis functions, so that they are normalised over the each element
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2.3. NLP FORMULATION PROBLEM

∆ζi(τ ∈ [0, 1]), one can write the residual equation as follows:

r(tik) =

K
∑

j=0

xij

φ̇j(τk)

∆ζi

− f(tik, xik, uik) (2.26)

i = 1, . . . , NE

j = 0, . . . , K

k = 1, . . . , K

where φ̇j(τk) = dφj/dτ , and together with φj(τ), θj(τ) terms (basis functions), they are
calculated beforehand, since they depend only on the Legendre root locations. Note that
tik = ζi + ∆ζiτk. This form is convenient to work with when the element lengths are
included as decision variables. The element lengths are also used to find possible points of
discontinuity for the control profiles and to insure that the integration accuracy is within
a numerical tolerance. Additionally, the continuity of the states is enforced at element
endpoints (interior knots ζi, i = 2, ..., NE), but it is allowed that the control profiles to
have discontinuities at these endpoints. Here

xi
K+1(ζi) = xi−1

K+1(ζi) (2.27)

i = 2, . . . , NE

or

xi0 =
K

∑

j=0

xi−1,jφj(τ = 1) (2.28)

i = 2, . . . , NE

j = 0, . . . , K

These equations extrapolate the polynomial xi−1
K+1(t) to the endpoints of its element and

provide an accurate initial conditions for the next element and polynomial xi
K+1(t).

At this point a few additional comments concerning construction of the control profile
polynomials must be made. Note that these polynomials use only K coefficients per element
and are of lower order than the state polynomials. As a result these profiles are constrained
or bounded only at collocation points. The constraints of the control profile are carried
out by bounding the values of each control polynomial at both ends of the element. This
can be done by writing the equations:

uL
i ≤ ui

K(ζi) ≤ uU
i i = 1, . . . , NE (2.29)

uL
i ≤ ui

K(ζi+1) ≤ uU
i i = 1, . . . , NE (2.30)

Note that since the polynomial coefficients of the control exist only at collocation points,
enforcement of these bounds can be done by extrapolating the polynomial to the endpoints
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2.3. NLP FORMULATION PROBLEM

of the element. This is easily done by using:

ui
K(ζi) =

K
∑

j=1

uijθj(τ = 0) i = 1, . . . , NE (2.31)

and

ui
K(ζi+1) =

K
∑

j=1

uijθj(τ = 1) i = 1, . . . , NE (2.32)

Adding these constraints affects the shape of the final control profile and the net effect of
these constraints is to keep the endpoint values of the control profile from varying widely
outside their ranges [uL

i , uU
i ].

The NLP formulation consists of the ODE model (2.21) discretised on finite elements,
continuity equation for state variables, and any other equality and inequality constraints
that may be required. It is given by

min
xij ,uij ,∆ζi

[

G(xf , tf) +

NE
∑

i=1

K
∑

j=1

wijF(xij , uij , ∆ζi)
]

(2.33)

such that

x10 − x0 = 0 (2.34)

r(tik) = 0 i = 1, . . . , NE k = 1, . . . , K (2.35)

xi0 − xi−1
K+1(ζi) = 0 i = 2, . . . , NE (2.36)

xf − xNE
K+1(ζNE+1) = 0 (2.37)

uL
i ≤ ui

K(ζi) ≤ uU
i i = 1, . . . , NE (2.38)

uL
i ≤ ui

K(ζi+1) ≤ uU
i i = 1, . . . , NE (2.39)

uL
ij ≤ uK(τj) ≤ uU

ij i = 1, . . . , NE j = 1, . . . , K (2.40)

xL
ij ≤ xK+1(τj) ≤ xU

ij i = 1, . . . , NE j = 0, . . . , K (2.41)

∆ζL
i ≤ ∆ζi ≤ ∆ζU

i i = 1, . . . , NE (2.42)

NE
∑

i=1

∆ζi = ζtotal (2.43)

h(xij, uij , tij) = 0 (2.44)

g(xij, uij, tij) ≤ 0 (2.45)

hf(xf) = 0 (2.46)

gf(xf) ≤ 0 (2.47)

where

i – refers to the element,
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2.3. NLP FORMULATION PROBLEM

j, k – refers to the collocation point,

wij – positive quadrature weights,

∆ζi – finite-element lengths i = 1, . . . , NE,

xf = x(tf) – the value of the state at the final time t = tf ,

hf – the nonlinear equality contstraint evaluated at the final time tf ,

gf – the nonlinear inequality constraint evaluated at the final time tf ,

xij , uij – the collocation coefficients for the state and control profiles

Problem (2.29) can be now solved by any large-scale nonlinear programming solver.
To solve this problem within MATLAB, the Optimization Toolbox was used. This in-

cludes several programs for treating optimisation problems. In this case function fmincon
was choosen. This can minimise/maximise given objective function with respect to non-
linear equality and inequality constraints. In order to use this function it was neccessary
to create and program series of additional functions. These additional functions together
with fmincon are formed within dynopt [20] which is simple for user to employ. This
function is presented in next chapter.

13



Chapter 3
Description of the dynopt Function

This chapter contains description of the function dynopt, the main function of the collection
of functions which extend the capability of MATLAB Optimisation Toolbox, specifically
of the constrained nonlinear minimisation routin fmincon. The chapter starts with tables
listing general descriptions of all the input and output arguments and the parameters in
the optimisation options structure, continues with the function description, and ends with
some tutorial.

3.1 Function Arguments

These tables describe arguments used by dynopt : the first describes input arguments, the
second describes the output arguments, and the third describes the optimisation options
parameters structure options which is given by MATLAB.

ncoli – number of collocation points + 1
ncolt – number of collocation points + 2

ni – number of intervals
nx – number of state variables
nu – number of control variables

Table 3.1: Some predefined variables which are used for function description

Table 3.1 describes defines variables which are used to simplify dynopt’s description.
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3.1. FUNCTION ARGUMENTS

Table 3.2: Input arguments

Argument Description

ncol The number of collocation points.
delta_t The (ni–by–1) vector of initial lengths of intervals.
tf The final time, if the time is not specified use empty brackets [ ].
uinit The (nu–by–ni) matrix of control variable initial values.
bdx The state variables bounds matrix with size (nx–by–2), for example

[lbx ubx].
bdu The control variables bounds (nu–by–2) matrix, for example [lbu ubu].
bdt The time interval bounds (1–by–2) matrix, for example [lbdt ubdt]).
objfun The function to be optimised. Objfun is the name of an M-file. For more

information about this input argument, see section 3.2.4.
confun The function that computes the nonlinear equality and inequality con-

straints. Confun is the name of an M-file. For more information about
this input argument, see section 3.2.4.

process The function that describes given process. Process is the name of an M-
file. For more information about this input argument, see section 3.2.4.

options An optimisation options parameter structure that defines parameters
used by the optimisation functions. This parameter is defined by MAT-
LAB for all optimisation routins of MATLAB Optimisation Toolbox.
For information about the parameters which are important for dynopt,
see Table 3.4 or the individual function reference pages.

Table 3.3: Output arguments

Argument Description

x The solution found by the optimisation function. If exitflag > 0, then
x is a solution otherwise, x is the value the optimisation routine was at
when it terminated prematurely.

fval The value of the objective function objfun at the solution x.
exitflag The exit condition. > 0 indicates that the function converged to a solu-

tion x, 0 indicates that the maximum number of function evaluations or
iterations was reached, < 0 indicates that the function did not converge
to a solution.

Continued on next page
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3.1. FUNCTION ARGUMENTS

Table 3.3: concluded from previous page

Argument Description

output An output structure that contains information about the results of
the optimisation. output.iterations gives the information about the
number of iteration, funcCount gives the information about the num-
ber of function evaluations, output.algorithm returns the used algo-
rithm, output.stepsize returns the taken final stepsize (medium-scale
algorithm only), output.firstorderopt gives the information about a
measure of first-order optimality (large-scale algorithm only).

lambda The Lagrange multipliers at the solution x. lambda is a structure
where each field is for a different constraint type. lamdba.lower

for the lower bounds lb, lambda.upper for the upper bounds
ub, lambda.ineqlin for the linear inequalities, lambda.eqlin for
the linear equalities, lambda.ineqnonlin for the nonlinear inequali-
ties, lambda.eqnonlin for the nonlinear equalities.

grad The value of the gradient of objfun at the solution x.

Table 3.4: Optimisation options parameters

Parameter Name Description

DerivativeCheck Compare user-supplied analytic derivatives (gradients) to finite
differencing derivatives (medium-scale algorithm only), default
value: ’off’.

Diagnostics Print diagnostic information about the function to be minimised
or solved, default value: ’off’.

DiffMaxChange Maximum change in variables for finite difference derivatives
(medium-scale algorithm only), default value: 0.1000.

DiffMinChange Minimum change in variables for finite difference derivatives
(medium-scale algorithm only), default value: 1.0000e-008.

Display Level of display. ’off’ displays no output, ’iter’ displays output
at each iteration, ’final’ displays just the final output, default
value: ’final’.

GradConstr Gradients for the nonlinear constraints defined by user, default
value: ’off’.

Continued on next page
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3.2. FUNCTION DESCRIPTION

Table 3.4: concluded from previous page

Parameter Name Description

GradObj Gradient for the objective function defined by user, default
value: ’off’.

LargeScale User large-scale algorithm if possible, default value: ’on’.
MaxFunEvals Maximum number of function evaluations allowed, default

value: ’100*numberofvariables’.
MaxIter Maximum number of iterations allowed, default value: 400.
TolCon Termination Tolerance on the constraint violation, default

value: 1.0000e-006.
TolFun Termination Tolerance on the function value, default value:

1.0000e-006.
TolX Termination Tolerance on x, default value: 1.0000e-006.
TypicalX Typical x values (large-scale algorithm only), default value:

’ones(numberofvariables,1)’.

Function parameters described in Tables 3.3, 3.4 are implicitly given by MATLAB Optimi-
sation Toolbox for all it’s subroutins. They also present just parameters usefull for dynopt
through funciton fmincon.

3.2 Function Description

3.2.1 Purpose

The actual version of dynopt is able to solve dynamic optimisation problems which cost
functions can be expressed by the Mayer form. The problem formulation can be described
by following set of DAEs:

min
u(t)

G(x(tf ), tf)

such that

ẋ(t) = f(x(t), u(t), t)

x(t0) = x0

hf(x(tf), u(tf)) = 0

gf(x(tf), u(tf)) ≤ 0

x(t)L ≤ x(t) ≤ x(t)U

u(t)L ≤ u(t) ≤ u(t)U

where

G(x(tf), tf) – component of objective function evaluated at final conditions,

hf – equality design constraint vector at final time tf ,
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3.2. FUNCTION DESCRIPTION

gf – inequality design constraint vector at final time tf ,

x(t) – state profile vector,

u(t) – control profile vector,

x0 – initial conditions for state vector,

x(t)L, x(t)U – state profile bounds,

u(t)L, u(t)U – control profile bounds.

3.2.2 Syntax

x = dynopt(ncol,delta_t,tf,uinit,bdx,bdu,bdt,objfun,confun,process,options)

[x,fval] = dynopt(...)

[x,fval,exitflag] = dynopt(...)

[x,fval,exitflag,output] = dynopt(...)

[x,fval,exitflag,output,lambda] = dynopt(...)

[x,fval,exitflag,output,lambda,grad] = dynopt(...)

3.2.3 Description

x = dynopt(ncol,delta_t,tf,uinit,bdx,bdu,bdt,objfun,confun,...

process,options)

starts with the initial lengths of intervals (delta_t can be scalar or vector), initial control
values for each interval (uinit is matrix) for defined collocation point number (ncol is
scalar) and final time value (is scalar, set tf = [ ] if the final time is not defined), and
minimises objfun evaluated in the final time tf subject to the final time nonlinear inequal-
ities or equalities defined in confun by given process model defined in process with the
optimisation parameters specified in the structure options, the defined set of lower upper
bounds on the state variables (bdx is matrix), control variables (bdu is matrix), and time
(bdt is also matrix) so that the solution is always in the range of this bounds. Set bdx =
[ ] and/or bdu = [ ] if no bounds exist.

[x,fval] = dynopt(...)

returns the value of the objective function objfun at the soluton x.

[x,fval,exitflag] = dynopt(...)

returns a value exitflag that describes the exit condition of dynopt.

[x,fval,exitflag,output] = dynopt(...)

returns a structure output with information about the optimisation.
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[x,fval,exitflag,output,lambda] = dynopt(...)

returns a structure lambda whose fields contain the Lagrange multipliers at the solution x.

[x,fval,exitflag,output,lambda] = dynopt(...)

returns the value of the gradient of the objective function at the solution x.

3.2.4 Arguments

The arguments passed into the function are described in Table 3.2. The arguments returned
by the function are described in Table 3.3. Details relevant to dynopt are included below
for objfun, confun, process.

objfun The function to be minimised. objfun is a string containing the name of an M-file
function, e.g., objfun.m. Whereas dynopt optimises a given performance index at
final conditions, thus objfun takes a scalar t - final time tf , scalar/vector x - state
variable(s) evaluated at coresponding final time tf , and scalar/vector u - control
variable(s) evaluated at coresponding final time tf , and returns a scalar value f of
the objective function evaluated at these values. The M-file function has to have the
following form:

function f = objfun (t,x,u)

f = [...]; % compute the function value at t, x, u

If the gradients of the objective function can also be computed and options.GradObj
is ’on’, as set by options = optimset(’GradObj’,’on’) then objfun is a string containing
the name of an M-file function, e.g., objfungrad.m. The function objfungrad must
return, in the second, third, and fourth output argument, the gradient value Dft,
Dfx, Dfu at t, x, u.

function [f,Dft,Dfx,Dfu] = objfungrad (t,x,u)

f = [...]; % compute the function value at t, x, u

Dft = [...]; % compute the gradient evaluate at t

Dfx = [...]; % compute the gradient evaluate at x

Dfu = [...]; % compute the gradient evaluate at u

The gradients Dft, Dfx, Dfu are the partial derivatives of f at the points t, x, u. That
means, Dft is the partial derivative of f with respect to the t, the ith component
of Dfx is the partial derivative of f with respect to the ith component of x, the ith
component of Dfu is the partial derivative of f with respect to the ith component
of u.
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confun The function that computes the nonlinear inequality constraints g(t,x,u)<=0 mark-
ed as output argument c and nonlinear equality constraints h(t,x,u)=0, marked as
output argument ceq at the final conditions. confun is a string containing the name
of an M-file function, e.g., confun.m. confun takes a scalar t - time value corespond-
ing to the final time tf , scalar/vector x - state variable value(s) corresponding to the
value of t, and scalar/vector u - control variable value(s) coresponding to the value
of t, and returns two arguments, a vector c of the nonlinear inequalities evaluated
at t, x, u, and a vector ceq of the nonlinear equalities evaluated at t, x, u. For
example, if confun=’confun’ then the M-file confun.m would have the form:

function [c,ceq] = confun(t,x,u)

c = [...]; % compute nonlinear inequalities at t, x, u

ceq = [...]; % compute nonlinear equalities at t, x, u

If the gradients of the constraints can also be computed and the options.GradConstr
is ’on’, as set by options = optimset(’GradConstr’,’on’) then confun is a string
containing the name of an M-file function, e.g., confungrad.m. The function con-
fungrad must return, in the second, third, . . ., eighth output argument, the gradient
value Dct, Dcx, Dcu, Dceqt, Dceqx, Dcequ at t, x, u.

function [c,ceq,Dct,Dcx,Dcu,Dceqt,Dceqx,Dcequ] = confungrad(t,x,u)

c = [...]; % compute nonlinear inequalities at t, x, u

ceq = [...]; % compute nonlinear equalities at t, x, u

Dct = [...]; % compute the gradient of inequalities at t

Dcx = [...]; % compute the gradient of inequalities at x

Dcu = [...]; % compute the gradient of inequalities at u

Dceqt = [...]; % compute the gradient of equalities at t

Dceqx = [...]; % compute the gradient of equalities at x

Dcequ = [...]; % compute the gradient of equalities at u

The gradients Dct, Dcx, Dcu are the partial derivatives of c at the points t, x, u.
That means, Dct is the partial derivative of c with respect to t, the ith component
of Dcx is the partial derivative of c with respect to the ith component of x, the ith
component of Dcu is the partial derivative of c with respect to the ith component
of u, and the gradients Dceqt, Dceqx, Dcequ are the partial derivatives of c at the
points t, x, u.

process The function wich describes process model, that means the right hand sizes of
differential equations. process is a string containing the name of an M-file function,
e.g., process.m. process takes a time t, scalar/vector of state variable x, scalar flag
and scalar/vector of control variable u coresponding to time t and returns sys values
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according to flag value evaluated at time t. The M-file function has to be written
in the following form:

function sys = process(t,x,flag,u)

switch flag,

case 0

sys = [...]; % right hand sizes of the ODE

case 1

sys = [...]; % jacobian with respect to x

case 2

sys = [...]; % jacobian with respect to u

case 3

sys = [...]; % jacobian with respect to t

case 4

sys = [...]; % initial values of state variables

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

3.2.5 Algorithm

Large-scale optimisation By default dynopt will choose the large-scale algorithm if the
user supplies the gradient in objfun (and GradObj is ’on’ in options) and if only upper
and lower bounds exists or only linear equality constraints exist. This algorithm is a
subspace trust region method and is based on the interior-reflective Newton method
described in [3]. Each iteration involves the approximate solution of a large linear
system using the method of preconditioned conjugate gradients (PCG). See the trust-
region and preconditioned conjugate gradient method descriptions in the Large-Scale
Algorithms chapter in [2].

Medium-scale optimisation dynopt uses through the fmincon Sequential Programming
(SQP) method. In this method, a Quadratic Programming (QP) subproblem is solved
at each iteration. An estimate of the Hessian of the Lagrangian is updated at each
iteration using the BFGS formula [3].

A line search is performed using a merit function similar to that proposed by [9]. The
QP subproblem is solved using an active set strategy similar to that described in [7].
A full description of this algorithm is found in the Constrained optimisation section
of the Introduction to algorithms chapter of the Optimization Toolbox manual. See
also the SQP implementation section in the Introduction to Algorithms chapter for
more details on the algorithm used.
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3.3 Tutorial

This section discusses the dynopt application, definitions of input argument functions pro-
cess, objfun, confun for numerically calculated gradients examples, and objfungrad, confun-
grad for analytically calculated gradients examples.

3.3.1 Constrained Example with Bounds

Consider the problem of starting and stopping a car in minimum time for a fixed distance
(300 units). This problem was treated by [4, 10, 11]. The given system:

ẋ1 = u, x1(0) = 1 (3.1)

ẋ2 = x1, x2(0) = 0 (3.2)

has to be optimised for −2 ≤ u(t) ≤ 1 with the cost function:

min
u(t)

J = tf (3.3)

subject to the constraints:

x1(tf) = 0 (3.4)

x2(tf) = 300 (3.5)

x1(t), x2(t) – state vectors representing speed and distance,

u(t) – control vector representing acceleration.

Function process, obfun, confun Definitions

Problem (3.3) is described by two differential equations which together with the initial
values of state variables should be defined in process.

Step1: Write an M-file process.m

function sys = process(t,x,flag,u)

switch flag,

case 0

sys = [u;x(1)];

case 1

sys = [0 1;0 0];

case 2

sys = [1 0];

case 3
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sys = [0 0];

case 4

sys = [0;0];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

dynopt optimises a given performance index subject to the constraints, both evaluated at
the final conditions. Thus the input arguments of objfun and confun are as follows: t -
scalar value representing tf , x - scalar/vector of state variable(s) evaluated at corresponding
final time tf , u - scalar/vector of control variable(s) evaluated at corresponding final time
tf . objfun should be defined as follows:

Step2: Write an M-file objfun.m

function f = objfun (t,x,u)

f=[t];

The given final time constraints should be written in M-file confun as follows:

Step3: Write an M-file confun.m

function [c,ceq] = confun(t,x,u)

c=[];

ceq=[x(1);

x(2)-300];

Step4: Invoke dynopt After the problem has been defined in the functions, user has
to invoke the dynopt function by writing an M-file car1.m as follows:

options = optimset(’LargeScale’,’off’,’Display’,’iter’);

options = optimset(options,’TolFun’,1e-4);

options = optimset(options,’TolCon’,1e-4);

options = optimset(options,’TolX’,1e-4);

[x,fval,exitflag,output]=dynopt(2,[20;20],[],[0.8 -1],[],[-2 1],...

[1e-1 40],’objfun’,’confun’,’process’,options);

For this example 2 collocation points, 2 intervals with initial lengths 20 units for each
interval have been choosen. Final time tf was given as optimised cost function variable by
the problem definition so it has been set to [ ], the contol variable initial values were set to
0.8 for first time interval, and -1 for the second one. The state variable bounds have been
set to [ ]. The control variable bounds have been set within given interval (-2,1). Lower
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and upper bounds to the time interval lengths were set to 1e-1 and 40, the summation of
given initial lengths.

279 function evaluations in 13 iterations were needed to obtain the solution:

x = 20.0000 10.0000 1.0000 1.0000 -2.0000 -2.0000 0 4.2265 15.7735 ...

0 8.9316 124.4017 20.0000 15.7735 4.2265 200.0000 237.7992 ...

295.5342]

The objective function at the solution x is returned in fval:

fval =

30

The exitflag tells if the algorithm converged. An exitflag > 0 means a local minimum
was found:

exitflag =

1

More details about optimisation are given by the output structure. In this example,
the default selection of the large-scale algorithm has been turned off, so the medium-scale
algorithm is used. Also all termination tolerances have been changed. For more information
about options and dynopt input and output arguments, see section 3.1.

In order to get from x plotable control and state variable profiles use additional func-
tion makegraphs as follows:

[time,state,control] = makegraphs(x,2,2,1,2)

The optimal control trajectory is shown in Figure 3.1. The actual state trajectories are
shown in Figure 3.2 and Figure 3.3.

3.3.2 Constrained Example with Gradients and Bounds

A path constraint will be placed on the before defined problem (3.3) by setting un upper
bound on the speed of 10 units. This example will be also solved by supplying analyti-
cal gradients. Ordinarily the medium-scale minimisation routines use numerical gradients
calculated by finite-difference approximation. This procedure systematically perturbs each
of the variables in order to calculate function and constraint partial derivatives. Alter-
natively, a function to compute partial derivatives analytically can be provided by the
user. Typically, the problem is solved more accurately and efficiently if such a function is
provided.

Function process, obfungrad, confungrad Definitions

Step1: Write an M-file process.m The M-file process.m remains without changes. It
is the same as in section 3.3.1.
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Figure 3.1: Control variable profile for example 1
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Figure 3.2: State1 variable profile for example 1
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Figure 3.3: State2 variable profile for example 1

Step2: Write an M-file objfungrad

function [f,Dft,Dfx,Dfu] = objfungrad (t,x,u)

f=[t];

Dft=[1];

Dfx=[];

Dfu=[];

Since you are providing the gradients of the objective function in objfungrad.m and the
gradients of the constraints in confungrad.m, you must tell dynopt that these M-files contain
this additional information. Use optimset to turn the parameters GradObj and GradConstr

to ’on’ in our already existing options structure

options = optimset(options,’GradObj’,’on’,’GradConstr’,’on’);

If you do not set these parameters to ’on’ in the options structure, dynopt will not use the
analytic gradients.
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3.3. TUTORIAL

Step3: Write an M-file confungrad.m

function [c,ceq,Dct,Dcx,Dcu,Dceqt,Dceqx,Dcequ] = confungrad(t,x,u)

c=[];

ceq=[x(1);

x(2)-300];

Dct=[];

Dcx=[];

Dcu=[];

Dceqt=[];

Dceqx=[1 0;0 1];

Dcequ=[];

Step4: Invoke dynopt

options = optimset(’LargeScale’,’off’,’Display’,’iter’);

options = optimset(options,’GradObj’,’on’,’GradConstr’,’on’);

options = optimset (options,’TolFun’,1e-4);

options = optimset (options,’TolCon’,1e-4);

options = optimset (options,’TolX’,1e-4);

[x,fval,exitflag,output]=dynopt(2,[10;22;10],[],[1 0 -1],[0 10;0 300],...

[-2 1],[1e-2 42],’objfungrad’,’confungrad’,’process’,...

options);

For this example 2 collocation points, 3 intervals with initial lengths 10 units for first
and last one, and 22 units for the second interval have been choosen. Final time tf remains
to be set to [ ], the contol variable initial values were set to 1 for first time interval, to 0
for the second interval, and -1 for the last one. The state variable bounds have been set
to [0 10;0 300]. The control variable bounds remains the same as before. Lower and upper
bounds to the time interval lengths were set to 1e-2 and 42, the summation of given initial
lengths.

After 12 iteration and 52 function evaluatons, optimal value of tf = 37.5 was found.
The graphical interpretation of obtained optimal profiles is shown in Figure 3.4 for the
control profile, in Figure 3.5 for the speed profile, and in Figure 3.6 for distance.

3.3.3 Maximisation

dynopt performes minimisation of the objective function f(t, x, u). Maximisation is achieved
by supplying the routine with −f(t, x, u) .

3.3.4 Greater than Zero Constraints

The Optimisation Toolbox assumes nonlinear inequality constraints are of the form Ci(x) ≤
0. Greater than zero constraints are expressed as less than zero constraints by multiplying
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3.3. TUTORIAL
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Figure 3.4: Control variable profile for example 2
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Figure 3.5: State1 variable profile for example 2
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Figure 3.6: State2 variable profile for example 2

them by -1. For example, a constraint of the form Ci(x) ≥ 0 is equivalent to the constraint
−Ci(x) ≤ 0.
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Chapter 4
Case Studies

In this chapter the examples from literature solved by dynopt are presented and discussed.
In all considered examples, 4 collocation points and 5 elements have been used to obtain
accurate solution to the fourth decimal palce.

4.1 Example 1

4.1.1 Example 1a

Consider the following unconstrained problem [13, 16]

min
u(t)

J = x2(tf ) (4.1)

such that

ẋ1 = u, x1(0) = 1

ẋ2 = x2
1 + u2, x2(0) = 0

tf = 1

Problem (4.1) does not have any constraint and for this problem a minimum (0.76519)
was determined by [13]. Another optimal value for the performance index was found by [16]
(0.76238). The solution obtained by dynopt is 0.7616 by using numerical gradients and the
same value of the performance index was obtained by user provided analitical gradients.
As can be seen in Table 4.1, providing the gradients analytically greatly decreased the
computing time. The control and state profiles are shown in Figure 4.1.

4.1.2 Example 1b

Consider the following constrained problem [13, 16]
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4.2. EXAMPLE 2

Numerical Gradients Analytical Gradients
Optimal value 0.7616 0.7616

Number of iterations 43 45
Number of function evaluations 3570 353

CPU-time (s) 50.5730 18.6770

Table 4.1: Comparison between gradients calculated numerically and analytically for example 1a
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Figure 4.1: Control and state profiles obtained by dynopt for problem (4.1)

min
u(t)

J = x2(tf ) (4.2)

such that

ẋ1 = u, x1(0) = 1

ẋ2 = x2
1 + u2, x2(0) = 0

x1(1) = 0

tf = 1

The problem (4.2) differs from problem (4.1) with the terminal constraint. For this
case the the optimal value of the performance index (0.92518) was obtained by [13] and
another one (0.92547) was obtained by [16]. The solution obtained by dynopt in this case
is shown in Table 4.2 and Figure 4.2. Also in this case the gradients computed analytically
have forced the computation time.

4.2 Example 2

Consider the following nonlinear unconstrained problem [12, 16]
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4.3. EXAMPLE 3

Numerical Gradients Analytical Gradients
Optimal value 0.9243 0.9243

Number of iterations 26 23
Number of function evaluations 2154 193

CPU-time (s) 32.0660 13.6790

Table 4.2: Comparison between gradients calculed numerically and analytically for example 1b
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Figure 4.2: Control and state profiles obtained by dynopt for problem (4.2)

min
u(t)

J = x4(tf ) (4.3)

such that

ẋ1 = x2, x1(0) = 0

ẋ2 = −x3u + 16t − 8, x2(0) = −1

ẋ3 = u, x3(0) = −
√

5

ẋ4 = x2
1 + x2

2 + 0.0005(x2 + 16t − 8 − 0.1x3u
2)2, x4(0) = 0

−4 ≤ u ≤ 10

tf = 1

Problem (4.3) is a four-state variable system treated by [12, 16]. For the state variable
x4, a value of the minimum (0.12011) was obtained by [12]. [16] computed the optimum
of x4 at final time (0.1290). With dynopt in this case we were able to reach the values of
given performance index shown in Table 4.3 and Figure 4.3.

4.3 Example 3

Consider a tubular reactor with following parallel reaction [6, 10, 16]:
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4.3. EXAMPLE 3

Numerical Gradients Analytical Gradients
Optimal value 0.1217 0.1212

Number of iterations 96 126
Number of function evaluations 12555 586

CPU-time (s) 239.5850 44.8450

Table 4.3: Comparison between gradients calculated numerically and analytically for example 2

A → B
A → C

min
u(t)

J = −x2(tf) (4.4)

such that

ẋ1 = −[u + 0.5u2]x1, x1(0) = 1

ẋ2 = ux1, x2(0) = 0

0 ≤ u ≤ 5

tf = 1

where

x1(t) – dimensionless concetration of A,

x2(t) – dimensionless concentration of B,

u(t) – control vector

Problem (4.4) is a tubular reactor control problem where the state variable x2 at fi-
nal time has to be maximised. This problem was treated by [6, 10, 16] and the opti-
mal value (0.57353) was reported by [6, 10], and the optimal value (0.57284) was given
by [16]. Table 4.4 describes the results obtained by the orthogonal collocation on finite
elements method used in dynopt, the optimal control and state profiles for this result are
shown Figure 4.4.

Numerical Gradients Analytical Gradients
Optimal value 0.5727 0.5725

Number of iterations 74 68
Number of function evaluations 5951 295

CPU-time (s) 118.9810 24.4350

Table 4.4: Comparison between gradients calculated numerically and analytically for example 3
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4.4. EXAMPLE 4
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Figure 4.3: Control and state profiles obtained by dynopt for problem (4.3)

4.4 Example 4

Consider a batch reactor [6, 16] with the following consecutive reactions:
A → B → C

min
u(t)

J = −x2(tf) (4.5)
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4.5. EXAMPLE 5
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Figure 4.4: Control and state profiles obtained by dynopt for problem (4.4)

such that

ẋ1 = −k1x
2
1 x1(0) = 1

ẋ2 = k1x
2
1 − k2x2 x2(0) = 0

k1 = 4000e(− 2500

T
)

k2 = 620000e(− 5000

T
)

298 ≤ T ≤ 398

tf = 1

x1(t) – concentration of A,

x2(t) – concentration of B,

T – temperature.

The objective in problem (4.5) is to obtain the optimal temperature profile that maxi-
mizes x2 at the end of a specified time. The problem was solved by [10, 16] and the reported
optimum (0.610775) was found by [10] and (0.61045) obtained by [16]. We were able to ob-
tain the value of performance index 0.6102 same for both, the numerically and analytically
calculed gradients. As shown in Table 4.5 the computional time needed for obtaining the
optimum was shorter by analytical gradients computing method. The appropriate optimal
control and state profiles are presented in Figure 4.5.

4.5 Example 5

Consider a catalytic plug flow reactor [6, 16] with the following reactions:
A ↔ B → C
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4.5. EXAMPLE 5

Numerical Gradients Analytical Gradients
Optimal value 0.6102 0.6102

Number of iterations 9 10
Number of function evalutations 780 32

CPU-time (s) 13.0380 3.6950

Table 4.5: Comparison between gradients calculated numerically and analytically for example 4
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Figure 4.5: Control and state profiles obtained by dynopt for problem (4.5)

max
u(t)

J = 1 − x1(tf ) − x2(tf ) (4.6)

such that

ẋ1 = u[10x2 − x1] x1(0) = 1

ẋ2 = −u[10x2 − x1] − [1 − u]x2 x2(0) = 0

0 ≤ u ≤ 1

tf = 12

x1(t) – mole fraction of A,

x2(t) – mole fraction of B,

u(t) – fraction of type 1 catalyst.

Optimisation of problem (4.6) has also been analysed. This problem was solved by [10,
16] and the optima (0.476946, 0.47615) were found. Values obtained using dynopt are
shown in Table 4.6. The coresponding control and state profiles are shown in Figure 4.6

Note, that all the results obtained by orthogonal collocation on finite elements method
implemented within MATLAB-dynopt are only local in nature, since NLP solvers are only
based on necessary conditions for optimality.
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4.5. EXAMPLE 5

Numerical Gradients Analytical Gradients
Optimal value 0.4781 0.4781

Number of iterations 25 28
Number of function evaluations 2052 130

CPU-time (s) 34.0690 12.5780

Table 4.6: Comparison between gradients calculated numerically and analytically for example 5
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Figure 4.6: Control and state profiles obtained by dynopt for problem (4.6)
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Chapter 5
Conclusions

The main aim of this work that was to implement a user friendly interface to dynamic
optimisation based on orthogonal collocation on finite elements within the MATLAB en-
vironment. It was done by developing a MATLAB function dynopt for determination of
optimal control trajectory by given description of the process, the cost to be minimised,
subject to equality and inequality constraints. This function has been tested on 7 exam-
ples from the literature. The examples were choosen to ilustrate the ability of the dynopt
package to treat the problems of varying levels of difficulty. In all the considered examples,
two different methods of gradients computation were used: numerical approximation and
analytical computation. The resulting performances of each method for the case studies
are presented in Tables 4.1, 4.2, 4.3, 4.4, 4.5, 4.6. As expected, they show that the perfor-
mances of analytical computations are superior. On the other hand, as mentioned before,
the optima obtained are local in nature.

The future work will be devoted to:

• enrich the knowledge already acquired until now by developing rigorous methods of
dynamic and global optimisation of processes. In fact, it is well known for several
years that solutions of dynamic optimisation in chemical engineering and control
exhibit numerous local optima. Therefore, due to the non-convexity problems in
chemical engineering, it is almost impossible to find the true global optimum and the
results obtained are only local in nature. This sub-optimality can have serious conse-
quences on economical, environmental operation, safety, and clearly show importance
of the development of global optimisation methods.

• further develop the software dynopt, because the actual version is able to treat prob-
lems with performance index and constraints defined just at final time tf . It means
that the further development will be devoted to:

1. create a version which will be able to treat a kind of problems that have perfor-
mance index and constraints defined over a period of time t ∈ [t0, tf ],
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2. improve its robustness and speed by incorporating public domain codes for au-
tomatic differentiation (e.g., Adifor, . . . ),

3. incorporate methods of global optimisation (e.g., αββ method, . . . ).
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