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Abstract

This master thesis is focused on the design of software sensors for industry. At
the heart of every well-operated process is the accurate measurement of system
variables. Instruments that measure these variables are very often difficult to implement,
unreliable, or expensive. The aim is to propose an alternative solution for obtaining
soft-measurements of system variables. The work is focused on the design of software
sensors based on data. Software sensors are designed for the process of two tanks
in series without interaction. Methods which are used for software sensor design are
the ordinary least squares (OLS), ridge regression (RR), least absolute shrinkage and
selection operator (LASSO) and elastic net (EN). The work describes the procedure of
obtaining a difficult-to-measure variable (the liquid level height of the first tank) using
software sensors. The designed software sensors are statistically evaluated. The final
highlight of this work is software sensors implementation in the model of two tanks in
series and comparison with Kalman filter as the best observer of difficult-to-measure
variables.






Abstrakt

Tato diplomova praca je zamerand na navrh softvérovych senzorov pre priemysel.
Jadrom kazdého dobre fungujiceho procesu je presné meranie systémovych premen-
nych. Pristroje, ktoré tieto premenné meraji s velmi ¢asto tazko implementovatelné,
nespolahlivé, alebo vyzaduju vysoké naklady. Cielom je vyvinit alternativne riesenie
ziskavania systémovych premennych. Préica je zamerana na navrh softvérovych sen-
zorov na zaklade dat. Softvérové senzory si navrhované pre procese dvoch zasobnikov
kvapaliny bez interakcie. Na névrh softvérovych senzorov si pouzité metddy: metoda
najmensich stvorcov, hrebenova regresia, operator najmensieho absolttneho zmrstenia
a vyberu a elasticka sief. Praca opisuje postup ziskania tazko meratelnej veli¢iny,
ktort reprezentuje vyska hladiny kvapaliny prvého zasobnika, pomocou softvérovych
senzorov. Navrhnuté softvérové senzory st nésledne Statisticky vyhodnocované. Vr-
cholom prace je implementacia softvérovych senzorov do modelu dvoch zasobnikov
kvapaliny a ich porovnanie s Kalmanovym filtrom ako najleps$im pozorovatelom tazko
meratelnych premennych.
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CHAPTER 1

Introduction

At present, almost all plants in the industry are equipped with a large number of
sensors. The primary role of sensors is to provide data that ensures process monitoring
and control [6]. At the end of the last century, researchers starts to work with a large
amount of data. Data starts to be measured and stored in large quantities in the
process industry. Based on these data, we can predict the behaviour of the process in
the future and thus design predictive models [9]. Such predictive models in industry are
called software sensors or soft-sensors (SSs). “Soft” because the models are software
programs and “sensors” because they have the role of real physical sensors. Another
term used in the process industry is inferential sensors etc. [6].

In general, there are two classes of SSs, namely model-based SSs and data-driven
SSs. The model-based SSs family is most often based on first-principles models,
which represents the physical and chemical background of the process. Such models
are proposed for the planning and design of the processing plants. They are most
often focused on the description of ideal steady states, which is one example of the
disadvantage that makes it difficult to base SSs on them. There are also SSs based
on an extended Kalman filter (KF), based on adaptive observer etc. [6]. Data-driven
SSs have gained much bigger popularity in the process industry. These SSs are based
on real industry data and thus describe the actual process conditions. Compared to
model-based SSs, they are closer to reality and more accurately describe the actual
process conditions [6]. On the other hand, they require more frequent revisions than
model-based SSs to describe the current state of the process.

The range of tasks that SSs perform is wide. The primary and most important task of
SSs is the prediction of process variables. These variables are very often related to the
quality of the process output. Therefore, they are important for the manipulation and
process control [6]. In the process industry it often happens that we have information
about several easily measurable process variables. In reality, not all have affect on
difficult-to-measure (DTM). Let us have a situation that the output variable w is
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SOFTWARE =
SENSOR B |

Figure 1.1: Structural estimation of the researched process.

affected only by the easy-to-measure (ETM) variables v; and vy from the available set
of variables (v1, v, vs, v4). Fig. shows an ideal software sensor (SS). This SS in
his structure correctly considers the influence of only mentioned variables v, and vy.

Another application area of SSs in industry is the detection of malfunctioning sensors.
As already mentioned, various plants in the industry are equipped with a large number
of sensors. It is very likely that any of these sensors may fail from time to time. As
soon as a faulty sensor is detected, it is reconstructed or replaced (by another sensor
or by SS). The great advantage of SSs is that they are not subject to mechanical
failures. They are easy to maintain and therefore much more cost-effective in this
respect. Other important application areas of SSs are process monitoring and error
detection, prognosis for preventing undesirable operation, optimisation of the operating
conditions to ensure better productivity of the industrial plants, more energy-saving,
less negative environmental impact etc. [9].

Despite all of the above applications and the benefits of SSs, there are still unresolved
issues regarding the development and maintenance of SSs. Many key problems are
caused by the process data on which the SSs are designed. Common problems in
measuring data are measurement noise, extreme deviations of some values, missing
values, different sampling rates, etc. Another problem is that industry is a dynamic
environment where sudden process changes may occur. Some SSs find it difficult to
work with daily changes in the process like this. This can usually lead to a deterioration
in the accuracy of prediction [6].

The work consists of six chapters. The first chapter is introductory. This section
explains the general features, reasons, and benefits of using SSs. Examples of the SSs
use in the process industry, their tasks and shortcomings are also given in this section.
The second chapter is the theoretical foundation part. This part of work describes
various structures of SSs. It also involves methods for SS design and their effect on
a simple example w = 3v;. Third chapter describes case study of two tanks in series
without interaction where the SSs will be proposed. This section also describes ways



of liquid level height (LLH) estimation in tanks. The fourth chapter gives the most
significant results of the case study. It presents the results of the SSs estimation of the
LLH in the first tank. This chapter also contains the results of comparison KF and
SSs estimation of LLH in the first tank as the greatest achievement of the work. The
fifth chapter contains discussion of the obtained results. This chapter also describes
possibilities for improvement. The last, sixth chapter concludes this thesis. This part
presents a summary of the work, comments of the most significant results obtained
through the whole work and and the possibility of developing work in the future.
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CHAPTER 2

Theoretical Foundations

2.1 Introduction to Software Sensors

With the development of computer and automation technology a new era of monitoring
and control of industrial plants begins. However, there are still variables which for some
reason we cannot directly indicate [9]. These difficult-to-measure (DTM) variables can
be estimated in the form of dependence on easy-to-measure (ETM) variables. This is
the fundamental ideology of software sensor (SS) design. There are several ways to
design software sensors (SSs). According to the structure, we distinguish data-driven
SSs, model-based SSs and a hybrid of these two types.

2.1.1 Data-Driven Software Sensors

In general, the structure of SSs designed on the basis of real data can be interpreted as
multiple linear regression. This means that the required variable is linearly dependent
on several parameters of the process [I5]. Generally, the structure of SS based on data
can be written as follows

W= Bo+ Brivr + -+ Brvn + ¢, (2.1)

or in vector form

o= pB"Tv te, (2.2)

where vector v represents all ETM variables of the process, and € represents random
error of estimation. Vector 8 include the SS parameters [I5]. We need to estimate
this vector 8 to describe a required DTM variable w, as it is the only unknown on the
right side of the equation (2.2).
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2.1.2 Model-Based Software Sensors

The performance of these SSs greatly depends on the reliability and accuracy of the
identified process [2]. An example is the Kalman filter (KF) design based on the
identified nominal state-space model. The main task of the KF is to estimate DTM
variables. The main goal of this type of SSs is to find such a nominally optimal model

@ =M(vi,va,...,0p), (2.3)

where outputs of the SSs & are as close as possible to the recorded outputs of the
observed process w. This idea is defined by the following equation [2]:

T = o — &3 (2.4)

The objective function J from the equation is expressed by ¢ norm. It expresses
the square of the difference between the vector of measured outputs of DTM variables
w and the vector of predicted outputs of DTM variables @. This implies that the
desired model gives predictions with minimum deviations from the process outputs.

2.1.3 Hybrid Structure of Software Sensors

These SSs use the knowledge of the model, but they are also designed on the basis of
historically measured data.

@:M(vl,U27...,vn)+Zﬂivi. (2.5)
i=1

The structure of these SSs is mathematically illustrated by the equation . We can
take the case of a biochemical reactor as an example of using the model and data for
SS design. In this case, the theoretical Michaelis-Menten model is used. As is already
known, Michaelis-Menten model represents the relationship between the rate of the
enzyme reaction and the substrate concentration. This model provides us information
about substrate concentration [5]. The biochemical reactor also may contain physical
equipment that monitors the substrate concentration. Using this knowledge we obtain
information about the concentration of the substrate from two different sources, which
can improve each other. With this, the quality of SS estimation might be dramatically
increased.

2.2 Software Sensors Design

In this work, SSs will be designed by following methods: ordinary least squares (OLS),
ridge regression (RR), least absolute shrinkage and selection operator (LASSO) and
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by elastic net (EN). To design SSs the following vectors are defined:

V1,4 ol w1 Bo
V2 i va w2 B1

v; = . s V= . 5 W = . ) /B = . (26)
Un,i ’UJZ\; WN Bn

The vector v; represents the values of the individual ETM variables measured at one
time point (v 4, V24, ..., Un4). The matrix V contains all measuring points v;, where
index N represents the number of measurements. All measured DTM variables are
stored in the vector w. The resulting vector of the SS design is the vector 8. This
vector contains all SS parameters (8o, 51, -- -, Bn)-

2.2.1 Ordinary Least Squares

The OLS method is a standard method of regression analysis. It is used to find such
regression parameters, which describe the regression line that is the most “closest” to all
data points (v;, w;) [15]. This problematic can be defined as optimisation formulation
of minimising the sum of squares deviations

mﬁinZ(wi — )2 (2.7)

If we substitute @; for expression from the equation (2.2)), which represents the structure
of SSs, we get the modified expression

N
min ;(% — BTv;)%. (2.8)
or in the matrix form [I5]
min %(w VBT (w - VB). (2.9)
After appropriate modifications, the resulting objective function is in the form:
£(8) = min 5 (w'w - WV - (VB W+ (VBTVE),  (210)
/() = min % (wTw —2wTVE + ﬂTvTv,B). (2.11)

To solve this optimisation problem, the first-order derivative of the f(3) must be equal
to zero [15].

d
];(ﬂﬂ) = %( —o2vTw + 2VTVﬂ) =0, (2.12)
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Figure 2.1: Comparison of OLS SS performance on training (left-hand plot) and
testing (right-hand plot) data.

Viw=vTygs.

By multiplying both sides of the equation (2.13) with the matrix (V*V)~!, we obtain
the resulting vector of SS parameters

(2.13)

B=wvV)y V. (2.14)

Example: Simple linear model The SS designed on the basis of the OLS method
can be tested on a simple example of a linear model w = 3v;. There are two ETM
variables v; and vs. Ideally, only vy describes DTM variable w. The design procedure
is as follows: training and testing data are divided into two intervals. The training
data is on interval [0, 1] with step 0.05 and the testing data is on interval [1, 2] with
the same step 0.05. Thus, both intervals contains 20 data points each. In order to
simulate the real situation, the data is corrupted by a white Gaussian noise. The data
is also normalised for a better comparison of SSs in the training and testing area.

Fig. shows a comparison of the results of SS based on OLS in training and testing
area. The graphs show the dependence of the DTM variable wy,opm from the ETM
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Table 2.1: Comparison of RMSE for OLS SS in training and testing area.

training area  testing area

RMSE 0.4318 0.6935

variable v1 porm. On the vertical axis is the estimated DTM variable wy,orm and on the
horizontal axis is the ETM variable v1 orm. The SS based on OLS tries to minimise
the sum of squares deviations from training data. It uses all possible information
(two ETM variables v1 and v3). In the testing area it tries to mimic its course from
the training area. The accuracy of SS in training and testing area can be compared
by Root Mean Square Error (RMSE) values. RMSE is often used to quantify the
difference between a predicted or estimated model and an observed process [10].

N
1
MSE = —E P — ;)2 2.1
RMS Nizl(wl e 21

where w; is a real measured value of DTM variable, &; represents the estimated value
of a DTM variable [10] and N is a number of measurements.

The deviations of SS from the new testing data is larger than from training data. This
is confirmed by Table 2.1} which shows the RMSE values for the training and testing
area. The RMSE value in the testing area (0.6935) is much higher than in the training
area (0.4318).

2.2.2 Ridge Regression

RR can be classified as a “shrinkage” method. This method has proven to be very useful
for systems where a large number parameters is common. By penalising the magnitude
of SS regression parameters, we ensure the stability of the estimate by reducing the SS
parameters [I5]. This is an extended form of the OLS method. The objective function
of OLS method from equation is extended by the penalty term that involves sum
of squares of regression parameters (squared ¢ norm: y ., 37 = BTB) [15]

1
min 5 {(w —VB) (w—VB) + )\ﬂTﬂ} . (2.16)
The parameter A represents a weighting parameter. If we look at Figure [2.2] we can

see that objective function of OLS is represented by contour lines and has a minimum
at the point Bops. The penalty of RR moves the optimum closer to zero and placed



10 Theoretical Foundations

BZ 'y — BZ A —

Figure 2.2: Optimal solution of RR and LASSO [7].

it on a circle (3., 52 = ¢?) [7]. This graphically illustrates the minimisation of the
OLS objective function by means of a squared ¢5 norm penalty.

Similar derivation procedure as with the OLS is used here

7(8) = 5 (wTw — 2TVE + BTVIVE + A87B), (2.17)
f(B) = %(wTw —2wTVB+ BT (VIV + )\I)B). (2.18)

The derivative of the function f(8) must be equal to zero
dfd(g) = V'w+W'V+AB=0. (2.19)

Resulting vector of regression parameters [15]:

B=WV'V+A) V' w. (2.20)

Example: Simple linear model (Continued) Similar as with SS based on OLS
method, a SS based on RR can also be tested on a simple example of linear dependence
w = 3v;. The same data will be used as for the OLS SS (training area, testing area,
noisy and normalised data). By solving the optimisation problem , where the
weighting parameter takes the value A = 6, the result of regression is shown in Fig.
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Figure 2.3: Comparison of RR SS performance on training and testing data.

Table 2.2: Comparison of RMSE for RR SS in training and testing area.

training area testing area

RMSE 0.4881 0.6397

The selection of the parameter A plays a very important role in this method. With
increasing value of A, the parameters of the SS are more reduced [I5]. The selected
value for the training data is A = 6. Compared to the OLS SS, the SS based on RR
acquire smaller values of SS parameters. The result is a slightly smoother regression
line.

Like the SS designed by OLS method, this SS also has large deviations from the testing
data. This is shown by Table where RMSE value for testing data (0.6397) has a
larger value than RMSE for training data (0.4881).
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Table 2.3: Comparison of RMSE for LASSO SS in training and testing area.

training area  testing area

RMSE 0.5966 0.5972

2.2.3 Least Absolute Shrinkage and Selection Operator

This method intends to simplify the structure of SSs, therefore it belongs into the
“shrinkage” methods as well. It is a regression analytical method that it naturally
performs variable reduction to increase the accuracy of the estimate [I5]. The main
advantage compared to RR is that directly eliminates some regression parameters.
Thus, in addition to estimating the parameters, it also makes an estimate of the model
structure [7].

min 3 (@ = VB)T (@ = V8) + I8l (2.21)
As with the RR method, we extend the OLS method by a penalty term. In
this case, it is the sum of absolute values of the regression parameters (¢; norm:
S 18il = |IB]l1)- As for RR, the parameter A represents a weighting parameter
intended to adjust the penalty. In Figure [2.2] we can see the difference between the RR
and the LASSO. In the case of the LASSO method, the penalty (}..", |a;| = t) shifts
the optimum to a square. The optimum in this case lies on the vertical axis where the
value of s is equal to zero. The solution of the optimisation problem can be
approximated by an RR method

B =WV aw) Wy, (2.22)

where W is a diagonal matrix with elements |3;| on diagonal [I5].

Example: Simple linear model (Continued) As in two previous cases, SS based
on the LASSO can be tested on a simple linear example w = 3vy. The same data with
all properties (distribution, white noise, normalisation) is used as well.

By solving the optimisation problem 7 the resulting regression of the LASSO
method is shown in Fig. Weighting parameter A also plays an important role in this
method. By a suitable choice of the A, we can eliminate some remaining parameters
of the SS (A = 0.26 in this case). The results show that LASSO is able to eliminate
the ETM variable vo and we obtain a description of the process, which structurally
corresponds to the ideal case w = 3v;.
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Figure 2.4: Comparison of LASSO SS performance on training and testing data.

In Table 2:4) we can see that RMSE values for the training and testing area differ only
on the fourth decimal place. It follows that this SS is similarly accurate for newly
measured testing data as for historical training data.

2.2.4 Elastic Net

Similar to the LASSO, the EN simultaneously does automatic variable selection and
continuous shrinkage. It can select groups of correlated variables. It is a compromise
between the RR and LASSO [I6]. This method combines penalties, using the ¢; norm
(LASSO) and the squared ¢5 norm (RR)

min ;(w—vﬂ)T(w—Vﬂ)+A(1;(lﬂTﬁ+a|ﬂ||1>]- (2:23)

The parameter « represents the weighting parameter which takes the values from
interval [0, 1]. If o has value near to zero, the EN acquires the properties of the RR
method. On the other hand, if the value of a approaches one, the EN behaves as a
LASSO method. The weighting parameter A must be non-negative as well [16].
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Figure 2.5: Comparison of EN SS performance on training and testing data.

Table 2.4: Comparison of RMSE for EN SS in training and testing area.

training area testing area

RMSE 0.5200 0.6071

Example: Simple linear model (Continued) As for all methods up to now, the
SSs can also be designed based on the EN method. This method is also tested on a
simple linear example w = 3v;. The same noisy set of normalised data is divided into
training and testing area.

Since the EN is a compromise between RR and LASSO methods, we expect the resulting
performance to be in-between the performance of RR and LASSO SSs. Fig. [2.5] shows
resulting regression of SS based on EN. There are two weighting parameters in this
method. To make the compromise between RR and LASSO method visible, the
parameter « takes value 0.5. Parameter )\ takes the same value as in the case of pure
LASSO (A = 0.26).

The comparison of methods for SS design is summarised in Fig. In this graph we
can deduce the behaviour of SS, designed on a simple example of linear dependence
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Figure 2.6: Comparison of SSs on testing data.

Table 2.5: Comparison of RMSE for all SSs in training and testing area.

RMSE OLS RR  LASSO EN

training area 0.4318 0.4881 0.5966  0.5200
testing area  0.6935 0.6397  0.5972  0.6071
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w = 3v; (in particular on testing data). The SS based on the OLS has large deviations
from testing data. The values of the OLS SS parameters are reduced by squared ¢
norm penalisation of RR method. With the penalty of LASSO method, we can reduce
certain number of ETM variables. In this case the value of the parameter (35 is zero
and the SS designed by LASSO acquires a linear course and structurally corresponds
to the ideal case w = 3v; (grey line in Fig. 2.6). The weighting parameter « of the
EN was chosen to be exactly half (a« = 0.5), not preferring either of RR or LASSO
methods. In Fig. we can observe the expected results. The blue line (EN SS) is
a compromise between orange (RR SS) and green lines (LASSO SS). According to
Table [2.5] we can conclude that the smallest difference between RMSE in the training
and testing area has SS based on LASSO. Although this SS has the largest RMSE
value in training area, in testing area this value is the smallest. It follows that for the
newly measured data, LASSO SS has the most accurate estimate.

All methods for SS design have their advantages and disadvantages. Depending on the
process requirements, the optimal method can be chosen to ensure the best results.



CHAPTER 3

Case Study

3.1 Two Tanks in Series

We study a system of two tanks in series without interaction (Fig. . There are
two inputs into the process. One inlet flow enters the first tank ¢o 1(¢). Another inlet
flow go2(t) enter the second tank. The liquid level heights (LLHs) of the first tank
hi1(t) and the second hs(t) represents state variables. The controlled variable is the
liquid level height (LLH) of the second tank hs(t). To ensure quality of control and
manipulate the process, we need information about the states of the process. Since
hs(t) is a measurable and controllable state, we need to find out information about
the unmeasured state hi(t). In this work hq(t) represents a DTM variable, which need
to be estimated using SSs. The ETM variables that are used to describe hq(t): go,1(t),

q0,2(t), ha(t).
The system parameters are given in the Table Parameter k,, represents the

valve constant of the corresponding tank and Fj, is the cross-sectional area of the
corresponding tank.

Table 3.1: System parameters.

Parameter Value Unit

ki1 1.15  m2%/s
k}22 1.3 m2'5/s
Fy 0.25 m?
Fy 0.8 m?
%1 0.3 m? /s

@2 0.5 m? /s
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k22

g (1)

Figure 3.1: The schematic diagram of two tanks in series without interaction.

3.1.1 Mathematical Model

Assuming that the density of the liquid does not change over time, the mass balance
of the process can be written as follows [I]:

dhi(t) _ qoa(t) ku

dt Fy i

hy(t), (3.1)

for the first tank. Mass balance for the second tank:

dha(t)  qo2(t)  kn koo
= °F2 + E\/hl(t) - E\/hg(t). (3.2)

The inlet flows ¢o 1(t) and go 2(¢) are independent manipulated variables [1]. To achieve
a steady state condition, we set the input flows to the constant values. Then the
LLHs in the tanks are also steady. Initial steady values of inlet flows (g5 ;, ¢ o) and
LLHs (h§, h§) are given in Table Mathematically expressed, this means that the
derivatives of LLHs are zero according to time [I]

dhi  dhy
dt ~ dt

0. (3.3)
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The relations of the steady LLHs values hj, hj can be expressed from the mass

balances and (| .

2 2
) q5.1 0.3
hi = ’ =|——=] =0.0681 3.4
L <k11> (1.15) " (34)
s s 2 2

do,1 = 90,2 0.3 0.5
hy = : : =-—4+— = 0.3787 m. 3.5
? (k22 - k‘22> (1.3 + 1.3) m (3.5)

The derived model is non-linear due to the presence of the square root of state variables.
In order to design an observer and a controller, we have linearise the model. We
introduce deviation variables for linearisation:

ri(t) = ha(t) = hi,  wi(t) =qo1(t) — g5, (3.6)
xo(t) = ha(t) — h3, uz(t) = qo2(t) — qp.o- (3.7)
The input-output state-space model can be written
i1(t)> <a11 a12) (m(ﬂ) <b11 b12) (U1 (ﬂ)
; = + , 3.8
(172@) a1 agz) \wa(t) bar  baz/) \ua(t) (38)
—_——— —_——
A B
t t
y(t) = (c11 c12) ( ! ) + (di1  di2) ( ( ) , (3.9)
—— (t) —— (t)
c D
where
a(qogl(t) - %11 hl(ﬁ)) k11 310
ail = 8h1(t) - _2F1 /fhi7 ( . )
o4 — e Vi) 11
Q12 = Bhg(t) =0, (3- )
8(40 20+ kn F Im W) k11 3.12
a1 = Oha (t) 2R /B (12
o(2” + VIO - B VRO) gy, (3.13)
a22 = 8h1( ) = 2F2\/@. .

The first inlet flow enters the first tank, the second inlet flow to the second tank. It
follows that only b1; and bgo of matrix B are nonzero

. 8(%1“)—%1 hl(t)) 1 (3.14)
11 Dqo,1(t) B |
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o(22 + b Vi@ - Vi)

b = = —. 3.15
2 94020 7 (8.15)
Then we can linearised model as follows:
dxq(t
;t( ) = allxl(t) + bllul(t), (316)
dzo(t
dzt( ) = a21x1(t) + 0@21’2@) + bQQUQ(t), (317)

As our controlled variable is the LLH of the second tank

y(t) = ha(t), (3.18)

the matrix C looks like
c=(0 1). (3.19)

The inputs do not appear in the output equation, so the matrix D has zero values
D=(0 0). (3.20)

The final version of the input-output state-space model is numerically given as
Z1(t) —4.4083 0 x1(t) 2.00 0 uq(t)
) = + ) (3.21)
Zo(t) 2.7552 —1.3203) \xa(t) 0 1.25/) \usa(t)
xl@))
t)y=(0 1 . 3.22
vi= 1 (20 (3:22)

3.1.2 LQR Control Strategy

The system is controllable if the rank of controllability matriz Q. is equal to the
dimension of the vector of states . Q. is defined as [I1]:

Q.= (B AB A’B ... A*"1'B), (3.23)

where k represents dimension of the vector . The resulting Q. matrix for our process
looks as follows

(3.24)

QCZ(BAB):<2 0 882 0)

0 1.25 5.51 —1.65

Rank of controllability matriz Q. is 2. Our process has two state variables. This
means that two tanks in series are controllable.
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System of two tanks in series is controlled by LQR controller with integral action.
LQR is a type of optimal control. For initial conditions tyg = 0 s:

z(0) = m ; (3.25)

the objective function is defined as

J= /0 h (" ()Qu(t) + " (1) Rur) ), (3.26)

where @ is a real symmetric positive semidefinite weighting matrix and R is a real
symmetric positive definite weighting matrix [I1]. These two matrices are tuning
matrices of the LQR controller. According to the Bryson’s rule @ and R are diagonal
matrices whose diagonal elements (Qx for Q and R;; for R) are expressed as the
reciprocals of the squares of maximum acceptable values of the state variables (x(t))
and the input control variables (u(t)) [I12]. The diagonal elements Qrx, R;; can be
written as

1

Qrk = max(e2)’ (3.27)
1

Ris = sy (3.28)

J
where k represents controlled state number and j represents input number. Numerically
for our system

L0 2159 0
_ | Mt — : 9
Q l 0 5 [ 0 6.97}’ (3.29)
45 0 1111 0
R= lqool L ] = [ 0 4} . (3.30)
43,22

This is a good starting point for tuning @ and R matrices. Feedback optimal control
law is a given by the equation [I1]

u(t) = —K(t)x(t), (3.31)
where K represents gain of LQR controller. It is given as [I1]:
K(t)= R 'BTP(t). (3.32)
The matrix P can be obtained from algebraic Riccati equation [II]
PA+ATP-PBR 'BTP+Q=0. (3.33)

LQR controller is a proportional state-feedback controller. Under reference changes or
due to disturbances, one might encounter a steady-state control error. This problem
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Figure 3.2: LQR control scheme.

can be solved by adding integral action to the closed-loop system [II]. The procedure
is such that new states @;n¢(t) is added as integrator to the closed-loop system

Eint(t) = 7(t) — y(t) = r(t) — Cx(t), (3.34)

where 7(t) represents a reference. Feedback optimal control law with integral action is
given as
u(t) = —Kgz(t)x(t) — Kint(t)Tint(t). (3.35)

K, represents a gain of proportional feedback controller and Ky, is a gain of integral
action. In Fig. [3:2]is shown illustration scheme of state-feedback control with integral
action, where states (x) will be estimated by state observer.

The number of integrators is equal to the dimension of the control error [II]. We only
control the LLH in the second tank, so there is only one integrator. The extended
matrices looks as follows:

(;(t()t)) N (é 8) (xiiil)) i (Jg) u(t), (3.36)

i1 (t) —4.4083 0 0\ [/ai(t) 2 0
io(t) | = 27552 —1.3203 0] | x(t) |+ |0 1.25 (ul(t)>. (3.37)
i (1) 0 10/ \@im(t) 0o o ) \u®

A, B.

To realise equation (3.26]), the weight matrix @ also has a new parameter (equal to
one) on the diagonal

2159 0 O

Qe=<§ 2): 0 697 0). (3.38)
0 0 1
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Figure 3.3: LQR control of two tanks in series.

The gain of LQR control with integral action K (t) is obtained from equations ((3.32)
and (3.33)), where instead of matrices A, B, Q we use their extended form A, Be,
Q.. The resulting gain K (t) looks as follows:

2.754 1144 0.
7549 0 0 0707) . (3.39)

K =
() (0.1986 0.8411 0.4859

——
Ko (t) Kint(t)

The LQR controller adjusts the manipulated variables to steer the controlled variable
ho to the reference quite quickly. In Fig. |3.3| we can see that controlled variables hy of
non-linear process (two tanks in series) reach reference (hs increase by 20 %). The
great advantage of this controller is the integral action. The integral action helps the
controlled variable to reach the reference regardless of any model inaccuracies. Since
height h; can not be measured and the measurement of hy contains a white Gaussian
noise, we use KF to estimate and smooth information about these states. The state
LQR controller uses states estimated using KF, which design will be described in the
following section.
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3.2 Observation of State Variables

Liquid Level Measurement makes roughly over 50 % of all the process measurements in
current process industry [4]. The environment in which the measurement is performed
is most often polluted, harsh and inaccessible. LLH sensors may require special abilities
to work under these extreme circumstances (to resist high temperature, pressure and
electromagnetic interference etc.) [4]. They also need to have good applicability,
reliability, high resolution and precision, large sensitivity etc. [4]. These special
requirements can be very expensive. Software alternatives are more used due these
demanding requirements.

3.2.1 Kalman Filter

The system is observable if the rank of observability matriz Q, is equal to the dimension
of the vector of states . Q, is defined as [I1]:

c
CA

Q,=| ¢A* (3.40)
CAkfl

where k represents dimension of the vector . The resulting @, matrix for our process

Qo = (CCA> - (2.076 —1.;,2> (341)

Rank of observability matriz Q. is 2. Our process has two state variables. This means
that two tanks in series are observable.

looks as follows

The LLH of the first tank Ay is DTM state variable in our case of two tanks in series. A
possible option of states (DTM variables) estimation is to express them as dependence
on inputs (u(t)) and outputs (y(t)) measurements [I1]. This method of estimation
can be performed by using a KF as a state observer (Fig. [3.4).

In general, states (DTM variables) can be mathematically described using

&(t) = Am(t) + Bx(t) + &(1),  &(t) ~N(0,Q), (3.42)

where £, (t) represents properties of a white Gaussian noise with normal distribution.
Its mean is equal to zero and its standard deviation can be represented by a covariance
matrix Q [I1].
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Figure 3.4: Implementation of KF in LQR control scheme.

Initial condition is also approximately known
z(0) =Zo + &, o~ N0, Py). (3.43)

Value of Z is an initial guess and &y represents with Gaussian noise with zero mean

and a covariance matrix Py [I1].
The deviation of the output measurements can be mathematically expressed

y(t) = Ca(t) + Du(t) + (1),  £(t) ~N(0, R), (3.44)
with a white Gaussian noise {(¢) with zero mean and a covariance matrix R [I1].

Since the KF is the optimal state observer, the objective function of state estimation
is defined as follows [I1]:

J= %[mm) — &0)" Py [(0) — o]

+3 | (B0 - A2 @ (5t0) - As(e))ar (3.45)
+3 | (w0 = Ca) R fy(e) — Cx(e) )ar

Covariance matrices Py, @, R are weighting matrices whose tuning can improve
state estimation performance. By solving the optimisation problem (3.45), we get the
following equation of estimation:

&(t) = A&(t) + Bu(t) + L(t)[y(t) — C&(t)],  &(0) = Zo. (3.46)
L represents the gain of time-varying KF and it is given as [I1]

L(t)=P(t)CTR™. (3.47)
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P(t) can be obtain from differential Riccati equation [11]

P(t)=P(t)AT + AP(t) - PA)CTR™'CP(t)+Q, P(0)=P,. (3.48)

To simplify the design, we introduce an asymptotic KF. The derivative of covariance
matrix P(t) converges to zero. The P gain is no longer time dependent, so the gain L
is no longer either [14]

0=PAT + AP - PCTR'CP +Q, P(0) = Py, (3.49)
L=PC'R™ (3.50)
State estimation equation and estimation error is given as [14]
&(t) = AZ(t) + Bu(t) + Liy(t) — CZ(t)],  £(0) = Zo, (3.51)
e(t) =z(t) — &(t) ~ N(0, P). (3.52)
The deviation of linear KF from the non-linear model of two tanks in series, can be
described by disturbance d(t). Then process can be written as follows [13]
(t) = Az(t) + Bu(t) + Bd(t), z(0) = xo, (3.53)
y(t) = Cx(t). (3.54)
The disturbance is mathematically expressed as [13]:
ii’d(t) = AdiL'd(t)7 in(O) = Zdo, (355)

d(t) = Cax(t). (3.56)

An extended asymptotic KF can be used to eliminate the effect of disturbance. Esti-
mation equation (3.51)) can be extend as follows [13]

d(t) = (gl BAcid> (1) + (]3) ult) + (?L ) (y(t) —(Cc o) sf:(t)), (3.57)
N

Axr BkFr

where Ky and K, represent parts of the L gain from equation (3.51)).
Estimation error is given as [L3]:

é(t) = ((‘3 i€d> - (2‘) (C o) )e(t). (3.58)
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For initial conditions

0 1 0 O
o = 0 5 P()— 0 1 0 5 (359)
0 0 0 1
and following weighting matrices
10* 0 0
Q=10 10* o0 |, R =10%, (3.60)
0 0 10*
we can obtain gain L from equations ([3.49)) and (3.50))
0.0003
K
L= (Kf) = 10.9999 | . (3.61)
¢ 0.0001
Equation (3.57) numerically can be written
—4.4083 0 2 2 0
Bt)=| 27552 —1.3203 1.25| &)+ [0 1.25 | u®)
0 0 0 0 O
(3.62)
0.0003
+ (09999 | (yw) = (0 1 0)a()).
0.0001

The last element of matrix Agr on diagonal is zero (A4 = 0). This extension reduce
deviation of linear KF from non-linear model of two tanks in series.

In Fig. [3.5] we can see the comparison of states from non-linear process and from KF
for increased h§ value by 20 % . The second state xp, is measurable and represent
output variable y(t) of non-linear process of two tanks in series (NL: z,). We simulate
the measurement noise by a white Gaussian noise

y(t) = Ca(t) + £(t),  £(t) ~ N(0, 0.001). (3.63)

The noisy signal of the second state xj, is filtered almost ideally by KF (KF: x,).
The first state x5, is unmeasured, but we have the ability to simulate its course in
software MATLAB Simulink (NL: xp, ). In this way we can evaluate the estimation
accuracy of the first state xp, by using KF (KF: zp, ).

In the previous example we saw almost ideal state estimation. This is the case when
state-space model of the process is correct. If there is a change in process or the
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Figure 3.5: States estimation by extended asymptotic KF.

state-space model gets easily inaccurate, the state estimation is no longer accurate.
As a result, there are deviations in estimation of states.

Let us make a small changes in matrix A. With an increase a1; value by 30 %, the
estimation equation look as follows

—5.7308 0 2 20
b(t)=| 27552 —1.3203 1.25|2(0)+ |0 1.25 | u()
0 0 0 0 0
(3.64)
0.0003
+ (09999 | ()= (0 1 0)a(t)).
0.0001

This change in the state-space model cause inaccurate estimation of KF. In Fig
we can see the difference in states between non-linear process of two tanks in series
(NL: ) and KF (KF: x,). The conclusion is that KF is unequivocally dependent
on the model of process.
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Figure 3.6: State estimation by outdated extended asymptotic KF.

3.2.2 Software Sensor

The main task is to design SSs which can replace a complicated procedure of state
observers (KF) designing. We deal with the estimation of the state zp,. This state is
unmeasurable and its estimate is in the form of the steady LLH h{. Mass balance of
the first tank under steady state conditions can be obtained from equation

%1 kn
= = — —/hs. .
0 T, 7 $ (3.65)

By expressing the DTM variable hi, we get an expression

s 2
4o,1
T = : . 3.66
= () (3.56)
We consider the simplest possible structure for SS design (linear SSs). To be able to
design linear SS, we need to transform equation (3.66) into a form of linear depen-

dence ([2.3))

S
40,1

3 -
kll

h=bBigs,  Bi= (3.67)
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The steady-state LLH of the first tank hj can also be expressed from the mass balance
of the second tank

B2 ki s ke
0= "5+ VA — oV (3.68)
hs_<q8’2)22ﬁ3k22vh§+<kmhg)2 (3.69)
1 k11 ki kn k11 ’
hi = Bags o + Bshs. (3.70)

The task is to determine the parameters 81, 52, B3 by using methods for SS design.
Input flows ¢g 1, g5 o are an ETM variables and h3 is measured controlled variable.
Based on these SS parameters we get information about the steady state LLH in the
first tank Aj.



CHAPTER 4

Case Study Results

4.1 Software Sensors as a Liquid Level Height Esti-
mators

This section shows the most important results of the SS design based on the methods
described in Section [2| As we can see from equations (3.67) and (3.70)), LLH of the
first tank can be described by all ET'M variables of our process

hi = f(qg,la qazv h;) (4~1)

In general, SSs can be described by the following linear dependence

h§ = Bo + Brasy + Badio + Bshs. (4.2)

Relation (4.2) represents fundamental structure of whose parameters g, 51, 82, B3
will be estimated.

4.1.1 Data Obtaining and Distribution

The accuracy and reliability of SSs is highly dependent on the data which they use for
training. Noise is always present in the measurements. It is convenient to train SSs
with as much available data as possible. With a large amount of data, the estimation
accuracy of the SSs tends to be higher.

The data of the ETM variables are obtained by performing step responses of the
controlled variable hj in software MATLAB, with respect to its reference. Initial
steady state LLH value of the second tank hj was calculated by equation . Steady
LLH has value h3 = 0.3787 m. This is the initial value for step responses of LLH hs.

Step responses are performed in the range +25 % of the initial value of h§. We assumed
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Figure 4.1: 50 step responses of h§ in range +25 %.

that in a given range, the DTM variable ki historical data contains 50 step responses
of reference (the same number of measurement are for ETM variables).

Steady values of ETM variables are recorded for each step response. The steady values
of all ETM variables were filtered and averaged over the impact of noise. The data
is stored in vectors of ETM variables gg 1, gg,1, h5. These vectors contain 50 values
each.

From 50 step responses, 30 were randomly selected. The data corresponding to these
30 step responses are used to train the SSs. The remaining 20 values of ETM variables
are considered as testing data. Conclusions of SS accuracy is drawn based on the
behavior of the SSs in the testing area.

Due to better interpretation of the results of method for SS design, we assume the
simulated reality with noisy data

i,i = hii + §h1,i’ §h1,i ~ N( iiv 0'001) (43)
S,i = hg,i + ﬁhz,i’ §h2,i ~ N( ;,iv 0'001)' (4'4)

Gaussian noise &p,,, ; with the mean equal to the corresponding value of the LLH h, ;
and standard deviation 0.001.
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Figure 4.2: Training and testing area of SSs.

Fig. shows the graphical dependence of hi on qg ; for the training and testing
area of the SSs. For better comparison of SSs in training and testing area all data are
normalised. Example of normalisation is given for hf

s hii — Hhs,
1,i,norm — T (4.5)
Mean fips . and standard deviation Ong , are calculated as follows [8]
1N
= N ; has (4.6)
;XN
7 =\ o1 2 (47)

where N represents number of measurements.

4.1.2 Training and Testing of the Software Sensors

SSs are trained and tested based on the data from Fig[4.2] They are designed according
to the methods for SS design, described in the Section [2} According to equation (4.2)),
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Figure 4.3: Comparison of OLS SS performance in training (left-hand plot) and
testing (right-hand plot) area.

SSs have three ETM input variables (qg 1, 45,2, h3)-

The first SS is designed by the OLS. By solving the optimisation problem from equa-
tion using training data (30 measurements), we get the vector of SS parameters.
Since we worked with normalised data, we obtained the normalised SS parameters.
After conversion to real values, we get the following result

Bo 0.0001
51 0.1257
= = 4.8
A B 0.2098 (48)
B3 —0.1825
The resulting equation of the OLS SS looks as follows
ﬁf = 0.0001 + 0.1257¢¢ ; + 0.2098q5 o — 0.1825A3. (4.9)

Figure [£.3] shows that the SS designed by the OLS tries to make a linear regression,
while minimising deviations from the measured noisy data. We can see in the training
area that regression line try to be as close as possible to measured data. According
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Table 4.1: RMSE for OLS SS in training and testing area.

training area  testing area

RMSE 0.3913 0.7703
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Figure 4.4: Optimal weighting parameters.

to Table the RMSE for the testing area (0.7703) has almost double value of the
RMSE for the training area (0.3913). This is the expected result, since the testing
data is not used for OLS SS training. From the training area, we expect §; to be
positive. The resulting value of £y is 0.1257, which corresponds to regression in the

training area.

The following are three “shrinkage” methods, which use penalisation of SS parameters
to improve the OLS method. The question was how to choose the best weighting
parameters. The methodology we have chosen is to express the dependence of the
RMSE value on the weighting parameter .

The initial interval of weighing parameters A for all “shrinkage” methods (RR, LASSO,
EN) was [0, 1000]. In order to obtain a graphically representative dependence
RMSE = f()), the intervals are narrowed. For RR the width remained the same
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Table 4.2: RMSE for RR SS in training and testing area.

training area  testing area

RMSE 0.3959 0.7461

[0, 1000], LASSO [0, 1], EN [0, 2] as is shown by Fig.

As already mentioned, we simulate the measurement noise in the data by adding the
white Gaussian noise (equations (.3)), (.4)). This means the different data for each
new value from the A interval. To neutralise this factor, 100 data sets were generated
for the aforementioned ranges of the A interval. The RMSE values of the SSs was
calculated for each set. In total, there were 100 RMSE values for one value of A. We
get the average RMSE value from these 100 values (RMSE,y.,) and this represents
one point in the graphs in Fig[.4] There are 100 points evaluated in this way for each
of three X intervals. The resulting dependencies RSME on A are shown in Figure [£.4]
The optimal A is the one that gives the lowest RMSE value. We can see that for
all “shrinkage” methods optimal weighting parameter A\* converge near to zero (in
Figure marked with a red circle). Since the weighting parameters cannot take a
negative value, the A* values of all three methods (RR, LASSO, EN) are

The second weighing parameter of the EN method has value @ = 0.5. This value is
chosen to reach a trade-off between RR and LASSO methods.

The second SS which is designed for the steady LLH estimation of the first tank is
the SS based on RR. As in the previous case, using the training data and solving the
optimisation from equation , where A = Agr = 0.01, we obtained the following
vector of SS parameters

Bo 0.0002
B 0.4282
_ . : 4.11
p Ba 0.0643 (4.11)
Bs —0.0591

The resulting equation of the steady LLH estimation in the first tank by SS based on
RR
hi =0.0002 + 0.4282q; ; + 0.0643¢5 5 — 0.0591h3. (4.12)

In Figure we can see that by penalising the vector of SS parameters by squared ¢
norm is possible to smooth the course of the regression line. If we compare it with
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Figure 4.5: Comparison of RR SS performance in training and testing area.

Fig. [£3] we can say that the linear dependence is much better described by a SS based
on RR. The parameter (; in this case is also positive. From Table [£:2] we can see
that similar to the OLS SS, RMSE for testing data (0.7461) is much bigger than for
training data (0.3959).

Another is SS based on LASSO. By solving the objective function from equation [2:21]
where the weighting parameter A has a value A = Af ygqo = 0.01, we get the vector of
SS parameters

Bo 0.0001
b1 0.4918
= = . 4.13
B= 1l = "% (413
Bs 0
Resulting SS equation looks like
h§ = 0.0001 + 0.4918¢; ;- (4.14)

With a suitable weighing parameter A\ = 0.01, two SS parameters are eliminated
and we get a smooth linear dependence as is shown by Fig. By eliminating two
ETM variables (g 5, h3), we get the same structure as given by the equation (3.67).



38

Case Study Results

‘ « training data

testing data

LI\SSO' iLI{.HF"‘FM |

training area

0571 R

1 norm

hi

0.5 F

2 -15 -1 05 0 0.5

S
qll._l!n.m'm

1

hi

1.5

1 norm

0571

0.5+

testing area

105 0 0.5 1 1.5

S
qll._l!n.m'm

Figure 4.6: Comparison of LASSO SS performance in training and testing area.

Table 4.3: RMSE for LASSO SS in training and testing area.

training area

testing area

RMSE

0.4018

0.7349
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Figure 4.7: Comparison of EN SS performance in training and testing area.

According to this structure, it is expected that (7 has a positive value, which is also
achieved by this method. The difference in RMSE values for the training (0.4018) and
testing area (0.7349) is similar to previous SSs (Table [4.3).

The last is SS based on EN. By solving the optimisation problem (2.23), where o =
0.5 and A = Afy = 0.01, the vector of SS parameters looks as follows

Bo 0.0001
b1 0.4494
= = ) 4.15
A B2 0.0031 (4.15)
B3 0
The SS equation has form
hi = 0.0001 + 0.4494qg ; + 0.0031¢g 5. (4.16)

With a = 0.5, this SS should have a regression line between the RR SS and LASSO
SS. Since we were looking for the optimal A (Fig. , the EN SS is closer to the more
accurate SS from the pair RR SS and LASSO SS. SS based on EN has similar course
as SS designed by LASSO. This is the confirmation that LASSO is the best method
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Table 4.4: RMSE for EN SS in training and testing area.

training area  testing area

RMSE 0.4023 0.7366
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Figure 4.8: SSs comparison in testing area.

for SS design to a system of two tanks in series without interaction. SS based on EN
is trying to imitate or even improve the SS based on LASSO. RMSE values of EN SS
for training and testing area are given in Table [£.4]

Figure [£.§ shows a comparison of SSs in the testing area. We can say that the best
linear dependence is given by SSs proposed by the LASSO and EN methods. If we
look at the Table we can see that only LASSO SS estimates a structure identical
to the equation , where hf is depended just from ¢j,. The intercept Sy of all
SSs has almost zero value. This is the verification that our SSs are well designed. The
accuracy of the estimate can be quantified using RMSE values. According to Table [4.6]
LASSO SS has the smallest deviation from the testing data. This also confirms the
title of the most accurate SS.
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Table 4.5: Parameters of SSs.

OLS RR LASSO EN

Bo 0.0001 0.0002 0.0001 0.0001
B1 0.1257  0.4282 0.4918  0.4494
B2 0.2098  0.0643 0 0.0031
B3 -0.1825 -0.0591 0 0

Table 4.6: Comparison of RMSE for all SSs in training and testing area.

RMSE OLS RR  LASSO EN

training area  0.3913 0.3959  0.4018  0.4023
testing area  0.7703 0.7461 0.7349  0.7366

4.1.3 Statistical Evaluation of the Software Sensors

The effect of noise in the measured data, which is in our case a white Gaussian noise
(expressed by equations and ), cannot be predicted. The randomness of
the noise can be neutralised with the statistical evaluation. If a large amount data is
collected, data distribution can be approximated. From this point of view, the results
based on statistical evaluation are much more reliable.

The first statistical evaluation is the percentage occurrence of ETM variables in the
SSs structures. In the previous results, we have seen that LASSO SS is able to find the
derived structure from equation . Using statistics, we can evaluate how many
times SSs are able to find this structure which follows from the physical nature. Other
possibilities of the structure can also be statistically evaluated. This evaluation can be
useful for the future SS design. We can find out the occurrence of ETM variables and
possibly not include some of them. This approach can simplify the structure of the
SSs and thus facilitate SS design in the future.

Table 4.7: Occurrence of ¢ ; in the structure of SSs.

B1#0,B82=0,8=0
OLS RR LASSO EN

Noce 0 0 476 124
%] 0 0 476 124
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Table 4.8: Occurrence of gg 5 in the structure of SSs.

B1=0,B82#0, B3=0
OLS RR LASSO EN

nOCC 0 0 46 10
[%] 0 0 4.6 1

Table 4.9: Occurrence of h3 in the structure of SSs.

ﬂ1:O7 6220, /837&0
OLS RR LASSO EN

nOCC O O 36 6
% 0 0 36 06

Statistical evaluation was performed for 1000 different randomly generated data sets.
Value of n,.. represents the occurrences number of a defined structure per 1000 different
cases. The Tables [£.7] [4:§ and [£.9] also contain a percentage representation of the
defined structure for 1000 different cases. Since the SS based on LASSO has the
best results in previous section, the weight of the results is given to LASSO as well.
According to Tables [£.7] [£:8 and [£.9] we can see that the probability of occurrence only
q5,1 is much higher (47.6 %) than occurrence of only g5 5 (4.6 %) or only h5 (3.6 %) in
the structure of LASSO SS. To confirm this hypothesis, we statistically calculated how
many times out of 1000 cases each SS parameter is equal to zero. In Table we can
see that (37 is equal to zero in only 6.8 % of cases. On the other hand, 32 and 33 are
equal to zero for 71.9 % and 65.2 % of cases. From this we can conclude and confirm
the equation as ideal structure for SS design.

According to table @ we can conclude that the inlet flow g, has the greatest
influence on the LLH in the first tank h§. The SS corresponding to equation (3.67))
will be considered as an ideal SS further in the work.

Table 4.10: Occurrence of zero parameters in the structure of LASSO SS.

LASSO /1 =0 p2=0 p3=0

Noce 68 719 652
(%) 6.8 7.9  65.2
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Table 4.11: Percentage dependence of h; from ETM variables.

LASSO [%]
hi = f(45,1) 47.6
hi = f(4,2) 4.6
By = f(h3) 3.6
combined dependencies 44.2

S 100

The following is a statistical evaluation of the SS accuracy. The RMSE values of
the SSs was calculated for 1000 different data sets (based on equation (2.15)). To
neutralise the effect of noise on the statistical evaluation, we proceeded as follows. We
subtract the corresponding RMSE of the ideal SS from each of 1000 RMSE values.
Ideal sensor can be expressed from equation

s a1
LD = 72-90,1- (4.17)
11

Then the normalised RMSE value is given as
RMSE,orm = RMSE — RMSEp. (4.18)

With normalisation like this, it is very likely that the normalised RMSE has negative
value. This is a consequence to the presence of noise in the measured data. The
conclusion is that with a more negative value of RMSE, the accuracy of SSs increases.

Statistical evaluation of SSs accuracy is shown by boxplots. Boxplots can be considered
as a graphical interpretation of the normal distribution. Red pluses in bozplots charts
represent outliers, the blue rectangle represents the interquartile range (50 % of
data) and the black dashed lines represent the lower 25 % and upper 25 % from the
interquartile range. The median is represented by a red line inside the blue rectangles.
This red line represents the highest probability of data occurrence. SSs accuracy are
evaluated based on these medians.

If we look at Fig. where the SSs are statistically evaluated on the basis of training
data, we see that the SS designed by the OLS method has the lowest value. This
of course makes sense, since the OLS SS trying to minimise the deviation from the
training data as much as possible. The other three SSs, designed by the “shrinkage’
methods have higher RMSE values for training data which is also numerically shown
in Table This is caused by a penalty where the regression line is smoothed and
thus causes higher deviations from the training data.

)
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Table 4.12: Boxplot medians of SSs for training data.

LS RR  LASSO EN
Median x10% -28.05 -27.91 -27.75 -27.75

Table 4.13: Bozplot medians of SSs for testing data.

LS RR  LASSO EN
Median x10% -23.04 -23.18 -23.23 -23.22

What interests us more is how SSs behave in the testing area. In Fig. we can see
a mirror reflection of the previous study. The statistically most accurate SS in the
testing area is the SS designed by the LASSO method and at the same time by the
EN method (Table . The SS which had the statistically smallest accuracy error
in the training area (OLS SS) is now statistically the least accurate. This SS tries to
imitate the rough data course from the training area. Since this SS works with new
testing data, it cause very large deviations. The SS designed by the LASSO method
eliminates some parameters and thus smoothens the course of the regression line. This
ensures a smaller statistical error of accuracy in the testing area. The SS designed by
the RR method in both cases reaches an average performance. The penalisation of
this SS reduced SS parameters which smoothes the regression line. SS based on RR is
advantageous when we do not want to eliminate any input variable. For SS designed
by the EN method, the idea from Chapter applies. There it was said that by
finding a suitable weighting parameter A, this SS behaves similarly to a better SS from
the pair of RR and LASSO SSs.

Finally, the SS designed by the LASSO method is the best choice for obtaining
information about steady state value of the LLH hf. In some cases, statistically better
results could be reached by EN method with suitable choice of weighing parameters.

4.2 Software Sensors Implementation in the Model
of Two Tanks in Series

In this work, SSs are designed to estimate the steady state LLH of the first tank
hi. It is a process state variable. To obtain information about states we often used
state observers. SSs can also be used for this purpose. This section contains the most
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Figure 4.11: Implementation of SS in LQR control scheme.

significant results of estimating the steady state value h{ using SSs. The results of the
comparison of SSs and KF are also included in this section.

4.2.1 Software Sensors as Steady State Estimators

The new steady states of h; can be found basis on SSs designed for the range £25 %
of the initial value of h3 = 0.3787 m. Monitoring of the LLH h; using SSs can be
implemented in a controlled process of two tanks in series (described in Section .
The SSs are designed in a similar way as the implementation of KF.

Figure [L.11] shows the implementation of SS in the controlled process. The input u
and output y process variables enter the SS. The input variable is the vector of inlet
flows go,1 and qp 2 for our case. The controlled output variable is hy. The estimation
equation for monitoring of th LLH h; looks as follows

Bo Bo
Bf:[l u g; =[1 qo1 q2 ho g; . (4.19)
B3 B3

The SS parameters for all SSs are given in Table The reference increases from the
initial value of h§ by 20 %.

r=1.2h3. (4.20)
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Figure 4.12: Implementation of the FIR filter.

The discrete finite impulse response (FIR) filter is used to smooth the signals from the
SSs (Fig. [4.12)). It is the moving-average filter. The general form of the discrete FIR
filter is [3]

F(z) = h+ﬁ+é+ +ﬁ (4.21)

where coefficients of the delayed input f; can vary [3].

The selected filter for our case has the following structure

0.1 0.1
F(z) =01+ —+ - +—. 4.22
(2) +Z+ +z9 (4.22)

In Fig. [4.13 - we can observe the efficiency of the FIR filter given by equation (4 .
The resulting course A, (blue lines) for all SSs is smoothed (. #, black lines) using the
FIR filter. The pink line represents the simulated result of non-linear process (NL: hq).

Fig. displays an estimate of ] by SSs. Pink line represents simulation of real h;
course (NL: hy). SS based on OLS obtain large parameters in this case which causes
very large oscillations. This is the reason why we did not use this SS for comparison.
The SSs based on “shrinkage” methods performed very well in estimating the steady
state of hy. The smallest difference from the real steady state value (NL: k1) has
LASSO SS. This SS (green line) acquires a very similar course of reality (pink line)
as it has the ability to eliminate some parameters. SS based on RR (orange line) has
the least accurate hj estimation results in this comparison. This method can only
reduce the weight of SS parameters, but it cannot eliminate. This can be observed by
the noisy course of the orange line in Fig. EN SS is delivered as expected. The
output of this SS (blue line) is average from the pair of RR and LASSO SSs.
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Figure 4.15: Monitoring steady state of hy by KF.

4.2.2 Comparison of the Software Sensors with Kalman Filter

The KF is considered to be the best state observer in the process industry. We tried
to simulate this efficiency with the SSs.

We deal with the observation of the LLH h;. With appropriate choice of weighing
matrices

1 00 10 0 0
P,=10 1 0}, Q=0 10* o0 |, R =10, (4.23)
0 0 1 0 0 104

we provide an estimate of the LLH h; with KF. Fig. shows an almost ideal
estimate of the LLH hy using KF.

Now we can compare SSs estimation from previous section and estimation using KF.
In Fig. [£.16] we can confirm the hypothesis that the KF is the best state observer in
process industry. SSs can also be evaluated as sufficiently accurate estimators of the
LLH h;. The estimation error of the least accurate SS (RR SS) does not exceed 1 %
from simulated steady value hy of the non-linear process (NL: hy).
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Figure 4.16: Comparison of hy level height monitoring using SSs and KF.
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The disadvantage of KF is that it very much depends on the process (state-space)
model. Process parameters may change over time. The state-space model cannot
monitor these changes. This can cause variations in the monitoring of DTM variables.
Fig. shows the change in estimation state h; using KF. The same conditions apply
as from Section where matrix A is changed by member a;; (increased by 30 %).
In Fig. [£17 we can see that in this case KF has the least accurate estimate of the LLH
h1. We can say that the great advantage of SSs over KF is that it does not depend on
the model of the process of interest. A rigorous dynamic model can be difficult and
costly to build and keep up to date. From this point of view, the great advantage of
SSs is that they can be designed only on the basis of measured data. To maintain
the accuracy of the SSs, it is necessary to re-train the SSs on new data. However,
this issue is much more practical compared to the identification of rigorous dynamic
models in the process industry.
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CHAPTER 5

Discussion

With the SSs, we were able to describe the DTM variable (LLH h;) using the data of
ETM variables (qgo.1, go,2, h2). We also had success with implementation of the SSs
into the process of two tanks in series, where they have the role of estimating DTM
variables. There is always space for improvement. The results can be improved in the
following ways.

With SSs proposing, we worked with step responses of the steady state value hj in the
range +25 %. We could increase this range to improve the LLH estimate at extremely
large changes from the initial steady value h3 = 0.0681 m. There were also 50 step
responses in the mentioned range (£25 %). The accuracy of the SSs estimate also
increases with increasing number of data which they use for training.

In a statistical study we found that ¢g , and h3 had small effect on DTM variable hf.
In the future, these variables may not be necessary to propose the SSs for hj estimate.
Non-linear SSs could also be designed, as it is a nonlinear process of two tanks in
series.

With the EN SS, the procedure was such the weighting parameter « is chosen to be 0.5.
We wanted to achieve behaviour between the SSs based on RR and LASSO methods.
The A\ weighting parameter were obtained by optimisation similarly to the RR and
LASSO SSs. The a can also be found by optimisation methods for two optimisation
variables. This would provide optimal weighting parameters A and «, which would
theoretically make it possible to defeat the most accurate SS based on LASSO.
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CHAPTER 6

Conclusions

In this master thesis, we focused on the design of SSs based on data from process of
two tanks in series without interaction. The work was focused on the theoretical base,
in order to compare and obtain information about different methods for SS design.
On the basis of the obtained results, general properties of SSs were derived. These
properties can be very useful for the design of SSs in the industry. The design of SSs,
their comparison, statistical evaluation and implementation into the case study was
processed in the MATLAB and Simulink software environments.

The procedure was such that using data from ETM vaiables (qj 1, 45 2, h3) we designed
SSs to estimate the DTM variable the LLH hj. Based on the expected results, we
evaluated the SSs. We found out that the “shrinkage” methods had a very accurate
estimate of the DTM variable h7. Using RR, we reduce the influence of some parameters
and thus smooth out the dependence of the DTM variable on ETM variables. Using
the LASSO method, we can eliminate some parameters and simplify the structure of
the SS. The advantage of the EN method is that it contains two penalisation of SS
parameters by which we can ensure a compromise between the RR and the LASSO
methods. This method also can eliminate some ETM variables from the SS structure.

SSs were also statistically evaluated. First, we evaluated the statistics of the occurrence
of ETM variables in the structure of SSs. We found that the highest probability of
occurrence has the inlet flow ¢g ;. SS, which contained only this ETM variable in his
structure was considered as SS with an ideal structure. This conclusion also follows
from the physical nature represented by the mass balance of the first tank. Since
the data were noisy, the accuracy of the SSs was evaluated statistically using the
bozplot functions. The highest statistical accuracy was demonstrated by SSs based on
LASSO and EN methods. This result confirmed the success of the LASSO method. SS
designed by this method was considered the most accurate. EN SS has a very similar
statistical performance. The difference between these two SSs was in the structure,
where the EN SS was slightly more complex.
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At the end, we implemented the proposed SSs into our process of two tanks in series
without interaction. The SSs performed the role of state observers and estimated the
steady state LLH of the first tank hj. According to the results, we found that OLS SS
is not suitable for such an implementation. The parameters of this SS can have very
large values, which causes an unstable estimate of the steady-state value of the DTM
variable. The other three SSs proposed by “shrinkage” methods had very accurate
results of estimating the steady state value of h;. We compared the estimate of h{
using SSs with the estimate of the KF. In a well-identified process, where we obtain an
correct model, KF is an invincible state estimator. As soon as a change in the process
occurs, the identified model becomes inaccurate. This results in inaccuracies in the
estimation using KF. The advantage of the SSs is that they can be easily overtrained
on new data and thus ensure the update of estimate.

From the results interpreted above, it follows that the most preferred methods for SS
design for our process of two tanks in series is LASSO and EN. This methods can
eliminate some ETM variables which has small or no effect on estimating the DTM
variable. In this way, the structure of the SS is simplified and the accuracy of the
estimate is increased. Due to the requirements, other methods for SS design can also
be very useful. The most significant result achieved is the fact that in addition to real
sensors, SSs can also replace state observers.

The work can be developed on the optimising described methods for SS design but
also on the design of SSs based on new methods. Another direction in which work can
continue is the design of SSs in online modules. These SSs would instantly record the
measured data and use it directly to describe the DTM variables. SSs could also be
used for process control. The controllers will be able to work using states estimated
by SSs.



APPENDIX A

Resumé

Tato praca je zamerana na navrh softvérovych senzorov pre procesny priemysel. V
stcasnosti su takmer vSetky priemyselné prevadzky vybavené velkym poctom senzorov.
Priméarnou tlohou senzorov je poskytovat idaje, pomocou ktorych moézeme proces
monitorovat a riadif. Koncom minulého storocia sa zacalo pracovat s velkym mnozstvom
udajov. Data sa meraju a ukladaja vo velkom mnozstve v procesnom priemysle. Na
zaklade tychto dat m6zeme predpovedat spravanie sa procesu v budicnosti a navrhnut
tak prediktivne modely. Takéto prediktivne modely v priemysle sa nazyvaju softvérové
senzory (SS). SS moézu byt vSeobecne rozdelené na dve triedy, SS na zdklade dét a
SS na zéklade modelu. Rozsah tloh, ktoré SS vykonavaju, je Siroky. Primarnou a
najdolezitejsou tilohou SS je predikcia procesnych premennych. Na zaklade informécii
Tahko meratelnych (M) veli¢in vieme opisat niektoré tazko meratelné (TM) veliciny.
Dalsimi délezitymi oblastami aplikdcie SS sti monitorovanie procesov a detekcia chyb,
optimalizacia prevadzkovych podmienok, zvysenie vykonu prevadzky, zabezpecenie
vicSej uspory energie a menej negativnych dopadov na zivotné prostredie atd. Napriek
vietkym vyssie uvedenym aplikacidm a vyhodam SS, stale existuji nevyriesené otazky
tykajice sa vyvoja a udrzby SS. Beznym problémom pri zaznamenavani dat je Sum
merania, extrémne odchylky niektorych hodnét, chybajice hodnoty atd. Préaca sa
skladé zo Siestich kapitol. Prva kapitola je ivodnda. Tato cast vysvetluje vSeobecné
vlastnosti, déovody a vyhody pouzivania SS. V tejto casti si uvedené aj priklady
vyuzitia SS v procesnom priemysle, ich lohy a nedostatky.

Druhé kapitola predstavuje teoreticky zaklad prace. Tato kapitola je rozdelend na dve
Casti. Prva cast opisuje rozdelenie SS na zaklade struktiry:

e SS na zéklade dat,

e SS na zaklade modelu,

e Hybridna struktara SS.
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Popisané su ich najdolezitejsie vlastnosti a uvadza sa vseobecny matematicky zapis
tychto typov SS. Druh4 ¢ast tejto kapitoly opisuje metédy pre navrh SS. Styri metédy
pre navrh SS su:

o met6da najmensich Stvorcov (OLS),
o hrebenovd regresia (RR),
o operator najmensieho absolitneho zmrstenia a vyberu (LASSO),

o eclastickd siet (EN).

Pre vSetky metddy je uvedend matematické formuldcia. Jedné sa o optimalizacné
metddy, ktoré ziskavaju optimalne hodnoty parametrov regresie, respektive, v nasom
pripade parametrov senzora. Metoda OLS vyhladava také parametre, ktoré zabezpecia
najmensiu odchylku regresnej priamky od nameranych dat. Zvysné tri metédy sa
rozsirenou verziou tejto metédy. Metéda RR v tcelovej funkcii obsahuje penalizaciu
{5 normy parametrov senzora. Takouto penalizdciou vieme tspesSne znizit hodnoty
parametrov senzora. Metéda LASSO funguje na podobnom principe, pricom pouziva
penaliziciu £; normy parametrov senzora. Tato metdda dokaze nie len zmensit, ale
aj vynulovat niektoré parametre. Obe tieto metdédy obsahuji vahovaci parameter A
pomocou ktorého vieme tieto penalizacie ladif. Posledna je metéda EN. Tato metoda
je kompromisom medzi RR a LASSO. Okrem )\, obsahuje dalsi vihovaci parameter
« pomocou ktorého vieme vahovat vlastnosti tejto metédy. a nadobiida hodnoty v
rozmedzi 0 az 1. Ak je a blizsie k jednotke, EN nadobuda vlastnosti LASSO metédy.
V opacnom pripade sa sprava ako RR. Okrem teoretickej interpretacii, v tejto casti
je zahrnuty aj jednoduchy priklad linearnej zavislosti. Vsetky SS st otestované na
priklade w = 3v; a ich vlastnosti a vyhody st zdoraznené v tejto casti prace.

Tretia kapitola opisuje pripadovi studiu na zaklade ktorej SS budd navrhované. Jedna
sa o systém dvoch zasobnikov kvapaliny bez interakcie. V tejto ¢asti je odvodeny matem-
aticky model tohto procesu na zéklade preddefinovanych parametrov z tabulky [31]
Dalej sa popisuje stratégia riadenia. Proces je riadeny stavovym LQR reguldtorom s
integracnou c¢innostou. V tejto casti je opisand riaditelnost procesu, navrh a vypocet
zosilnenia LQR reguldtora. Nadalej su opisané moznosti odhadu vysky hladiny kva-
paliny. V tomto procese vyska hladiny druhého zasobnika je riaditelna LM velic¢ina.
Vyska hladiny prvého zasobnika je TM veli¢ina, ktori sa snazime odhadnit. Opisané
st dve moznosti odhadovania. Prvd moznost je pomocou Kalmanovho filtra (KF).
Opisany je sposob navrhu KF pre systém dvoch zasobnikov kvapaliny. Graficky je
zobrazeny vysledok odhadu pomocou KF. Nésledne je uvedeny priklad KF, ktory je
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navrhovany na zaklade neaktualizovaného modelu. Druhou moznostou odhadovania
vysky hladiny prvého zdsobnika je pomocou SS. Tato ¢ast obsahuje navrh struktary
SS pomocou matematického modelu procesu.

Vysledky préace st opisané v stvrtej kapitole. Tato kapitola pozostava z dvoch sekcii.
Prva sekcia je zamerana na navrh SS pre pripadovi stidiu dvoch zasobnikov kvapaliny.
Matematicky je vyjadrena zavislost vysky hladiny prvého zasobnika h; od LM veli¢in
4.1, 952 a h3. Na zéklade tejto informédcii je definovand inicializa¢nd struktira SS. Dalej
sa opisuje postup ziskavania dat pomocou prechodovych charakteristik riadenej veli¢iny
ho a rozdelenia dat na trénovaciu a testovaciu oblast. Praca pokracuje trénovanim a
testovanim SS. Pre vSetky metddy opisané v teoretickej casti s ziskané parametre
SS, pomocou ktorych boli SS otestované na testovacich datach. Vahovacie parametre
metéd RR, LASSO a EN boli optimaliza¢nym postupom ziskane, okrem vahovacieho
parametra « ktorého hodnota bola zvolend (0.5). KedZe namerané data obsahovali
Sum merania, SS boli Statisticky vyhodnotené kvoli presnejsim vysledkom. Statistické
vyhodnotenie zahfnalo ziskanie informacii o percentudlnom zastipeni kazdej jednej
LM veli¢iny v struktire SS. Metéda LASSO dokéaze odstranit niektoré parametre
senzora a takto aj niektoré ILM veli¢iny zo svojej struktury. Na zaklade tejto metody
sme interpretovali vysledky statistického vyhodnotenia. Zistili sme, Zze LM veli¢iny g o
a h§ maji pomerne nizky vplyv na odhadovant TM veli¢inu h3. Dalej sme Statisticky
vyhodnocovali presnost SS na zéklade RMSE hodnét. Vysledky sme vyjadrili pomocou
funkcie bozplot. Statistickym vyhodnotenfm sme zistili, Ze dva najpresnejsie SS st na
zaklade metéd LASSO A EN. Druhou c¢astou vysledkov bola implementacia SS do
procesu dvoch zasobnikov kvapaliny. V tejto Casti je vysvetleny sposob implementécie
SS a vysledky odhadu ustdleného stavu h{ pomocou SS. Pri odhade i bol pouzity FIR
filter, pomocou ktorého vystupné signaly SS boli vyhladené. Vsetky SS okrem senzora
navrhnutého na ziklade OLS, odhadovali ustdleny stav s velmi velkou presnostou.
Poslednou c¢astou prace je porovnanie SS s KF. KF predstavuje najpresnejsi odhad
stavovych veli¢in v procesnom priemysle. Vysledky monitorovania, ktoré KF poskytuje
vhodnou volbou vahovacich matic st takmer idedlne. Pomocou SS sme sa snazili
tuto presnost napodobnif. Model na zaklade ktorého je KF navrhovany je potrebné
casto aktualizovat. Identifikdcia modelu moze byt zlozitda a preto sa v procesnom
priemysle Casto nerobi. Data IIM veli¢in st castejsie merané. Toto ndm udava moznost
pretrénovat SS ak je to potrebné. SS sme porovnali s KF navrhnutym na zaklade
neaktualizovaného modelu skiimaného procesu. Vysledkom bolo, ze chyba odhadu
pomocou KF narastla, pricom odhad SS zostal rovnaky.

Posledné dve kapitoly st diskusia a zaver. Tieto dve kapitoly obsahuji zhrnutie
vysledkov prace, moznosti vylepSenia a navrh pokracovania s pracou v budicnosti.
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