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Abstract

Inferential sensors are used in industry to infer the values of the imprecisely and infrequently
measured (or completely unmeasured) variables from measured variables (e.g., pressures, temper-
atures). This work deals with the design of inferential sensors suitable for an advanced process
control of a depropanizer column of the Slovnaft refinery in Bratislava, Slovakia. We design linear
inferential models of top and bottom product compositions. Model calibration is performed using
historical production data. We study the effectiveness of several data-based methods (PCA, PLS,
LASSO) for the design of inferential sensors. Our results show that the methods, which promote
model sparsity are more suitable. Validation using a rigorous mathematical model shows that the
designed inferential sensors are sufficient for the advanced process control of the column.

Keywords: Inferential Sensors, Data-based Models, Process Control.

1. Introduction

Majority of advanced controllers in industry is based on linear input-output models (Qin and Badg-
well, 2003). This is usually sufficient because of the existence of corrective feedback actions, i.e.,
receding-horizon principle. In many cases, the input-output models do not include main process
characteristics, e.g., product quality, since they are often expensive or impossible to measure. The
process performance can thus be improved by designing soft-sensors (also called inferentials),
which can infer the values of the unmeasured variables from other measured variables (e.g., pres-
sures, temperatures) and improve the overall process management (Weber and Brosilow, 1972;
Joseph and Brosilow, 1978; Joseph, 1999).

The inferential sensor stands for a model designed to predict hard-to-measure variable according
to other easily measured variables. In chemical industry, hard-to-measure variables are typically
concentrations of products, since online concentration sensors are expensive or too slow for ef-
fective monitoring and control. Several works were devoted to state estimation and control of
(chemical) process using inferentials (Mejdell and Skogestad, 1991, 1993; Zhang, 2001; Kano
et al., 2003; Parvizi Moghadam et al., 2019). The approaches are ranging from simple enhance-
ment of monitoring and control—by heuristically combining several variables to compensate the
sensor-noise or external disturbance (e.g., pressure-corrected temperature control)—to the use of
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Table 1: Composition of feed stream of the depropanizer column.

C3 fraction | C4 fraction | C5 fraction
Propane n-Butane  Trans-2-Butene  1-Butene | Isopentane
Propylene Isobutane  Cis-2-Butene  Isobutene

sophisticated data-mining techniques, which select the optimal structure of the inferential sensor
using available measured outputs and their historical records (Morari and Stephanopoulos, 1980).

This work deals with the design of inferential sensors for advanced process control (APC) of a
depropanizer column of the Slovnaft refinery situated in Bratislava, Slovakia. We design linear
inferential models of top and bottom product composition in order to provide a simple and ap-
propriate structure of the soft-sensors for the APC of the plant. Model calibration is carried out
using historical production data. We use various data-based modeling techniques, including prin-
cipal component analysis (PCA), partial least-squares (PLS), and Least Absolute Shrinkage and
Selection Operator (LASSO). We compare the accuracy and the effectiveness of the designed in-
ferential sensors using the validation dataset from historical plant data and also using a rigourous
mathematical model of a depropanizer column via gPROMS ModelBuilder. We also assess the
appropriateness of the use of a linear soft-sensor for the control of the product quality.

2. Problem Description

The studied depropanizer column (see scheme in Fig. 1) Condenser
contains 40 trays, operates in above-the-atmospheric 0
pressure, and its feed composition is shown in Tab. 1. ‘,

The column serves to separate feed mixture to C3-
fraction-rich distillate product and to C4/C5-fraction-rich
bottom product. The available operational degrees of
freedom are feed flowrate F, bottom product flowrate B, CY Rl
distillate flowrate D, reflux flowrate R, heat duty inthere-  “~=Z| Tray 10 o @

boiler Qp, and heat duty in the condenser Op. Several of
these variables are available as historical data. These are

marked correspondingly in Fig. 1. The plant measure- Qi

ments, also available from historical data, are pressure at
the top of the column pp, pressure at the bottom of the
column pg, and temperatures of distillate Tp, at the 10™
tray Tio, at the 37™ tray T37 and at the bottom 7.

Tray 37 Reboiler

It is evident that the use of thermodynamic properties
model to monitor top/bottom stream compositions is pro-
hibitive in this case, even under any appropriate ideality Figure 1: A schematic diagram of the
assumptions. This is because there are too many degrees  depropanizer column.

of freedom for a seven-component mixture that cannot

be inferred from plant data. According to previous paragraph, there are eleven possible input vari-
ables to select for the design of an inferential sensor. Current inferentials (denoted as ref), used
in the refinery for monitoring/control of concentrations of C4/CS5 fraction in the distillate (xp) and
of C3 fraction in the bottom stream (xg), are designed according to King (2011) in the following
form:

R
xp=aipptaxfiotasy,  xp=aipptaly +ﬂ3%- (1
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Our goal will be to identify models of inferential sensors in the following form

R T
x=(a1,az,...,an,) (F,R,Qp, po, P, T, Ta,Tm,Tn,;.%) =a'm, 6))

where m is the vector of available input variables for the inferential sensor and @ € R"? is the
vector of parameters of the inferential sensor.

3. Identification of Inferential Models
Given n data points, we use various statistical methods in order to design the inferential sensors.

e The basic method is Ordinary Least-Squares (OLS) regression. This method estimates the
parameters of an inferential sensor according to

n
mrin E(x; —aTm;)z, 3)
|

which minimizes sum of squared errors between measured compositions and compositions
estimated from inferential sensors.

e Principal Component Analysis (PCA) (Pearson, 1901) is a method of identifying a 7 ,-
dimensional subspace (7i < np) of orthogonal coordinates that exhibit a maximum variation
in a given dataset. The principal components are identified by SVD decomposition of the
covariance matrix of the input dataset MMT, M := (my,ma,...,m,), taking the eigenvectors
(for subset definition) and the associated eigenvalues (for measure of variance). The (PCA)
regression is then done over the selected subspace using (3).

e Partial Least Squares (PLS) regression (Wold et al., 1984) is similar to PCA (Dunn et al.,
1989) with the difference that it takes a cross-covariance matrix between inputs and outputs
MXT! X = (XIJxZ! e 7xll)’

e Least Absolute Shrinkage and Selection Operator (LASSO) (Santosa and Symes, 1986)is a
method that simultaneously identifies the structure of the model and model parameters by

min Y (x;— a"m;)* + L], )
¢ A

where A is a weight between model accuracy and model over-parameterization.

Note that among the presented methods, the PCA method comprises a certain distinct feature. As
it does not require any output data, it can potentially be applied on much larger datasets in our
general problem setup. This comes since the industrial data are usually available with much finer
time granularity for the online sensors rather than for infrequent and expensive measurements.

4. Design of Inferential Sensors using Industrial Data

The design of inferential sensors is performed according to the data from more than two years
of production (13.12.2016-21.2.2019) of the depropanizer column. The distillate composition is
measured once per month and therefore only 28 measurements is available for the given period.
Bottom inferential sensor is design according to 176 measurements as the concentration of this
product is measured approximately once per week. The input data provided by online sensors are
measured every 30 minutes, which gives an input dataset of 38,360 measurements.

A gross error detection and its subsequent reduction was performed on the given dataset by per-
forming an SVD decomposition of the covariance matrix MMT and by retaining only those data
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(a) Distillate composition. (b) Bottom composition.

Figure 2: Accuracy of the designed inferential sensors according to the industrial validation data.
The number of model input variables (7i,,) is shown on top of each bar.

points that are inside the -3¢ confidence ellipsoid given by the covariance matrix. The excluded
points consist mostly of plant start-up, shutdown and upsets data.

When applying the methods mentioned in Section 3, we use 50% of the data for training and
50% of the data for validation. We use the implementations of the design methods available
within MATLAB. We are interested in simplest possible structures, which is interesting for APC
applications. For this reason, when using PCA and PLS to identify the model structure, we select
only those input variables whose principal components explain 90 % of variance in the data. We
use root mean square error (RMSE) to assess the accuracy of the designed inferential sensors.

We designed inferential sensors according to the OLS, PCA, PLS and LASSO. We repeated the
design 1,000 times, each time randomly distributing the available data among the training and
validation datasets. Presented results stand for mean values obtained. The results are shown in
Fig. 2 in terms of accuracy of the sensors on the validation dataset for distillate and for bottom
composition. Accuracy of the model is influenced by the ability of the method to escape from
model over-parameterization. We show the number of variables that the model uses on the top of
the bar that represents model accuracy.

Overall, we notice that the nature of the problem of designing the inferential sensors differs be-
tween distillate and bottom sensor. While the best distillate sensor uses only few (three) input
variables, the most accurate bottom soft-sensors retain 7-11 out of eleven available input variables
(all the temperatures and pressures). This is attributed to the small dataset available for the tuning
of the distillate sensor and is subject of further analysis.

When comparing the different methods, we can find that OLS is not able to reduce the number
of parameters/inputs of the inferential model in both cases. PCA and PLS perform similarly,
although the promotion of model sparsity improves with the number of available data (bottom
sensor). LASSO achieves slightly better results than OLS in both cases by being able to sparsify
the model slightly, even if the dataset is small. The performance of the current on-site inferential
sensor (ref) is very good in case of distillate composition inferential. However, there seems to be
a room for improvement (around 20 %) of the inferential sensor for bottom composition.

5. Analysis of Inferential Sensors using Synthetic Data

In order to confirm our findings from the previous chapter and to analyse the further possible
enhancements of inferential sensors, we designed the mathematical model of depropanizer column
in gPROMS ModelBuilder. The model is built according to the parameters from the technical
documentation of the depropanizer in the Slovnaft refinery and validated in the simulations with
several step changes. We use 200 different (steady state) measurements for the design of inferential
sensors. Compared to the historical data from the refinery, this is much larger dataset with many
more different operating points (steady-states). The simulated measurements are corrupted with
normally distributed random noise of similar magnitudes as present in the industrial data.
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(a) Distillate composition. (b) Bottom composition.

Figure 3: Accuracy of the designed inferential sensors according to synthetic validation data. The
number of model input variables (7i,) is shown on top of each bar.
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(a) Distillate composition. (b) Bottom composition.

Figure 4: Accuracy of the designed inferential sensors according to synthetic validation data for
49 possible input variables. The number of model input variables (7ip) is shown on top of each bar.

First, we use the information from the same sensors as in the previous section to mimic the case
of studied column instrumentation. The results are shown in Fig. 3. We can mostly see that they
confirm our previous conclusions. As the noise present in the data corresponds to the assump-
tions of the least-squares regression and variance analysis, all the methods exhibit an improved
performance. Even the OLS method is able to sparsify the model to the extent of PLS and LASSO
method. PCA can go even further without compromising the model quality. The slight improve-
ment of the PCA-based distillate sensor w.r.t. ref is caused by adding variables R and F into the
sensor structure.

Next, we consider data from more online sensors, 49 instead of 11. The input dataset is enriched
by all the tray temperatures (7740). In this case, we can conclude that bottom sensor cannot be
much improved using new instrumentation. The optimal distillate inferential sensor seems to be
21 % more accurate that the current ref model but it is also much more complicated, one would
need at least nine new sensors for the model by PCA. Lastly, we also see that the LASSO method
does not cope well with situations when much dimension-reduction is needed.

Atlast, we tested the inferential control in the scenario, where the plant model is controlled by PI
controllers using the following CV-MV pairs: pp-Qc, hg-B, he-D, xp-R, and xp-QOg. The results
from the simulation of control using PCA-based inferential sensors are shown in Fig. 5. The
prediction and steady-state error is indicated by evaluating the true plant response. We observe 90—
95 % accuracy of the control, which is correspondence with the results from prediction accuracy
analysis. The designed sensors are thus appropriate for control (APC) purposes.

6. Conclusions

We studied the design of linear inferential sensors for the top and bottom product composition of an
industrial depropanizer column. We studied the accuracy and the effectiveness of several advanced
data-based methods (PCA, PLS, LASSO). We used historical plant data for model calibration.
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(a) The distillate product. (b) The bottom product.

Figure 5: The comparison of product concentrations from the simulation of depropanizer column
with implemented PCA inferential sensors.

Further we used a rigorous process model to confirm our findings and to analyze appropriateness
of inferential control of the depropanizer column and its potential further improvements. The
results show that the designed inferential sensors are sufficient for the advanced process control
of the column. The methods that separate model-structure identification and the model regression
are found more suitable.
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