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Abstract

The problem of Set-membership State Estimation (SSE) is addressed. The work
focuses on the main advantages and drawbacks of this kind of methodology. The
theoretical background needed for developing a strategy using SSE is given (principle
of convex sets theory, operation between sets and properties). Parallelotopes, and
polytopes are deeply studied in the context of SSE. The most important properties and
operations of the previous sets, together with their demonstrations, and also examples
are given. New approaches are proposed. This is the case, for the intersection of
parallelotopes, Minkowski sum, intersection and linear transformation of polytopes.
A generalization of SSE approach is given taking into consideration a linear system
that is found by the decomposition of a nonlinear system and various outputs signals.
Moreover, two algorithms have been established to perform an SSE approach using
parallelotopes or polytopes. A robust MPC control strategy is used to show the results
with parallelotopes. Finally, a set of conclusions and futures challenges is given.
Keywords: Set-membership State Estimation, Set theory, Robust MPC
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Abstrakt

V tejto práci sa rieši problém odhadu stavov dynamických systémov pomocou množi-
novej príslušnosti (angl. Set-membership State Estimation, SSE). Práca sa zameriava
na hlavné výhody a nevýhody tohto prístupu. Je uvedený teoretický základ stratégie
SSE (princíp teórie konvexných množín, operácie medzi množinami a ich vlastnosti).
Rovnobežníky a polytopy sú dôkladne rozobraté v kontexte SSE. Sú uvádzané na-
jdôležitejšie vlastnosti a operácie pre tieto množiny spolu s ich ukážkami a príkladmi.
Sú navrhnuté nové prístupy ako napríklad prienik rovnobežníkov, Minkowského súčet,
či prienik a lineárna transformácia polytopov. Zovšeobecnenie SSE prístupu je dané s
prihliadnutím na lineárny systém, ktorý je získaný rozkladom nelineárneho systému.
Okrem toho sú vyvinuté dva algoritmy na vykonávanie odhadu pomocou prístupu
SSE s použitím rovnobežníkov a polytopov. Na preukázanie prínosov s pomocou
rovnobežníkov bola použitá robustná stratégia riadenia MPC. Na konci práce je uve-
dený súbor záverov a výziev do budúcnosti.
Kľúčové slová: Odhad stavu set-členstva, teória množín, robustný MPC
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Notation

Convex Sets
A Convex set
CZ Constrained Zonotope

E Ellipsoid

H Half-space

L Hyperplane

P Paralleletope

S Strip

Z Zonotope

P Polytope

conv Convex hull of the set
Real Constants and Convex Spaces

R Set of real numbers
R+ Set of positive real numbers including 0

Rn n-dimensional real vector space

0 n dimensional constant vector of zeros
0no×n Matrix where all element are zero with dimension Rno×n

0no no dimensional vector of zeros

1 n-dimensional constant vector of 1
A State matrix of a linear system

a A n-dimensional constant vector
B Input matrix of a linear system, Rn×nu

C Output matrix of a linear system, Rn×no
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E Matrix with the uncertainty relation with states in a linear systems, Rn×nω

F Noise matrix of a linear system, Rno×nν

G Facet matrix of a polytope

h Constant vector or offset vector of a polytope

Ino Identity matrix of dimension no

S Nonsingular matrix ∈ Rn×n

x For convex set depicts the elements of the mentioned set. In linear systems, it
is known as the vector state

xi Vector element of any convex set ∀i ∈ N. In linear system, it depicts the state
i of the vector state

a Constant
n Natural number
nν Number of independent noises in the outputs of a linear system

nω Number of independent uncertainties of a linear system

no Number of state outputs of a linear system

nu Number of inputs of a linear system
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Chapter 1

Introduction

Nowadays, industries strive to tackle uncertainty present in the daily business to avoid
losses and to improve production performance. These uncertainties come from miss-
matches of the model (called uncertainties of the process) and from the inaccuracies
of sensors (noises in the measurement output). The principle of robustness is used in
control theory for establishing insensitivity to disturbance variation. The robustness
can be reached by guaranteeing that the implemented controller steers the plant to
obey the production and safety constraints. One of the ways to approach the problem
is by an identification procedure that infers the values of state variables of the plant and
disturbances from the available measurement outputs. A well-founded identification
process under a robust control strategy will avoid constraint violation and, at the same
time, will enhance the performance of the closed-loop system [17].

There are two general approaches, the probabilistic, where the algorithm requires strong
assumptions on the statistical distribution of measurement noise and disturbances. This
is the case of methods such as the well-known Kalman Filter (KF), which is also known
as the optimal linear quadratic estimator (LQE) and deterministic approaches, such as
Set-membership State Estimation (SSE), where it does not require any consideration
about the probability distribution of the noise in the measurements, as well as, in the
process uncertainties [8]. It is the latter approach where we want to focus. Usually, the
accuracy and the complexity of the set chosen to depict the uncertainties in the SSE are
inversely proportional, Le et al. [19]. Therefore, it is important to establish a trade-off
between these. Even though SSE has been studied since 1970, the resulting sets there
has still an arbitrary high complexity for non-conservative solutions. Moreover, the
complexity rises continuously as more output data are used. In this work, it is not our
intention to solve this problem, nonetheless, our contribution lies in bringing up new
strategies to reduce the complexity generated for SSE approaches.

Overall, SSE methods are based on the construction of a compact set that includes,
with guarantee, the states of the system that are consistent with the measured output
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and take into account the bounded noise. The only consideration taken is norm-
bounded uncertainty. This method splits into two important steps. The propagation
step, where the chosen set is transformed accordingly to the dynamics system and
the uncertainties bounds on the states. On the other side, the update step concerns
about to compute the intersection of the propagated set with the output set ( A set
that is created by the measurement output and the outputs bounds). Therefore, SSE
approaches vary depending on the chosen set or how to perform the update step. Next
paragraphs show remarkable works, in chronological order of SSE using ellipsoids,
polytopes, parallelotopes, zonotopes, constrained zonotopes or a mixture of sets.

In Bertsekas and Rhodes [7], an ellipsoidal bounding approach was proposed. In this
work, the authors addressed the problem of estimating the state of a linear dynamic
system from noisy measurements of the output only, taking energy constraints in the
output. The resulting estimator was similar in structure and comparable in simplicity
to LQE. This kind of set has been studied by many authors, see, for example, [18],
[10] and [22].

Kuntsevich [17] developed two strategies using polytopes or ellipsoids. The author
computed the exact intersection of sets although with a high computational cost
associated, Spathopoulos and Grobov [28] developed an SSE using polytopes, this
time reducing the computational cost using Linear Programming (LP). However, the
computational cost resulted still high in contrast with other approaches. Therefore,
polytopes were in general discarded for identification processes and/or control structures
due to their inherent high computational cost and complexity of the equations. Later,
many researchers began using this set in combination with others to increase accuracy
and reduce computational cost. This is the case for instance of [4].

Vicino and Zappa [31] developed a new SSE model using parallelotopes. The authors
developed an algorithm to compute an optimal reachable parallelotope based on the
minimum volume. New breakthroughs in this sense are presented by [27], where
the authors use information from the past, such as Chisci et al. [11] to improve the
estimation.

Zonotopes are closed under linear transformations and Minkowski sum, therefore have
been used for SSE by many authors, Combastel [12] is one of the pioneers, it follows
by Girard [14] and Alamo et al. [1]. These authors designed similar structures only
different in the way they reduce the order of the resulting zonotope. However, these
three approaches imply a significant wrapping effect, because they took the interval
hull for reducing the order. Althoff et al. [4] proposed a new method for zonotope order
reduction based on linear transformations that can exhibit better overapproximations
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than the previous approaches.

Scott et al. [26] introduced a new class of sets, called constrained zonotopes, that can
be used to enclose sets of interest for estimation and control. The resulting set is able
to depict any arbitrary polytope. Because of this, it is called a new representation of
polytopes, however, it implies in high order representation, even for polytopes with
few half-spaced. The biggest advantage of constrained zonotopes lies in that they are
closed under many operations (Minkowski sum, intersection, linear transformation,
and projections) which brings simple SSE formulations. This approach has gained
acknowledgment and there are many authors working in this area, for instance [24].

Overall, the SSE is well studied but still has many open problems. The implementation
of different sets brings some advantages over others. Convex sets for estimation and
control have been studied since 1970. Thus, many tools can be found to perform
estimation and control in a relatively simple way.

The Multi-Parametric Toolbox (MPT) by [15] is a collection of algorithms that features
a powerful geometric library where a great variety of set-membership control and
identification problems can be solved. At the same time, it can be used for modeling,
control, analysis, and deployment of constrained optimal controllers.

The COntinuous Reachability Analyzer (CORA) developed by [3] is a toolbox that
integrates various set representations and operations on them as well as reachability
algorithms of various dynamic system classes. It specifically designed to work with
set-membership problems, although, it can be used for other purposes.

Despite these tools and differences approaches, the perfect solution is far from being
achieved. The non-conservative solution for system controlling or system identification
and/or estimation is still arbitrarily complex and rises while more data is collected.
Therefore, the main goal of this research focuses on developing a new approach for
set-membership estate estimation together with one suitable control structure and to
bring a researcher handbook for set-membership in control.

Motivation
The main motivation of research in the SSE approach lies in improving current
methodologies in parallelotopes, polytopes, and zonotopes. Past measurement outputs
can be taken to reduce the feasibility set in many approaches, a clever method to select
particular measurement outputs from the past is required (In this work, we suggest
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one for parallelotope state estimation). Another way to enhance the performance of
SSE, it is finding new algorithms that reduce the complexity of the sets used. In this
context, a new necessary and sufficient condition to compute the Minkowski sum in
polytopes is required (a necessary, but do not sufficient condition is proposed) and a
unique optimization problem to computed an SSE is also needed. Furthermore, the
zonotope order reduction problem is still open in the research area. New ideas suggest
that a transformation matrix could lead to less conservative sets. However, the way to
select the transformation matrix is not clear. We believe that a rotation matrix is a
key to find the minimum order zonotope that encloses the higher zonotope.

General Objectives
The main goal of our work is to bring up three new approaches to tackle Set-membership
State Estimation. In this sense, we can summarize the objectives in the following way,

• Develop a new Set-membership State Estimation using Parallelotopes taking
information from the past.

• Develop a new Set-membership State Estimation using Polytopes throughout
one single non-linear problem.

• Develop a Set-membership State Estimation using zonotopes with a new zonotope
order reduction technique.

As a consequence of these objectives, it is expected:

• Build up a complete review of the current methods for SSE for every set (poly-
topes, ellipsoids, parallelotopes, zonotopes, constrained zonotopes).

• Establish a researcher handbook for SSE that includes the minimum mathematical
requirements, methods, algorithms, and examples for a variety of systems with
the aim to encourage new researchers with a well-defined path.

• Formulate new necessary and sufficient conditions for Minkowski sum of poly-
topes.

• Build up new zonotope properties and operations.
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Chapter 2

Set Theory Foundations

In this chapter, the mathematical foundations about convex sets that are going to be
used in this work are presented.

2.1 Preliminaries
Before presenting the most well-known families of convex sets, some basic definitions
and operations are required. Thus, this section has the purpose of clarifying to the
reader some essential notions about convex sets which will be useful further. [9] and
[8] are good references for more details.

Definition 1 (Linear Combination). Given n vectors {x1,x2, ...,xn} and n constants
{a1, a2, ..., an}, the linear combination of the vectors is given by,

n∑
i=1

aixi (2.1)

where ai ∈ R is the only condition.

Definition 2 (Convex Combination). Given n vectors {x1,x2, ...,xn} and n constants
{α1, α2, ..., αn}, the convex combination of the vectors is given by,

n∑
i=1

αixi (2.2)

where αi ∈ R+ and
∑n
i=1 αi = 1.

The convex combination of two points x1 and x2 can be described by αx1 + (1− α)x2,
where, 0 ≤ a ≤ 1. From a geometrical point of view, the convex combination between
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two points is the line drawn between x1 and x2. In Figure 2.1 the line of points that
depicts this situation is drawn.

Figure 2.1: Representation of a convex combination of two points.

Definition 3 (Convex Set). A set C ⊂ Rn is convex, if and only if

∀x1, x2 ∈ C, αx1 + (1− α)x2 ∈ C (2.3)

where α ∈ R with 0 ≤ α ≤ 1. Equivalently, a set C is convex if and only if for each pair
of distinct points x1,x2 ∈ C the closed segment with endpoints x1 and x2 is contained
in C.

Definition 4 (Convex Hull). The convex hull (conv) of a set C ∈ Rn is the inter-
section of all possible convex set, that contain C. It is the set of all points which may
be depicted as convex combinations of points of C.

Definition 5 (Hyperplane and Half-Space). A hyperplane L is a set which may be
defined as L(g, h) = {x ∈ Rn| gᵀx = h}, where g 6= 0 and h ∈ R. Geometrically, g is
the normal vector of the hyperplane L and h determines the offset of the hyperplane
from the origin. A closed half-space H(g, h) is defined as {x ∈ Rn| gᵀx ≤ h} for
g 6= 0. In Figure 2.2, both concepts are illustrated.

Definition 6 (Polyhedron). A set C ⊂ Rn is a polyhedron, if and only if, the set is
the intersection of m half-spaces. Clearly, a half-space itself is a polyhedron.

Definition 7 (The Minimal Representation). A linear inequality aᵀx ≤ b is called
valid for a polyhedron C, if and only if aᵀx ≤ b holds ∀x ∈ C. Therefore, a polyhedron
can have infinite valid half-spaces and can be represented by many redundant half-spaces.
The polyhedron with the minimum number of half-spaces that depict it is called the
minimal representation.
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Figure 2.2: Representation of the hyperplane and half-spaces in R2.

Figure 2.3: Example of a vertex (left-hand plot) and of an edge (right-hand plot),
respectively in R2.

Definition 8 (Faces, Vertices, Edges, Ridges, and Facets). A subset of a polyhedron
C is called a face of C if it can be represented as

F = C ∩ {x ∈ Rn|aᵀx = b} (2.4)

The dimension of a face is the number of variables needed to describe F uniquely for
some valid inequality. The faces of a polyhedron C of dimensions 0,1...(n − 2), and
(n− 1) are called vertices, edges, ridges, and facets, respectively. The Figure 2.3 shows
two valid inequalities for a polyhedron in R2, i.e., a vertex and an edge.

Definition 9 (Supporting hyperplane). Denote C ⊂ Rn an arbitrary convex set. Then,
the hyperplane,

L(g, h) = {x ∈ Rn|gᵀx = h} (2.5)

is a supporting or tangent hyperplane for C, if and only if, gᵀx ≥ h or gᵀx ≤ h,
∀x ∈ C. One way to find a supporting hyperplane is through the support function, the
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function σ[C](g) defined as,

σ[C](g) = max
x∈C

gᵀx (2.6)

is said to be the support function. A convex and closed set can be represented in terms
of its support function. If C is a convex and closed set, then

C = {x ∈ Rn|gᵀx = σ(C)} ∀g ∈ Rn (2.7)

2.1.1 Operations over Convex Sets
We present some basic operations over sets, which will become useful below. Let A
and B be any convex sets, and let λ ∈ R.

2.1.1.1 Minkowski Sum

The Minkowski sum of two sets is given by,

A⊕ B = {a+ b, ∀a ∈ A,∀b ∈ B} (2.8)

2.1.1.2 Scaling

λA = {λa, ∀a ∈ A} (2.9)

2.1.1.3 Intersection

The intersection of two sets is given by,

A ∩ B = {x |x ∈ A,x ∈ B} (2.10)

2.1.2 The Conjugate Function
The conjugate function will allow to demonstrate some useful properties. It is the key
to duality problems in optimization. The conjugate function is defined as

f∗(y) = sup
x∈dom f

(yᵀx− f(x)) (2.11)
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where the function f∗ : Rn → R and dom depicts the domain of a function. The
domain of the conjugate function consists of y ∈ Rn for which the supremum is finite.
This is, for which the difference yᵀx−f(x) is bounded above on dom f . The conjugate
function, f∗ is always a convex function since it is the pointwise supremum of a family
of convex functions of y. This is true whether or not f is convex. The following
example will clarify the definition and it will help in the future.

Example 1 (The affine function). f(x) = aᵀx+ b. As a function of x, yᵀx−aᵀx− b
is bounded if and only if y = a, in which case, it is constant. Therefore the domain of
the conjugate function f∗ is the constant vector a, and f∗(a) = −b.

2.2 Strips
Strips are unbounded sets, built up with two parallel half-spaces. Strips are only closed
under linear transformations and they are not used as set for estimation at least not
in a direct way.

2.2.1 Definition
Given an arbitrary non-zero vector p and a real constant c, a strip is an unbounded
set of points that satisfy:

S(p, c) := {x| pᵀx− c| ≤ 1} (2.12)

where p ∈ Rn and c ∈ R. Its supporting hyperplanes are given by,

H+ = {x ∈ Rn| pᵀx = c+ 1} (2.13)
H− = {x ∈ Rn| pᵀx = c− 1} (2.14)

Remark 1. Given two strips S1(p1, c1) and S2(p2, c2), S1 is contained in S2 (S1(p1, c1) ⊆
S2(p2, c2)), if and only if, ∃λ, 0 < λ ≤ 1, such that

p2 = λp1 (2.15)
|c2 − λc1| ≤ 1− λ (2.16)

Definition 10. The strip S(p, c) is said to be tight with respect to C if both H+ and
H− are supporting hyperplanes for C.
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Figure 2.4: Example of the characteristics of the strips in R2.

2.2.2 Basic Operations with Strips
2.2.2.1 Linear Transformation

Given strips S1(p1, c1) and S2(p2, c2), it is said that S2(p2, c2) is a linear transformation
of S1(p1, c1), if and only if, there exists a nonsingular matrix S ∈ Rn×n and a linear
relation x2 = Sx1 + a with a ∈ Rn×1. where,

p2 := pᵀ1S
−1, c2 := c1 + pᵀ1S−1a. (2.17)

Proof 1.

x2 = Sx1 + a (2.18)
x2 − a = Sx1 (2.19)

x1 = S−1(x2 − a) (2.20)
x1 = S−1x2 − S−1a (2.21)

Using a substitution of x1 into strip definition, it results in

S1(p1, c1) = {x1 : |pᵀ1x1 − c1| ≤ 1} (2.22)
⇒ {x2 : |pᵀ1(S−1x2 − S−1a)− c1| ≤ 1} (2.23)
= {x2 : |pᵀ1S−1x2 − pᵀ1S−1a− c1| ≤ 1} (2.24)

2.2.2.2 Developing Strips from Half-spaces

The supporting hyperplanes (H− and H+) and the center hyperplane are depicted in
Figure 2.4 (one strip with its supporting hyperplanes). Thus, it is evident that any
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strip can be represented as a non-void intersection of two parallel half-spaces. In this
sense, it is said that two half-spaces, H1(g1, h1) and H2(g2, h2) are parallel if and only
if, ∃α ∈ R, such that g1 = αg2. This means, it is possible to write both, H1 and H2,
in the following manner,

h1 ≤ gᵀ1x ≤ αh2

The next step is to find a real value to add to the inequalities such that the absolute
value of the constant terms in both sides is the same. This can be solved if we propose
a system of two equations with two variables, where a ∈ R will be the constant to add
in the inequalities and b ∈ R the desired value. This is,

h1 + a = −b (2.25)
αh2 + a = b (2.26)

⇒ a = −h1 + αh2

2 (2.27)

Thus

h1 −
h1 + αh2

2 ≤ gᵀ1x−
h1 + αh2

2 ≤ h2 −
h1 + αh2

2 (2.28)

−h1 − αh2

2 ≤ gᵀ1x−
h1 + αh2

2 ≤ h1 − αh2

2 (2.29)

−1 ≤ 2
h1 − αh2

gᵀ1x−
h1 + αh2

h1 − αh2
≤ 1 (2.30)

The resulting inequalities represent a strip S(p, c) where p = 2
h1 − αh2

g1 and c =
h1 + αh2

h1 − αh2
.

Example 2. Given two parallel half-spaces of the form (See Figure 2.5),

[1 1]
[
x1
x2

]
≤ 5, [−2 − 2]

[
x1
x2

]
≤ −6 (2.31)

The strip associated with the half-spaces is given by,{
x ∈ R2|

∣∣∣∣[−1 −1
] [x1
x2

]
+ 4
∣∣∣∣ ≤ 1

}
(2.32)
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Figure 2.5: Example of two half-spaces creating one strip in R2.

Example 3 (Strips from Linear Systems). we consider a discrete-time linear single
output system under a bounded perturbation that can be expressed in the time step k
such as,

ym,k = Cxk ± εk

where εk ∈ [−ε, ε] depicts the bounded error, xk ∈ Rn is the system state vector at
time step k, C ∈ R1×n is the output matrix (vector in this case), and ym,k ∈ R is the
measurement output. It is clear that the error between the measurement output and
the linear system is given by,

−ε ≤ Cxk − ym,k ≤ ε

Now, if we compare this equation with (2.29), the strip for the linear system is given
by, ∣∣∣∣Cε xk − ym,k

ε

∣∣∣∣ ≤ 1 (2.33)
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2.3 Parallelotopes
This section summarizes the most important properties and operations of parallelotopes
that are going to be useful in this work.

2.3.1 Definition
A parallelotope can be defined in terms of half-spaces, such as a nonvoid intersection of
2n parallel half-spaces. In terms of polyhedrons, it is a bounded, symmetric polyhedron
with facet matrix G ∈ R2n×n. In terms of polytopes, it is a symmetric polytope with
facet matrix G ∈ R2n×n. In terms of strips, it is a non-empty bounded intersection of
n strips. All definitions are valid and equivalent and can be useful depending on the
case to demonstrate or to compute particular operations.
A mathematical way to define a parallelotope is given,

P = ∩ni=1S(pi, ci) (2.34)

Which is equivalent to,

P = {x ∈ Rn| ||Px− c||∞ ≤ 1} (2.35)

where P ∈ Rn×n and c ∈ Rn×1. If the intersection of strips is bounded and nonempty,
the inverse of P exists. Thus, applying a change of variables as v = Px− c, defining
T = P−1, θc = Tc, equation (2.35) turns into,

P(T ,θc) = {x = Tv + θc, ||v||∞ ≤ 1} (2.36)

This new equation is known as the generator form. Clearly v is limited by the unit
square of Rn. Thus, the columns of T = [t1 t2 ...tn] determine the size and shape of
the parallelotope that is going to be placed around θc. For this reason, T is called the
generator matrix and θc the center of a parallelotope. An example of a parallelotope
in R2 is shown in Figure 2.6.
The H − rep of a parallelotope can be deducted from (2.35), understanding that
parallelotopes have 2n facets where n of them are non-parallel, and each of the rows
of P describes the direction of each half-space. Therefore

P(Gp,hp) =
{
x ∈ Rn|

[
P

−P

]
x ≤

[
1 + c
1− c

]}
(2.37)
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Figure 2.6: Parallelotope characteristics. Example of two dimensions

2.3.2 Basic Operations with Parallelotopes
2.3.2.1 Linear Transformation

Given parallelotopes P1(T 1,θc,1) and P2(T 2,θc,2), it is said that P2(T 2,θc,2) is a linear
transformation of P1(T 1,θc,1) if and only if, exists a nonsingular matrix S ∈ Rn×n

and a linear relation x2 = Sx1 + q with q ∈ Rn×1. Therefore,

T 2 = ST 1 θc,2 = Sθc,1 + q (2.38)

Proof 2.

x2 = Sx1 + q (2.39)
x2 = S(T 1v1 + θc,1) + q, ||v1||∞ ≤ 1 (2.40)
x2 = ST 1v1 + Sθc,1 + q, ||v1||∞ ≤ 1 (2.41)

Thus, using (2.38)

x2 = T 2v2 + θc,2, ||v2||∞ ≤ 1 (2.42)
(2.43)
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2.3.2.2 Minkowski Sum

Parallelotopes are not closed under Minkowski sum. This means, that in general the
addition of two parallelotopes is not a parallelotope. This operation is determined in
the following way. Given parallelotopes P1(T 1,θc,1) and P2(T 2,θc,2). The Minkowski
sum is given by,

T s =
[
T 1 T 2

]
θc,s = θc,1 + θc,2 (2.44)

Latter we will show that this expression depicts a zonotope and it can be reduced
using special techniques.

2.3.2.3 Intersection

The intersection is another non closed operation for parallelotope. However, it is
possible to find a parallelotope that encloses the intersection in a simple way. We
propose the following relations. Given parallelotopes P1(T 1,θc,1) and P2(T 2,θc,2), a
parallelotope that encloses the intersection P∩(T∩,θc,∩) it is given by,

T∩ = 2T 1(T 1 + T 2)−1T 2
θc,∩ = T 2(T 1 + T 2)−1θc,1 + T 1(T 1 + T 2)−1θc,2

(2.45)

Proof 3. By definition, the intersection of P1 and P2, i.e., P1
⋂
P2 represents the

set of all elements x that belong to P1 and P2. This can be described by,

P∩ = x ∈ P1, x ∈ P2 (2.46)
P∩ = {x = T 1v1 + θc,1 : ‖v1‖∞ ≤ 1}, {x = T 2v2 + θc,2 : ‖v2‖∞ ≤ 1} (2.47)

At the same time we know that,

v1 = T−1
1 (x− θc,1) v2 = T−1

2 (x− θc,2) (2.48)

In order to find a relation between both definitions in Equation (2.48), both conditions
are added.

‖v1 + v2‖∞ ≤ 2 (2.49)∥∥T−1
1 (x− θc,1) + T−1

2 (x− θc,2)
∥∥
∞ ≤ 2 (2.50)∥∥T−1

1 x− T−1
1 θc,1 + T−1

2 x− T−1
2 θc,2

∥∥
∞ ≤ 2 (2.51)∥∥(T−1

1 + T−1
2 )x− (T−1

1 θc,1 + T−1
2 θc,2)

∥∥
∞ ≤ 2 (2.52)∥∥(T−1

1 + T−1
2 )x− (T−1

1 θc,1 + T−1
2 θc,2)

∥∥
∞

2 ≤ 1 (2.53)
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The next step is a change of variable to v3. Where v3 is constrained to the unit square.

v3 = (T−1
1 + T−1

2 )x− (T−1
1 θc,1 + T−1

2 θc,2)
2

(2.54){
x = 2(T−1

1 + T−1
2 )−1v3 + (T−1

1 + T−1
2 )−1(T−1

1 θc,1 + T−1
2 θc,2), ‖v3‖∞ ≤ 1

}
(2.55)

The equation above describes a parallelotope although this form implies three inverse
matrix operations. However, if we take into account the identity (A−1 + B−1)−1 =
A(A+B)−1B = B(A+B)−1A, we get,

P∩(T∩,θc,∩) = {x = 2T 1(T 1 + T 2)−1T 2v3 + T 2(T 1 + T 2)−1θc,1

+ T 1(T 1 + T 2)−1θc,2), ‖v3‖∞ ≤ 1} (2.56)

P∩(T∩,θc,∩) = {x = T∩v3 + θc,∩, ‖v3‖∞ ≤ 1} (2.57)

2.3.3 Vertices of Parallelotopes
The computation of vertices is a well-known problem and is called vertex enumeration
problem. However, in the case of parallelotopes, this problem has a straightforward
solution because there are exactly 2n vertices and each vertex (vp,i) can be found
through,

vp,i = θc + Tvi (2.58)

where vp,i holds ||vi||1 = n and ||vi||∞ = 1, ∀i ∈ [1, 2n]. Clearly, there are 2n different
vectors combinations in Rn that hold previous conditions on vi. The matrix V is an
example of all the possible combinations of vi in R2, this means, that V = [v1 v2 v3 v4]
and is given by

V =
[
−1 −1 1 1
−1 1 −1 1

]
(2.59)

if we apply the operations 1
2 (V + 1), it gets,

1
2 (V + 1) =

[
0 0 1 1
0 1 0 1

]
≡ [0 1 2 3] (2.60)

which is equivalent to the binary numbers between 0 and 3. Thus, one way to compute
the vertices of any parallelotope is by using this principle. The Algorithm 1 shows this
method.
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Algorithm 1 Vertex computation of a parallelotope.
Input: P(T ,θc)

1. Get the dimension of T and assign it to n.

2. Build the matrix Ad = [0 1 ...(2n − 1)].

3. Find the binary representation of each element of Ad, This is, Ab := bin(Ad).

4. Apply the operation Ab := 2Ab − 1

5. For i = 1 to 2n
Compute the matrix V p,i = θc + Tab,i, where ab,i depicts the column i of Ab
end

Output: V p,i.

2.4 Ellipsoids
2.4.1 Definition
Given a vector xc ∈ Rn, called the center, and positive definite matrix P ∈ Rn×n, an
ellipsoid is a set that holds the following form,

E(P ,xc) =
{
x ∈ Rn|

√
(x− xc)ᵀP (x− xc) ≤ 1

}
(2.61)

By defining the root of a positive definite matrix P as the unique positive symmetric
matrix Q = P−

1
2 such that Q2 = P−1, it is possible to derive an alternative dual

representation for an ellipsoidal set called generator form:

E(xc,Q) = {x ∈ Rn|x = Qv + xc, ||v||2 ≤ 1} (2.62)

Proof 4. If we go from Equation (2.61) to Equation (2.62),

=
{
x ∈ Rn|

√
(x− xc)ᵀP

1
2P

1
2 (x− xc) ≤ 1

}
(2.63)

=
{
x ∈ Rn|

√(
P

1
2
ᵀ (x− xc)

)ᵀ
P

1
2 (x− xc) ≤ 1

}
(2.64)
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In this point, we remind that P is symmetric, therefore

=
{
x ∈ Rn|

√(
P

1
2 (x− xc)

)ᵀ
P

1
2 (x− xc) ≤ 1

}
(2.65)

=
{
x ∈ Rn|

(
P

1
2 (x− xc)

)ᵀ
P

1
2 (x− xc) ≤ 1

}
(2.66)

=
{
x ∈ Rn|

(
P

1
2 (x− xc)

)ᵀ
P

1
2 (x− xc) ≤ 1

}
(2.67)

If we consider the transformation v = P
1
2 (x− xc), we get

=
{
x ∈ Rn| v = P

1
2 (x− xc) , vᵀv ≤ 1

}
(2.68)

=
{
x ∈ Rn| v = P

1
2 (x− xc) , ||v||2 ≤ 1

}
(2.69)

=
{
x ∈ Rn| P− 1

2v = x− xc, ||v||2 ≤ 1
}

(2.70)

=
{
x ∈ Rn| x = xc + P− 1

2v, ||v||2 ≤ 1
}

(2.71)

Finally, it is assumed Q = P−
1
2 and is got equation (2.62).

2.4.2 Basic Operation with Ellipsoids
2.4.2.1 Linear Transformation

Given ellipsoids E1(Q1,xc,1) and E2(Q2,xc,2). It is said that E2(Q2,xc,2) is linear
transformation of E1(Q1,xc,1) if and only if, exists a nonsingular matrix S ∈ Rn×n

and a linear relation x2 = Sx1 + q with q ∈ Rn×1. Therefore,

Q2 = SQ1 xc,2 = Sxc,1 + q (2.72)

The demonstration of this property is similar to the linear transformation of parallelo-
tope (See 2.3.2.1).

2.4.2.2 Minkowski Sum

Ellipsoid are not closed under Minkowski sum. [18] proposed an outer approximation
of the Minkowski sum of k ellipsoids that is given by,

xc =
∑k
i=1 xc,i Q(r) =

(∑k
i=1
√
rᵀQir

)∑k
i=1

Qi√
rᵀQir

∀ rᵀr = 1 (2.73)

A complete demonstration is found in [18].
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2.5 Zonotopes
2.5.1 Definition
Zonotopes are a special class of symmetric convex sets. They can be described in terms
of polyhedron or polytopes. Therefore, the properties of polytopes and polyhedron
apply to zonotopes. The zonotopes can be defined as the Minkowski sum of m line
segments in Rn. This is the way used by [12], and it is expressed as,

Z(T ,θc) = {x = Tv + θc, ||v||∞ ≤ 1} (2.74)

where T ∈ Rm×n, and it is call the generator form. In the same way than parallelotopes,
the columns of T are called generators.

2.5.2 Basic Operations with Zonotopes
2.5.2.1 Linear Transformation

Given zonotopes Z1(T 1,θc,1) and Z2(T 2,θc,2). It is said that Z2(T 2,θc,2) is linear
transformation of Z1(T 1,θc,1) if and only if, exists a nonsingular matrix S ∈ Rn×n

and a linear relation x2 = Sx1 +L with q ∈ Rn×1. Therefore,

T 2 = ST 1 θc,2 = Sθc,1 + q (2.75)

The demonstration of this property is similar to the linear transformation of parallelo-
tope and ellipsoids (See 2.3.2.1).

2.5.2.2 Minkowski Sum

Zonotopes are closed under Minkowski sum. This operation is determined in the
following way. Given zonotopes Z1(T 1,θc,1) and Z2(T 2,θc,2). The Minkowski sum is
given by,

T s =
[
T 1 T 2

]
θc,s = θc,1 + θc,2 (2.76)
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Proof 5. The Minkowski sum is defined as x3 = x1 + x2. Thus,

x3 = x1 + x2 (2.77)
x3 = T 1v1 + θc,1 + T 2v2 + θc,2, ||v1||∞ ≤ 1, ||v2||∞ ≤ 1 (2.78)

x3 = [T 1 T 2]
[
v1
v2

]
+ θc,1 + θc,2,

∣∣∣∣∣∣∣∣v1
v2

∣∣∣∣∣∣∣∣
∞
≤ 1 (2.79)

Clearly, the equation (2.79) depicts a zonotope.

2.6 Polytopes
2.6.1 Definition
A polytope is a set of inequalities (half-spaces) with a compact and bounded solution.
It is a bounded polyhedron or the finite intersection of m half-spaces. Polytopes can
be depicted by showing the whole set of inequalities. This way, it is recognized such as
half-space representation or just H-Rep or towards its convex hull, in which case is
known as vertex representation or just V-Rep. Each representation has advantages
and drawbacks against each other for different operations. For example, Minkowski
sum is easily computed in V-Rep, but it is not an easy task for linear transformations,
while it is the contrary for H-Rep polytope.

2.6.2 Half-Space Representation
An arbitrary polytope P is given in H-Rep if it is represented as,

P = {x|Gx ≤ h} (2.80)

where G ∈ Rm×n and it is called facet matrix and h ∈ Rm×1 is known as offset or
constant vector.

2.6.3 Vertex Representation
An arbitrary polytope P is given in V-Rep if it is represented as,

P =
{

p∑
i=1

αivi, ∀αi ≥ 0,
p∑
i=1

αi = 1
}

(2.81)

where vi ∈ Rn×1 and are the vertices and αi ∈ R.
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2.6.4 Basic Operations with Polytopes in H-Rep
This section reviews computational methods from the field of polytopic set arithmetic.
The polytopes are closed under intersection, linear transformations as well as under
Minkowski sums (see Blanchini and Miani [8]). As many of these operations increase
the complexity of the resulting polytopes, one needs to implement facet reduction
operations in order to not run out of memory and to keep the computational time
within reasonable bounds. The following propositions summarize practical procedures
for implementing such facet-reduction steps.

2.6.4.1 Intersection

The intersection of two polytopes is an operation where their elements belong to both
involved polytopes. Let P1(G1,h1) and P2(G2,h2) be given polytopes. Then,

P1(G1,h1) ∩ P2(G2,h2) ≡ P∩(
[
Gᵀ

1 Gᵀ
2
]ᵀ
,
[
hᵀ

1 hᵀ
2
]ᵀ) (2.82)

Proof 6. Only those elements that belongs to P1 and P2 are in the intersection. This
statement can be expressed as,

P∩ = G1x ≤ h1, G2x ≤ h2 (2.83)

Now, because both conditions depend on the same variable, we can enclose them as,

P∩ =
[
G1
G2

]
x ≤

[
h1
h2

]
(2.84)

2.6.4.2 Scaling or Linear Transformation

Let P1(G1,h1) and P2(G2,h2) be given polytopes and a linear relation between both
sets of the form x2 = Sx1 + a with S being a nonsingular matrix. Then, it is said
that P2 is a linear transformation of P1 and it is given by

P2(G2,h2) = P1(G1S
−1,h1 +G1S

−1a) (2.85)

In case, vector a is a null vector. Then, it is said that P1 have been scaled or
mapped.

Proof 7. First, it is found x1,

x2 = Sx1 + a (2.86)
x1 = S−1(x2 − a) (2.87)
x1 = S−1x2 − S−1a (2.88)
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Using the polytope definition, we get

P1 = {x1|G1x1 ≤ h1} (2.89)
⇒
{
x2|G1

(
S−1x2 − S−1a

)
≤ h1

}
(2.90)

P2 =
{
x2|G1S

−1x2 −G1S
−1a ≤ h1

}
(2.91)

P2 =
{
x2|G1S

−1x2 ≤ h1 +G1S
−1a

}
(2.92)

2.6.4.3 Facet Reduction

Let P1(G1,h1) be a given polytope. Then

P1(G1,h1) ⊆ P(ΛᵀG1,Λᵀh1)

for any Λ ≥ 0 (componentwise), Λ ∈ Rm×w. without loss of generality, we may assume
‖Λ‖ = 1.

Proof 8. First, we assume that the resulting facet matrix after the reduction is given

and is G =


gᵀ1
gᵀ2
...
gᵀw

. Thus, the constant vector is obtained by the following maximization.

max
x1

gᵀi x1 (2.93)

s.t. G1x1 ≤ h1

The Lagrangian (L) with multiplier λi ∈ Rm×1 of this problem is given by„

L(x1,λi) = gᵀi x1 + λᵀ
i (G1x1 − h1) (2.94)

After ordering in a proper way,

L(x1,λi) = λᵀ
iG1x1 + gᵀi x1 − λᵀ

i h1 (2.95)

Now, if we only focus on the maximization of the first two elements. We notice that the
conjugate function definition can apply (See section 2.1.2 and the proof 9). Therefore,

max
λi
−λᵀ

i h1 (2.96)

s.t. λᵀ
iG1 = gᵀi

λi ≥ 0
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Now, it is possible to write dual optimization problem

min
λi
λᵀ
i h1 (2.97)

s.t. λᵀ
iG1 = gᵀi

λi ≥ 0

Finally, the solution of the equation above results in the value of hi. It is clear that
for each gi there will exist a multiplier that minimize the objective. Therefore, the
intersection of all these multipliers will bring up our condition as,

Λ =
[
λ1 λ2 · · · λw

]
(2.98)

Remark 2. It is important to notice that these are necessary but do not sufficient
conditions to compute facet reduction because we do not know with certainty the resulting
reduced facet matrix. However, it is still possible to compute the facet using good guess
for G.

2.6.4.4 Minkowski Sum

The Minkowski sum is a computationally expensive operation that requires either
vertex enumeration and convex hull computation in Rn or a projection from R2n down
to Rn, Baotic [5].

However, in this work, we propose another approach.

Let P1(G1,h1) and P2(G2,h2) be given polytopes, with facets matrices G1 ∈ Rm×n

and G2 ∈ Rp×n. Then

P1(G1,h1)⊕ P2(G2,h2) ⊆ P(Λᵀ
1G1,Λᵀ

1h1 + Λᵀ
2h2) (2.99)

for any Λ1,Λ2 ≥ 0 with Λᵀ
1G1 = Λᵀ

2G2.

Proof 9. To demonstrate this property, we assume that the resulting facet matrix

is known, and is G =


gᵀ1
gᵀ2
...
gᵀi

. Thus, the constant vector is obtained by the support
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function of the resulting polytope throughout all gi. The support function around gi is
given by,

σ[P](gi) = σ[P1](gi) + σ[P2](gi) (2.100)

= maxx1 g
ᵀ
i x1 + maxx2 g

ᵀ
i x2

s.t.G1x1 ≤ h1 s.t.G2x2 ≤ h2
(2.101)

We can reduce these problems to only one in the following way,

max
x1,x2

[gᵀi gᵀi ]
[
x1
x2

]
(2.102)

s.t. G1x1 ≤ h1

G2x2 ≤ h2

The Lagrangian (L) with multipliers λi,1 ∈ Rm×1 and λi,2 ∈ Rp×1 of this problem is
given by,

L(x1,x2,λi,1,λi,2) = [gᵀi gᵀi ]
[
x1
x2

]
+ λᵀ

i,1(G1x1 − h1) + λᵀ
i,2(G2x2 − h2) (2.103)

After ordering in a proper way,

L(x1,x2,λ) = λᵀ
i,1G1x1 + λᵀi,2G2x2 + [gᵀi gᵀi ]

[
x1
x2

]
− λᵀ

i,1h1 − λᵀ
i,2h2 (2.104)

=
[
λᵀ
i,1G1 λᵀ

i,2G2

] [x1
x2

]
+ [gᵀi gᵀi ]

[
x1
x2

]
︸ ︷︷ ︸−λ

ᵀ
i,1h1 − λᵀ

i,2h2 (2.105)

Now, if we only focus on the maximization of the underbrace part. We notice that the
conjugate function definition can apply (See section 2.1.2). Therefore,

max
λi,1,λi,2

−λᵀ
i,1h1 − λᵀ

i,2h2 (2.106)

s.t. λᵀ
i,1G1 = λᵀi,2G2

λi,1 ≥ 0, λi,2 ≥ 0

On this configuration, it is possible to write dual optimization problem

min
λi,1,λi,2

λᵀ
i,1h1 + λᵀ

i,2h2 (2.107)

s.t. λᵀ
i,1G1 = λᵀ

i,2G2

λi,1 ≥ 0, λi,2 ≥ 0
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Finally, the solution of the equation above results in the value of hi. It is clear that for
each gi there will exist a pair of multipliers. Therefore, the intersection of all these
multipliers will bring up our condition as,

Λ1 =
[
λ1,1 λ2,1 · · · λi,1

]
Λ2 =

[
λ1,2 λ2,2 · · · λi,2

]
(2.108)

Remark 3. It is important to notice that these are necessary but do not sufficient
conditions to compute the Minkowski sum because we do not know with certainty the
resulting facet matrix. However, it is still possible to compute the Minkowski sum using
good guess for G.

2.6.5 Geometric Problems with Polytopes
2.6.5.1 Redundancy Removal

Let P be a polytope build up by m half-spaces, Hi(gi, hi) = {xi ∈ Rn| gᵀi xi ≤ hi} ∀i ∈
{1, 2, 3, ...,m}. Then, it is said that Hi is redundant, if and only if, after we remove
Hi, the polytope holds invariant. One way to solve this problem is by testing all Hi
such as,

max
x
gᵀi x (2.109)

s.t. Gi−x ≤ hi−
gᵀi x ≤ hi + a

whereGi− = [g1, ..., gi−1, gi+1, ...gm]ᵀ, in the same way, hi− = [h1, ..., hi−1, hi+1, ...hm]ᵀ
and a is any positive constant, usually 1. A simple algorithm to solve this problem is
shown in Baotic [5].

2.6.5.2 Centering

The most common approach to establish a quasi center of a polytope is to use is the
Chebyshev ball. Figure 2.7 shows an example of the use of Chebyshev center. This is
the biggest ball inside of a polytope. The center xc of this ball is the deepest point
inside P in the sense that it is farthest from the exterior. If the polytope is not empty,
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Figure 2.7: Example of a Chebyshev ball in a polytope of two dimensions.

then, the Chebyshev center can be computed as,

max
r

r (2.110)

s.t gᵀi x+ r ‖gi‖2 ≤ hi



Chapter 3
Set-Membership State Estimation and

Control

Once the theoretical foundation has been established, Set-membership State Estimation
(SSE) is brought up. This chapter introduces the principles of SSE around any convex
set. Furthermore in the particular case of parallelotopes and polytopes some algorithms
and examples are shown. In addition, a robust MPC is designed using the results of
the estimation.

3.1 The System in Consideration
Given a discrete nonlinear invariant dynamic system with bounded mismatches in the
processes (uncertainties) and bounded errors in the measurement output of the form,

xk+1 = f(xk,uk,ωk) (3.1)
ym,k = h(xk,νk) (3.2)

where k ∈ N means step time, xk ∈ Rn denotes the state vector of the system and
ym,k ∈ Rno the measurement output, uk ∈ Rnu the control input, and ωk ∈ Ω ⊂ Rnω
and νk ∈ Ψ ⊂ Rnν are the uncertainties and disturbances measurements, respectively.
Assuming that f and h are continuous and differentiable on x, u, ω, and ν, it is
possible to split the equations into linear and nonlinear parts around one particular
initial conditions (x0,u0,ω0,ν0,). This is,

xk+1 = Axk +Buk +Eωk + γf (xk,uk,ωk) (3.3)
ym,k = Cxk + Fνk + ηh(xk,νk) (3.4)

where A ∈ Rn×n is the state matrix, B ∈ Rn×nu the input matrix, E ∈ Rn×nω the
uncertain matrix. These matrices are found by the Jacobian of f with each variable,
this is,

A = ∂f

∂x

∣∣∣
x0,u0,ω0

B = ∂f

∂u

∣∣∣
x0,u0,ω0

E = ∂f

∂ω

∣∣∣
x0,u0,ω0

(3.5)
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in the same way, matrices C ∈ Rno×n the output matrix, F ∈ Rno×nν the noise matrix
can be found by,

C = ∂h

∂x

∣∣∣
x0,ν0

F = ∂h

∂ν

∣∣∣
x0,ν0

(3.6)

Finally γf and ηh depict nonlinearities in the model. The output of the system can
be always substituted by a linear output through the addition of an auxiliary state.
The auxiliary state can take the form,

xa,k = Cxk + ηh(xk,νk) (3.7)

where its difference equation is deduced by,

xa,k+1 = Cxk+1 + ηh,k+1 (3.8)
xa,k+1 = C(Axk +Buk +Eωk + γf,k) + ηh,k+1 (3.9)
xa,k+1 = CAxk +CBuk +CEωk +Cγf,k + ηh,k+1 (3.10)

If we add the new auxiliary state of the Equation (3.10) into the state equation found
in (3.3), then, it is possible to re-formulate a new linear system of n+ no states. On
the following way,

zk+1 = Âzk + B̂uk + Êωk + γ̂f (zk,uk,ωk) (3.11)

ym,k = Ĉzk + Fνk (3.12)

where,

Â =
[
A 0n
CA 0no

]
B̂ =

[
B

CB

]
Ê =

[
E

CE

]
Ĉ =

[
0no×n Ino

]
(3.13)

γ̂f =
[

γf
Cγf + ηh,k+1

]
(3.14)

At this point, we already have the representation of the system we are focus on.
However, for keeping the standard notation, we are going to change variable z by x
and the constants Â, B̂, Ê, Ĉ for the usual letters. This is,

xk+1 = Axk +Buk +Eωk + γf (xk,uk,ωk) (3.15)
ym,k = Cxk + Fνk (3.16)

Remark 4. It is important to mention that in this work, we do not distinguish explicitly
between states and parameters. Here, we recall that parameters can be regarded as
constant states, which satisfy the trivial recursion pk+1 = pk. In this sense, it is
sufficient to analyze nonlinear systems of the form (3.1), although the structure of the
function f needs to be exploited by numerical methods if trivial constant recursions for
parameters are stacked.
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3.2 Set-membership State Estimation
The set-membership state estimation problem consists of finding the smallest set that
contains the unknown state and/or unknown parameters updating constantly with
the measurement output of the system. This is also called ”guaranteed estimation”
because of the estimation process always computes a region with the true value of the
system. Available methods based on SSE approaches exist for linear and non-linear
models (see 1 for more details). In this context, all authors consider the following
assumptions.

Assumption 1. The set is known where the true value of the system state lies.

Assumption 2. The uncertainties and noises in the system are unknown, however,
their maximum absolute values are bounded and known.

Assumption 3. There is an accurate system model for the linear dynamics and known
boundaries for the nonlinear behaviour. It means that matrices in (3.15) and (3.16)
are known.

Figure 3.1: General diagram of a set-membership state estimation approach

SSE is based on the construction of a compact set that includes, with guarantee,
the states of the system that are consistent with the measured output and take into
account the bounded noise. One of the main goals is to compute bounds on the set of
trajectories systems that are consistent with the measured outputs. Overall, SSE splits
into two steps. The propagation, where the chosen set must be ”moved” accordingly
to the dynamics of the plant and increases its size based on the uncertainty bounded
of the process and the update step, where the chosen set must be intersected with the
measurement output set, Co,k. A complete diagram of SSE is shown in the Figure 3.1.
In this figure, there are two dashed line boxes where the intersection and update step
are included. In a general view, the required inputs, outputs and also operations to
perform each step are shown. Next sections will describe in detail these steps.
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Figure 3.2: The propagation step.

3.2.1 Propagation
The propagation step concerns the application of convex set operations over a known
set (see Assumption 1) in order to ensure that the resulting set contains the system
state vector of the next step time. To perform this task, the convex set (Ck) has to
follow the behavior of the dynamic system, Equation (3.15).

In general, SSE is developed through a recursive algorithm, hence, Ck is the resulting
set from the previous step time. Therefore, after this step, the resulting set is known
as the predictive set or simply propagated set and in this work is depicted as Ck+1|k to
represent an intermediate step.

The propagation process can be expressed in the following way. Given a fixed convex
set Ck, where it is known that xk ∈ Ck. The propagation process is given by,

Ck+1|k = ACk ⊕Buk ⊕EΩ⊕ Γk(xk,uk,ωk) (3.17)

where Ck+1|k (the prediction set) depicts the convex set that guarantees to en-
close xk+1 and Γk is a convex set built with the bound of the nonlinear function
γf (xk,uk,omegak). To compute Equation (3.17), it is necessary to perform the linear
transformations of all sets involved, and after computing the Minkowski sum. A
graphic representation of this step is shown in the Figure 3.2. The figure shows how
the convex set turns into a new one for guaranteeing the state system of the iteration
k + 1.

Remark 5. Details on how to construct nonlinearity bounders Γk can be found in [32]
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in a slightly different context, but the corresponding methods can be applied for state
estimation problems, too.

3.2.2 Update
The update step or intersection step concerns computing the exact (or an over-
approximation of) intersection between the propagated set and the output set. The
output set is built with the measurement output and the noises bounds. A

Co,k = {xk ∈ Rn|Cxk − ym,k ∈ FΨ} (3.18)

and it denotes the set of states that are consistent with the measurement outputs.
In the same way, this set can be represented as a combination of no sets, one for
each output or just one set. This lead to two different ways to compute SSE called
sequential and block approaches.

The intersection step is formulated to find the intersection between Co,k and Ck|k−1
and it can be expressed as,

Ck = Ck|k−1 ∩ Co,k (3.19)

Notice that an exact computation of the set 3.19 is in general nontractable, because
of sets increase their complexity after each step time that brings high computational
cost. Therefore, this equation is usually reformulated as,

Ck|k−1 ∩ Co,k ⊂ Ck (3.20)

The Figure 3.3 shows a simple example of this step. In this case, the intersection
(gray area) can be enclosed using the interval hull of the operation (dot line) or the
minimum parallelotope(dash line).

The computation of the output set can be found through two different methods when
multiple outputs are considered. These methods are presented below together their
advantages and disadvantages. These approaches produce the same result when the
exact intersection is found although the computational cost will vary. But for high
dimensional cases, the exact intersection is not tractable, hence, we always assume an
overapproximation of this set.

3.2.2.1 Sequential Approach

This approach focuses on building no output sets, one for each output. It follows by
the computation of no intersections (actually, over-approximations of the intersection)
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Figure 3.3: Example in R2 of the update step in a general SSE.

between the propagated set and all the outputs sets. The main goal of the method is to
simplify the complexity of the operations in the update step of the SSE but increasing
the number of operations to perform. The output sets in this method can be described
as Cjo,k ∀j ∈ [1, no] where j depicts the output set of the form 3.20 according to the
output j . Hence, the sequential method can be summarized as,

Ck =
(((

Ck|k−1
⋂
C1
o,k

)⋂
C2
o,k

)
· · ·
⋂
Cnoo,k

)
, (3.21)

where (·) represents an outbounding operation (a reminder that this is an over-
approximation of the intersection). The order of the intersections can be adjusted
based on user’s experience. In general, this method is easier to develop but implies
less accuracy.

3.2.2.2 Block Approach

The key idea behind this method lies in developing a unique output set with the
available outputs, taking into account all their particular bounds. The construction
of this set is in general trivial. However, the set is more complex (in terms of facets)
than taking only one output, hence, the intersection step (the outer out-bounded set)
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implies at least, an increment in the computational cost. This method is recommended
for SSE approaches where the reduction of the set complexity is given in additional
steps.

3.3 Set-Membership State Estimatiom with Paral-
lelotopes

The foundations of SSE using parallelotope were given by Vicino and Zappa [31]
and Chisci et al. [11]. A Recursive Optimal Parallelotope Outbounding (better
known as ROPO) was developed for one [31] or multiple outputs, [11]. ROPO is the
parallelotope with the minimum volume that encloses the intersection between the
predictive parallelotope and the output set.

The use of parallelotope is widely spread in the SSE. In Ramdani and Poignet [23] was
designed a robust dynamic identification comparison of two ellipsoids methods against
ROPO approach over a two degrees-of-freedom SCARA robot. Results show that
ROPO exhibits a less conservative answer than ellipsoid approaches in all simulations.

Ingimundarson et al. [16] used ROPO for robust fault detection in a quadruple tank
process. The authors showed that consistency checks indicating faults can be performed
in a natural manner with a parallelotope description of the feasible parameter set.

Alamo et al. [2] used parallelotopes with DC programming to obtain a guaranteed
bound of the uncertain trajectory of the nonlinear system each sampling time.

Sharma et al. [27] reported that the parallelotope with the minimum volume was not
always the optimal optimal solution under MPC control problems. In this sense, the
authors proposed two new improvements to ROPO, one of them prioritized the output
set and the second approach prioritized the constrains. Later, Valero and Paulen [29]
proposed an algorithm which take into consideration past extreme measurement to
reduce the conservartiveness in the set. In [30] the same approach is extended to
multiple outputs. In this section the latter approach together with the well known
ROPO is described.

In all parallelotopic approaches of this section the predictive set is a parallelotope, Pk
and the output set is a group of strips (that depend on the number of outputs), Sik. In
the ROPO approach only one output is considered. The intersection step is performed
between the predictive parallelotope and one strip.
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Figure 3.4: Illustration of the ROPO algorithm in a two-dimensional state space.

3.3.1 Recursive Optimal Parallelotopic Outbounding (ROPO)
The idea behind the ROPO-class algorithms consists in intersecting the output strip
and the predictived parallelotope, which bounds all the possible realizations of state
variables, and finding the best parallelotope that outbounds the intersection.

The ROPO algorithm finds a parallelotope from the intersection of n+ 1 strips. These
are given by an output strip Sk+1 := S(p0, c0) and by a parallelotope Pk+1|k(T k+1,θc,k+1)
that predicted at time k+1 based on a priori state knowledge given by the parallelotope
Pk := P(T k,θc,k) at time k. The prediction is realized as (3.17). To perform this
equation is required a linear transformation (See 2.3.2.1) and the Minkowski sum
(See 2.3.2.2). However, the last one is avoided by dropping these terms in this approach.
Therefore, The simulation cases presented here that use polytopes do not consider
these sets.

The algorithm assumes that the direction vectors tk+1,i of the parallelotope Pk+1|k
are such that pᵀ0tk+1,i ≥ 0, ∀i = {1, . . . , n}, which represents the projections of
the generators tk+1,i on the vector p0. This assumption amounts to fixing positive
directions along the axes of the parallelotope and requires replacing ti by −ti in T
for those indices for which this inequality is not satisfied (See Figure 2.6, the column
vector of T , regardless of the sign it takes, describes the direction of the parallelotope)
. The ROPO algorithm identifies the minimal-volume parallelotope outbounding
Sk+1 ∩ Pk+1|k in three steps.

3.3.1.1 Step 1: Tightening the output strip S0

As the output strip may not completely overlap with Pk+1|k (as shown in Figure 3.4),
a reduced strip S̄0(p̄0, c̄0) is introduced

p̄0 := 2
r+

0 + r−0
p0 c̄0 := 1 + 2c0

r+
0 + r−0

(3.22)
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where r+
0 := min(1, ε+0 ) and r−0 := min(1,−ε−0 ) and the scalars ε+0 and ε−0 are given by

ε±0 := (pᵀ0θc,k+1 − c0)±
∑n
i=1 p

ᵀ
0tk+1,i (3.23)

3.3.1.2 Step 2: Reducing the parallelotope Pk+1|k

The reduced parallelotope is constructed to reduce the volume of Pk+1|k, which is not
a part of the intersection between Pk+1|k ∩ Sk+1 (see Figure 3.4 step 2). The reduced
parallelotope P̄k+1|k := P(T̄ , θ̄c) is found according to (for i ∈ {1, . . . , n})

t̄i := r+
i + r−i

2 tk+1,i (3.24)

θ̄c := θc,k+1 +
n∑
i=1

r+
i − r

−
i

2 tk+1,i (3.25)

with

r±i :=

min
(

1, 1∓ ε∓0
pᵀ0tk+1,i

− 1
)
, if pᵀ0tk+1,i 6= 0

1, if pᵀ0tk+1,i = 0
(3.26)

3.3.1.3 Step 3: Selecting the minimal volume parallelotope Pk+1

There are n+ 1 strips defining the intersection P̄k+1|k ∩ S̄0, unless the output strip is
parallel to one of the strips that form Pk+1. Thus, there are n+1 possible parallelotopes
for outbounding the intersection (see Figure 3.4). The minimum-volume parallelotope
is selected by removing the strip Si∗ with the largest projection on p0. Let us introduce,

i∗ := arg max
j∈{0,1,...,n}

p̄ᵀ0 t̄j with t̄0 := p̄0/‖p̄0‖2
2 (3.27)

The resulting outbounding parallelotope is given by

Pk+1 :=
{
P̄k+1|k(T̄ , θ̄c), if i∗ = 0
P∗(T ∗,θ∗c), otherwise

(3.28a)

where θ∗c := θ̄c + 1
p̄ᵀ0 t̄i∗

t̄i∗
(
c̄0 − p̄ᵀ0 θ̄c

)
(3.28b)

t∗i :=


t̄i −

p̄ᵀ0 t̄i

p̄ᵀ0 t̄i∗
t̄i∗ , if i 6= i∗

1
p̄ᵀ0 t̄i∗

t̄i∗ , otherwise
(3.28c)
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A robust control min-max approach with an SSE strategy with ROPO under bounded
disturbances without uncertainties in the model is represented in Algorithm 2.

Algorithm 2 Robust control min-max algorithm using ROPO.
Input: Pk(T k,θc,k), Sik+1,∀i ∈ [1, no]
Initialization: k := 1
Main Loop:

1. Propagate Pk → Pk+1|k by one time step. This is,
Pk+1|k(T k+1,θc,k+1) = {xk+1 = AT kv +Aθc +Buk, ||v||∞ ≤ 1}.

2. For each i ∈ [1, no]
Using Pk+1|k and Sik+1, apply Equations 3.22 to 3.28.

3. Assign Pk+1 := Pk+1|k

4. Find the optimal control input by solving (3.46) with Pk+1.

5. Apply the control step, k = k + 1, and go to step 1.

Output: Pk+1(T k+1,θc,k+1) and control input uk+1.

3.3.2 Extremal-measurements ROPO
The ROPOe was presented by Valero and Paulen [29]. Later in the same year, [30]
showed the multi-output approach for this algorithm. The heuristics-based algorithm
relies on the fact that major improvement in the estimation error is brought by the
measurements with large innovations. This principle is similar to the introduced by [11].
Overall, ROPOe uses past information to improve the reduction of the feasibility region
(current predicted parallelotope). The propagated information can then be used as
additional strips to enhance the recursive estimation. For each output, ROPOe is going
to employ three different strips for the reduction of the parallelotope: one bearing the
information from the current measurement output and the other two strips bearing
the information from extremal innovations that propagated (using (2.17)) until the
current time.

The criterion for selecting strips (from past) to exploit is selected as the Euclidean
distance between the center of the reduced parallelotope and all three strips considered.
The strips with the maximum and minimum distance are selected and kept for the
next iteration. In each iteration, it is assumed that we have three strips (two from
the past and one built with the current measurement output). In the first iteration,
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those strips from the past could come from some heuristic or previous knowledge of
the plant. In this work, we use the strips from the initial parallelotope. A description
of the implementation of this method within an MPC is given in Algorithm 3.

Algorithm 3 MPC with Extremal-measurements ROPO algorithm (ROPOe).
Input: P0, Si+,k−1(pi+, ci+) := Si−,k−1(pi−, ci−),∀i ∈ {0, . . . ,m}
Initialization: k := 1
Main Loop:

1. Get output strips Sik(pi, ci),∀i ∈ {0, . . . ,m}.

2. Propagate Pk−1 → Pk|k−1, Si+,k−1 → Si+,k, and Si−,k−1 → Si−,k,∀i ∈ {0, . . . ,m}
by one time step.

3. For each i ∈ {0, . . . ,m}:
Use ROPO to update P̃k → Pk with Si+,k, Si−,k, and Sik.

4. For each i ∈ {0, . . . ,m}:

(a) Tighten Si+,k, Si−,k and Sik with respect to Pk through Step 1 of the ROPO
algorithm.

(b) Set ek :=
(
pi,ᵀk θc − cik

)
/‖pik‖2,

e± :=
(
pi,ᵀ± θc − ci±

)
/‖pi±‖2.

(c) Update S+ and S− with
p := arg maxj∈k,+,− ej , Si+(·) := Sip(pp, cp),
p := arg minj∈k,+,− ej , Si−(·) := Sip(pp, cp)

5. Find the optimal control input by solving (3.46) with Pk.

6. Apply the first control step, k = k + 1, and go to step 1.

3.3.3 Parallelotope State Estimation for Multi-output Systems
3.3.3.1 Sequential Approach

The sequential approach consists in sequential application of the ROPO algorithm
using all m output strips. This process can be summarized as

Pk+1 :=
(((

Pk+1
⋂
S1

)⋂
S2

)
· · ·
⋂
Sm

)
, (3.29)
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where (·) represents an outbounding operation. The order of the intersections can be
adjusted based on user’s experience.

3.3.3.2 Block Approach

In the block approach, the key idea is to process m new strips (developed by m outputs
with their respective error bounds) simultaneously with the n strips that form the
predicted parallelotope Pk+1|k. This method requires two steps; tightening the strips
and selecting the parallelotope with the minimum volume. The first step is performed
by applying Step 1 and Step 2 of the ROPO algorithm 2m− 1 times. For example
with m = 2, we first tighten the strip S1(p1, c1), the the strip S2(p2, c2) and finally the
strip S1(p1, c1) again. The second step is taken using Step 3 of the ROPO algorithm
across all m strips and selecting the parallelotope based on the minimum volume using
the determinant of the generator matrix as a discriminating index. For developing
Block ROPOe, it is necessary to change only the Step 3 of Algorithm 3. This new step
consist in grouping all the strips (Si+,k,Si−,k,Sik,∀i ∈ {0, . . . ,m}) and applying Block
ROPO. The rest of the algorithm remains the same.

3.4 Set-Membership State Estimation with Polytopes
In order to reduce the conservatism in the control input produced by SSE approaches
many strategies have emerged. It is clear that an accurate intersection step will decrease
the size of the feasibility region and consequently, the conservatism of the system. This
is the reason why Kuntsevich [17] developed an SSE strategy using polytopes. However,
the complexity in the resulting polytopes became intractable. Later, Spathopoulos
and Grobov [28] tried to solve this problem with linear programming. After this point,
to the best of our knowledge no other authors work with polytope (in half-spaces
representation) to perform an SSE. Next, we propose a novel non-linear programming
(NLP) problem that allows performing an SSE using polytopes.

In this case, uncertainties due to mismatches in the process, as well as, bounded noise
in outputs are considered. Uncertainties and measurement bounded noises are enclosed
in known polytopes (see Assumption 2). The region where the true value of the system
is located, it is also known and enclosed by a polytope (see Assumption 1). This is,

Ω⊕ Γ ⊆ Pω(Gω(Pk),hω(Pk)) Ψ ⊆ Pν(Gν ,hν) And w.l.o.g. xk ∈ Pk(Gk,hk)
(3.30)
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where Gω(Pk)) ∈ Rnω×n, hω(Pk)) ∈ Rnω , Gν ∈ R2no×no , hν ∈ R2no and finally,
Gk ∈ Rm×n, hk ∈ Rm. At this point, it needs to be mentioned that Gω and hω are,
in the most general case, functions dependent of Pk, even when the system is assumed
invariant and the bounds of Ω fixed, the nonlinearity bounds depend on the current
state bounds and these to the shape parameters Gk and hk of the input polytope.

Remark 6. The output polytope on each step time is built in the following way. The
true value of the output of the system is enclosed by,

yk = Cxk ∈ {ym,k ⊕ Pν(Gν ,hν)} (3.31)

We will assume that the elements of Pν are denoted by xν , then, the Minkowski sum is
given by,

yk = ym,k + xν
xν = yk − ym,k

Now, using the polytope definition it gets,

Gν(yk − ym,k) ≤ hν
Gνyk −Gνym,k ≤ hν

GνCxk ≤ hν +Gνym,k

⇒ Po,k(Go,ho)

Therefore, the output set for this SSE is given by the polytope Po,k(Go,ho).

Next, the main idea is to use the polytopic arithmetic rules from Proposition (2.6.4)
to recursively construct polytopic outer approximations of the form

Pk+1(Gk+1,hk+1) ⊇ Pk+1|k(Gk+1|k,hk+1|k)
⋂

Po,k+1(Go,k+1,ho,k+1)

where the propagation and update step take the form

Pk+1|k(Gk+1|k,hk+1|k) = (APk(Gk,hk) +Buk)⊕ Pω(Gω,hω) (3.32)

Pk+1(Gk+1,hk+1) ⊇ Pk+1|k
⋂

Po,k+1 (3.33)

The following theorem outlines a method for the construction of polytopic enclosures
for the sets Pk.

Theorem 1. Let the matrix A be invertible. Hence, for each step time there exist
non-negative matrices M ∈ Rm×(m+nω)

+ , N ∈ Rnω×(m+nω)
+ , Λ ∈ R(m+nω+2no)×`

+ that
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produce pairs Gk+1 ∈ R`×n+ and hk+1 ∈ R`+, which satisfy

Gk+1 = Λᵀ

[
MᵀGkA

−1

GνC

]
(3.34)

hk+1 = Λᵀ

[
Mᵀ(hk +GkA

−1Buk) +Nᵀhω(Pk)
hν +Gνym,k+1

]
(3.35)

NᵀGω(Pk) = MᵀGkA
−1 (3.36)

then we have Pk+1(Gk+1,hk+1) ⊇ Pk|k−1
⋂

Po,k, ∀ k ∈ N.

Proof 10. The proof proceeds by induction. First, notice that the propagation step
is given by the Equation (3.32), if we apply the Property (2.6.4.2) and the Minkowski
sum condition found in the Equation (2.99) over the propagation step, we get,

Pk+1|k(Gk+1|k,hk+1|k) = (APk(Gk,hk) +Buk)⊕ Pω(Gω(Pk),hω(Pk)) (3.37)
= P(GkA

−1,hk +GkA
−1Buk)⊕ Pω(Gω(Pk),hω(Pk))

(3.38)
= P(MᵀGkA

−1,Mᵀ(hk +GkA
−1Buk) +Nᵀhω(Pk))

(3.39)

with
NᵀGω(Pk) = MᵀGkA

−1 (3.40)

In the update step, the exact intersection between the predictive polytope and the output
polytope by the Property 2.6.4.1 in the following form,

Pk+1|k
⋂

Po,k+1 = P∩(G∩,h∩) (3.41)

where Equation (3.40) holds and,

G∩ =
[
MᵀGkA

−1

GνC

]
h∩ =

[
Mᵀ(hk +GkA

−1Buk) +Nᵀhω(Pk)
hν +Gνym,k

]
(3.42)

The exact intersection is not tractable. Therefore, if we apply the facet reduction
condition found in the Property 2.6.4.3 over this polytope, we get our theorem. This is,

P∩(G∩,h∩) ⊂ Pk+1(ΛᵀG∩,Λᵀh∩) (3.43)

when Equation (3.41) holds. Hence, the theorem is demonstrated.

In order to apply the above theorem for constructing enclosures one needs to select
matrices Mk, Nk, and Λk. This enclosure selection can be done by computing a
minimizer of

min
Gk,hk,Mk,Nk,Λk

J(P(Gk,hk)) s.t. (Gk,hk) ∈ Gk ,
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Figure 3.5: Robust MPC using set-membership state estimation.

where Gk denotes the feasible set of (3.34)–(3.36). In this context, J : 2Rn → R is a
set-valued function that measures the size of a set X ⊆ Rnx . For example, once can
minimize the the size of the bounding box of X, i.e.

J(X) =
n∑
i=1

σ[X](ei) +
n∑
i=1

σ[X](−ei)

where ei ∈ Rn is the i-th standard basis vector of Rn and σ[X] the support function
of X. By using standard reformulations based on convex duality for linear programs.

3.5 Robust MPC using SSE
SSE guarantees robustness in the observation of the states because it takes into
consideration all possible trajectories owing to uncertainties and nonlinearities. Many
robust control structures have been developed to use the advantages of SSE and
produce a robust control input. This section describes a robust MPC strategy.

A robust MPC refers to hold stability and performance specifications for a specific
range of model variations and noise signals. There are different ways to formulate an
MPC problem with an estimate of the current state given by a set. We will assume that
the cost function is convex. Therefore, we use the min-max MPC [6] approach, where
one minimizes the objective function for the worst-case uncertainty realization but
which satisfies the plant constraints for any realization. The overall control strategy
in the presence of uncertain initial conditions but enclosed in a convex set Ck, with
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bounded uncertainties in the process ωk and bounded measurement error νk+1 is
shown in Figure 3.5. The robust control input for polyhedrons is determined by the
worst possible state which must lie in one of the vertices of the convex set. Therefore,
in this strategy, the computation of the vertices is required.

In the time step k = 0, the min-max MPC is solved considering all initial conditions
given by the vertices of C0 and the first control input is applied to the plant. Once
the plant measurements are available, Ck is computed based on the choice of the
set-membership technique chosen. This procedure is repeated until the end. In
mathematical terms it can be expressed as,

Given Ck 3 xk, the min-max MPC solves the problem

min
ui, i∈Ii

max
j∈Ij

∑k+Np
i=k J(xji+1,ui), (3.44)

s.t. ∀i ∈ Ii
∀j ∈ Ij

{
xji+1 =Axji +Bui +EΩ + Γji , x

j
k = vj ,

xji+1 ∈ X , ui ∈ U ,
(3.45)

where Ii := {k, . . . , Np + k} and Ij is an index set of the number of vertices (For the
vertex computation of parallelotopes see Algorithm 1). The sets X and U represent
the state and input constraints, respectively.

Due to the convexity of the set of all possible evolutions of the plant along the prediction
horizon lies in the set {xji |j ∈ Ij} [25], where xji represents the vertex of Ci,∀i ∈ Ii.
This property ensures the robustness of the calculated control actions uk. To avoid
the bi-level optimization, the problem (3.44) can be transformed using the epigraph
reformulation with additional inequality constraints [20] as

min
ui, ∀i

Ψ (3.46a)

s.t.
k+Np∑
i=k

J(xji+1,ui) ≤ Ψ, ∀i ∈ Ii,∀j ∈ Ij , (3.46b){
xji+1 =Axji +Bui + ηji , x

j
k = vj ,

xji+1 ∈ X , ui ∈ U ,
(3.46c)



Chapter 4

Simulation Studies

This chapter discusses three simulation case studies based on linear dynamic systems,
for evaluating the concepts discussed in the previous chapters. The case studies are
built in MATLAB version R2019b and for the optimization problem the MATLAB
toolbox YALMIP has been used [21]. The model for the optimization problem is
created once, before starting the simulation, in terms of the variable and the constants
in the case study. The overall purpose and set-up of each case study is summarized
below.

Case 1 A double integrator system with uncertain initial conditions is used to perform
an SSE using parallelotope, where the ROPO and ROPOe approaches are used
to compute a robust MPC control to track the ground reference. In this case, a
single input single output (SISO) system is considered. The measurement output
is corrupted by a bounded noise.

Case 2 An extension of the case 1 is performed here. It is a double integrator system
with uncertain initial conditions and two outputs corrupted by bounded noises.
A block and sequential approaches have been used for ROPO and ROPOe.

Case 3 A brief comparison between a parallelotopic and polytopic approach without
uncertainties in the process over a SISO double integrator system is carried out.
The measurement output is corrupted by a bounded noise.

Case 4 A double integrator system with uncertain initial conditions is used to perform
an SSE using polytopes. In this case, states are not linear, but the nonlinearity
is bounded to a known polytope. Besides, the measurement output is corrupted
by bounded noise.
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4.1 Case 1. SSE using Parallelotope for SISO sys-
tem

We test the ROPO and ROPOe methods on the double-integrator example from [27].
The process is given as in (3.15) and (3.16) with

A :=
[
1 1
0 1

]
B :=

[
0
1

]
E = η :=

[
0
0

]
C :=

[
1 0

]
F := 1 (4.1)

and with a constraint x1 ≥ 0, where the states x1 and x2 represent the position and
the velocity of an object, respectively. The input u represents object’s acceleration
at time k. The initial state vector x0 := (x1,0, x2,0)ᵀ, unknown to both the estimator
and the MPC controller, is (20, 0)ᵀ. The matrix C depicts the measurement of the
position and velocity at a sampling rate of 1 s and the measurement error is given with
upper bound ε = 1. The constraints on the input are u ∈ [−1, 1].

The control objective is to steer the object to position zero with zero velocity, which is
represented by a stage cost of the MPC controller (3.44) with Q = I and R = 10−6.
For the problem (3.45), we choose Np = 10 and Nu = 5 as the prediction horizon and
control prediction, respectively.

The cumulative cost PI(k) =
∑k
i=1 x

ᵀ
kxk is used as a performance index for comparing

the estimation concepts. The uncertainty in both the initial states is assumed to be
±2. For the simulations, the initial parallelotopic set P0 is selected as

P0 :=
{[

2 0
0 2

]
v +

[
21
1

]∣∣∣∣ ‖v‖∞ ≤ 1
}

(4.2)

We perform simulations with 10 different realizations of the measurement noise taken
from a uniform distribution εk ∼ U(−1, 1),∀k. The comparison of performance of the
presented methods is always carried out using the same error realization.

4.1.1 Results
In the simulated closed-loop experiments, the min-max MPC controller with any of
the presented state-estimation approaches was able to effectively track the origin. In
Figure 4.1, we present the bounds on x1 given by Pk, the evolution of plant’s states x1,
and state x2 averaged over the considered realizations of measurement error. While
the state plots give the feeling about the performance, the bounds of the constrained
variable reveal the relation between performance of the estimator and of the controller.
Simply speaking, tighter the bounds, better the performance. The worst performance
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Figure 4.1: Bounds on x1 (top), closed-loop evolution of x1 (middle), and x2 (bot-
tom).

is observed for MPC with ROPO algorithm. This is expected since, as discussed earlier
and reported by [27], the algorithm might use an outbounding parallelotope that is
skewed along one of its axes. The performance of the proposed extremal-measurements-
based modification of the ROPO algorithm (ROPOe) is clearly superior compared
to ROPO. As it is based on measurement information, the biggest improvement is
naturally obtained the measured state x1.

Similar conclusions can be drawn from Figure 4.2, which shows cumulative performance
of the robust min-max MPC with the presented estimation approaches averaged over
10 realizations of measurement error. The plot shows the time evolution and the
bottom one presents statistics (mean and standard deviation) of the cumulative
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performance at time 150 s. It is clear that MPC with ROPO estimator achieves the
worst performance as measured by both mean performance and its standard deviation.
The proposed algorithms achieve superior performance compared to ROPO algorithm.

 ROPO  ROPOe  
1900

2000
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2200

2300

0 50 100 150
0

500

1000

1500

2000

Figure 4.2: Cumulative performance of min-max MPC under all studied approaches
averaged over 10 different realizations of measurement noise over time
(top) and at time 150 s with standard deviations (bottom).

The performance achieved with the ROPOe algorithm is good on average, although its
standard deviation is relatively high, which can be attributed to heuristics nature of
the algorithm.

In our computational experience, ROPO and ROPOe algorithms exhibit roughly the
same CPU time (within 0.001 s). Even though ROPOe algorithm implies several runs
of the ROPO algorithm, the increase in CPU time is insignificant in this case.
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4.2 Case 2. SSE using Parallelotopes for SIMO sys-
tem

In this case, a similar configuration than the previous case is considered. We test two
versions of ROPO and ROPOe methods (Sequential and block approaches) on the
double-integrator example. The process is given as in (4.1) with the exception of the
output equation, which is given by,

C :=
[
1 0
0 1

]
F :=

[
1
1

]
(4.3)

Regarding the constraints in the states and control input, as well as, the value of the
initial state and the objective of the optimization problem are the same as in the
previous case.

4.2.1 Results
Figure 4.3 presents the results obtained with min-max MPC using different estimation
methods for both the tracked states of the plant and it also shows the respective
control inputs. These results are shown for one selected representative realization
of the measurement noise out of the performed simulations for the period of 150 s.
The names of the estimation algorithms are abbreviated as: ROPO with sequential
approach (ROPOSeq), ROPO with block approach (ROPOBlock), ROPOe with
sequential approach (ROPOeSeq), and ROPOe with block approach (ROPOeBlock).
Position reference is not completely reached for any of the presented controllers. This
is expected since the position reference collides with the constraint x1 ≥ 0. This means
that if we want to satisfy the constraint robustly, the worst-case (lowest) position
has to satisfy it. As shown further, the lowest position satisfies the constraint almost
exactly. The tracking of velocity, contrary to the tracking of position, is very good.
We can conclude that the controller reaches its design goals.

The performance of the tested estimation algorithms is very similar for the first 50 s
and all the methods are capable of reducing the uncertainty in the values of the state
variables. After the first 50 s, the tracking of position is clearly different. Here we can
assess the performance of the algorithms and see that this one is significantly better
when using the block approach and when using ROPOe approach. Combined approach
(ROPOeBlock) is clearly the best.

A recurrent behavior of the response of the robust MPC using parallelotopic estimation
is the occurrence of small jumps for all the states and control inputs (see Figure 4.3).
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Figure 4.3: Evolution of state variables and control inputs over 150 s for a selected
representative noise realization.

It is important to notice that these jumps are present, however, because the final
graphs are taken from the average of all realizations, these can not be appreciated.
The jump behavior can be attributed to two factors: 1) From one time step to another,
the worst-case vertex of the prediction parallelotope can change, e.g., as a result of
the estimation procedure reducing the parallelotope with worst-case scenario. 2) The
ROPO algorithm is known to be prone to skew the prediction parallelotope, so that
the state bounds can be gradually growing in one direction and be suddenly cut by
the measurement strip with a certain realization of the measurement error.

We can confirm the previous observations while seeing Figure 4.4, which shows the
bounds of the states that are taken as the minimum/maximum values of the vertices
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of the prediction parallelope. First, we can see that the lower bound on x1 clearly
saturates the constraint x1, which is the reason for plant state x1 not reaching the
reference. Secondly, we can see that the dramatic change of bounds (discussed in
the previous paragraph) coincides with the jumps in control inputs and, naturally,
with state values. Finally, we can conclude that the estimation performance of the
ROPOeBlock algorithm is superior but the performance of ROPOBlock is also very
good. While the state and input plots give the feeling about the performance, the
bounds of the state variables reveal the relation between performance of the estimator
and of the controller. Simply speaking, tighter the bounds, better the performance.
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Figure 4.4: Evolution of bounds on the state variables over 150 s for a selected
representative noise realization.

We finally show statistics of the control performance of the presented approaches in
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Figure 4.5 (the performance, in this case, is much better than the first case because
of the introduction of a second output). Min-max MPC with ROPOeBlock shows
the best performance overall. On average, the cummulative cost at 150 s is lower
than (the second best approach) ROPOBlock by more than 15%, by more than 35%
w.r.t. ROPOSeq and by about 40% w.r.t. the ROPO approach. The variances of the
performance of these approaches are almost the same (notice the outliers in ROPO
case).

Figure 4.5: Boxplots with statistics (first quartile, median, and third quartile) of the
control performance reached over 10 different realizations of error.

4.3 Case 3. Comparison Between Parallelotopes and
Polytopes under SSE

The double integrator is used to show the difference between a parallelotopic and
a polytopic approach. The system presents only contraints in the control input
u ∈ [−1, 1], and the setup is given as in (3.15) and (3.16) with matrices as (4.1). The
system tracks the ground using a general LQR configuration with k = [0.0795 0.4481]ᵀ.
Hence, only the process of SSE is considered. The true value of the system at k = 0,
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x0 = [19 1]ᵀ, is unknown for the methods but enclosed in a known set given by,

P0 :=
{[

2 0
0 2

]
v +

[
20
0

]∣∣∣∣ ‖v‖∞ ≤ 1
}

P0 =


1 0
0 1
−1 0
0 −1

x ≤


22
2
−18

2

 . (4.4)

The main goal of this case is to show the needs of polytopes for more accurate results.
We are going to compare the estimation produced by ROPOe approach against the
methodology presented in section 3.4.

4.3.1 Results
Figure 4.6 shows the resulting reachable set found by the polytopic and parallelotopic
approach. Both methods start with the same set a parallelotope centered in [20 0]ᵀ

and from the begging the polytope approach shows important reductions. Actually,
the set tends to an element set when k goes to infinity. Even when the parallelotope
tends to decrease over time, the polytope approach is much superior.

4.4 Case 4. SSE using Polytopes for SISO system
The double integrator system is studied in the context of bounded-error (set-membership)
SSE using the methodology presented in section 3.4. The process is given as in (3.15)
and (3.16) with

A :=
[
1 1
0 1

]
B :=

[
0
1

]
C :=

[
1 0

]
E :=

[
1 0
0 1

]
F := 1 (4.5)

where the states x1 and x2 represent the position and the velocity of an object,
respectively. Both states are subject to bounded uncertainties ±1. The input u depicts
object’s acceleration at time k. It is determined by a discrete LQR controller with
Q = I and R = 1, saturated at the control bounds u ∈ [−1, 1]. The initial state vector
is x0 := (20, 10)ᵀ. The output matrix C := [1 0] depicts the measurement of the
position at a sampling rate of 1 time unit and the uniformly distributed measurement
error is bounded in ±1. For the simulations, the initial polytopic set P0 is selected
such that it includes the true state. The initial polytope is represented as

P0 =


1 0
0 1
−1 0
0 −1

x ≤


32
11
−15
−6

 . (4.6)
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Figure 4.6: Polytopic(left) and parallelotopic(right) estimates found for 20 time steps.

4.4.1 Implementation Details
The proposed algorithm is implemented in Matlab using BARON as a global solver
and fmincon, IPOPT [33] interfaced through OPTI toolbox [13] and YALMIP [21].
Results were graphed using MPT toolbox [15]. We use the global solver to identify
a feasible point of (3.4). Local solvers are used afterwards to improve this solution.
The process and measurement noises are simulated as random numbers with uniform
distributions.

4.4.2 Results
Figure 4.7 shows the reachable set obtained in each iteration. As can be seen, the
initial polytope (i.e., a box) contains the initial state, (20, 10)ᵀ. At the first time step,
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the polytope is considerably reduced due to the difference between the size of the initial
polytope and magnitude of the measurement noise. Our computational experience
shows that it is not always possible to find the global solution. This gives rise to the
non-uniform sizes of the obtained polytopes and certain over-approximations. Our
future work will involve a development of sophisticated initialization strategies to
obtain consistent state estimation bounds. Figure 4.8 shows the true states against

Figure 4.7: Polytopic estimates found for 50 time steps.

the bounds (extremal vertices of the polytopic estimates) and the point-prediction of
the states (the Chebyshev center of the polytope). We can notice a favorable evolution
of the point-prediction towards the true state values. We can also see that despite a
large process noise, the estimation procedure is able to maintain the estimation bounds
within almost constant range. On some occasions there are jumps occurring in the
bounds. These jumps are explained by the inability to identify the global solution of
the problem (3.4).
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Figure 4.8: Evolution of states, their bounds and a Chebyshev center of the bounding
polytope.



Chapter 5

Conclusions

This mini-thesis summarizes the convex set theory concerning the SSE. The most
important sets are defined along with their operations and properties. In most cases,
proof of each operation or property is given. A new property for the Minkowski
sum of polytope has been found and can also be used for facet reduction in poly-
topes. A formula for an over-approximation of a parallelotope intersection is provided.
Furthermore, it is combined the robust min-max model predictive control with SSE,
considering systems with uncertainties in initial conditions under hard input and state
constraints.

This mini-thesis led to some new contributions in the area of set-membership state esti-
mation for linear systems: first, a heuristic algorithm that reduces the conservativeness
of the predictive parallelotope using strips from the past with extremal realizations is
introduced. This algorithm is tested and compared with the ROPO algorithm (devel-
oped by Vicino and Zappa [31]) using a double integrator as a benchmark plant for its
easy and well known dynamic. Second, it has presented a non-linear program (NLP)
able to perform all steps of an SSE scheme using polytopes, this NLP shows directions
in a future less expensive and more accurate SSE. Once more, this technique is tested
with the double integrator and demonstrates its validity although preliminaries results
have not found a formal method to initialize the NLP.

Future works will focus on two research lines. Theory of SSE, in this context, we want
to keep working on the computation of Minkowski sum and facet reduction of polytopes,
to carry out this task, we plan to use as resulting facet matrix in the Minkowski sum,
the intersection facet matrix of the same polytopes, in the case of polytopes in R2 is a
natural guess. However, in the case of the facet reduction matrix, two possible paths
are opened, we can add a new condition in the optimization problem that guarantee
minimum volume or we can design a method to initialize this facet matrix.

In addition, we plan a new method for the zonotope order reduction problem; we
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plan to follow the principles of Althoff [3] because we notice through simple examples
in R2 that if we rotate the generator matrix, and after performing the interval hull
and we rotate back the same degrees, we can get the zonotope order one with the
minimum volume that enclosed the first zonotope. The idea is to extend this principle
in Rn. Finally, the implementation of SSE approaches. In this sense, we want to apply
our strategies in high order systems and nonlinear dynamics with the final aims of
developing a completed and simple handbook on SSE for future researchers.
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