
Machine Learning Assisted Solutions of
Mixed Integer MPC on Embedded

Platforms

Yannik Löhr ∗ Martin Klaučo ∗∗ Miroslav Fikar ∗∗

Martin Mönnigmann ∗

∗Automatic Control and Systems Theory, Ruhr-Universität Bochum,
Bochum, Germany

(yannik.loehr, martin.moennigmann)@rub.de.
∗∗ Institute of Information Engineering, Automation and Mathematics,

Slovak University of Technology in Bratislava
(martin.klauco,miroslav.fikar)@stuba.sk

Abstract: Many control applications, especially in the field of energy systems, require a
simultaneous decision for continuous and binary values of control inputs. In optimal control
methods like model predictive control (MPC), this leads to the problem of solving expensive
mixed-integer programs online. As this solution in practice has to be calculated with low cost
embedded hardware with low energy demand, it is necessary to reduce the computational
demand in advance. We present an approach to replacing the mixed-integer program by a
simpler quadratic program by means of learning techniques. To be more specific, we design a
neural network and a support vector machine to classify the optimal control policies for the
binary inputs offline and evaluate this decision in the online step as the basis for the solution
of the quadratic program. As a result, we achieve a controller suitable for implementation on
embedded hardware. We demonstrate its applicability to a domestic heating system. The results
indicate a very high quality of the approximation of the primary optimal controller that solves
mixed-integer programs online.

Keywords: nonlinear predictive control, energy control, data-based control, neural networks,
classification, heat flows, control applications

1. INTRODUCTION

Energy systems often require to optimize components with
binary or discrete input signals, as it is the case with simple
thermostats (Drgoňa et al., 2015) or complex turbines
(Ferrari-Trecate et al., 2004). In the context of MPC, this
in general means that mixed-integer programs need to be
solved to find optimal solutions, see Morari and Barič
(2006); Richards and How (2005). In the last decades,
there have been lots of innovations to speed up the solution
of mixed-integer programming problems in control appli-
cations, as described by Bixby (2012), Zheng et al. (2014)
or Achterberg et al. (2016), leading to the availability
of several highly optimized codes. Nevertheless, it is still
a complex task to solve this type of problem within a
reasonable amount of time, especially when it comes to
implementation on limited, embedded hardware usually
available in small scale energy systems.

? This work was supported by the Alexander von Humboldt Founda-
tion (AvH-1065182-SVK) and by the German Federal Ministry for
Economic Affairs and Energy under grant 03ET1274B. M. Klaučo
and Miroslav Fikar gratefully acknowledge the contribution of the
Scientific Grant Agency of the Slovak Republic under the grants
1/0585/19 and the contribution of the Slovak Research and Devel-
opment Agency under the project APVV 15-0007.

Recently, the approximation of optimal control algorithms
for implementation on embedded hardware with limited
resources became attractive due to innovations in super-
vised and unsupervised machine learning methods. Hert-
neck et al. (2018) investigated the approximation of a
robust model predictive controller by arbitrary supervised
learning techniques. Klaučo et al. (2019) improved active
set methods used for quadratic programs, which arise in
MPC, by providing near-to-optimal warm starts, by means
of approaches like k-NN and SVM classifiers.

The related work of Lucia and Karg (2018), Drgoňa et al.
(2018) or Löhr et al. (2019) distinguishes itself to be more
practical, as neural nets are trained to resemble the MPC
for resonant power converters or building HVAC systems.

In this paper, we consider a class of MPC problems,
where the design model has continuous linear dynamics
but has both continuous and binary control inputs. For-
mulations of such MPC problems lead to mixed-integer
linear (MILP) or quadratic programming (MIQP) prob-
lems, depending on the choice of the objective function. In
general, these types of MILPs or MIQPs are challenging,
even on standard hardware with state-of-the-art solvers
like Gurobi or CPLEX. We present an approach where a
machine learning tool estimates the value of the binary
variables. By fixing the binary variables, we reduce the
complexity of the MI problem to a standardized LP/QP

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 5269



problem. We acknowledge that the presented control algo-
rithm may lead to suboptimal solutions compared to the
full-fidelity MILP/MIQP controller. Still, it is embeddable
on hardware with limited computation and memory re-
sources. We demonstrate the applicability of the proposed
algorithm for a domestic heating system.

This work considers two machine learning approaches used
to approximate the binary variables− first, a simple neural
network, and second a support vector machine tool. The
same set of training data is used to train both classifiers.
Neural networks proved useful in our previous publication
(Löhr et al., 2019), but it is also supported by recent work
by Bertsimas and Stellato (2019), which has also been used
in connection with improving the computational burden of
the mixed-integer optimization.

In Section 2, we introduce the considered MPC problem,
before we present an algorithm to reduce the complexity of
the MPC problem which is required to be solved online in
Section 3. The control performance for different machine
learning approaches is investigated for a domestic heating
system in Section 4.

2. PROBLEM STATEMENT

The main objective of the paper is to present an em-
beddedable approach to a class of mixed-integer MPC
problems. The standard formulation of the MPC with
continuous and binary control inputs reads

min
uk,δk

`N(xN ) +

N−1∑
k=0

`(xk, uk, δk) (1a)

s.t. xk+1 = Axk +Bcuk +Bδδk + Edk (1b)

uk ∈ Uc, xk ∈ X , δk ∈ Ub (1c)

x0 = x(t) (1d)

where the states are denoted as x ∈ Rnx , continuous
control inputs as u ∈ Rnu , binary control inputs as
δ ∈ {0, 1}nδ , and disturbances as d ∈ Rnd . The objective
function (1a) consist of a terminal penalty and stage cost,
spanned over the prediction horizon of N , where

`N(xN ) = xᵀNQNxN , (2)

`(xk, uk, δk) = xᵀkQxxk + uᵀkQuuk + δᵀkQδδk, (3)

with positive semi definite QN, Qx and positive definite
Qu and Qδ. Note that the algorithm presented later in
the paper is not limited to a quadratic cost function.
Furthermore, constraints (1b) and (1c) are enforced for k ∈
{0, . . . , N − 1}. Control inputs and states are constrained
to Uc, Ub and X , which are polyhedral sets.

We denote the initial conditions for the MPC (1) as

θ = [x
ᵀ
0 dᵀ]

ᵀ
, θ ∈ Rnθ , (4)

and the optimal solution to (1) at time step t by

U?(t) =
[
u?0, u

?
1, . . . , u

?
N−1

]ᵀ ∈ RnuN and ∆?(t) =[
δ?0 , δ

?
1 , . . . , δ

?
N−1

]ᵀ ∈ RnδN for continuous and binary
inputs, respectively. As common in MPC, only the first
element of the solution, namely the pair {u?0, δ?0}, is applied
to the system in a receding horizon fashion (Mayne et al.,
2000).

3. LEARNING BINARY INPUTS IN MPC

In general, it is a challenging task to implement controllers
based on the solution of a MIQP on embedded hardware.
We present an efficient approach that is based on separat-
ing the MIQP resulting from (1) into a QP, where the bi-
nary inputs are fixed with an estimation from a supervised
learning procedure. After introducing this reformulation,
we give details on the data preparation and training, before
we compactly state the full implementation procedure.

3.1 Reformulation of the optimal control problem

MIQP problems can be solved with branch-and-bound
methods, where the integer variables are relaxed, and
subsequently, a sequence of continuous-variable QP is
solved. Given the size of the relaxed QP problem, it can be
solved in the milli-to-microsecond range even on embedded
hardware (Domahidi and Jerez, 2014–2019). The proposed
solution to the optimal control problem presented in
Section 2 stems from the principle of formulating a relaxed
version of the MIQP (1), and solving it for fixed values of
the binary variables.

Let δapproxk ∈ {0, 1}nδ be the approximation of the binary
elements of the optimal solution to (1) at each prediction
step k, and assume that its value is available by evaluation
of a suitable machine learning procedure. Then, if we
fixed the binary variables in (1) to δapproxk , we would
obtain a continuous variable QP. However, since the total
number of binary variables in (1) is Nnδ, it can still be
computationally challenging to get approximate values of
the δapproxk for the entire prediction horizon. Therefore,
we further relax the optimization problem. We fix δ0
to the approximate value and treat the remaining δk as
optimization variables subject to the constraints δk ∈
[0, 1]. Specifically, we reformulate (1) as a quadratic MPC
problem

min
uk,δk

`N(xN ) +

N−1∑
k=0

`(xk, uk, δk) (5a)

s.t. xk+1 = Axk +Bcuk +Bδδk + Edk, (5b)

uk ∈ Uc, xk ∈ X , (5c)

δ0 = δapprox0 , (5d)

δk ∈ [0, 1], (5e)

x0 = x(t), (5f)

where constraints (5b)-(5c) are enforced for k ∈ {0, . . . , N−
1}, while (5e) holds for k ∈ {1, . . . , N − 1}.
Naturally, the solution to the “super-relaxed” QP (5)
will be a suboptimal solution to the MIQP given in (1).
The potential suboptimality of the solution of the super-
relaxed QP is remedied by the receding horizon policy
implementation, where such a controller is resolved in
a closed-loop at each sampling instant. Numerical results
will show that if we provide a good approximate value
of δapprox0 , we obtain almost identical control performance
compared to the performance of the closed loop with the
MIQP controller, with the added benefit of an embeddable
control algorithm, as summarized in Section 3.3.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5270



3.2 Machine Learning-based Classification Task

The objective of the machine learning classification is to
minimize a classification error

min
C

np∑
i=1

(δ?i − C(θi))
2
, (6)

where np is the number of points for which the error is
evaluated, C denotes a classifier, and θi is the initial con-
dition for which δ?i was obtained by solving (1). Formally,
we define

θi ∈ I, (7)

where the set I is a collection of all feasible initial
conditions for MIQP in (1). Similarly, we define

δ?i ∈ T (8)

as a set of optimal solutions to the MIQP (1), where δ?i
stands for the first element of a particular optimal solution
corresponding to θi from (7). Conversely, set {θi, δ?i } is
referred to as training tuple, while sets I, and T form
a training data set.

The goodness of the fit (6) heavily depends not only on
the cardinality of sets I, and T , which is np, but also on
the data structure. In our work, we consider an equidistant
split of I alongside each axis. Such an approach proved to
be valid also in other scientific works (Klaučo et al., 2019).

The subsequent task is to find a classifier C (θ) that
assigns binary values for a new vector of inputs to fit
best to the information stored in the training data. The
construction of C (θ) can be performed off-line with the
two steps of (i) generating the training data and (ii)
designing the classifier, where the first step has previously
been introduced. There exist several ML-methods that can
be used for the design of the classifier. In particular, we
will investigate neural networks (NN) and support vector
machines (SVM) to that effect.

Neural Nets Classifier The first classifier used to obtain
the δapprox0 , is a neural network. The NN is an aggregated
function consisting of weighted interconnected activation
functions arranged in several layers, that maps input
parameters θ ∈ Rnθ → δapprox ∈ Rnδ . To obtain the
weights of individual activation functions, we must solve
an optimization problem, given as

min
α

np∑
i=1

(
δ?i − ϕNN(α, θi)

)
, s.t. δ?i ∈ T , θi ∈ I, (9)

where the variable α stands for the weights, np is the
number of samples in the training data, and ϕNN(·) stands
for the neural network. The function that represents the
neural network is visualized in the Fig. 1, where green
and red dots represent a sigmoid activation function in
the form of

ϕ(α, z) =
2

1 + eαz
− 1, (10)

where the α is the weight and z is an aggregated input to
a particular sigmoid. The blue dots represent the linear
output layer, given as δapprox = αz. Note, that the α
denotes an arbitrary value of the weighing parameters, and
its particular value may differ between individual nodes. In
Fig. 1, the number in brackets denotes the corresponding
element in the input or output vector, respectively. For
general knowledge about the neural nets and the training

procedure, we direct the reader, for example, to the work
by Bishop (1995); Hornik (1991). In our work, we use
the training algorithms in the Deep Learning Toolbox in
MATLAB, particularly the command fitnet.

...
...

...

. . .

. . .

. . .. .
. ...

θ(1)

θ(2)

θ(nθ)

δ
?,(1)
0

δ
?,(nδ)
0

Fig. 1. Illustration of the neural network for the classifica-
tion task.

SVM Classifier The support vector machine belongs to
a family of classification trees (Breiman et al., 1984). The
main advantage of the SVM classifier is that it assigns
scalar output wSVM value to either −1 or 1, by evaluating
an affine function, namely:

wSVM = 1 if aᵀθ − b ≥ 1, (11)

wSVM = −1 if aᵀθ − b ≤ −1, (12)

where the coefficients a, and b can be found by construct-
ing a simple feasibility problem, which is a linear opti-
mization problem (Drucker et al., 1996). A simple post-
processing of the result from (11) is required to get the
value of each j-th element in δapprox,(j). Concretely, we set

δapprox,(j) = 1 if wSVM = 1, (13a)

δapprox,(j) = 0 if wSVM = −1. (13b)

To obtain the SVM classifiers in this work, we use the
command fitcsvm which is part of the Statistics and
Machine Learning Toolbox. The main advantage of the
SVM is that the output has already a binary nature, which
is not true for the neural network. However, the main
disadvantage is that for each element in the vector δapprox0 ,
a single SVM model is required. This results in nδ SVM
models, for data needs to be stored as a part of the control
algorithm.

3.3 Implementation of the ML-enhanced Algorithm

The proposed reformulation approach is separated into
the off-line performed preparation phase and the on-line
phase. The preparation phase includes the generation of
the training data set

{
(θ1, δ1) , . . . ,

(
θnp

, δnp

)}
and the

identification of a suitable, machine-learning based ap-
proximation of δ?0 , as described in Section 3.2. The on-
line phase combines the evaluation of the classifier C (θ)
and the solution to (5). The on-line phase requires the
following steps:

(1) measure state x(t) and disturbance d(t) to obtain
θ = [x(t), d(t)];

(2) approximate the optimal binary feedback law as
δapprox(t) = C(θ);

(3) solve (5) with δ0 = δapprox(t) to obtain {U?,∆?};
(4) implement the pair {u?0, δ?0}

ᵀ
to the system (1b) and

repeat from Step 1 at the subsequent time instant.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5271



4. RESULTS

4.1 Example Heating System

We investigate the efficiency of our approach for the
domestic heating system shown in Fig. 2, which was
derived from Löhr and Mönnigmann (2018). The system
comprises a stratified thermal energy storage and two
heat generators, specifically an electrical heat pump and
a heating rod. The storage is split into two parts, which
store heat on temperature levels suitable for space heating
(SH) and domestic hot water (DHW) heating. The stored
energies are denoted as Esh(t) and Edhw(t), respectively.
The heat generated by the heat pump is separated to these
two levels, such that the inputs read qsh(t) = q1u1(t) and
qdhw(t) = q2u2(t). The input qdis(t) = q3u3(t) describes
the heat that is drawn from the storage to supply space
heating. The heating rod can be operated at three discrete
stages, which can be represented by qhr(t) = q4δ1(t) +
q5δ2(t). It is the task of the system to provide heat
according to SH and DHW demand, ql1(t) and ql2(t),
respectively. These disturbance variables are modeled as
time series of the form

E(t) = [e(t), e(t+ 1), . . . ], (14)

of which at least the next N elements are assumed to be
available. A discrete-time state space representation of the

Heating rod

Heat pump Edhw

Esh

Heat storage

SH load

DHW loadqhr

qdhw

qsh

ql2

ql1

qdis

Eσ

Fig. 2. Sketch of domestic heating system

form (1b) of the system with states x = [Esh, Edhw, Eσ]ᵀ ∈
Rnx , continuous inputs u = [u1, u2, u3]ᵀ ∈ Rnu , binary in-
puts δ = [δ1, δ2]ᵀ ∈ Rnδ , and disturbances d = [ql1, ql2]ᵀ ∈
Rnd was presented in Löhr et al. (2019), where the system
matrices read

A =

[
α1 ν 0

0 α2 − ν 0

0 0 α3

]
, Bu =

[
β1q1 0 −β3q3
0 β2q2 0

0 0 β3q3

]
Bδ =

[
0 0

β4q4 β5q5
0 0

]
, E =

[
0 −γ1
0 −γ2
−γ3 0

]
and C =

[
1 0 0

0 1 0

0 0 1

]
where αi, i = 1, 2, 3, ν, βi, i = 1, . . . , 5 and γi, i = 1, 2, 3
are efficiencies.

The continuous inputs are subject to the upper bounds

0 ≤ ui(t) ≤ 1, i = 1, 2, 3, (15)

with the additional constraint

0 ≤ u1(t) + u2(t) ≤ 1 (16)

on the heat generated by the heat pump. The heating rod
is restricted to operation at discrete stages, such that it
holds

δi(t) ∈ {0, 1}, i = 1, 2. (17)

We restrict the states by bounds on the heat storage

Emin
i ≤ Ei(t) ≤ Emax

i , i = {sh,dhw} (18)

where Emin
i and Emax

i are minimum and maximum heat
capacity per storage section, and further define

−σ ≤ Eσ(t) ≤ σ, (19)

for state Eσ(t), where σ is a measure for the maximal
tolerated discomfort.

4.2 Control Experiments

We compare the control performance achieved by the
approximation approach from Section 3 to the optimal
solution, in which the original hybrid MPC problem (1) is
solved at each time instant. We consider a MPC problem
in reference tracking formulation for the system introduced
in 4.1, where the task is to meet the thermal demand
and track specific levels of stored energy, i.e., r(t) =
[Eset

sh (t), Eset
dhw(t), 0]

ᵀ
. The comparison is performed for a 5

day simulation with sampling time Ts = 900 s and control
horizon N = 48. Further details on the values of the
disturbances can be found in Löhr et al. (2019). We use
YALMIP (Löfberg (2004)) to setup MPC problems (1) and
(5) for the domestic heating system and we use Gurobi to
solve them.

In the following, we analyze various methods for the clas-
sification task required to approximate the binary input.
First, we trained a neural network with the fitnet com-
mand from the Deep Learning Toolbox. We denote this
approach by NN+QP. The network consists of one input
layer with 8 nodes, two hidden layers with 8 and 4 nodes,
respectively, and one output layer with 2 nodes. As node
transfer functions, we assigned the hyberbolic tangent sig-
moid function to the hidden layers and a linear function to
the output layer. The input training data set was created
like presented in Section 3.2 with 500 uniformly distributed
points per element of θ. The corresponding target training
data was obtained by choosing 5 combinations and solving
(1) for the resulting 2500 values. We add the complete
open-loop trajectory for every obtained solution to the
training data set, i.e. we use all intermediate pairs {θi, δ?i }
from k = 0 to k = N − 1, hence the total number of sam-
ples is np = 120000. In the training procedure, Bayesian
Regularization back-propagation with a maximum number
of 3500 training epochs was chosen as a loss function.
The performance criterion was a sum of squares error,
and the goal tolerance was set to 10−8. The neural net
classifier was constructed in 171 s 1 . The construction of
the support vector machine classifiers took longer since
we had to construct 2 of them. The combined time was
approximately 360 s. For the constructions of the SVMs,
we chose to optimize the hyperparameters, which improved
the resulting predictions. Results obtained with this com-
bination of methods are labeled SVM+QP.

In the following, we compare simulation results for both
classification methods (NN+QP and SVM+QP) with the
optimal solution denoted by MIQP. Figures 3 – 4 indicate
the very good match between the approximation approach
based on a neural network. The output time profiles of
the hybrid MPC solution and both analyzed combinations

1 Both machine learning approaches were created on a PC with
Core i5, 8 GB of RAM, and MATLAB R2019a.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5272



0 24 48 72 96 120

1

3

5

7

9

t [h]

E
s
h

0 24 48 72 96 120

5

7.5

10

12.5

15

t [h]

E
d
h
w

0 24 48 72 96 120

−1.5

−0.75

0

0.75

1.5

t [h]

E
σ

Fig. 3. Comparison of closed-loop profiles with hybrid
MPC (blue line) and ML-enhanced control algorithm
(dashed red line for NN+QP, dashed purple line for
SVM+QP). The green line represents the reference;
the black dashed lines represent the boundaries.

shown in Figure 3 are even almost identical, while there
are differences in the results for inputs u2, δ1 and δ2. This
difference essentially originates from classification results
of u4 and u5 which differ from the optimal solution, i.e.,
δapprox(t) 6= δ?(t). In that case, two properties of our
proposed approach are responsible for the almost equal
trajectories. First, due to the receding horizon principle,
the classification is repeated fast enough if not too many
wrong classifications follow consecutively, which we will
analyze in the next subsection. More important is the on-
line solution of the relaxed QP (5). This solution deter-
mines the optimal open-loop trajectory with the limitation
that the predicted values of δ(t) are not realizable. As
the objective function does not change between MIQP
and NN+QP simulations, u(t) is operated to compensate
for wrong classifications, which explains the differences in
Fig. 4(b).

4.3 Analysis of Machine Learning Tools

We provide a quantitative performance comparison of the
proposed approach for the ML-classification methods in
Table 1.

The almost identical root mean square error value nu-
merically shows the very good approximation capabilities
already observed in Section 4.2. For both ML-methods
used for classification, the performance decreases only
slightly, while the online step was accelerated by a factor of
about 3. We analyze the mean objective function values to

0 24 48 72 96 120

0

0.25

0.5

0.75

1

t [h]

u
1

0 24 48 72 96 120

0

0.25

0.5

0.75

1

t [h]

u
2

0 24 48 72 96 120

0

0.25

0.5

0.75

1

t [h]

u
3

0 24 48 72 96 120

0

0.25

0.5

0.75

1

t [h]

δ
1

0 24 48 72 96 120

0

0.25

0.5

0.75

1

t [h]

δ
2

Fig. 4. Comparison of control input time profiles with
hybrid MPC (blue line) and ML-enhanced control
algorithm (dashed red line for NN+QP, dashed purple
line for SVM+QP). Black dashed lines represent
boundaries.

indicate the suboptimality of the approach. The increase
is related to the fraction of misplaced binaries, i.e., to the
number of simulation time steps where the classification
output is not equal to the optimal solution. Evidence on
the sensitivity to wrong classifications can be drawn from
the two reference cases R25 and R0, where 25% of binaries
are placed wrong or all binaries are fixed to zero, i.e.,
δapprox = 0, respectively.

Note again, that our proposed algorithm is suitable for
hardware implementation, as only exactly one QP needs

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5273



Table 1. Quantitative comparison of mean on-line computation time, relative amount of
misplaced binaries, root mean square error (RMSE), integral absolute error (IAE), integral

squared error (ISE) and mean value of the objective function.

Mean comp. Misplaced RMSE IAE ISE Mean obj.
time [ms] binaries [%] [−] [−] [−] value [−]

MIQP 67 − 0.569 103.52 94.83 21.6
NN+QP 23 4.8% 0.573 104.01 95.74 22.2

SVM+QP 20 11.6% 0.575 104.85 93.95 24.3

R25 33 25.0% 0.771 147.01 170.60 65.4
R0 28 13.0% 0.761 127.83 172.13 36.1

to be solved online. In contrast, the number of relaxations,
i.e., the number of QP’s that need to be solved to find
the solution of the primary MIQP-MPC (1) scales with
N and nδ. Consequently, the computational demand for
the MIQP-MPC easily exceeds the capability of embedded
platforms for larger horizons or a higher number of binary
inputs.

5. CONCLUSION AND OUTLOOK

The present paper proposes an embeddable reformula-
tion of a mixed-integer MPC problem that uses machine-
learning methods. A suitable ML-method approximates
the binary part of the control law, while the continuous
part is obtained by the solution of a relaxed QP problem.
The mandatory classification task was executed based on
a uniformly distributed training data set consisting of
states, inputs, and disturbances, for which the MIQP-
MPC problem was solved to get the corresponding op-
timal values for the binary inputs. A simulation study
reveals that a lean NN with two hidden layers outperforms
the SVM in terms of correct classifications. Numerical
results show that, due to the two-stage structure of our
approach, both ML-methods yield a comparable control
performance. Moreover, the approach is suitable for em-
bedded implementation and calculated the on-line step
three times faster than the optimal MIQP solution.

While the considered example system is robust with re-
spect to the observed number of wrong classifications, it
will be constructive to improve the classification quality
and extend the simulation study to further system classes.
After successful further simulation studies, the approach
can be implemented on embedded hardware and applied
to real systems.

REFERENCES

Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., and Weninger,
D. (2016). Presolve reductions in mixed integer programming.
Technical report, Zuse Institute Berlin, Berlin.

Bertsimas, D. and Stellato, B. (2019). Online mixed-integer opti-
mization in milliseconds. Available from https://arxiv.org/pdf/

1907.02206.
Bishop, C.M. (1995). Neural Networks for Pattern Recognition.

Oxford University Press, Inc., New York, NY, USA.
Bixby, R.E. (2012). A brief history of linear and mixed-integer

programming computation. Documenta Mathematica, 107–121.
Breiman, L., Friedman, J., Stone, C.J., and Olshen, R. (1984).

Classification and Regression Trees. Chapman and Hall/CRC.
Domahidi, A. and Jerez, J. (2014–2019). Forces professional. Em-

botech AG. URL https://embotech.com/FORCES-Pro.
Drgoňa, J., Klaučo, M., and Kvasnica, M. (2015). MPC-based ref-

erence governors for thermostatically controlled residential build-

ings. In 2015 54th IEEE Conference on Decision and Control
(CDC), 1334–1339. doi:10.1109/CDC.2015.7402396.

Drgoňa, J., Picard, D., Kvasnica, M., and Helsen, L. (2018). Ap-
proximate model predictive building control via machine learning.
Applied Energy, 218, 199–216. doi:10.1016/j.apenergy.2018.02.
156.

Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., and Vapnik, V.
(1996). Support vector regression machines. In Proceedings of the
9th International Conference on Neural Information Processing
Systems, NIPS’96, 155–161. MIT Press, Cambridge, MA, USA.

Ferrari-Trecate, G., Gallestey, E., Letizia, P., Spedicato, M., Morari,
M., and Antoine, M. (2004). Modeling and control of co-generation
power plants: A hybrid system approach. IEEE Transactions on
Control Systems Technology, 12(5), 694–705.

Hertneck, M., Köhler, J., Trimpe, S., and Allgöwer, F. (2018). Learn-
ing an approximate model predictive controller with guarantees.
IEEE Control Systems Letters, 2(3), 543–548.

Hornik, K. (1991). Approximation capabilities of multilayer feedfor-
ward networks. Neural Networks, 4(2), 251 – 257. doi:https://
doi.org/10.1016/0893-6080(91)90009-T.

Klaučo, M., Kalúz, M., and Kvasnica, M. (2019). Machine learning-
based warm starting of active set methods in embedded model
predictive control. Engineering Applications of Artificial Intelli-
gence, 77, 1–8. doi:10.1016/j.engappai.2018.09.014.

Löfberg, J. (2004). YALMIP : A Toolbox for Modeling and Optimiza-
tion in MATLAB. In Proc. of the CACSD Conference. Taipei, Tai-
wan. Available from http://users.isy.liu.se/johanl/yalmip/.

Löhr, Y. and Mönnigmann, M. (2018). Optimal operation of
electrical heating system with hybrid model predictive control.
IFAC-PapersOnLine, 51(28), 274 – 279. doi:https://doi.org/10.
1016/j.ifacol.2018.11.714. 10th IFAC Symposium on Control of
Power and Energy Systems CPES 2018.

Löhr, Y., Mönnigmann, M., Klaučo, M., and Kalúz, M. (2019).
Mimicking predictive control with neural networks in domestic
heating systems. In 2019 22nd International Conference on
Process Control (PC19), 19–24. doi:10.1109/PC.2019.8815030.

Lucia, S. and Karg, B. (2018). A deep learning-based approach to
robust nonlinear model predictive control. IFAC-PapersOnLine,
51(20), 511 – 516. doi:https://doi.org/10.1016/j.ifacol.2018.11.
038. 6th IFAC Conference on Nonlinear Model Predictive Control
NMPC 2018.

Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert, P.O.M.
(2000). Constrained model predictive control: Stability and opti-
mality. Automatica, 36(6), 789 – 814. doi:10.1016/S0005-1098(99)
00214-9.

Morari, M. and Barič, M. (2006). Recent developments in the
control of constrained hybrid systems. Computers & Chemical
Engineering, 30(10), 1619 – 1631. Papers form Chemical Process
Control VII.

Richards, A. and How, J. (2005). Mixed-integer programming
for control. In Proceedings of the 2005, American Control
Conference, 2005., 2676–2683 vol. 4. doi:10.1109/ACC.2005.
1470372.

Zheng, X., Sun, X., and Li, D. (2014). Improving the performance
of MIQP solvers for quadratic programs with cardinality and
minimum threshold constraints: A semidefinite program approach.
INFORMS Journal on Computing, 26(4), 690–703.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5274


