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Abstract: Dual control is a technique that addresses the trade-off between probing (excitation
signals) and control actions, which results in a better estimation of the unknown parameters and
therefore in a better (tracking or economic) performance. Multi-stage NMPC is a robust-control
scheme that represents the uncertainty using a scenario tree that is often built by assuming
parametric uncertainty and by taking into account the minimum, nominal and maximum values
of the uncertain parameters. If the uncertainty set is not a box, this procedure augments the
uncertainty set and results in a loss of performance. Here, we mitigate this problem by tightly
approximating the uncertainty set using the so-called sigma points and computing an ellipsoidal
over-approximation of the reachable set of the system using the unscented transformation.
We also improve the performance by considering the future reduction of the ranges of the
uncertainties due to control actions and measurements thereby achieving implicit dual control
actions. The advantages of the proposed approach over the standard multi-stage NMPC scheme
are demonstrated for a linear and a nonlinear (semi-batch reactor) simulation case study.
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1. INTRODUCTION

The control of dynamic systems under uncertainty is one
of the major research topics in the control community.
In the scope of model predictive control (MPC), several
robust MPC strategies exist to handle model uncertainties
and to control MIMO systems while adhering to con-
straints (Scokaert and Mayne, 1998; Mayne et al., 2005;
Lucia et al., 2013). Such schemes necessarily introduce
some conservatism (loss of performance) when compared
to the situation when the true plant model is known.
Among the several robust MPC schemes, multi-stage MPC
considers future recourse actions on a scenario tree of
discrete-valued uncertainties and is able to provide the
closed-loop optimal solution if the assumption on the
uncertainty model is correct. It is therefore less conser-
vative compared to other robust approaches for general
non-linear systems (see e.g. Lucia et al. (2012, 2013)).
Several variants of the multi-stage NMPC exist in liter-
ature (Thangavel et al., 2018a,b,c, 2019).

The performance of the robust controllers can be improved
using adaptive approaches (Wittenmark, 1995; Thangavel
et al., 2018a), where the plant measurements are used
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to improve the knowledge about the plant by reducing
the uncertainty. However, uncertainty always exists in the
parameter estimates due to the presence of noise in the
measurements. This uncertainty is commonly represented
by a confidence region of the parameter estimates which
can be computed approximately using the Fisher informa-
tion matrix and has the shape of an ellipsoid (Franceschini
and Macchietto, 2008; Bargiela, 2001). When generating
the scenario tree of the the multi-stage MPC, this ellipsoid
is often over-approximated by a box which can increase the
conservatism and decrease the performance. This prob-
lem can be mitigated by borrowing ideas from the un-
scented transformation (Julier and Uhlmann, 1997). Open-
loop robust control schemes based on unscented trans-
formation where presented in Heine et al. (2006); Völz
and Graichen (2015), but they do not take into account
the presence of future feedback information hence these
approaches are conservative when compared to closed-
loop schemes (Scokaert and Mayne, 1998; Farrokhsiar and
Najjaran, 2012). The feedback information can be taken
into account by embedding the unscented Kalman filter
equations into the NMPC optimization problems, resulting
in computationally intensive optimization problems (Yan
and Bitmead, 2005; Farrokhsiar and Najjaran, 2012).

A novel computationally efficient closed-loop robust multi-
stage NMPC strategy using the unscented transformation
was developed in Thangavel et al. (2020a). The scenario
tree is generated for a finite number of points that are cho-
sen from the uncertainty set, called the sigma points (Wan
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and Van Der Merwe, 2000), which tightly approximate the
uncertainty set. The state covariance matrix is computed
from the predictions that are obtained using the different
realizations of the uncertain parameters according to the
sigma points. The state covariance matrix is scaled using a
tuning parameter such that the reachable set (the predic-
tions obtained from all the realizations of the uncertainty
within the uncertainty set) is contained in an ellipsoidal
set. This eliminates the need of embedding the unscented
Kalman filter equations into the optimization problem. An
adaptive variant of the multi-stage NMPC using sigma
point principles which uses the plant measurement to re-
duce the uncertainty and further enhance the performance
has been introduced in Thangavel et al. (2020b).

The information obtained from the system can be im-
proved by providing excitation signals (probing actions) to
the plant, which results in smaller parametric confidence
regions. However, the probing actions may deteriorate the
closed-loop performance of the system. There exists a
trade-off between the probing actions, which give a better
estimate of the uncertain parameters, and the optimizing
control input, which results in the best achievable closed-
loop performance. This was discussed for the first time as
dual control in Feldbaum (1960). Dual control poses a very
challenging problem, which is in general computationally
intractable and can only be solved by introducing some ap-
proximations. Dual control schemes are broadly classified
into implicit and explicit schemes (Filatov and Unbehauen,
2000). Explicit controllers consider the effect of the control
actions on the model uncertainty by an additional term in
the cost function whereas the implicit controllers take the
effect of the probing actions on the overall performance
into account (Mesbah, 2018).

In this paper, we propose a robust implicit dual nonlinear
MPC (NMPC) formulation in the framework of multi-
stage NMPC based on sigma point principles. The dual
scheme considers the predictions obtained from the sigma
points to be the future measurements, predicts the future
confidence regions and updates the scenario tree of the
multi-stage NMPC accordingly. This helps the proposed
scheme to take into account the impact of the future prob-
ing actions on the overall performance of the controller and
results in an implicit dual control action. The advantages
of the proposed dual approach over the adaptive and the
standard multi-stage NMPC scheme are demonstrated for
a linear and for a nonlinear (semi-batch reactor) simulation
case study.

The remainder of this paper is organized as follows. The
problem statement and the unscented transformation are
explained in section 2. Section 3 describes the traditional
multi-stage NMPC scheme. Section 4 introduces multi-
stage NMPC using sigma point principles. Section 5 and
section 6 explains adaptive multi-stage NMPC and the
proposed dual multi-stage NMPC scheme using sigma
point principles. Section 7 presents the results obtained
using different robust NMPC strategies for a linear case
study and a benchmark nonlinear semi-batch reactor ex-
ample. Finally, the paper is concluded in section 8.

2. PRELIMINARIES

The nominal model of the plant is given as
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Fig. 1. Scenario tree of the multi-stage NMPC.

xk+1 = f(xk,uk,d), (1)

where x ∈ Rnx , u ∈ Rnu and d ∈ Rnd represent the plant
state variables, control inputs and time invariant uncertain
model parameters, respectively. All the states are assumed
to be measured. The plant measurements are assumed to
be corrupted by white Gaussian noise. The exact values of
the model parameters are not known, but they are known
to be contained in an ellipsoidal set. The ellipsoidal set is
parameterized by the nominal parameter d0 (center) and
its parameter covariance matrix P 0 and is given as

D(d0,P 0) := {d ∈ Rnd |(d− d0)TP−10 (d− d0) ≤ 1}. (2)

The set is assumed to form a finite support of the prob-
ability distribution of the model parameters. The un-
scented transformation is used to compute the statistics
of random variables which undergo a nonlinear trans-
formation (Julier and Uhlmann, 1997). Here, it is em-
ployed to compute the ellipsoidal approximation of the
reachable set of the system (1). The sigma points are
chosen such that they capture the true mean and co-
variance of the uncertainty set D and are given as

S(d0,P 0) = d0 ∪

(
nd⋃
i=1

d0 − P
1
2 ,T

0,[i,?]

)
∪

(
nd⋃
i=1

d0 + P
1
2 ,T

0,[i,?]

)
,(3)

where P
1
2

0,[i,?] represents the transpose of the ith row vector

of the Cholesky factor of P 0. The chosen 2nd + 1 sample
points are propagated through the nonlinear function f(·)
to compute the state mean (xm,k+1) and state covariance
matrix (Xc,k+1) as given below

xik+1 = f(xk,uk,d
i), di ∈ S(d0,P 0), ∀i ∈ I1, (4a)

xm,k+1 =
∑2nd+1
i=1 vix

i
k+1,

∑2nd+1
i=1 vi = 1, (4b)

Xc,k+1 = κ2
∑2nd+1
i=1 vi x

i
c,k+1x

i,T
c,k+1, (4c)

where xic,k+1 = xik+1 −xm,k+1, I1 := {1, · · · , 2nd + 1}, vi
is the weight associated with each sigma point, and κ ∈ R
is the scaling factor of the state covariance matrix.

3. MULTI-STAGE NMPC (MS NMPC)

Multi-stage NMPC (MS NMPC) models the uncertainty
about the true plant dynamics by a tree of discrete sce-
narios as shown in Fig. 1. Each branch in the scenario
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tree represents a particular realization of the uncertain
parameters. The future control inputs are computed while
taking into account that measurement information will
be available in the future, and so the control moves
can be adapted accordingly. This provides a closed-loop
control formulation and results in better performance
when compared to the traditional open-loop min-max ap-
proaches (Lucia et al., 2012). In the presence of continuous
valued uncertainties a scenario tree that is generated for
all combinations of the minimum, nominal and maximum
values of the uncertain parameters usually provides a good
approximation of the uncertainty set D (Lucia et al., 2013).

The receding horizon problem solved at time t reads as:

min
xj

k
,uj

k
∀(j,k)∈I2,dj

k
∈Dj

k

J1 + J3, (5a)

subject to

xjk+1 = f(x
p(j)
k ,ujk,d

r(j)
k ), ∀ (j, k + 1) ∈ I2, (5b)

g(xjk+1,u
j
k) ≤ 0 , ∀ (j, k + 1) ∈ I2, (5c)

ujk = ulk if x
p(j)
k = x

p(l)
k , ∀ (j, k), (l, k) ∈ I2, (5d)

d0 = d0 − diag
1
2 (P 0), d0 = d0 + diag

1
2 (P 0), (5e)

Djk = A1(d0,d0,d0), ∀(j, k) ∈ I2, (5f)

where diag
1
2 (·) gives the element-wise square root of the

main diagonal of a matrix. The set of indices (j, k) that
occur in a given scenario tree is denoted by I2. The state
vector xjk+1 at stage k + 1 and position j in the scenario

tree is obtained using the parent state x
p(j)
k , the control

input ujk and the uncertainty realization dr(j) ∈ Djk. The

set Dkj contains the set of all possible combinations of the

minimal (d0), nominal (d0) and maximal (d0) value of the
uncertainty set D. A1(·) generates a set which contains
all possible parameter combinations obtained using the
minimal, nominal and maximal value of the uncertain
parameters. This results in 3nd branches to be considered
at each node in the scenario tree. The size of the tree
grows exponentially along the prediction horizon (of the
length Np), which can be avoided by assuming that the
uncertainty remains constant after the so-called robust
horizon (Nr). The robust horizon is chosen such that it
provides a trade-off between the numerical complexity and
the representation of all possible evolutions. The objective
function (5a) is defined (using J1 and J3) as

J1 =
∑t+Nr−1
k=t

∑Nb
k+1

j=1 ωjk+1L(xjk+1,u
j
k), (6a)

J3 =
∑t+Np−1
k=t+Nr

∑Nb
Nr

j=1 ωjk+1L(xjk+1,u
j
k), (6b)

where Nb and L(·) represent the number of branches and
cost at each node in the scenario tree, respectively. J1 gives
the accumulated cost of all nodes until the robust horizon,
and J3 gives the accumulated cost of all nodes after the
robust horizon until the end of the prediction horizon. ωjk is
the weight associated with each node in the scenario tree
and is chosen as given below, where I3 := {1, · · · , Nr},
and I4 := {Nr + 1, · · · , Np}:∑Nb

k

j=1 ω
j
k = 1, ∀k ∈ I3,

∑Nb
Nr

j=1 ωjk = 1, ∀k ∈ I4. (7)

The additional constraints that are imposed at each
node in the scenario tree are given by (5c). The non-
anticipativity constraints (5d) make sure that the control
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Fig. 2. Comparison between MS NMPC and the pro-

posed MS-SP NMPC. (a) parameter confidence re-
gion, (b) reachable set of model (1), (c) ellipsoidal
over-approximation of the reachable set of model (1).

decisions taken with the same information are equal (i.e.,
in Fig. 1, u1

0 = u2
0 = u3

0;u1
1 = u2

1 = u3
1; . . . ).

4. MULTI-STAGE NMPC USING SIGMA POINT
PRINCIPLES (MS-SP NMPC)

The scenario tree of multi-stage NMPC using sigma point
principles is built using 2nd+1 sample points chosen from
the uncertainty set known as the sigma points (Thangavel
et al., 2020a). The basic idea is to over-approximate the
reachable set of the model (1) using the scaled unscented
transformation (Julier, 2002). The sigma points are cho-
sen in the parametric space and are propagated through
the nonlinear model to obtain the state covariance ma-
trix w.r.t. the uncertainty along with its mean using (4).
The objective and the constraint functions of multi-stage
NMPC using sigma point principles (MS-SP NMPC) are
evaluated over the box over-approximation of the reach-
able set described by the state mean and the state covari-
ance matrix.

The key difference between standard MS NMPC (Sec-
tion 3) and MS-SP NMPC is shown in Fig. 2 for a system
with two states, two uncertain parameters and a given
control input at time k = 0. The pink shaded region in
Fig. 2(a) represents the confidence region of the uncertain
parameters, the black dots and the red squares are the
samples chosen to build the scenario tree of MS and
MS-SP NMPC, respectively. The pink shaded region in
Figs. 2(b)–(c) represents the corresponding reachable set
of the states given the model (1). The black circles in
Fig. 2(b) and the red squares in Fig. 2(c) represent the
state predictions obtained on the branches of the scenario
tree of MS and MS-SP NMPC, respectively. The inner
(blue) ellipsoid represents the ellipsoidal approximation of
the reachable set of the model (1) described by the state
mean and the unscaled state covariance matrix (i.e. κ = 1
in (4c)). The covariance matrix is scaled using the factor
κ such that the extended ellipsoidal set over-approximates
the reachable set and is represented by the outer (blue)
ellipsoid. Blue squares represent the state mean and the
vertices of the box over-approximation of the ellipsoidal
over-approximation of the reachable set for which the
objective and constraint functions of MS-SP NMPC are
evaluated. The proposed MS-SP NMPC considers the en-
tire reachable set of the states, which does not need to be
the case in general for the scenario tree of standard MS
NMPC. The scenario tree of standard MS NMPC grows
exponentially with respect to the number of uncertain
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parameters where as the scenario tree of the MS-SP NMPC
grows linearly in this respect.

The proposed MS-SP NMPC optimization problem that
is solved at time t reads as follows, where Nb = 2nd + 1,
I6(k) := {1, · · · , Nk−1

b }, s = (r−1)Nb+i and xsc,k = xsk−
xrm,k.

min
xj

k
,uj

k
∀(j,k)∈I,dj

k
∈Dj

k

J2 + J3, (8a)

subject to: (5b), (5c), (5d), ∀(j, k + 1) ∈ I5,

Djk = S(d0,P 0), ∀(j, k) ∈ I5, (8b)

xrm,k =
∑Nb

i=1 vi x
s
k, ∀k ∈ I3, r ∈ I6(k), (8c)

Xr
c,k = κ2

∑Nb

i=1 vi x
s
c,kx

s,T
c,k , ∀k ∈ I3, r ∈ I6(k), (8d)

xrm,k = xrm,k − diag
1
2 (Xr

c,k), ∀k ∈ I3, r ∈ I6(k), (8e)

xrm,k = xrm,k + diag
1
2 (Xr

c,k), ∀k ∈ I3, r ∈ I6(k), (8f)

X rk = xrm,k ∪A2(xrm,k,x
r
m,k), ∀k ∈ I3, r ∈ I6(k), (8g)

g(x,u
(r−1)Nb+1
k−1 ) ≤ 0 , ∀k ∈ I3, r ∈ I6(k), x ∈ X rk. (8h)

The scenario tree of MS-SP NMPC considers 2nd + 1
branches at each node. I5 represents the set of all occur-
ring indices in the scenario tree. Xr

c,k represents the state
covariance matrix that is obtained while applying control

input u
(r−1)Nb+1
k−1 at the parent state x

dr/Nbe
k−1 , where d·e

represents the ceil operator. Referring to Fig. 1, X2
c,2

is computed using the state predictions x4
2, x5

2 and x6
2

that were obtained from the parent state x2
1 when the

control input u4
1 (u4

1 = u5
1 = u6

1 due to non-anticipativity
constraints) is applied. The state covariance matrix is
scaled such that all reachable states are covered using a
scaling factor κ which is a tuning parameter. The lower
and upper bounds on the state predictions can be obtained
using (8e) and (8f). The set of all possible combinations
of the lower and upper bounds on the state predictions
(given by A2(·)) along with the center of the state ellip-
soid is obtained in (8g). The constraint functions g(·) are
satisfied for the vertices of the box over-approximation of
the predicted state ellipsoids using (8h). This guarantees
robust constraint satisfaction if

max
x∈X r

k

g(x,u
(r−1)Nb+1
k−1 ) ≥ max

x∈Xr
k

g(x,u
(r−1)Nb+1
k−1 ), (9)

is satisfied. Xrk represents the reachable set of model (1).
The scaling factor κ should be chosen such that the
condition (9) is satisfied (κ determines the elements of the
set X rk). The scaling factor κ can be obtained by solving
an optimization problem such that it satisfies (9) for the
cases where the sensitivity of the constraints w.r.t. the
state does not change its sign as shown in Thangavel et al.
(2020a).

The objective function of the proposed scheme is given
in (8a), where J2 is given as

J2 =
∑Nr−1
k=0

∑Nb
k

r=1

∑2nx+1
j=1 ωj+r−1k+1 L(xj ,u

(r−1)Nb+1
k ), (10)

where xj represents the jth element of the set X rk+1.

ωj+r−1k is the weight associated with xj and is chosen s.t.∑Nb
k−1

r=1

∑2nx+1
j=1 ωj+r−1k = 1, ∀k ∈ I3. (11)

5. ADAPTIVE MULTI-STAGE NMPC USING SIGMA
POINT PRINCIPLES (A-MS-SP NMPC)

Adaptive control (following the certainty-equivalence ap-
proach) uses the information that is available from the
plant measurements to improve the knowledge about the
plant dynamics, thereby improving the closed-loop per-
formance of model-based controllers. The measurements
can be used to estimate the uncertain parameters d̃t e.g.,
using least-squares estimation (LSE). A confidence region
of the parameter estimates can be obtained using the
Fisher information matrix F t (FIM), if we assume that
the plant measurements are corrupted by white Gaussian
noise (Franceschini and Macchietto, 2008):

F t ≈
∑t
k=0 s

T
kQsk, (12)

where F t represents the FIM obtained using the measure-
ments observed from time 0 to t, Q is the inverse of the
measurement noise covariance matrix and sk = ∂xk

∂d |d̃t

represents the sensitivity matrix of the measurements (the
states in our case) w.r.t. the parameters.

The FIM can be used to obtain the confidence region of the
uncertain parameters which is centered around the least-
squares estimate and is given by

(d− d̃t)TF t(d− d̃t) ≤ nd Fdist(nd, t− nd, α), (13)

where Fdist is a quantile of the Fisher distribution and α
stands for the desired confidence level (normally 95% or
99%). It is assumed that the true value of the uncertain
parameter is always contained in the confidence region.
P̃ t represents the (Cramer-Rao) upper bound on the
parameter covariance matrix with confidence level α.

P̃ t = nd Fdist(nd, t− nd, α)F−1t . (14)

The scenario tree of A-MS-SP NMPC is updated whenever
new measurement information from the plant becomes
available. The underlying optimization problem is the
same as (8) but with (8b) being replaced by

ď = dt−1 − d̃t, P̌ = φP−1t−1 + (1− φ)P̃−1t (15a)

P t = [1− φ(1− φ)ďT P̃−1t P̌
−1P−1t−1ď]P̌−1, (15b)

dt = P̌−1[φP−1t−1dt−1 + (1− φ)P̃−1t d̃t], (15c)

Djk = S(dt,P t), ∀(j, k) ∈ I5, (15d)

where φ ∈ [0, 1] is an additional degree of freedom of
the A-MS-SP NMPC optimization problem. The scenario
tree is built using an ellipsoidal over-approximation of
the intersection of two ellipsoids as in Kurzhanskiy and
Varaiya (2006). The first ellipsoid represents the prior
information (past confidence region) and the second one
is an update based on the measurements up to time t.
The intersection operation (15a)–(15c) can be compactly

represented as (dt,P t) = I(dt−1, d̃t,P t−1, P̃ t, φ).

6. DUAL MULTI-STAGE NMPC USING SIGMA
POINT PRINCIPLES (D-MS-SP NMPC)

Implicit dual control requires predicting the impact of the
probing actions on the uncertainty quantification (para-
metric confidence regions). This information can then be
used to update the scenario tree of MS NMPC over the
prediction horizon (Thangavel et al., 2018a). Thangavel
et al. (2017) assumed the predictions that are used in the
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branches of the scenario tree to be the predictions of the
plant measurements and computed the future parameter
estimates and the respective confidence regions by an ap-
proximate LSE. It was pointed out in Thangavel et al.
(2017) that this approach does not guarantee that the
predicted confidence regions enclose the true values of the
uncertain parameters thereby comprising the robustness
of the approach. Hence, the predicted confidence regions
were augmented to take into account the uncertainty in the
future parameter estimates and to restore the robustness
of the approach. In this paper, we extend this approach to
the MS-SP NMPC formulation.

The formulation of D-MS-SP NMPC is similar to the A-
MS-SP NMPC optimization problem where (15) is con-
sidered only for the first stage (i.e. D1

0) in the scenario
tree and the parameters used to build the rest of the
scenario tree are obtained using the following equations,
∀ (j, k+1) ∈ I7, where I7 represents the set of all occurring
indices in the scenario tree until k < t+Nr.

F̂ jk+1 = F̂
p(j)
k +

∂xjk+1

∂dT

∣∣∣dr(j)

k

Q
∂xjk+1

∂d

∣∣∣dr(j)

k

, (16a)

d̃jk+1 = F̂ j,−1k+1 (F̂
p(j)
k d

p(j)
k + (F̂ jk+1 − F̂

p(j)
k )d

r(j)
k ), (16b)

D̂
j

k+1 :=

{
T(d

p(j)
k ,P

p(j)
k ,α, j),∀α ∈ Rnd |

∣∣∣ ‖α‖1 = nd
‖α‖∞ ≤ 1

}
, (16c)

T(·) :=

d
p(j)
k −

√
P
p(j)
k

(
cj + T jα

)
, if j ≤ nd + 1

d
p(j)
k +

√
P
p(j)
k

(
cj−nd + T jα

)
, otherwise

, (16d)

ca[i] :=

{√
nd+1

2
√
nd

, if i = a− 1

0, otherwise
, T a[i,l] :=


√
nd−1
2
√
nd

, if a− 1 = i = l
1√
nd
, if i = l

0, otherwise

, (16e)

D̃jk+1,[i] := F̂ j,−1k+1 (F̂
p(j)
k d

p(j)
k + (F̂ jk+1 − F̂

p(j)
k )D̂

j

k+1,[i]), (16f)

d̆jk+1 =

2nd∑
i=1

ṽiD̃
j

k+1,[i],

2nd∑
i=1

ṽi = 1, (16g)

P̆ j
k+1 =

∑2nd

i=1 ṽi (D̃jk+1,[i] − d̆
j
k+1)(D̃jk+1,[i] − d̆

j
k+1)T , (16h)

P̃ j
k+1 = 1

1−χj
k+1

P̆ j
k+1 + nd Fdist(nd,t−nd,α)

χj
k+1

F̂ j,−1k+1 , (16i)

(djk+1,P
j
k+1) = I(d

p(j)
k , d̃jk+1,P

p(j)
k , P̃ j

k+1, φ
j
k+1), (16j)

Djk+1 = S(djk+1,P
j
k+1), (16k)

The a-priori estimate of the FIM considering the future
measurements (F̂ jk+1) is obtained using (16a). An esti-
mate of the future least-squares estimate is predicted by
solving an approximate least-squares estimation problem

as in (Thangavel et al., 2017) using (16b), where d
p(j)
k and

F̂
p(j)
k represents the approximate parameter estimate and

its corresponding Fisher information matrix obtained if

the state x
p(j)
k is considered as the plant measurement at

time step k. An a posteriori estimate of the parameter
covariance matrix considering the future measurements
(P̃ j

k+1) is obtained using (16i) taking into account the
uncertainty in the predicted future parameter estimates.
The key idea is to over-approximate the confidence region
that was obtained at the previous time step using Nb
boxes (as shown in Fig. 3 for a system with two uncertain
parameters) and to handle each box in one of the scenarios
as in Thangavel et al. (2017). The vertices of the box over-

approximation of the confidence region (D̂jk+1) considered
in a scenario j are obtained using (16c)–(16e) and are
considered to be the candidate parameters that are real-
ized in the future. The approximate least-squares estimate
obtained if D̂jk+1 is realized at the next time step is given

by (16f), ∀i ∈ {1, · · · , 2nd}, where D̂jk+1,[i] represents the

ith element of the set. The region which contains the future
parameter estimates is approximated using an ellipsoid
D(d̆, P̆ ), where d̆ and P̆ are given by (16g) and (16h). The
additional uncertainty in the parameter estimates due to
the lack of future measurements is added to the confidence
region of the uncertain parameter in (16i). It represents the
ellipsoidal over-approximation of the Minkowski sum of
ellipsoids (Kurzhanskiy and Varaiya, 2006). The ellipsoidal
over-approximation of the intersection between the past
and the future confidence region is given by (16j). φjk+1

and χjk+1 are degrees of freedom of the D-MS-SP NMPC
optimization problem and are bounded between 0 and 1.
The future parameter estimates that are considered to
build the scenario tree of the D-MS-SP NMPC are given
by (16k). After the robust horizon (i.e. k ≥ t + Nr), the
parameters considered to build the scenario tree are given

by Djk+1 = Ddj/Nbe
Nr−1 .

7. CASE STUDIES

The performance of the different multi-stage control ap-
proaches is compared in two simulation studies. The first
case study considers a linear model with a tracking objec-
tive whereas the second case study considers an exother-
mic semi-batch reactor (described by a nonlinear model)
with an economic objective. The differential equations
are discretized using orthogonal collocation on finite el-
ements and the optimization problems are solved using
IPOPT (Wächter and Biegler, 2006) with CasADi in-
terface (Andersson et al., 2019). All the nodes in the
scenario tree at time step k are equally weighted. The
weights associated with the sigma points (vi) are chosen

as [0 0.25 0.25 0.25 0.25]
T

(i.e. weight associated with d0
is chosen as 0 and all the other sigma points are equally
weighted).

7.1 Case Study 1: Linear system with tracking cost

We consider a system modelled as

ẋ1 = p1u1 − p2, (17)

ẋ2 = p2u2, (18)

where x1 and x2 denote the model states with initial con-
ditions (0, 0)T and are unconstrained. u1 and u2 represent
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Fig. 4. Evolution of inputs (u1, u2) and state (x1) under
different MPC strategies (set point - grey dashed).

Fig. 5. Confidence region of the uncertain parameters for
different MPC strategies at t = 0.05 h (black - MS-
SP MPC, magenta - A-MS-SP MPC, blue - D-MS-SP
MPC, red dot - real value).

the control inputs and are bounded between 0 and 50.
The measurement error bound is given as (10−2, 10−2)T .
The objective of the controller is to track the state x1
and is given by J(x,u) = (x1 − 50)2 + ∆u21 + 10−4u2,
where ∆ represents the deviation between successive con-
trol inputs. The sampling time is 0.05 h and the lengths
of the prediction (Np) and the robust horizons (Nr) are
10 and 2, respectively. The true values of the parameters
(p1, p2)T = (125, 50)T are unknown. The tuning parameter
κ is chosen as 2. It was chosen such that (9) is satisfied
based on a posterior analysis using simulation studies. The
nominal value and the initial parameter covariance matrix
of the uncertain parameters are given as

d0 =

[
100
30

]
, P 0 =

[
900 500
500 625

]
. (19)

The results obtained using different MPC strategies and
the confidence regions of the uncertain parameters that
are considered at the first stage by the different MPC
optimization problems solved at the second time step
(t = 0.05) are shown in Figs. 4 and 5. The input u2 does
not have an influence on the state x1 but provides more
information about the uncertain parameter p2 if u2 6= 0.
Input u2 is penalized in the cost function of the MPC,
hence u2 is always maintained at 0 using MS MPC or MS-
SP MPC or A-MS-SP MPC as shown in Fig. 4. D-MS-SP
MPC takes into account that u2 can be used to improve the
knowledge about p2 which in turn can be used to improve
the performance of the controller as shown in Fig. 4. MS

MPC and MS-SP MPC do not reach the set point because
of the large uncertainty in the parameters whereas A-MS-
SP MPC and D-MS-SP MPC use the plant measurements
to improve the knowledge about the uncertain parameters
and reach the set-point.

It can be seen in Fig. 5 that the confidence region of
the uncertain parameters obtained using D-MS-SP MPC
is much smaller when compared to MS-SP or A-MS-SP
MPC due to the probing input u2. This results in D-MS-
SP MPC reaching the set point faster when compared to
the other MPC strategies. The cumulative objective until
the final time obtained is 9.1 using MS MPC, 5.2 using
MS-SP MPC, 3.9 using A-MS-SP MPC and 3.2 using D-
MS-SP MPC. The sigma points tightly approximate the
uncertainty region when compared to standard MS MPC
hence MS-SP MPC outperforms MS MPC. A-MS-SP MPC
uses the plant measurements to improve the knowledge
about the uncertain parameters and performs better than
MS-SP MPC. D-MS-SP MPC uses probing inputs to
improve the knowledge about the uncertain parameters
and outperforms all the other control schemes.

7.2 Case study 2: Nonlinear semi-batch reactor model with
economic cost

The exothermic semi-batch reactor benchmark problem
originally from (Srinivasan et al., 2003) and adapted
as in (Thangavel et al., 2017) is chosen to show the
advantages of the proposed scheme. The chemical reaction
that takes place inside the reactor follows the reaction
scheme A + B→ C. The nonlinear model is obtained from
the mass balance of the reactor with volume VR, the molar
balance of the reactants A and B with concentrations cA
and cB, and the energy balances of the reactor and the
jacket with temperature TR and TJ. The dynamics of the
semi-batch reactor is given by

V̇R = u, (20a)

ċA = − u

VR
cA −KcAcB, (20b)

ċB =
u

VR
(cB, in − cB)−KcAcB, (20c)

ṪR =
u

VR
(Tin − T )− αAw(TR − TJ)

ρVRcp
− kcAcBH

ρcp
, (20d)

ṪJ =
Q̇K + αAw(TR − TJ)

ρVJcp
, (20e)

with

cC =
cA,0VR,0 + cC,0VR,0 − cAVR

VR
, (20f)

Aw = πr2 +
0.002VR

r
, (20g)

where cC represents the concentration of the product C,
with initial condition cC,0 (= 0 mol/L), Aw denotes the
surface of the reactor covered with the reaction mixture,
α (= 1.6 × 103 kJ/(K h m2)) denotes the heat-transfer co-
efficient between the reactor and jacket, and r (= 0.092 m)
denotes the radius of the cross-section of the reactor. The
density ρ (= 103 g/l) and the specific heat capacity cp (=
4.2 J/(g K)) are assumed to be constant. cB,in (= 3 mol/l)
and VJ (= 2.22 L) represent the input concentration of

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11399



Fig. 6. Input feed, jacket cooling capacity and moles of
product C obtained using different NMPC strategies.

reactant B and the volume of the cooling jacket. The
reaction rate constant K and the reaction enthalpy H are
uncertain parameters. The nominal values of the uncertain
parameters and the initial parameter covariance matrix are

d0 =

(
H
K

)
=

(
−355 kJ

mol
1.205 L

mol h

)
,P 0 =

(
1.13× 104 −7.7
−7.7 0.131

)
.

The control inputs are the feed rate u ∈ [0, 32.4]l/h and

the cooling capacity Q̇K ∈ [−9, 0] × 103 kJ/h. The initial

condition is given by x0 = [VR,0 cA,0 cB,0 TR,0 TJ,0]
T

=

[3.5 2 0 325 325]
T

. All states are assumed to be mea-
sured and the measurement vector is given as y =

[VR cA cB TR TJ ]
T

. The standard deviations of the mea-
surement noises are given as (0.0001, 0.01, 0.01, 0.1, 0.1)T .
The sampling time of the NMPC is chosen as 0.05 h.

The control task is to maximize the number of moles (nC)
of product C produced along the prediction horizon while
respecting tight constraints on the reactor temperature
322 K ≤ TR ≤ 326 K and the volume constraint of the
reactor VR ≤ 7 L. The constraints are implemented as
soft constraints. The robust horizon and the prediction
horizon of the multi-stage NMPC are chosen as 2 and 5,
respectively. The simulations are carried out until 0.3 h.

Fig. 7. Number of moles of product C produced by
different robust NMPC strategies.

The tuning parameter κ is chosen as 1.70 and was obtained
using trial and error.

The optimal operation is to feed as much reactant B
as possible while respecting the constraints. MS NMPC
feeds a small amount of reactant B because of the tight
specification of the admissible reactor temperature and
the presence of a large uncertainty in the parameters. The
scenarios generated using the upper bound on the reaction
enthalpy H and the lower bound on the reaction rate
K hit the lower constraint on the reactor temperature,
whereas the scenarios generated using the lower bound
on the reaction enthalpy H and the upper bound on the
reaction rate K hit the upper constraint on the reactor
temperature in the predictions. This prevents standard MS
NMPC from feeding more reactant into the reactor. MS-
SP NMPC feeds more reactant B into the reactor because
the sigma points approximate better the uncertainty set
using its mean and variance in contrast to the traditional
MS NMPC approach. There is a 16% increase in the
number of moles of product C produced when using MS-
SP NMPC over standard MS NMPC. The amount of
the reactant fed into the reactor can be increased further
using A-MS-SP and D-MS-SP NMPC because the scenario
tree is continuously updated when better estimates of the
uncertain parameters becomes available. In addition, D-
MS-SP NMPC takes into account the future availability
of measurement information and the possibility to adapt
the scenario tree based on the predicted future confidence
region along the prediction horizon. This implicitly takes
into account the effect of probing control actions on the
future confidence regions. The reactor is filled completely
at 0.25 h and 0.2 h using the A-MS-SP and D-MS-SP
NMPC. There is a 3% increase in the number of moles
of product C produced when using the D-MS-SP NMPC
over the A-MS-SP NMPC approach. The performance
improvement is observed because the D-MS-SP NMPC
considers the reduction in the range of the uncertainty
due to the future measurements in its scenario tree.

In order to evaluate the performance of different NMPC
strategies, the simulations were repeated for 100 random
realizations of the uncertain parameters chosen within
the initial confidence region of the uncertain parameter.
Fig. 7 shows a histogram plot of the number of moles of
product C produced. D-MS-SP NMPC outperforms the
other NMPC strategies. There is a 16%, 68% and 2.5%
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increase, in the number of moles of product C produced
when using MS-SP NMPC over MS NMPC, A-MS-SP
NMPC over MS-SP NMPC and D-MS-SP NMPC over
A-MS-SP NMPC. The average computational times for
one iteration of the MS, MS-SP, A-MS-SP and D-MS-
SP NMPC approaches are 1.2 s, 0.7 s, 0.8 s, and 5.5 s. MS
NMPC considers 9 scenarios at each node whereas all other
NMPC approaches consider only 5 scenarios at each node.
The increase in the computational complexity of A-MS-
SP NMPC and D-MS-SP NMPC approach over MS-SP
NMPC approach is due to the computation of the optimal
over-approximation ellipsoid P t in the NMPC optimiza-
tion problem and the computation of future confidence
regions of the uncertain parameters along the prediction
horizon.

8. CONCLUSION

The proposed multi-stage NMPC variants using sigma
point principles tightly over-approximate the uncertainty
set and result in a better performance when compared to
the traditional multi-stage NMPC approaches. The per-
formance is further improved using an adaptive variant of
the proposed scheme which uses the plant measurement to
reduce the amount of uncertainty associated with the nom-
inal model, and a dual variant which takes into account
the future reduction in the uncertainty and the effect of
future control actions on the shape of the future confidence
region of the uncertain parameters. The future work will
focus on improving the performance of the proposed MS-
SP NMPC variants further by building the covariance
matrix w.r.t. the uncertain parameters for the objective
and constraint functions instead of the states.
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