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Process Flexibility

Flexibility

Optimal & Stable

ControlControl

Flexibility Analysis

“is control needed 

to ensure feasibility 

given uncertainty?”

1. Process optimization →
effective & efficient processes

2. Understanding process 

flexibility is important!

Optimization Goal: 

place ball at highest point



Optimal & Stable Without Controls

Alternative Outcome

Innately Flexible System

A space where goal achieved

Larger space → more flexible

DISCLAIMER

Flexible Under

Given Uncertainty

Unstable if wind 

unexpectedly

strong



Pharmaceutical Quality by Design

Design Space

❑ Quality by Design 

▪ Set of guidelines for pharmaceutical process development

▪ Promotes systematic, holistic approaches

❑ Design Space

“Multidimensional combination and interaction of input variables 

(material attributes) and process parameters that have been 

demonstrated to provide assurance of quality” 

❑ Characterization offers regulatory flexibility

▪ No re-approval for process changes within DS

▪ Promote holistic process understanding



Illustrative Example
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❑ 𝒟nom excessively optimistic

❑ Often lead to false positives

❑ Unsuitable for strictly-regulated processes
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❑ Reliability value 𝛼 specifies attitude

❑ Treat 𝜃 as random variable

❑ Exploits information from probability density function 𝑝 𝜃



Illustrative Example

Design Space

Solid Lines : Bayesian
Dashed Lines : Robust

Nominal DS𝒟nom

𝜃 = 𝜃nom

Bayesian DS 𝒟𝛼

𝜃~𝑝 𝜃

Robust DS ෡𝒟𝛼

𝜃 ∈ Θ

Model

𝜃𝑑1
2 + 𝑑2

❑ Treat 𝜃 as random variable bounded in Θ

❑ Robust towards all values within Θ

❑ Θ depends on 𝛼



Illustrative Example

Design Space

Solid Lines : Bayesian
Dashed Lines : Robust

Nominal DS𝒟nom

𝜃 = 𝜃nom

Bayesian DS 𝒟𝛼

𝜃~𝑝 𝜃

Robust DS ෡𝒟𝛼

𝜃 ∈ Θ

Model

𝜃𝑑1
2 + 𝑑2

❑ Focus of this work

❑ Challenging and computationally costly

❑ Effective & efficient tools are needed



Numerical Strategies

Methods

❑ Design-centering algorithms

❑ Sampling algorithms



Numerical Strategies

Methods

❑ Design-centering algorithms

❑ Sampling algorithms



Numerical Strategies

Methods

❑ Design-centering algorithms

❑ Sampling algorithms



Numerical Strategies

Methods

❑ Design-centering algorithms

❑ Sampling algorithms



Numerical Strategies

Methods

❑ Design-centering algorithms

❑ Sampling algorithms



Numerical Strategies

Methods

❑ Design-centering algorithms

❑ Sampling algorithms

Sobol Sampling – Non Adaptive



Numerical Strategies

Methods

❑ Design-centering algorithms

❑ Sampling algorithms

Effective!



Numerical Strategies

Methods

❑ Design-centering algorithms

❑ Sampling algorithms

Each sample may require 

~102 - 109 model runs

Effective, but too costly → 3,249 samples



Methods

❑ Design-centering algorithms

❑ Sampling algorithms

Samples concentrate towards target 𝛼

1 Kennedy P. Kusumo, Lucian Gomoescu, Radoslav Paulen, Salvador García 

Muñoz, Constantinos C. Pantelides, Nilay Shah, and Benoît Chachuat

Industrial & Engineering Chemistry Research 2020 59 (6), 2396-2408

DOI: 10.1021/acs.iecr.9b05006
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NESTED SAMPLING

For Design Space1

Samples concentrate towards target 𝛼
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Improvements

Time 

Savings

Three Ideas for Nested Sampling

❑ Draw samples from 𝒟nom

❑ Initialize with 𝒟nom samples

❑ Less evaluations for 

locating 𝒟𝛼

❑ Do model runs in parallel

❑ Utilize multi-cores in CPUs

❑ ↑ 𝑁L over iterations

❑ Top-up live points

❑ Further concentrate 

samples in target 𝒟𝛼

I3: Vectorized function evaluations

I1: Two-phase nested sampling I2: Dynamic number of live points



Original Strategy
Industrial Case Studies: Suzuki Coupling Reaction1

❑ Batch Reactor.

❑ 4-dimensional DS.

❑ 11 chemical reactions with 22 

uncertain kinetic parameters.

❑ Two constraints:

▪ Conversion of reactant

▪ Concentration of impurity

1 García-Muñoz, S.; Luciani, C. V.; Vaidyaraman, S.; Seibert, K. D. Definition of design 
spaces using mechanistic models and geometric projections of probability maps. 
Organic Process Research & Development 2015, 19, 1012–1023.

𝟏𝟏𝟐. 𝟒 CPU hrs

Manageable Cost

14.54 × 106

Model runs



Improved Strategy
Industrial Case Studies: Suzuki Coupling Reaction1

❑ Batch Reactor.

❑ 4-dimensional DS.

❑ 11 chemical reactions with 22 

uncertain kinetic parameters.

❑ Two constraints:

▪ Conversion of reactant

▪ Concentration of impurity

1 García-Muñoz, S.; Luciani, C. V.; Vaidyaraman, S.; Seibert, K. D. Definition of design 
spaces using mechanistic models and geometric projections of probability maps. 
Organic Process Research & Development 2015, 19, 1012–1023.

𝟐𝟏. 𝟖 CPU hrs

Convenient Cost

11.80 × 106

Model runs



❑ A sampling-based approach: applicable to any model

❑ Three changes to NS for DS were proposed

❑ Compared to the original NS on the same industrial case study

▪ Four-fold reduction in computation time

▪ ~15% reduction in evaluations

❑ The changes proved to be improvements

▪ Help solve problems previously too large

Conclusion
Remarks



Implementation
DEUS: Python Package

❑ DEUS available on demand at:
https://github.com/omega-icl/DEUS

Thank You!

Questions?

E-mail : kpk15@ic.ac.uk

Work : RODH C506
Centre of Process Systems Engineering
Imperial College London
SW7 2AZ

https://github.com/omega-icl/DEUS
mailto:kpk15@ic.ac.uk

