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Abstract: In this paper, implementation of deep neural networks applied in process control is presented. In 
our approach, training of the neural network is based on model predictive control, which is popular for its 
ability to be tuned by the weighting matrices and for it respecting the system constraints. A neural network that 
can approximate the MPC behavior by mimicking the control input trajectory while the constraints on states 
and control input remain unimpaired by the weighting matrices is introduced. This approach is demonstrated 
in a simulation case study involving a continuous stirred tank reactor where a multi-component chemical 
reaction takes place.

Keywords: model predictive control, artifi cial neural networks, process control, continuous stirred tank reactor

Introduction

Chemical reactors play an essential role in the chemi-
cal and petrochemical industry. Their vast presence 
in the industrial world makes control synthesis very 
attractive for researchers. In recent years, several 
new control approaches have emerged mainly from 
the optimal control theory, as discussed by Smets 
et al. (2004); Pourdehi and Karimaghaee (2018); 
Bakošová et al. (2012). The optimal control theory 
proved to be very promising due to its natural abil-
ity to cope with technological constraints and to 
follow a performance criterion, which defi nes the 
overall economy of the production.
Designers of control strategies for chemical reactors 
must cope with several obstacles, mainly the natural 
instability of the process, e.g., exothermic reactors, 
and keeping the process variables in their designed 
steady state. Alongside which, the controller has to 
be able to decrease the energy consumption and 
increase the quality of the product. All control 
objectives can be incorporated in an optimal control 
problem (OCP) (Bakošová and Oravec, 2014; Singh 
et al., 2010; Bakošová et al., 2017). The model predic-
tive control (MPC) technique is often used in such 
control tasks (Prasath et al., 2010), since its construc-
tion is straight-forward (Maciejowski, 2002).
The core concept of MPC is to predict future evolu-
tion of the controlled variables based on current 
measurements. Then, with respect to a quality crite-
rion (usually energy consumption), MPC optimizes 
the values of the manipulated variables so that the 
criterion is minimized (Klaučo and Kvasnica, 2019).
Even though it seems that MPC is one of the best 
controllers, it has several drawbacks. Since it is an 
optimization-based controller, it requires a repeated 
solution to an optimal control problem. Such an 

arrangement is virtually impossible to implement 
in the industry or on the computers responsible for 
the chemical reactor operation.
Traditional way of coping with this limitation is to 
consider explicit model predictive control (EMPC), 
an analytical solution to the optimal control problem 
(Bemporad et al., 2002). The control law given by 
the explicit solution is in form of the piecewise affi ne 
function (PWA) (Borrelli et al., 2017). Such control 
law can be easily evaluated at any given time without 
the need to involve an optimization procedure. In 
other words, it allows replacing the optimization 
solver with function evaluation. EMPC, unfor-
tunately, can be constructed only for small-sized 
systems with short prediction horizons, which is a 
signifi cant limitation in process industries, where 
prediction horizons are long.
This paper proposes an alternative to the explicit 
controller based on neural networks. The neural 
network is a powerful mathematical concept capa-
ble of approximating an arbitrary continuous func-
tion (Hornik, 1991). Here, approximation of the 
explicit control law given by the fullfi delity MPC 
is proposed. Since the traditional explicit model 
predictive control resulting in PWA function is not 
considered, the length of the prediction horizon 
nor the size of the controlled system are not limiting 
factors. Similar work has been done by Karg and 
Lucia (2018) or by Lohr et al. (2019). In this paper, 
however, we focus on the application in chemical 
technology, mainly the control of multicomponent 
chemical reaction.

Theoretical

Firstly, optimal control problem (OCP) that stands 
for the model predictive controller is presented. 
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The second part of this section is devoted to the 
artifi cial neural network to substitute the model 
predictive controller.

Model Predictive Control
Standard formulation of the model predictive 
controller utilizes a linear time-invariant model 
that captures the dynamics of the controlled 
process. Specifi cally, discrete-time dynamics were 
considered:

 x(t + TS) = Ax(t) + Bu(t), (1a)

 y(t) = Cx(t) + Du(t), (1b)

where x ∈ ℝnx stands for process state variables, 
vector u ∈ ℝnu represents manipulated variables 
and y ∈ ℝnu depicts the output variable. Matrices 
A ∈ ℝnx×nx, B ∈ ℝnx×nu, C ∈ ℝny×nx, and D ∈ ℝny×nu were 
obtained from a dynamical model representing 
an actual controlled process using the fi rst order 
Taylor expansion. The discrete time linear model 
(1) was discretized with the sampling period of TS. 
The model predictive control was then constructed 
as follows

 
0 1

1 1
T T

,, ,
0 0

min
N

N N

k k k ku u
k k

y Qy u Ru
-

- -

¼
= =

+å å  (2a)

 s. t. xk+1 = Axk + Buk, k = 1, …, N – 1, (2b)

 yk = Cxk + Duk, k = 1, …, N – 1, (2c)

 x0 = x(t) (2d)

 ymin  yk  ymax, k = 1, …, N – 1, (2e)

 umin  uk  umax, k = 1, …, N – 1, (2f)

where N denotes the prediction horizon. Cost func-
tion (2a) is in form of convex quadratic function 
with positive defi nite tuning factors Q ∈ Rnx×nx and 
R ∈ Rnu×nu. The objective function is posed so that 
the controlled variables are driven towards the 
steady-state. Moreover, technological constraints 
were defi ned as min-max limits on controlled as 
well as on manipulated variables, as in (2e) and (2f), 
respectively. The optimization problem is initialized 
with the measurement of x(t). MPC is formulated as 
a quadratic optimization problem with linear con-
straints. Optimal solution to the MPC in (2) yields 
an optimal sequence of manipulated variables [u*

0, 
…, u*

N–1]T. Since OCP is a convex optimization prob-
lem, its solution is a global minimum.
The process is controlled by the model predictive 
controller using an algorithm called receding ho-
rizon policy, presented and proven by Mayne et al. 
(2000):

1. Measure system process variables x(t) (e.g. tem-
perature or concentration).

2. Initialize MPC in (2) with x(t).
3. Solve quadratic optimization problem.
4. Apply manipulated variable u0.
5. After TS continue from step 1.
We refer to this algorithm as to a closed-loop imple-
mentation of MPC. The bottleneck of the algorithm 
is step No. 3, where an optimization problem has to 
be solved. In average industrial applications, this is 
an impossible task since there are no machines ca-
pable of solving a complex mathematical problem, 
and the solver imposes additional costs.
In the next section, replacement of such an algo-
rithm with neural network is discussed, in order to 
substitute the complex procedure of mathematical 
optimization performed with every sampling.

Artifi cial Neural Networks
A neural network is a mathematical function that 
maps inputs z ∈ ℝnz → w ∈ ℝnw via interconnected 
monotone functions. Structure of the neural net-
work is visualized in Figure 1, where each green 
and red dot represents the monotone function, also 
called as activation functions, and they are given as
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where z denotes an aggregated input to each node 
while a is a tuning parameter of the activation 
function. Blue dots stand for linear output layer.
Neural network is capable of approximating any 
arbitrary continuous functions with a very high 
confi dence number, as discussed by Hornik 
(1991). Another signifi cant advantage is the 
explicit nature of the neural net. Once a neural 
net of suitable properties is constructed, it can 
be evaluated on moderate hardware and hence 
no optimization solver is needed. Another main 
advantage is that the neural net is in no way 
limited by the length of the prediction horizon or 
by the size of the system, as it is in explicit model 
predictive control. The structure of an NN-based 
controller with a values determines the goodness 
of the PWA control law approximation. The 
procedure of getting weights is called training 
of the neural network and it is performed for a 
fi xed structure of the neural net and thus, only 
the weights are calculated.
To give the reader an illustration on how the weights 
are calculated, consider
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The optimization problem (4) is a sum-of-squares 
data fi tting problem. Solution to (4) gives opti-



220

mal values of weight a based on minimizing the 
squared distance between a target value, w~, and the 
evaluated activation function, j(a, zk), for a given 
neural network input. Naturally, to increase the 
goodness of the a value, a suffi cient number of 
data points has to be included in the minimization 
procedure. Here, nk denotes the number of these 
data points.
Since the neural network substitutes the controller, 
measurements of the process variables x(t) are the 
input to the training of the NN-based controller, 
and control inputs, i.e., the manipulated variable 
u(t), are the training targets. To provide a suitable 
basis for the training procedure, an initial training 
set was given as

  = [xmin, …, xmax], (5)

where the limits on the process variables with nk 
points form an equidistant grid. Subsequently, for 
each data point in , a corresponding control action 
was calculated and a set  with nk different manipu-
lated variables was obtained. The corresponding 
control actions were obtained by solving the MPC 
problem (2) initialized with x0  from (2g) equal to 
one of the points from . Sets  and  together 
form a learning data set, from which the minimiza-
tion problem (4) is constructed. Note that problem 
(4) is presented only for one node in the hidden 
layer, the overall training procedure consists of an 
aggregated minimization problem, where all nodes 
are included.
Numerically, the optimal control actions are ob-
tained using the GUROBI solver, while the train-
ing procedure is performed with the Deep Learning 
Toolbox in MATLAB. Furthermore, the model pre-

dictive controller is formulated using the YALMIP 
toolbox (Lofberg, 2004).

Experimental

The theory presented in the Theoretical part of 
the paper was applied in a case study involving the 
control of a multi-component chemical reactor. 
Specifi cally, we considered benchmark chemical 
reaction

 A  B  C, (6)

with dynamical behavior given by three differential 
equations (Fissore, 2008; Bakaráč and Kvasnica, 
2018) leading to
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Process variables are concentrations x = [cA, cB, cC]|, 
while the manipulated variables, qin, stands for mo-
lar feed of component C. Specifi c parameters of the 
benchmark model of chemical reactor are reported 
in Table 1. Objective of the controller was to keep 
the concentration, cB, at a steady state level, which 
represents the optimal conditions of the reactor 
operation as introduced by Fissore (2008).
Concretely, the optimal operation of the chemical 
reactor is given by a set of steady-state values of indi-
vidual process variables, and they are given as

Fig. 1. Example of the neural network structure. Green points represent the input layer, red dots depict 
hidden layers, and the output layer is blue.
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 cA, S = 2.18 mol m–3, cB, S = 3.93 mol m–3,
 cC, S = 0.87 mol m–3, (8)

while the steady-state manipulated variables were 
set to qin, S = 5 mol s−1.
Next, the model predictive controller was con-
structed with linearized version of the dynamical 
mathematical model, sampled with TS = 0.1 s.
Matrices of the discretized state-space model take 
the form:
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MPC was set up with the prediction horizon N = 50, 
while the tuning factors were set to Q  =  10  and 
R = 0.15. The constraints were again reproduced 
from the benchmark model where 0  ≤ cA ≤ 10, 
0 ≤ cB ≤ 14, and 0 ≤ cC ≤ 1.1. Molar feed-fl ow of qin 

was constrained to the interval of [0, 10] mol s−1.
Learning set for the neural network was then con-
structed. Each interval for the process variables was 
split into 10000 samples, for which the correspond-
ing optimal value of the manipulated variable was 
determined. Such a training set was then fed into the 
Deep Learning Toolbox, particularly, the fi tnet com-

Tab. 1. Table of model parameters.

Variable Value Unit

k1 1 m3 mol−1 s−1

k2 3 m3 mol−1 s−1

k3 5 m3 mol−1 s−1

F 3 m3 s−1

V 3 m3

cA, feed 2 mol m−3

Fig. 2. Control performance of the NN-based controller with various initial conditions.

Kiš K et al., Neural network based explicit MPC for chemical reactor control



222

mand, which trained the neural network. Structure 
of the NN-based controller consists of three nodes 
in the input layer (due to three individual measure-
ments of the process variable) and from four 
hidden layers. Each hidden layer consists of four 
nodes, each in form of the action function, as in 
(3). The fi nal output layer has linear structure and 
consists of one node. Recall that the output from 
the neural network is the manipulated variable. 
The training was done offl ine, and it took 80 s on 
a personal computer with Core i7, 16 GB of RAM, 
and Matlab R2019a. The resulting neural network 
controller takes less than 7 kB of memory and can 
be evaluated in milli-second range on ARM proces-
sors. Such a characteristic is in strong contrast to 
the optimization procedure required by the MPC 
strategy. Finally, applicability of the NN-based con-
troller was evaluated and tested. A large scale test 
scenario was prepared, involving 600  simulations, 
each starting from a different initial condition. 
Thus, the performance of the NN-based controller 
can be easily observed. Furthermore, artifi cial dis-
turbance to the controller variable was introduced 
to present that the NN-based controller can also 
effectively cope with disturbances.
Adherence of the bounds on the process and mani-
pulated variables has to be especially pinpointed. 
Control scenarios can be seen in Figure 2, but only 
a subset of the 600 simulations is shown to make the 
fi gure readable. Also, all simulations are performed 
using the full-fi delity non-linear model presented 
in (7).
Even though the performance of the NN-controller 
is, in terms of the

 
sim

2

2
0

( ) ,
t

S
t

J x t x
=

= -å  (10)

simulations, satisfactory, a quality criterion of the 
following form was also evaluated to indicate how 
far the actual measurement of process variables 
was from the desired steady-state value. For all 
600  simulations, the J value was evaluated and 
compared with the value of the criterion from the 
model predictive control performance. The worst 
decrease in the suboptimality was 2.14 %.

Conclusions

The paper discussed the design of suboptimal con-
trol law in form of a neural network. The main ad-
vantage of this controller is its explicit form, which 
was constructed for a large prediction horizon. 
The neural network was constructed based on data 
obtained from the optimal solution to a full-fi delity 
model predictive controller. Applicability of the 
suboptimal controller was tested on a large-scale 

simulation case study involving the stabilization of 
multi-component chemical reaction. Simulation re-
sults showed that in 94.5 % of cases, the NN-based 
explicit controller performed with the optimality 
decrease below 1 %.

Acknowledgments
The authors gratefully acknowledge the contribution of 
the Scientifi c Grant Agency of the Slovak Republic under 
the grant 1/0585/19. This work was supported by the 
funding of the Slovak Ministry of Education, Science, 
Research and Sport under the project STU as the Leader 
of Digital Coalition 002STU-2-1/2018. M. Klaučo 
would like to thank for the fi nancial contribution from the 
STU Grant Scheme for Excellent Research Teams.

References

Bakará č P, Kvasnica M (2018) Fast nonlinear model 
predictive control of a chemical reactor: a random 
shooting approach. Acta Chimica Slovaca, 11(2): 
175—181.

Bakošová M, Mészáros A, Klemeš J, Oravec J (2012) 
Robust and optimal control approach for exothermic 
reactor stabilization. Theoretical Foundations of 
Chemical Engineering, (46): 740—746.

Bakošová M, Oravec J, Mészáros A, Vasičkaninová A 
(2017) Neural-Network-Based and Robust Model-
Based Predictive Control of a Tubular Heat Exchanger. 
Chemical Engineering Transactions, (61): 301—306.

Bakošová M, Oravec J (2014) Robust mpc of an 
unstable chemical reactor using the nominal system 
optimization. Acta Chimica Slovaca, 7(2): 87—93.

Bemporad A, Morari M, Dua V, Pistikopoulos EN (2002) 
The explicit linear quadratic regulator for constrained 
systems. Automatica, 38(1): 3—20.

Borrelli F, Bemporad A, Morari M (2017) Predictive 
Control for Linear and Hybrid Systems. Cambridge 
University Press.

Fissore D (2008) Robust control in presence of parametric 
uncertainties: observer-based feedback controller 
design. Chemical Engineering Science, 63(7): 1890—
1900.

Hornik K (1991) Approximation capabilities of multi-
layer feedforward networks. Neural Networks, 4(2): 
251—257.

Karg B, Lucia S (2018) Effi cient representation and 
approximation of model predictive control laws via 
deep learning.

Klaučo M, Kvasnica M (2019) MPC-Based Reference 
Governors. Springer, 1st edition.

Lofberg J (2004) YALMIP: A Toolbox for Modeling and 
Optimization in MATLAB. In Proc. of the CACSD 
Conference, Taipei, Taiwan. Available from http://
users.isy.liu.se/johanl/yalmip/.

Lohr Y, Klaučo M, Kalúz M, Monnigmann M (2019) 
Mimicking predictive control with neural networks in 
domestic heating systems. In Fikar M and Kvasnica 
M, editors, Proceedings of the 22nd International 
Conference on Process Control, pages 19—24, Šrbské 
Pleso, Slovakia. Slovak University of Technology in 
Bratislava, Slovak Chemical Library.

Kiš K et al., Neural network based explicit MPC for chemical reactor control



223

Maciejowski JM (2002) Predictive Control with 
Constraints. PEARSON Prentice-Hall.

Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) 
Constrained model predictive control: Stability and 
optimality. Automatica, 36(6): 789—814.

Pourdehi S, Karimaghaee P (2018) Stability analysis and 
design of model predictive reset control for nonlinear 
time-delay systems with application to a two-stage 
chemical reactor system. Journal of Process Control, 
71: 103—115.

Prasath G, Recke B, Chidambaram M, Jørgensen J (2010) 
Application of Soft Constrained MPC to a Cement 
Mill Circuit. In Proceedings of the 9th International 
Symposium on Dynamics and Control of Process 
Systems, Belgium, Leuven.

Singh A, de Villiers P, Rambalee P, Gous G, de Klerk 
J, Humphries G (2010) A holistic approach to the 
application of model predictive control to batch 
reactors. IFAC Proceedings Volumes, 43(9): 127—132. 
13th IFAC Symposium on Automation in Mining, 
Mineral and Metal Processing.

Smets IY, Claes JE, November EJ, Bastin GP, Impe JFV 
(2004) Optimal adaptive control of (bio)chemical 
reactors: past, present and future. Journal of Process 
Control, 14(7): 795—805. Dynamics, Monitoring, 
Control and Optimization of Biological Systems.

Kiš K et al., Neural network based explicit MPC for chemical reactor control



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'PATRIA_PDFX1a\(1\)'] [Based on 'PATRIA_PDFX1a\(1\)'] Use these settings to report on PDF/X-1a compliance and produce PDF documents only if compliant. PDF/X is an ISO standard for graphic content exchange. For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /WorkingCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed true
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


