

Paper 483 at ESCAPE30

Nested Sampling Strategy for Bayesian Design Space Characterization

> 1 September 2020 Milan, Italy

Kennedy P. Kusumo^a Lucian Gomoescu^{a,b} Radoslav Paulen^c Salvador Garcia-Munoz^d Costas Pantelides^{a,b} Nilay Shah^a Benoit Chachuat^{a,*}

Centre for

Process

Systems

Engineering

^a Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, United Kingdom

- ^b Process Systems Enterprise Ltd, London, United Kingdom
- Faculty of Chemical and Food Technology,
 Slovak University of Technology in Bratislava, Slovakia
- ^d Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, United States of America

Imperial College London

*b.chachuat@imperial.ac.uk

Overview

Topics and Key Concepts

- Design Spaces
 Process Flexibility
 Process Uncertainties
 Noisy disturbances
 Changes in processing requirements
 Imperfect information
 - Pharmaceutical Quality by Design

PharmaS

Overview

- **Topics and Key Concepts**
- **Design Spaces**

Methods

Results

- □ Algorithm Classes
 - Design Centering
 - Sampling-based
- Uncertainty Quantification
 - Probabilistic
 - Set-based
- Bayesian Design Spaces

Overview

Topics and Key Concepts

Design Spaces

Methods

Results

- □ Nested Sampling for Design Space
 - Outline
 - Comparison
- □ Improvements to NS for DS
 - Vectorization
 - Two-phase strategy
 - Dynamic Number of Live Points

DEUS

- Python implementation
- Open-source

Imperial College London

Flexibility

Process Flexibility

 Process optimization → effective & efficient processes

Optimization Goal: place ball at highest point

Optimal!

Flexibility

Process Flexibility

 Process optimization → effective & efficient processes

Optimization Goal: place ball at highest point

Optimal! Stable?

Flexibility

Process Flexibility

 Process optimization → effective & efficient processes

Optimization Goal: place ball at highest point

Optimal! Stable?

Contract Contract Contract Contract

Understanding process
 Realizing is important.

Alternative Outcome Innately Flexible System A space where goal achieved Larger space \rightarrow more flexible

Optimal & Stable Without Controls

Pharmaceutical Quality by Design

- Quality by Design
 - Set of guidelines for pharmaceutical process development
 - Promotes systematic, holistic approaches
- Design Space

"Multidimensional combination and interaction of input variables (material attributes) and process parameters that have been demonstrated to provide assurance of quality"

- □ Characterization offers regulatory flexibility
 - No re-approval for process changes within DS
 - Promote holistic process understanding

Illustrative Example

Illustrative Example

STU FCHPT

Illustrative Example

STU FCHPT

PharmaSE

Unsuitable for strictly-regulated processes

Illustrative Example

- Treat θ as random variable
- Exploits information from probability density function $p(\theta)$

Illustrative Example

1

Dashed Lines

0.5

: Bayesian

: Robust

PharmaSE

- $\Box \quad \text{Treat } \theta \text{ as random variable bounded in } \Theta$
- $\square \quad Robust \text{ towards all values within } \Theta$
- $\Box \quad \Theta \text{ depends on } \alpha$

STU FCHPT

- Challenging and computationally costly
- □ Effective & efficient tools are needed

Numerical Strategies

Design-centering algorithms

□ Sampling algorithms

Numerical Strategies

Carter Sampling algorithms

Numerical Strategies

Carter Sampling algorithms

Numerical Strategies

Carter Sampling algorithms

Numerical Strategies

C Sampling algorithms

Numerical Strategies

Design-centering algorithms

□ Sampling algorithms

Sobol Sampling – Non Adaptive

Numerical Strategies

Design-centering algorithms

□ Sampling algorithms

Numerical Strategies

□ Sampling algorithms

Imperial College

London

Each sample may require $\sim 10^2 - 10^9$ model runs

Effective, but too costly \rightarrow 3,249 samples

Numerical Strategies

Design-centering algorithms

□ Sampling algorithms

¹ Kennedy P. Kusumo, Lucian Gomoescu, Radoslav Paulen, Salvador García Muñoz, Constantinos C. Pantelides, Nilay Shah, and Benoît Chachuat *Industrial & Engineering Chemistry Research* **2020** *59* (6), 2396-2408 DOI: 10.1021/acs.iecr.9b05006

Imperial College London

Samples **concentrate** towards target α

STU FCHPT PharmaSEL

Numerical Strategies

Design-centering algorithms

□ Sampling algorithms

¹ Kennedy P. Kusumo, Lucian Gomoescu, Radoslav Paulen, Salvador García Muñoz, Constantinos C. Pantelides, Nilay Shah, and Benoît Chachuat *Industrial & Engineering Chemistry Research* **2020** *59* (6), 2396-2408 DOI: 10.1021/acs.iecr.9b05006

Imperial College London

Samples **concentrate** towards target α

5 T U

FCHPT

Nested Sampling

Outline

STU FCHPT

- Maintain constant no. of live points
- □ Iteratively replace with better points
- Many proposal schemes
- □ Chosen scheme¹:
 - Uniform points in enlarged ellipsoid around live points
 - Enlargement factor of ellipsoid shrinks between iterations

PharmaSE

Nested Sampling

Outline

- Maintain constant no. of live points
- □ Iteratively replace with better points
- Many proposal schemes
- □ Chosen scheme¹:
 - Uniform points in enlarged ellipsoid around live points
 - Enlargement factor of ellipsoid shrinks between iterations

PharmaSE

Outline

- Maintain constant no. of live points
- □ Iteratively replace with better points
- Many proposal schemes
- □ Chosen scheme¹:
 - Uniform points in enlarged ellipsoid around live points
 - Enlargement factor of ellipsoid shrinks between iterations

¹ Feroz, F.; Hobson, M. P.; Bridges, M. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 2009, 398, 1601–1614

Nested Sampling

Outline

- Maintain constant no. of live points
- □ Iteratively replace with better points
- Many proposal schemes
- □ Chosen scheme¹:
 - Uniform points in enlarged ellipsoid around live points
 - Enlargement factor of ellipsoid shrinks between iterations

¹ Feroz, F.; Hobson, M. P.; Bridges, M. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 2009, 398, 1601–1614

Nested Sampling

Outline

- □ Maintain constant no. of live points
- □ Iteratively replace with better points
- Many proposal schemes
- □ Chosen scheme¹:
 - Uniform points in enlarged ellipsoid around live points
 - Enlargement factor of ellipsoid shrinks between iterations

PharmaSE

Nested Sampling

Outline

- □ Maintain constant no. of live points
- □ Iteratively replace with better points
- Many proposal schemes
- □ Chosen scheme¹:
 - Uniform points in enlarged ellipsoid around live points
 - Enlargement factor of ellipsoid shrinks between iterations

PharmaSE

Nested Sampling

Outline

STU FCHPT

- □ Maintain constant no. of live points
- □ Iteratively replace with better points
- Many proposal schemes
- □ Chosen scheme¹:
 - Uniform points in enlarged ellipsoid around live points
 - Enlargement factor of ellipsoid shrinks between iterations

PharmaSE

Improvements

Three Ideas for Nested Sampling

PharmaSI

I3: Vectorized function evaluations

- Do model runs in parallel
- Utilize multi-cores in CPUs

Imperial College London

Improvements

Reduced Evaluations

Three Ideas for Nested Sampling

I2: Dynamic number of live points

PharmaSI

- $\square \uparrow N_{\rm L} \text{ over iterations}$
- □ Top-up live points
- $\Box \quad \text{Further concentrate} \\ \text{samples in target } \mathcal{D}_{\alpha}$

I3: Vectorized function evaluations

- Do model runs in parallel
- Utilize multi-cores in CPUs

Imperial College London

Improvements

Three Ideas for Nested Sampling

I2: Dynamic number of live points $\land N_L$ over iterations \Box $\top N_L$ over iterations \Box Top-up live points \Box Further concentrate samples in target \mathcal{D}_{α}

PharmaSI

Imperial College London

Original Strategy

Industrial Case Studies: Suzuki Coupling Reaction¹

- Batch Reactor.
- □ 4-dimensional DS.
- 11 chemical reactions with 22 uncertain kinetic parameters.
- Two constraints:

Imperial College

London

- Conversion of reactant
- Concentration of impurity

¹ García-Muñoz, S.; Luciani, C. V.; Vaidyaraman, S.; Seibert, K. D. Definition of design spaces using mechanistic models and geometric projections of probability maps. Organic Process Research & Development 2015, 19, 1012–1023. 112.4 CPU hrs Manageable Cost 14.54×10^{6} Model runs

Improved Strategy

Industrial Case Studies: Suzuki Coupling Reaction¹

- Batch Reactor.
- □ 4-dimensional DS.
- 11 chemical reactions with 22 uncertain kinetic parameters.
- Two constraints:
 - Conversion of reactant
 - Concentration of impurity

¹ García-Muñoz, S.; Luciani, C. V.; Vaidyaraman, S.; Seibert, K. D. Definition of design spaces using mechanistic models and geometric projections of probability maps. Organic Process Research & Development 2015, 19, 1012–1023.

21.8 CPU hrs Convenient Cost 11.80×10^{6} Model runs

Imperial College

London

Conclusion

Remarks

- A sampling-based approach: applicable to any model
- □ Three changes to NS for DS were proposed
- □ Compared to the original NS on the same industrial case study
 - Four-fold reduction in computation time
 - ~15% reduction in evaluations
- □ The changes proved to be improvements
 - Help solve problems previously too large

Implementation

PharmaS

DEUS: Python Package

DEUS available on demand at: <u>https://github.com/omega-icl/DEUS</u>

Thank You!

Questions?

E-mail : <u>kpk15@ic.ac.uk</u>

Work : RODH C506 Centre of Process Systems Engineering Imperial College London SW7 2AZ

