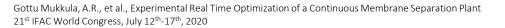
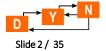


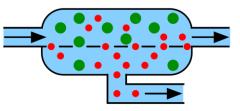
Experimental Real Time Optimization of a Continuous Membrane Separation Plant

Anwesh Reddy Gottu Mukkula¹, Petra Valiauga², Miroslav Fikar², Radoslav Paulen², Sebastian Engell¹

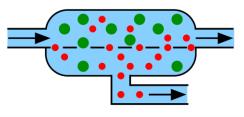

¹ Process Dynamics and Operations Group, Department of Biochemical and Chemical Engineering, Technical University of Dortmund, Germany ² Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Slovakia



Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary	
•	0	0000	0000	0	
Containerized reactor module					



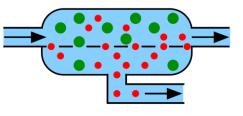
Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary	
•	0	0000	0000	0	
Containerized reactor module					



Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
•	0	0000	0000	0
Containerized reactor module				

Goal

•

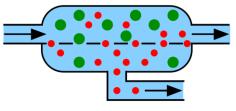

- Identify the optimal operating input for a nanofiltration membrane separation process
- Process and productivity constraints have to be taken into account

Gottu Mukkula, A.R., et al., Experimental Real Time Optimization of a Continuous Membrane Separation Plant 21st IFAC World Congress, July 12th-17th, 2020

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary	
•	0	0000	0000	0	
Containerized reactor module					

Goal

- Identify the optimal operating input for a nanofiltration membrane separation process
- Process and productivity constraints have to be taken into account


Plant:

 $\mathbf{u}_p^* = \min_{\mathbf{u}} \mathcal{J}_p(\mathbf{y}, \mathbf{u})$ s.t. $\mathbf{y} = \mathbf{f}_p(\mathbf{u})$

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary	
•	0	0000	0000	0	
Containerized reactor module					

Goal

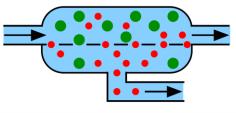
- Identify the optimal operating input for a nanofiltration membrane separation process
- Process and productivity constraints have to be taken into account

Plant:

$$\mathbf{u}_p^* = \min_{\mathbf{u}} \mathcal{J}_p(\mathbf{y}, \mathbf{u})$$

s.t. $\mathbf{y} = \mathbf{f}_p(\mathbf{u})$

Challenge


Unknown process model

Slide 6 / 35

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
•	0	0000	0000	0
Motivation				

Goal

- Identify the optimal operating input for a nanofiltration membrane separation process
- Process and productivity constraints have to be taken into account

Plant: $\mathbf{u}_p^* = \min_{\mathbf{u}} \mathcal{J}_p(\mathbf{y}, \mathbf{u})$ s.t. $\mathbf{y} = \mathbf{f}_p(\mathbf{u})$

Challenge

Unknown process model

Proposed solution

Real-time optimization methods

Slide 7 / 35

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary	
0	•	0000	0000	0	
Real-time optimization methods					

Real-time optimization

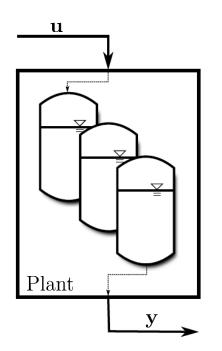
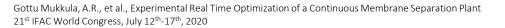
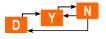
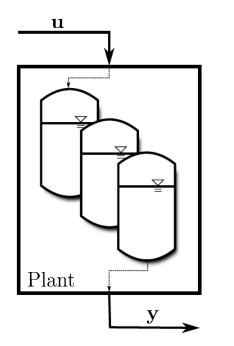




Figure: Illustration of a general plant.



Slide 8 / 35

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary	
0	•	0000	0000	0	
Real-time optimization methods					

Real-time optimization

$$\mathbf{u}_p^* = \min_{\mathbf{u}} \mathcal{J}_p(\mathbf{y}, \mathbf{u})$$

s.t. $\mathbf{y} = \mathbf{f}_p(\mathbf{u})$

Model:

$$\mathbf{u}_m^* = \min_{\mathbf{u}} \mathcal{J}_m(\hat{\mathbf{y}}, \mathbf{u})$$

s.t. $\hat{\mathbf{y}} = \mathbf{f}_m(\mathbf{u})$

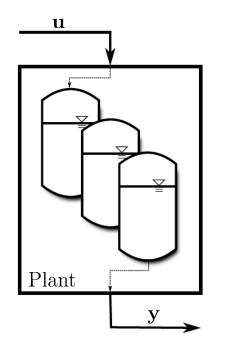

 $\mathbf{u}_m^* \neq \mathbf{u}_p^*$

Figure: Illustration of a general plant.

Slide 9 / 35

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary	
0	•	0000	0000	0	
Real-time optimization methods					

Real-time optimization

$$\begin{aligned} & \underset{\mathbf{u}}{\overset{*}{}_{p}} = \min_{\mathbf{u}} \mathcal{J}_{p}(\mathbf{y}, \mathbf{u}) \\ & \text{s.t. } \mathbf{y} = \mathbf{f}_{p}(\mathbf{u}) \end{aligned}$$

Model:

$$\mathbf{u}_m^* = \min_{\mathbf{u}} \mathcal{J}_m(\hat{\mathbf{y}}, \mathbf{u})$$

s.t. $\hat{\mathbf{y}} = \mathbf{f}_m(\mathbf{u})$

 $\mathbf{u}_m^*
eq \mathbf{u}_p^*$

RTO method

• Modifier adaptation with quadratic approximation (MAWQA)

Figure: Illustration of a general plant.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary	
0	•	0000	0000	0	
Real-time optimization methods					

Plant:

Model:

 $\mathbf{u}_p^* = \min_{\mathbf{u}} \mathcal{J}_p(\mathbf{y}, \mathbf{u})$

 $\mathbf{u}_m^* = \min_{\mathbf{u}} \mathcal{J}_m(\hat{\mathbf{y}}, \mathbf{u})$

 $\mathbf{u}_m^*
eq \mathbf{u}_p^*$

s.t. $\mathbf{y} = \mathbf{f}_p(\mathbf{u})$

s.t. $\hat{\mathbf{y}} = \mathbf{f}_m(\mathbf{u})$

Real-time optimization

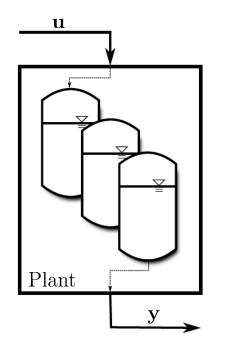
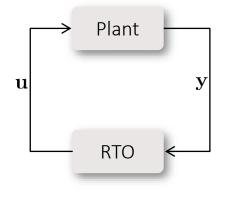



Figure: Illustration of a general plant.

Gottu Mukkula, A.R., et al., Experimental Real Time Optimization of a Continuous Membrane Separation Plant 21st IFAC World Congress, July 12th-17th, 2020

RTO method

 Modifier adaptation with quadratic approximation (MAWQA)

Slide 11 / 35

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	• • • • • • • • • • • • • • • • • • • •	0000	0
Modifier adaptation				

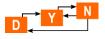
Modifier adaptation (MA)

Model-based optimization

 $\mathbf{u}_{m}^{*} = \min_{\mathbf{u}} \mathcal{J}_{m}(\hat{\mathbf{y}}, \mathbf{u})$ s.t. $\hat{\mathbf{y}} = \mathbf{f}_{m}(\mathbf{x}, \mathbf{u})$ $\mathbf{g}_{m}(\mathbf{x}, \mathbf{u}) \leq 0$

Modifier adaptation (MA) $\hat{\mathbf{u}}_{m}^{*k+1} = \min_{\mathbf{u}} \mathcal{J}_{m}^{ad,k}(\hat{\mathbf{y}}, \mathbf{u})$ s.t. $\hat{\mathbf{y}} = \mathbf{f}_{m}(\mathbf{x}, \mathbf{u})$ $\mathbf{g}_{m}^{ad,k}(\mathbf{x}, \mathbf{u}) \leq 0$

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	000	0000	0
Modifier adaptation				


Modifier adaptation (MA)

Model-based optimization

$$\mathbf{u}_{m}^{*} = \min_{\mathbf{u}} \mathcal{J}_{m}(\hat{\mathbf{y}}, \mathbf{u})$$

s.t. $\hat{\mathbf{y}} = \mathbf{f}_{m}(\mathbf{x}, \mathbf{u})$
 $\mathbf{g}_{m}(\mathbf{x}, \mathbf{u}) \leq 0$

Modifier adaptation (MA) $\hat{\mathbf{u}}_{m}^{*k+1} = \min_{\mathbf{u}} \mathcal{J}_{m}^{ad,k}(\hat{\mathbf{y}}, \mathbf{u})$ s.t. $\hat{\mathbf{y}} = \mathbf{f}_{m}(\mathbf{x}, \mathbf{u})$ $\mathbf{g}_{m}^{ad,k}(\mathbf{x}, \mathbf{u}) \leq 0$ Modified objective function and constraints:

$$\begin{aligned} \mathcal{J}_m^{ad,k}(\mathbf{x},\mathbf{u}) &= \mathcal{J}_m(\hat{\mathbf{y}},\mathbf{u}) + (\nabla \mathcal{J}_p^k - \nabla \mathcal{J}_m^k)^T (\mathbf{u} - \mathbf{u}^k) \\ \mathbf{g}_m^{ad,k}(\mathbf{x},\mathbf{u}) &= \mathbf{g}_m(\mathbf{x},\mathbf{u}) + (\mathbf{g}_p^k - \mathbf{g}_m^k) + (\nabla \mathbf{g}_p^k - \nabla \mathbf{g}_m^k)^T (\mathbf{u} - \mathbf{u}^k) \end{aligned}$$

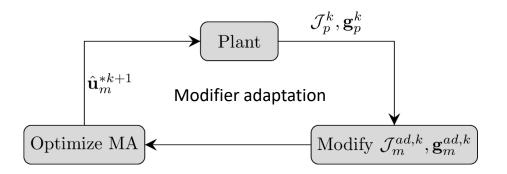
Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	000	0000	0
Modifier adaptation				

Modifier adaptation (MA)

Model-based optimization

$$\mathbf{u}_m^* = \min_{\mathbf{u}} \mathcal{J}_m(\hat{\mathbf{y}}, \mathbf{u})$$

s.t. $\hat{\mathbf{y}} = \mathbf{f}_m(\mathbf{x}, \mathbf{u})$
 $\mathbf{g}_m(\mathbf{x}, \mathbf{u}) \le 0$


Modifier adaptation (MA)

 $\hat{\mathbf{u}}_m^{*k+1} = \min_{\mathbf{u}} \mathcal{J}_m^{ad,k}(\hat{\mathbf{y}},\mathbf{u})$

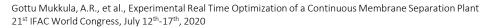
s.t. $\hat{\mathbf{y}} = \mathbf{f}_m(\mathbf{x}, \mathbf{u})$

Modified objective function and constraints:

$$\mathcal{J}_m^{ad,k}(\mathbf{x}, \mathbf{u}) = \mathcal{J}_m(\hat{\mathbf{y}}, \mathbf{u}) + (\nabla \mathcal{J}_p^k - \nabla \mathcal{J}_m^k)^T (\mathbf{u} - \mathbf{u}^k)$$
$$\mathbf{g}_m^{ad,k}(\mathbf{x}, \mathbf{u}) = \mathbf{g}_m(\mathbf{x}, \mathbf{u}) + (\mathbf{g}_p^k - \mathbf{g}_m^k) + (\nabla \mathbf{g}_p^k - \nabla \mathbf{g}_m^k)^T (\mathbf{u} - \mathbf{u}^k)$$

 $\mathbf{g}_m^{ad,k}(\mathbf{x},\mathbf{u}) \le 0$

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	000	0000	0
Gradient estimation				


Quadratic approximation (QA)

$$\mathcal{Q}(\mathcal{P}, \mathbf{u}) = \sum_{i=1}^{n_u} \sum_{j=1}^i a_{i,j} u_i u_j + \sum_{i=1}^{n_u} b_i u_i + c$$
$$\mathcal{P} = \{a_{1,1}, \cdots, a_{n_u, n_u}, b_1, \cdots, b_{n_u}, c\}$$

Finite differences

- Used for gradient approximation when not enough points are available for fitting a quadratic function
- When number of available points are less than $\frac{(n_u+1)(n_u+2)}{2}$

[1] Gao, W., Wenzel, S., and Engell, S. (2016), "A reliable modifier-adaptation strategy for real-time optimization", Computers & Chemical Engineering, 91, 318 - 328.

Slide 15 / 35

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0 • 0 0	0000	0
Screening algorithm				

Quadratic approximation (QA)

$$\mathcal{Q}(\mathcal{P}, \mathbf{u}) = \sum_{i=1}^{n_u} \sum_{j=1}^{i} a_{i,j} u_i u_j + \sum_{i=1}^{n_u} b_i u_i + c$$
$$\mathcal{P} = \{a_{1,1}, \cdots, a_{n-n-1}, b_1, \cdots, b_{n-1}c\}$$

 Screening algorithm to choose points for QA

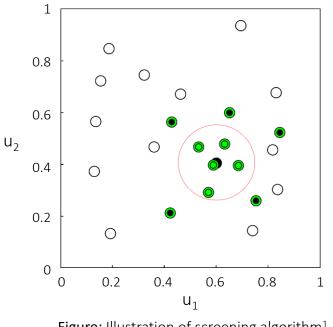


Figure: Illustration of screening algorithm¹.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	0000	0
Criticality check				

Quadratic approximation (QA)

$$\mathcal{Q}(\mathcal{P}, \mathbf{u}) = \sum_{i=1}^{n_u} \sum_{j=1}^{i} a_{i,j} u_i u_j + \sum_{i=1}^{n_u} b_i u_i + c$$
$$\mathcal{P} = \{a_{1,1}, \cdots, a_{n-n-1}, b_1, \cdots, b_{n-1}, c\}$$

 Screening algorithm to choose points for QA → Criticality Check

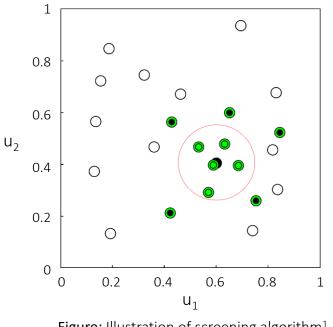


Figure: Illustration of screening algorithm¹.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0 • 0 0	0000	0
Trust region constraint				

Quadratic approximation (QA)

$$Q(\mathcal{P}, \mathbf{u}) = \sum_{i=1}^{n_u} \sum_{j=1}^{i} a_{i,j} u_i u_j + \sum_{i=1}^{n_u} b_i u_i + c$$
$$\mathcal{P} = \{a_{1,1}, \cdots, a_{n_u, n_u}, b_1, \cdots, b_{n_u}, c\}$$

- Screening algorithm to choose points for QA
- Additional trust-region constraint: $(\mathbf{u} - \mathbf{u}^k)^T cov(\mathcal{U}^k)(\mathbf{u} - \mathbf{u}^k) - \gamma^2 \leq 0$

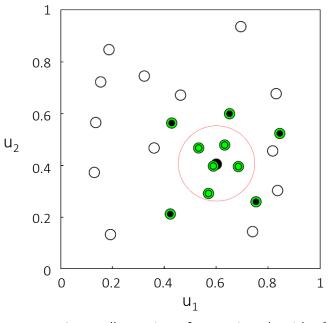


Figure: Illustration of screening algorithm¹.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	0000	0
Criticality check				

Quadratic approximation (QA)

$$\mathcal{Q}(\mathcal{P}, \mathbf{u}) = \sum_{i=1}^{n_u} \sum_{j=1}^i a_{i,j} u_i u_j + \sum_{i=1}^{n_u} b_i u_i + c$$
$$\mathcal{P} = \{a_{1,1}, \cdots, a_{n_u, n_u}, b_1, \cdots, b_{n_u}, c\}$$

- Screening algorithm to choose points for QA → Criticality Check
- Additional trust-region constraint: $(\mathbf{u} - \mathbf{u}^k)^T cov(\mathcal{U}^k)(\mathbf{u} - \mathbf{u}^k) - \gamma^2 < 0$

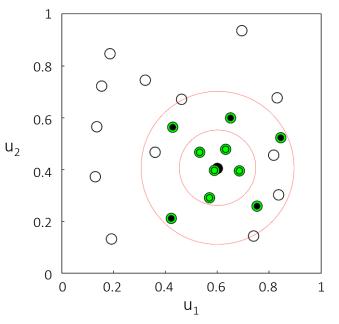


Figure: Illustration of criticality check algorithm¹.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	0000	0
Criticality check				

Quadratic approximation (QA)

$$\mathcal{Q}(\mathcal{P}, \mathbf{u}) = \sum_{i=1}^{n_u} \sum_{j=1}^i a_{i,j} u_i u_j + \sum_{i=1}^{n_u} b_i u_i + c$$
$$\mathcal{P} = \{a_{1,1}, \cdots, a_{n_u, n_u}, b_1, \cdots, b_{n_u}, c\}$$

- Screening algorithm to choose points for QA → Criticality Check
- Additional trust-region constraint: $(\mathbf{u} - \mathbf{u}^k)^T cov(\mathcal{U}^k)(\mathbf{u} - \mathbf{u}^k) - \gamma^2 < 0$

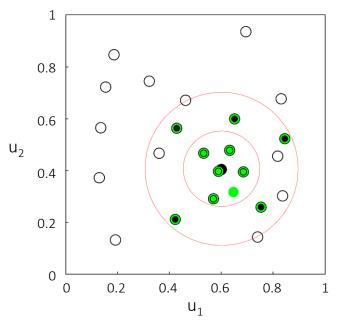


Figure: Illustration of criticality check algorithm¹.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	0000	0
Criticality check				

Quadratic approximation (QA)

$$\mathcal{Q}(\mathcal{P}, \mathbf{u}) = \sum_{i=1}^{n_u} \sum_{j=1}^i a_{i,j} u_i u_j + \sum_{i=1}^{n_u} b_i u_i + c$$
$$\mathcal{P} = \{a_{1,1}, \cdots, a_{n_u, n_u}, b_1, \cdots, b_{n_u}, c\}$$

- Screening algorithm to choose points for QA → Criticality Check
- Additional trust-region constraint: $(\mathbf{u} - \mathbf{u}^k)^T cov(\mathcal{U}^k)(\mathbf{u} - \mathbf{u}^k) - \gamma^2 \leq 0$

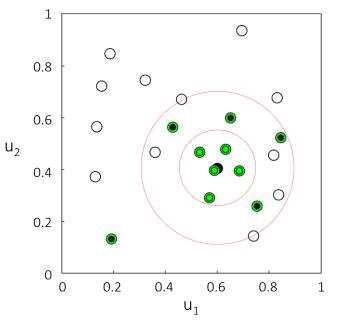


Figure: Illustration of criticality check algorithm¹.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	0000	0
Criticality check				

Quadratic approximation (QA)

$$\mathcal{Q}(\mathcal{P}, \mathbf{u}) = \sum_{i=1}^{n_u} \sum_{j=1}^i a_{i,j} u_i u_j + \sum_{i=1}^{n_u} b_i u_i + c$$
$$\mathcal{P} = \{a_{1,1}, \cdots, a_{n_u, n_u}, b_1, \cdots, b_{n_u}, c\}$$

- Screening algorithm to choose points for QA → Criticality Check
- Additional trust-region constraint: $(\mathbf{u} - \mathbf{u}^k)^T cov(\mathcal{U}^k)(\mathbf{u} - \mathbf{u}^k) - \gamma^2 < 0$

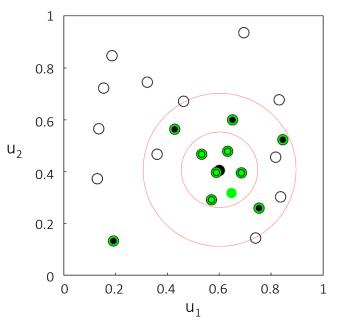


Figure: Illustration of criticality check algorithm¹.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	0000	0
Criticality check				

Quadratic approximation (QA)

$$\mathcal{Q}(\mathcal{P}, \mathbf{u}) = \sum_{i=1}^{n_u} \sum_{j=1}^i a_{i,j} u_i u_j + \sum_{i=1}^{n_u} b_i u_i + c$$
$$\mathcal{P} = \{a_{1,1}, \cdots, a_{n_u, n_u}, b_1, \cdots, b_{n_u}, c\}$$

- Screening algorithm to choose points for QA → Criticality Check
- Additional trust-region constraint: $(\mathbf{u} - \mathbf{u}^k)^T cov(\mathcal{U}^k)(\mathbf{u} - \mathbf{u}^k) - \gamma^2 < 0$

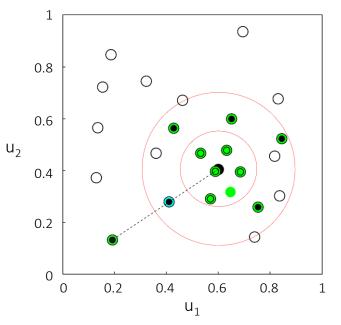


Figure: Illustration of criticality check algorithm¹.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	000•	0000	0
Criticality check				

Quadratic approximation (QA)

$$\mathcal{Q}(\mathcal{P}, \mathbf{u}) = \sum_{i=1}^{n_u} \sum_{j=1}^i a_{i,j} u_i u_j + \sum_{i=1}^{n_u} b_i u_i + c$$
$$\mathcal{P} = \{a_{1,1}, \cdots, a_{n_u, n_u}, b_1, \cdots, b_{n_u}, c\}$$

- Screening algorithm to choose points for QA → Criticality Check
- Additional trust-region constraint: $(\mathbf{u} - \mathbf{u}^k)^T cov(\mathcal{U}^k)(\mathbf{u} - \mathbf{u}^k) - \gamma^2 < 0$

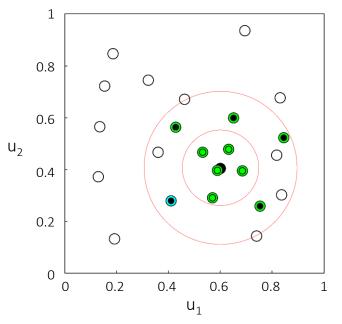
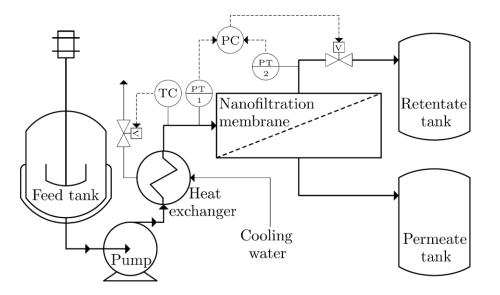



Figure: Illustration of criticality check algorithm¹.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	• • • •	0
Case study				

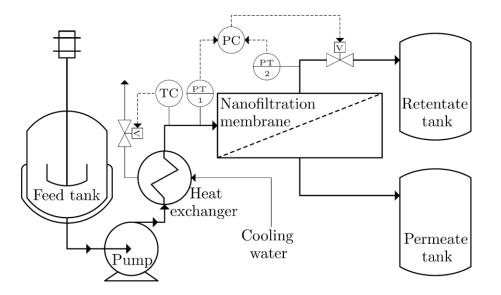

Membrane separation process

Figure: Illustration of the process flow diagram of the continuously operated membrane separation process.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	• • • •	0
Case study				

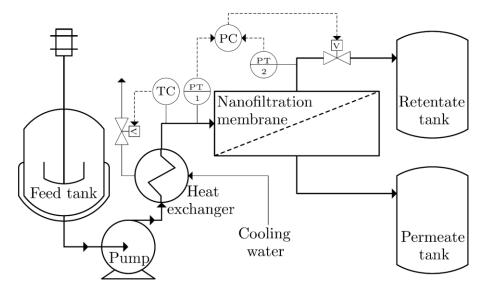
Membrane separation process

Figure: Illustration of the process flow diagram of the continuously operated membrane separation process.

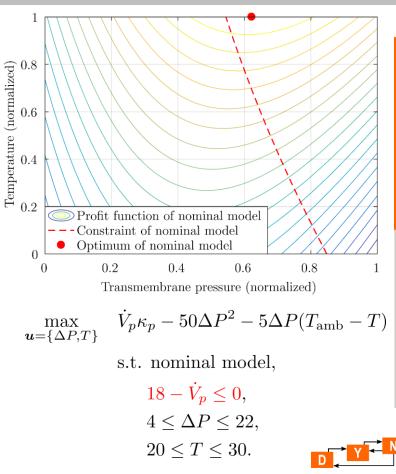
Gottu Mukkula, A.R., et al., Experimental Real Time Optimization of a Continuous Membrane Separation Plant 21st IFAC World Congress, July 12th-17th, 2020

$$\max_{\boldsymbol{u}=\{\Delta P,T\}} \quad \dot{V}_p \kappa_p - 50\Delta P^2 - 5\Delta P(T_{\rm amb} - T)$$

s.t. nominal model,


 $18 - \dot{V}_p \le 0,$ $4 \le \Delta P \le 22,$ $20 \le T \le 30.$

Slide 26 / 35


Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	• • • • •	0
Case study				

Membrane separation process

Figure: Illustration of the process flow diagram of the continuously operated membrane separation process.

Gottu Mukkula, A.R., et al., Experimental Real Time Optimization of a Continuous Membrane Separation Plant 21st IFAC World Congress, July 12th-17th, 2020

Slide 27 / 35

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	$\circ \bullet \circ \circ$	0
Experiment result: Uncons	trained case			

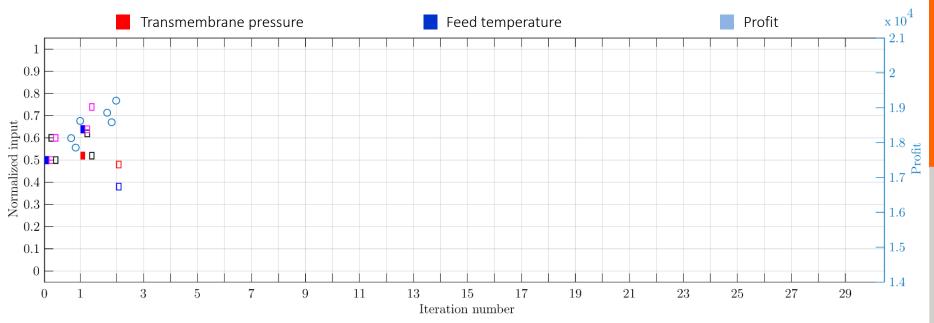


Figure: Experimental results for the unconstrained case: Evolution of the inputs (normalized) transmembrane pressure, temperature and the profit function obtained using process measurements. The tuning parameters γ , Δu , Δh and δ were set to 3.0, 0.1, 0.1 and 0.1, respectively.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	$\circ \bullet \circ \circ$	0
Experiment result: Uncons	trained case			

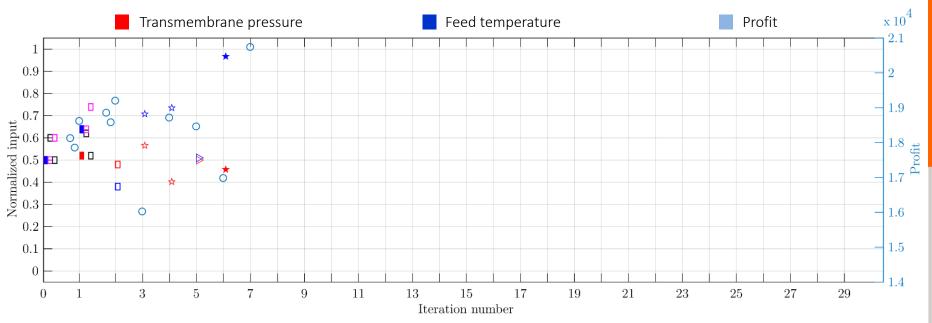


Figure: Experimental results for the unconstrained case: Evolution of the inputs (normalized) transmembrane pressure, temperature and the profit function obtained using process measurements. The tuning parameters γ , Δu , Δh and δ were set to 3.0, 0.1, 0.1 and 0.1, respectively.

Slide 29 / 35

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	$\circ \bullet \circ \circ$	0
Experiment result: Unconst	rained case			

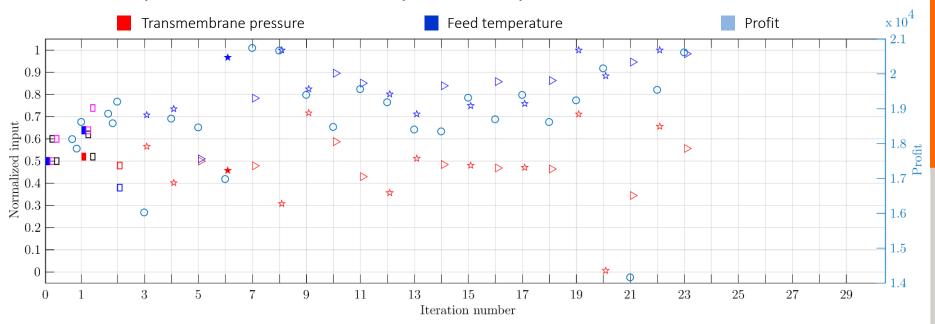


Figure: Experimental results for the unconstrained case: Evolution of the inputs (normalized) transmembrane pressure, temperature and the profit function obtained using process measurements. The tuning parameters γ , Δu , Δh and δ were set to 3.0, 0.1, 0.1 and 0.1, respectively.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	0 • 0 0	0
Experiment result: Unconstraine	ed case			

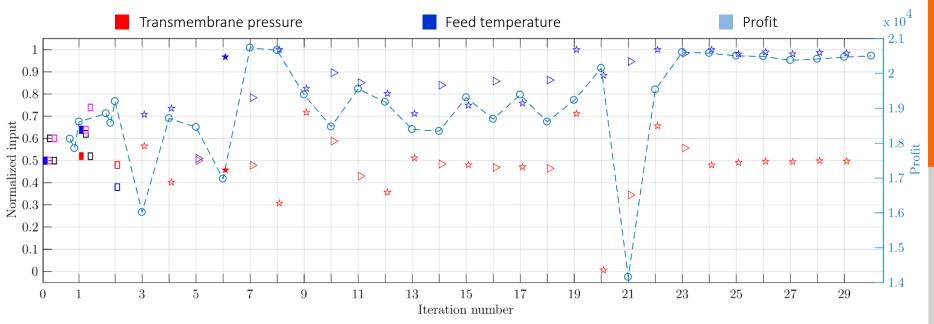
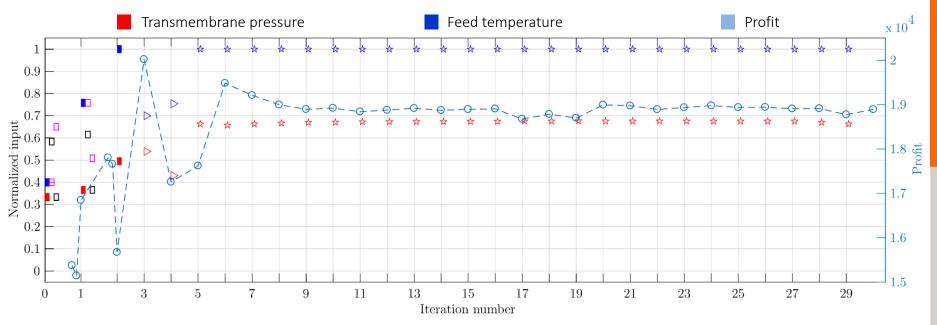
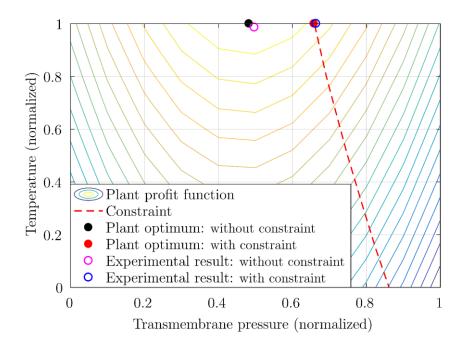
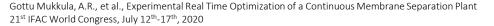


Figure: Experimental results for the unconstrained case: Evolution of the inputs (normalized) transmembrane pressure, temperature and the profit function obtained using process measurements. The tuning parameters γ , Δu , Δh and δ were set to 3.0, 0.1, 0.1 and 0.1, respectively.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	0000	0
Experiment result: Constrained	case			

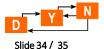




Figure: Experimental results for the constrained case: Evolution of the inputs (normalized) transmembrane pressure, temperature and the profit function obtained using process measurements. The values of the tuning parameters γ , Δu , Δh and δ used in the MAWQA scheme are set to 3.0, 0.25, 0.25 and 0.25.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	000•	0
Validation				

Validation of experiment results

Top figure: Contour plot of the profit function of the nominal models and of the plant, its optimum and the optimum identified by the MAWQA experiments for both the constrained and the unconstrained cases.



Slide 33 / 35

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	0000	•
Summary & Outlook				

Summary & Outlook

- We reported the development of an online real-time optimization solution (MAWQA) for the optimal operation of a continuously operated membrane plant with a nanofiltration membrane.
- Two experiments, one without constraints and another one with a productivity constraint were performed.
- In both experiments, the MAWQA scheme converged to an input close to the plant optimum that is predicted by the surrogate model for a large data set.
- The experiments validated that the combination of the plant measurements with MAWQA can drive a real plant to an optimal operation despite plant-model mismatch
- In our future work, we will focus on reducing the inefficient input moves and on developing a standardized approach for choosing the tuning parameters.

Motivation	Real-time optimization	Modifier adaptation with quadratic approximation (MAWQA)	Case study	Summary
0	0	0000	0000	0

Thank you

anweshreddy.gottumukkula@tu-dortmund.de

The authors acknowledge the German Academic Exchange Service (DAAD) and The Ministry of Education, Science, Research and Sport of the Slovak Republic under the Exchange involving projects (PPP) project "Reliable and Real-time Feasible Estimation and Control of Chemical Plants". STU acknowledges the contribution of the Slovak Research and Development Agency (project APVV 15 – 0007) and of the European Commission (grant 790017).

Gottu Mukkula, A.R., et al., Experimental Real Time Optimization of a Continuous Membrane Separation Plant 21st IFAC World Congress, July 12th-17th, 2020