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Abstract: This paper deals with the optimal operation of a continuously operated laboratory
membrane separation plant. The goal is to find an economically optimal regime of operation
using the transmembrane pressure (TMP) and the operating temperature as adjustable set-
points for the low-level controllers. The main challenge is to identify the optimum in the
absence of an accurate process model. We employ an iterative real-time optimization scheme,
modifier adaptation with quadratic approximation (MAWQA), to identify the plant optimum
in the presence of the plant-model mismatch and measurement noise. Two experiments are
performed; one with and one without a productivity constraint. The experimental results show
the capabilities of the MAWQA scheme to identify the process optimum in real-world scenarios.
The optimum identified by the MAWQA scheme coincides with the optimum of a surrogate
model that was built using a larger data set.

Keywords: Iterative real-time optimization, Modifier adaptation, Plant-model mismatch.

1. INTRODUCTION

Membrane separation processes are widely used in the
pharmaceutical, food (e.g., dairy), and beverage industries
because of their capability to separate, concentrate, clarify
and purify solutions consisting of one or more solutes with
different particle sizes dissolved in a solvent (Scott and
Hughes, 2012). Nanofiltration is a membrane separation
process in which a nanofilter membrane is used to retain
solutes with a molecular mass ranging from [200, 1000]
g/mol. It is widely used in wastewater treatment, pro-
duction of beverages, processing of vegetable oil, and for
the concentration of lactose from cheese whey (Das et al.,
2016), etc.

Membranes are prone to fouling, i.e., degradation of the
membrane performance caused by the deposit of filtered
particles that block the pores of the membrane (Zondervan
and Roffel, 2007). The economics of a membrane pro-
cess is thus strongly influenced by appropriate cleaning
procedures, which strive to maximize the restoration of
the membrane performance up to the level of a clean
membrane. There are, however, also opportunities that can
be exploited during the regular operation of a membrane
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process to improve the plant economics. This includes
minimization of the energy required for the operation,
mostly for pumping. The energy consumption is directly
attributed to the permeate flow rates and, if minimized, it
has a synergistic effect on the rate of fouling, thus improv-
ing the overall economics by prolonging the production
periods before cleaning has to be performed.

The optimal operating regime of a continuous membrane
process can be found by solving a model based opti-
mization problem if an accurate plant model is available,
similar to previous work on batch membrane separation
processes (Paulen and Fikar, 2019; Sharma et al., 2019).
Such a model however usually is difficult to obtain and one
has typically two choices; to resort to empirical correlations
based on data or to build a rigorous (dynamic) model. The
latter involves a significant effort; from the selection of
functional form of the model, through conducting possibly
costly experiments and performing as-accurate-as-possible
identification of all model parameters, to model valida-
tion. Such a rigorous modeling procedure necessitates to
compromise accuracy of prediction and complexity of the
model, and the model will not capture the evolution of the
plant over time due to fouling and other phenomena. So
plant-model mismatch will always exist and the optimum
that was determined using the fitted model (data-based or
rigorous) will differ from the true plant optimum.

Iterative real-time optimization techniques have gained
popularity in recent years to identify the optimal operating
condition of a process despite parametric and structural
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plant-model mismatch. Initially, the two-step approach to
handle parametric plant-model mismatch was proposed
in Jang et al. (1987). In this approach, the model parame-
ters are updated using the plant measurements, usually
using least-squares estimation, then the adapted model
based optimization problem is solved and this procedure is
iterated. In Roberts (1979), the so-called integrated system
optimization and parameter estimation (ISOPE) approach
was proposed, where in addition to updating the model
parameters the objective function of the model-based opti-
mization problem is modified by adding bias and gradient
correction terms which are also updated iteratively. The
ISOPE scheme handles both structural and parametric
plant-model mismatch and the inputs obtained from the
ISOPE scheme iteratively converge to a KKT point of the
real plant. To avoid the estimation of the model parame-
ters in each iteration, in Tatjewski (2002), the redesigned-
ISOPE scheme was proposed. It was shown (Tatjewski,
2002) that the uncertain parameters do not have to be
updated in each iteration to converge to a KKT point
of the plant. The redesigned-ISOPE scheme was extended
to handle process-dependent constraints and termed iter-
ative gradient-modification optimization (IGMO) in Gao
and Engell (2005). This approach was further analyzed
in Marchetti et al. (2009) and the name modifier adapta-
tion (MA) was proposed. In addition to model-parameter
adaptation and modifier adaptation methods, there are
also direct input adaptation (e.g. extremum seeking con-
trol (ESC) (Krstić and Wang, 2000)), necessary conditions
of optimality (NCO)-tracking and self optimizing control
(SOC) (Jäschke and Skogestad, 2011) schemes to handle
plant-model mismatch. A comprehensive survey of the
existing iterative real-time optimization schemes can be
found in Marchetti et al. (2016).

The ISOPE, IGMO and MA schemes require the knowl-
edge of the true process gradients which are not trivial
to obtain (Roberts, 2000). Finite differences are used to
compute the process gradients in the ISOPE and in the
redesigned-ISOPE schemes. In the presence of measure-
ment noise, the gradients approximated using finite dif-
ferences are, however, prone to errors. Additionally, there
is the disadvantage of requiring additional plant pertur-
bations around each input (Roberts, 2000). In Gao and
Engell (2005), Broyden’s formula is used to approximate
the plant gradients which does not require additional
plant perturbations. Additional trial points are added and
optimized if the condition number of the data matrix
renders the gradient computation unreliable (Gao and
Engell, 2005). In Gao et al. (2016), modifier adaptation
with quadratic approximation (MAWQA) was proposed as
a combination of MA, quadratic approximation (QA) and
elements from derivative free optimization (DFO) (Conn
et al., 2009). It was demonstrated in Gao et al. (2016) that
the MAWQA scheme is less vulnerable to the measurement
noise and is capable of decreasing the gradient approxima-
tion error compared to the aforementioned methods.

Although there exists a rich literature on iterative real-
time optimization methods, they are still not widely used
in the industry. According to Darby et al. (2011), most
successful applications of iterative real-time optimization
are in ethylene plants. An application of dynamic RTO
at an industrial polymerization process has been reported

in Pontes et al. (2015). Recently, a successful implemen-
tation of MAWQA at a hydroformylation miniplant was
reported in (Hernandez et al., 2018).

In this contribution, we address the application of MAWQA
to a real lab-scale membrane separation process. First, an
a priori surrogate model of the plant is built using process
measurements that were obtained for inputs that are dis-
tributed over the admissible operating range. MAWQA is
then applied to iteratively determine the optimal process
inputs at the real plant using the surrogate model of the
process and gradient modifiers. The optimum identified by
MAWQA in the experiments matches the optimum that
was subsequently identified using an a posteriori surrogate
quadratic model that was built using a larger data set.
So the iterative optimization scheme can speed up the
development of an optimized process and moreover can
adapt to changes of the plant.

The remainder of the paper is organized as follows: In
Section 2, the iterative real-time optimization scheme
MAWQA is presented. A description of the membrane
separation process is presented in Section 3. The goal of the
optimization and the experimental results are presented
and discussed in Section 4 for the unconstrained case and
for a case when a certain productivity level of the plant is
required. Section 5 contains conclusions and recommenda-
tions for further work.

2. MODIFIER ADAPTATION WITH QUADRATIC
APPROXIMATION

Consider a process for which a steady state mathematical
model of the form (1b) has been built. The mapping
function Fm : Rnu → Rny maps the input variables that
are represented by the nu-dimensional vector u to the ny-
dimensional vector of measured variables ŷ. Let Jm : Rnu×
Rny → R be the function of input and measured variables
that we want to minimize and Gm : Rnu × Rny → Rnc

be a vector of nc inequality constraints that have to be
respected. We assume that the functions Jm and Gm are
at least twice differentiable with respect to u.

Optimal inputs of the process between bounds uL and uU

can be obtained by solving

u∗m = arg min
u∈[uL,uU ]

Jm(ŷ,u) (1a)

s.t. ŷ = Fm(u), (1b)

Gm(ŷ,u) ≤ 0. (1c)

The identified optimum u∗m however may differ consid-
erably from the optimum u∗p of the real process if Fm

does not describe the real process (plant) with sufficient
accuracy.

MAWQA is an iterative gradient-modification optimiza-
tion scheme that contains elements from derivative free
optimization (DFO) (Gao et al., 2015; Gao et al., 2016).
In MAWQA, the plant-model mismatch is handled by
modifying and iteratively updating the objective and the
constraint functions of the model-based optimization prob-
lem (1) as in Gao and Engell (2005); Marchetti et al.
(2009).

At the kth iteration of the MAWQA scheme, the objective
function is modified by adding a gradient correction term
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and the constraint function is modified by adding bias and
gradient correction terms:

Jad,k
m := Jm(ŷ,u)+

(∇Jp(yk
p,u

k)−∇Jm(ŷk,uk))T (u− uk),

(2a)

Gad,k
m := Gm(ŷ,u) + (Gp(yk

p,u
k)−Gm(ŷk,uk))+

(∇Gp(yk
p,u

k)−∇Gm(ŷk,uk))T (u− uk),

(2b)

and the following optimization problem is solved:

ûk+1 = arg min
u∈[uL,uU ]

Jad,k
m (3a)

s.t. ŷ = Fm(u), (3b)

Gad,k
m ≤ 0. (3c)

Solving (3) determines a new input (uk+1) at the kth

iteration. The vectors∇Jp(yk
p,u

k) and∇Jm(ŷk,uk) in (2)
represent the gradient of the plant objective function
Jp(yp,u) and of the nominal-model objective function
Jm(ŷ,u), with respect to the process inputs in the kth iter-

ation. Similarly, the matrices ∇Gp(yk
p,u

k), ∇Gm(ŷk,uk)
represent the gradients of the plant constraint functions
Gp(yp,u) and the constraint functions of the nominal
model Gm(ŷ,u).

In MAWQA, ∇Jp(yk
p,u

k) and ∇Gp(yk
p,u

k) are computed
from the available data using a surrogate quadratic model
(Q). A general quadratic function can be expressed as

Q(p,u) =

nu∑
i=1

i∑
j=1

ai,juiuj +

nu∑
i=1

biui + c, (4)

where p := {a1,1, . . . , anu,nu
, b1, . . . , bnu

, c} is the vector
of parameters of the quadratic function. To fit Q to the

data, a minimum of (nu+1)(nu+2)
2 data points is required

including the input point uk at which the gradient is ap-
proximated. This is referred to as the cardinality condition.
As long as the cardinality condition is not fulfilled, finite
differences with a step length ∆h or the past input moves
obtained from IGMO are used to approximate the plant
gradients. If the cardinality condition is satisfied, a subset

of (nu+1)(nu+2)
2 input data points (Uk) is selected from

the set of all evaluated plant inputs up to the kth iteration
(Uk). The data set Uk is used to approximate the plant ob-
jective function Jp(·) and each of the constraint functions
Gp(·) using quadratic functions. The plant gradients are
obtained by analytically differentiating the fitted quadratic
functions and evaluating them at uk.

The set Uk is identified by screening all the available
data points in Uk. A comparative study of screening
algorithms was reported in Wenzel et al. (2017). In general,
it is attempted to select Uk such that it consists of well
distributed distant data points Uk

dist which act as anchor
points and neighboring points Uk

nb which lie in the vicinity
of uk. Uk

nb is defined by a tuning parameter ∆u. All input
points in the set Uk lying in the inner circle, i.e. not farther
than ∆u from uk are considered as neighboring points.
The inverse of the condition number of sk, defined as

sk = [uk]nu×1 ⊗ 1cardinality(U
k
dist)×1 − [Uk

dist], (5)

is used to assess the quality of the distribution of the data
points (Gao et al., 2016). In (5), [uk] and [Uk

dist] are matrix

representations of uk and of the set Uk
dist. If the inverse of

the condition number of sk (κ−1(sk)) is less than a desired
value (δ), additional plant perturbations are performed
and added to Uk to improve the distribution of the points.
This condition is referred to as conditionality.

As the fitted quadratic functions are only local approxima-
tions of Jp(·) and Gp(·), they are valid only in the vicinity
of uk. In MAWQA, this is taken into account by restricting
the process input ûk+1 obtained by the optimization (3) to
lie inside an ellipsoidal trust region by adding the following
constraint to the modified optimization problem in (3):

(u− uk)T cov(Uk)(u− uk) ≤ γ2, (6)

where γ is a tuning parameter which scales the size of the
trust region (Gao et al., 2016).

In addition to QA, there are also other elements of
DFO (Conn et al., 2009) present in MAWQA. This in-
cludes the criticality-check, the quality check and a pos-
sible switch to an optimization based on the quadratic
approximation model.

The criticality-check is used to ensure that all the input
points in Uk

dist lie not further than 2∆u from uk if the new
iteration input uk+1 from the optimization problem (3)
or the optimization problem based on the quadratic ap-
proximation model (8) is less than ∆u apart from uk,
where ∆u is a tuning parameter. If any of the points
used in fitting the quadratic function lie further than 2∆u
from the input point at which the gradient has to be
approximated (uk), instead of applying the input from
the optimization problem (uk+1) to the plant, the plant
is probed with an input which replaces the farthest point
from uk in Uk

dist. The algorithm for the criticality-check is
shown in Algorithm 1.

In the quality-check procedure, the quality of Jad,k
m (·) and

Gad,k
m (·) is compared with the fitted quadratic models for

the objective function Jk
Q(·) and the constraint functions

Gk
Q(·). The prediction accuracies of the adapted model

ρkm and of the fitted quadratic model ρkQ are computed
according to

ρkm := max


∣∣∣∣1 −

Jad,k
m − Jad,k−1

m

Jk
p − Jk−1

p

∣∣∣∣ ,
∣∣∣∣∣1 −

Gad,k
m,1 −Gad,k−1

m,1

Gk
p,1 −Gk−1

p,1

∣∣∣∣∣ ,
. . . ,

∣∣∣∣1 −
Gad,k

m,nc −Gad,k−1
m,nc

Gk
p,nc

−Gk−1
p,nc

∣∣∣∣

,
(7a)

ρkQ := max


∣∣∣∣1 −

Jk
Q − Jk−1

Q

Jk
p − Jk−1

p

∣∣∣∣ , ∣∣∣∣1 −
Gk

Q,1 −Gk−1
Q,1

Gk
p,1 −Gk−1

p,1

∣∣∣∣ ,
. . . ,

∣∣∣∣1 −
Gk

Q,nc
−Gk−1

Q,nc

Gk
p,nc

−Gk−1
p,nc

∣∣∣∣

. (7b)

The minimum of ρkm and ρkQ in (7) determines the better

among the adapted and the quadratic models (Gao et al.,
2015). If the quality of the quadratic model is better than
the adapted model, i.e. ρkQ < ρkm, instead of solving the

optimization problem in (3) using the modified objective
and constraint functions, an optimization problem based
on the fitted quadratic approximation model is solved to
determine the next input:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11969



uk+1 = arg min
u∈[uL,uU ]

Jk
Q(pk,J ,u) := Q(pk,J ,u) (8a)

s.t. Gk
Q(pk,G,u) := Q(pk,G,u) ≤ 0, (8b)

(u− uk)T cov(Uk)(u− uk) ≤ γ2. (8c)

A flowsheet representation of the MAWQA scheme is
shown in Fig. 1. In this work, the termination criterion
(see Fig. 1) is not used. Instead, the iterative optimization
is run for a fixed number of iterations.

Algorithm 1 Criticality-check

Require: uk+1,uk,Uk
dist, ∆u

if ||uk+1 − uk||2 < ∆u then
Solve

u∗ = arg max
ui∈Uk

dist

||ui − uk||2

while ||u∗ − uk||2 > 2∆u do

u∗ := u∗+uk

2

uk+1 := u∗

end while
end if

The performance of the MAWQA scheme is highly depen-
dent on the tuning factors γ, finite-differences perturbation
factor (∆h), conditionality limit (δ) and the radius of the
inner circle ∆u in MAWQA. ∆u influences the size of the
trust-region and also plays a key role in the criticality-
check step. γ scales the trust-region which restricts the
input moves by the modifier-adaptation problem in (3) or
by the optimization problem in (8) based on the quadratic
approximation model and also has an indirect effect in the
criticality-check step. The quadratic approximation using
a regression set with small value of ∆u is more sensitive
to process noise and will lead to more input moves (or
iterations) which do not improve the plant profit. A large
value for ∆u is less sensitive to noise, but leads to a
loose fit which decreases the accuracy of the identified final
optimum (Gao et al., 2016).

3. THE MEMBRANE SEPARATION PROCESS

A process flow diagram of the nanofiltration membrane
process that is considered in this study is illustrated in
Fig. 2. The nanofiltration membrane was manufactured
by Synder Filtration, USA. It has an area of 0.465 m2 and
a cut-off range of 300−500 Da. The pump forces the feed
from the feed tank through the nanofilter membrane at
a certain flow rate. The feed through the nanofiltration
membrane is split into the retentate stream and the
permeate stream. The transmembrane pressure (∆P ) is
an important operating parameter. It is defined as

∆P =
Pi + Pr

2
− Pp, (9)

where Pi is the pressure at the inlet of the membrane
module, Pr is the pressure at the retentate side, and Pp is
the pressure at the permeate side, which is atmospheric.
A desired transmembrane pressure (∆P ) is maintained
using a pressure controller, which restricts the flow rate
of the retentate, building up the pressure on the retentate
side of the membrane. The temperature of the feed in
the feed tank can also be regulated. The conductivity
(κp [µS cm−1]) and the volumetric flow rate (V̇p [L h−1])
of the permeate are measured.

4. EXPERIMENTAL RESULTS

The feed to the membrane process is a solution of lactose
monohydrate with molar mass 360.31 g mol−1 and sodium
chloride (NaCl) with molar mass 58.44 g mol−1 in water.
The concentration of lactose monohydrate and NaCl in
the feed is 66.6 g L−1 and 0.68 g L−1, respectively. The
feed is separated by the nanofiltration membrane into the
(retentate) stream with the retained lactose monohydrate
and NaCl, and the permeate stream that contains only
NaCl and water. The goal is to remove as much salt
as possible from the feed solution using the membrane
plant. The transmembrane pressure (∆P ) and the feed
inlet temperature (T ) are the manipulated variables. The
upper and lower limits of the manipulated variables are
[4, 22] bar and [20, 30] ◦C for ∆P and T . The concentration
of NaCl in the permeate is inferred from κp. The objective
function to be maximized is defined as

J = V̇pκp − 50∆P 2 − 5∆P (Tamb − T ), (10)

where Tamb := 30 ◦C is the ambient temperature. The first
term of the objective function rewards for having a high
flow rate of permeate with high concentration of NaCl. The
second and the third term of the objective function penal-
ize operating at high transmembrane pressure (∆P ) and
low feed temperature (T ), which increase the production
costs related to pumping and cooling energy.

To develop an a priori (nominal) model of the plant,
the operating region was gridded using a coarse 6 × 4
grid with 24 points and the plant was operated with
each combination of inputs in the grid. A nominal model
was built by fitting a surrogate quadratic function to the
measurements that were obtained with the probing inputs.
The values of the plant profit function and the constraint
function are computed for each probing input using the
plant measurements. Later, a quadratic approximation
function is fitted to the computed values of the profit and
constraint functions to obtain their respective surrogate
models. Figure 3 illustrates the contour plot of the profit
function of the nominal model and its constraint.

In this study, we consider two cases. In the unconstrained
case, the goal is to simply identify the operating input
which maximizes the objective function. For the con-
strained case, the objective function is maximized such
that the volumetric flow rate of the permeate is maintaned
at least at 18 L h−1. The solution of the model-based
optimization problem for both the constrained and the
unconstrained cases using the nominal (surrogate) model
is [15.2 bar, 30 ◦C] for [∆P, T ]. The normalized model op-
timum is [0.62, 1] for [∆P, T ].

4.1 Case 1: Optimization without productivity constraint

Figure 4 shows the input values applied during the it-
erations of the MAWQA scheme and the corresponding
evolution of the plant profit function evaluated using
the plant measurements for the unconstrained case. The
legend of the figure is provided in Table 1. The tuning
parameters γ,∆u, ∆h and δ were set to 3.0, 0.1, 0.1 and
0.1, respectively. The iterative optimization scheme was
initialized at u0 := [0.5, 0.5] (normalized) for [∆P, T ] in
the 0th iteration.
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Start: Define u0,uL,uU , γ,∆h, δ,∆u, Nominal model and k := 0

Is cardinality(Uk) ≥ (nu+1)(nu+2)
2 ?

Solve (3) for uk+1.
Plant gradients in
(3) are computed

using finite differences

Screen Uk and
identify the set Uk

Calculate conditionality
of (5) (κ−1(sk))

Is (κ−1(sk)) ≥ δ?

Add additional
perturbation to Uk

Fit a quadratic
function (4) to Uk

Calculate
ρkm(7a), ρkQ (7b)

Is ρkm ≤ ρkQ?

Solve (3) with trust region
constraint (6) for uk+1. Plant
gradients in (3) are computed
using quadratic approximation

Solve (8) for uk+1.

Perform criticality-check
(Algorithm 1). Update uk+1

Apply uk+1 to the plant Apply uk+1 to the plantk := k + 1

Check if iteration is successful.
If unsuccessful,

uk+1 := last successful input

Is termination criterion satisfied?

Exit

no

yes

no

yes

yesno

yes

no

Fig. 1. Flowsheet representation of the modifier adaptation with quadratic approximation (MAWQA) scheme.
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Table 1. Legend for Figs. 4, 5. Input markers in red and black color refer to the transmembrane
pressure; Blue and magenta input markers refer to the inlet temperature.

Marker Description Marker Description

[ , ] Successful-iteration input from model-based optimization [ , ] Perturbation input
[ , ] Successful-iteration input from optimization using quadratic model Evolution of the profit function
[ , ] Explorative-iteration input from optimization using quadratic model

[ , ] Input due to criticality-check, which improved the value of profit function

[ , ] Input due to criticality-check, which did not improve the value of profit function

Feed tank
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V

V

PT

PT

Feed tank

Nanofiltration
membrane

Retentate
tank

Permeate
tankPump
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Heat
exchanger
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Fig. 2. Illustration of the process flow diagram of the
continuously operated membrane separation process.
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Fig. 3. Contour plot of the profit function of the nomi-
nal model, constraint and its optimum for both the
constrained and the unconstrained cases.

In order to estimate the plant gradients using quadratic
approximation, steady-state plant measurements are re-
quired for at least 6 different input values (since nu = 2) to
satisfy the cardinality condition. As the cardinality condi-
tion fails in the beginning (0th iteration), finite differences
are used to estimate the plant gradients. Therefore two
additional perturbations ([ , ]), one for each input with
a step length of ∆h := 0.1 are performed after applying
the input u0 ([ , ]) to the plant. As it takes some time
(approximately 15 min) for the plant to reach a steady
state, the value of the plant profit function ( ) evaluated
using the obtained steady-state plant measurements is
shown in the figure with a delay. Once the plant measure-
ments for all applied inputs are available, the modifiers

are computed and the modifier adaptation problem (3)
is solved to compute the next iteration input, i.e. the 1st

iteration input (u1). As the cardinality condition fails also
in the 1st iteration, the iteration input for the 2nd iteration
(u2) is computed in the same manner as u1. From the 2nd

iteration on, the cardinality condition is satisfied. There-
fore, in each iteration a quadratic approximation model
is used to approximate the plant gradients. In order to
identify the steady-state data points that are used for fit-
ting a quadratic function, a screening algorithm is used to
identify the set U2 from all the available data points in the
2nd iteration (U2). Later, the quality check is performed by
comparing the quality of the modified nominal model and
of the fitted quadratic model. In the quality check step of
the second iteration ρ2m < ρ2Q. Therefore the optimization

problem based on the quadratic model (8) is solved and
the obtained input u3 is checked for the satisfaction of
the criticality-check criterion in Algorithm 1. As ||u3 −
u2||2 > ∆u, u3 is not updated in the criticality-check
step and is applied directly to the plant. As u3 does not
improve the plant profit, it is considered as an explorative
move and thus represented by [ , ]. The iteration input
obtained from the 4th iteration, i.e. u5, does not satisfy
the criticality-check criterion; therefore, it is updated in
the criticality-check step. As the updated input from the
criticality-check does not improve the plant profit, it is
marked by [ , ].

In the 5th iteration, U5 satisfies the conditionality condi-
tion and the input u6 is computed by solving (8) since
ρ6m < ρ6Q. As u6 satisfies the criticality-check criterion, it
is not updated and is applied to the plant. The iteration
input u6 improves the plant profit; therefore, it is con-
sidered as a successful iteration and is represented by [ ,

]. The inputs from u7 to u23 are oscillating. The oscilla-
tions of the inputs are caused by the input update in the
criticality-check algorithm since the data points in U are
farther away than 2∆u from uk. From the 24th iteration
onwards the criticality-check criterion is always satisfied
and the inputs from the MAWQA iterations converge
to [0.5, 0.99] (normalized). Although the input from the
5th iteration, i.e., u6 yielded the highest profit, MAWQA
did not converge precisely to u6. This can be attributed
to measurement and approximation errors. Nevertheless,
MAWQA converged to an input [0.5, 0.99] which is in close
vicinity of u6.

4.2 Case 2: Optimization with productivity constraints

In this case, the volumetric flow rate of the permeate
stream is restricted to be at least 18 lh−1. Figure 5 shows
all the input moves made by the MAWQA scheme and the
evolution of the plant profit function computed using the
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Fig. 4. Experimental results for the unconstrained case: Evolution of the inputs (normalized) transmembrane pressure,
temperature and the profit function obtained using process measurements. The description of the markers used can
be found in Table 1.
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Fig. 5. Experimental results for the constrained case: Evolution of the inputs (normalized) transmembrane pressure,
temperature and the profit function obtained using process measurements. The description of the markers used is
provided in Table 1.
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Fig. 6. Contour plot of the plant profit function, its op-
timum and the optimum identified by the MAWQA
experiments for both the constrained and the uncon-
strained cases.

plant measurements for the constrained case. The values
of the tuning parameters γ,∆u, ∆h and δ used in the
MAWQA scheme are set to 3.0, 0.25, 0.25 and 0.25. A
higher value for ∆u, ∆h and δ is chosen to increase the
speed of convergence. The iterative optimization scheme is
initialized at u0 := [0.33, 0.4] (normalized) for [∆P, T ] in
the beginning (0th iteration). Similar to the unconstrained
case, during the initial iterations of the constrained case,
finite differences with step length ∆h := 0.25 are used
for plant gradient approximation. Although the input
from the 1st iteration, i.e., u2 improved the plant profit
significantly, it violates the productivity constraint (see
Fig 6). Unlike in the unconstrained case, the iteration
input is updated in the criticality-check step in only two
iterations, i.e., in u3 and u4. Also in this case, ρm < ρQ for
all iterations from the 3rd iteration. Therefore, from the 3rd

iteration onwards, the quadratic model based optimization
problem (8) is solved to compute the iteration inputs.
Due to the choice of ∆h and ∆u, the trust region (6)
is larger than in the unconstrained case, therefore the
iteration inputs converged in fewer iterations to [0.67, 1]
(normalized).
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In order to verify the experimental results, a surrogate
plant model was built using the plant measurements from
a larger (a posteriori) data set containing 237 combinations
of inputs. The values of the plant profit function and the
constraint function are computed for each input using
the plant measurements from the a posteriori data set.
Later, a quadratic approximation function is fitted to the
computed values of the profit and constraint functions to
obtain surrogate models. Figure 6 shows the constraint
and the normalized plant optimum for the constrained
and the unconstrained cases. For the unconstrained case,
the MAWQA scheme converged to [0.5, 0.99] (normalized)
close to the normalized plant optimum ([0.48, 1]). The
region to the right of the constraint is feasible. In the
constrained case, the MAWQA scheme converged to a
[0.67, 1] (normalized) which is close to the normalized plant
optimum ([0.66, 1]) and lies in the feasible operating re-
gion. The MAWQA results were obtained experimentally,
the deviations reflect the fluctuations in the behaviour of
the real plant.

5. CONCLUSION

In this contribution, the operation of a continuously
operated membrane plant with a nanofiltration mem-
brane is considered. A novel iterative optimization scheme,
MAWQA, which uses a plant model in combination with
measured data, was chosen for the iterative online op-
timization of the membrane plant. A surrogate nominal
model with measurement data from a coarse grid and a
surrogate plant model with measurements from a large
historical data set were built. Two experiments, one with-
out constraints and another one with a productivity con-
straint were performed. In both experiments, the MAWQA
scheme converged to an input close to the plant optimum
that is predicted by the surrogate model for a large data
set. In the unconstrained case, the algorithm needed more
than 20 iterations to converge to the plant optimum due
to the criticality-check. There obviously is a potential
for improvement in this element of the algorithm. The
experiments validated that the combination of the plant
measurements with the iterative optimization algorithm
MAWQA can drive a real plant to an optimal operation,
despite deviations between the nominal model and the true
plant behavior, without the need for building a highly
accurate model. In our future work, we will focus on
reducing the inefficient input moves and on developing a
standardized approach for choosing the tuning parameters.
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