
SLOVAK UNIVERSITY OF TECHNOLOGY
IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

Reg. No.: FCHPT-5414-82075

Design and construction of
human-operated remote robotic

manipulator
MASTER THESIS

2021 Bc. Diana Dzurková

SLOVAK UNIVERSITY OF TECHNOLOGY
IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

Reg. No.: FCHPT-5414-82075

Design and construction of
human-operated remote robotic

manipulator
MASTER THESIS

Study programme: Process Control
Study field: Cybernetics
Training workspace: Institute of Information Engineering, Automation, and Mathematics
Thesis supervisor: Ing. Martin Kalúz, PhD.

2021 Bc. Diana Dzurková

Slovak University of Technology in Bratislava
Department of Information Engineering and Process Control

Faculty of Chemical and Food Technology
Academic year: 2020/2021
Reg. No.: FCHPT-5414-82075

MASTER THESIS TOPIC

Student: Bc. Diana Dzurková
Student’s ID: 82075
Study programme: Automation and Information Engineering in Chemistry and Food

Industry
Study field: Cybernetics
Thesis supervisor: Ing. Martin Kalúz, PhD.
Workplace: Department of Information Engineering and Process Control

Topic: Design and Development of a Human-operated Remote Robotic
Manipulator

Language of thesis: English

Specification of Assignment:

This work deals with the design, assembly, and programming of the mechatronic system of the remote
manipulator. The developed system will be composed of two main parts. First will be a sensor module
containing an electronic gyroscope and accelerometer that will allow sensing the movements of a human arm
or other haptic inputs. The second part of the system will be a remote robotic manipulator that will translate
these inputs into movement. Both, the manipulator and the sensor module will be equipped with electronic
micro-controllers and will communicate via low-power radio modules.

The particular tasks of this project are:
- a complete design and assembly of the hand-held sensor module, including a selection of appropriate
electronic components, communication interface, power delivery solution, and ergonomics
- design of the program for sensor module that will read the haptic inputs and will be sending them to the
remote manipulator
- the selection of electronic platform for robotic manipulator
- derivation of a model for robotic arm based on kinematics
- design of algorithms for movement and control of the robotic arm

Length of thesis: 50

Selected bibliography:

1. Margolis, M. Arduino Cookbook: Recipes to Begin, Expand, and Enhance Your Projects. Sebastopol: O´Reilly
Media, 2013. 699 p. ISBN 978-1-449-31387-6.

2. JANSCHEK, K. Mechatronic Systems Design: Methods, Models, Concepts (2012th Edition), Springer, 2012.
ISBN: 978-3642175305

ii

Acknowledgment

I would like to thank my thesis supervisor Ing. Martin Kalúz, PhD. for his patience
and all the help and advice he has given me during the development of this project.

iv

Abstract

The work is devoted to design, construction and programming of mechatronic system
of remote manipulator. The control modul, containing an electronic gyroscope and
accelerometer, allows to monitor motion of the human hand and to transmit this
information wirelessly to a remote robotic manipulator, which will then copy this
motion. Both the manipulator and the controller will be equipped with electronic
microcontrollers and will communicate with each other by low-energy radio modules.
The goal is to reproduce the hand movements so that the manipulator can grasp and
carry objects using six degrees of freedom - three translational and three rotational.

Key words: robotic arm, IMU, forward kinematics, inverse kinematics

vi

Contents

Acknowledgment iii

Abstract v

1 Introduction 1

1.1 Applications . 1

1.2 Motivation . 4

2 Goals of the Thesis 5

3 Kinematics of Robotic Arm 7

3.1 General symbolism of manipulator models 7

3.2 Robotic Arm . 9

3.3 Kinematic diagram . 11

3.4 Denavit-Hartenberg table method . 15

3.5 Inverse Kinematics . 17

3.6 Numerical Inverse Kinematics . 20

3.6.1 Jacobian Inverse Method . 20

3.7 Micro electro-mechanical devices . 21

3.8 Internal measurement units . 23

viii CONTENTS

4 Handheld Controllers 25

4.1 DIY controller . 25

4.2 JoyC Omni-directional Controller . 32

4.3 Wireless communication module . 35

4.3.1 Xbee . 35

4.3.2 Xbee operating modes . 35

5 Robotic Arm Hardware in Detail 37

5.1 Servo motors . 37

5.1.1 Servo operation principle . 37

5.2 Braccio shield . 41

5.3 RoMeo V2 board . 41

5.4 Description of Operation . 43

6 Demonstration of functionality on a pick and place task 49

7 Conclusion and Discussion 55

Bibliography 57

List of Figures

3.1 Robotic arm . 10

3.2 Example of schematic for joints: revolute joint(left) prismatic joint(right) 11

3.3 Kinematic diagram of Braccio manipulator 12

3.4 Two frames comparison with projection of X-axis 13

3.5 Two frames comparison with two rotation difference 14

3.6 Planar arm example model . 17

3.7 Internal model of simple accelerometer[1] 21

3.8 Internal model of gyroscope[2] . 22

4.1 Cross section of designed controller . 26

4.2 3D printed controller cross section . 26

4.3 Desing of the slot containing all the electronics 27

4.4 Physical 3D-printed slot . 27

4.5 Controller cover side . 28

4.6 Lithium battery . 29

4.7 IMU board parts top overview . 30

4.8 IMU board parts bottom overview . 31

4.9 JoyC controller . 33

x LIST OF FIGURES

4.10 JoyC functionality visualisation in reference to the robotic arm control 34

4.11 Types of data transmission in an XBee communication process[3] . . . 36

5.1 Cross section of standard servo motor[4] 38

5.2 Standard servo movement range . 39

5.3 Servo with continuous rotation movement range 40

5.4 Braccio shield demonstration of stack-ability with marked outputs for
servo control . 41

5.5 Romeo V2 pinout . 42

5.6 General data flow for DYI controller and manipulator system 43

5.7 Diagram of some of the OLA boards internal parts and data flow within
them . 44

5.8 General data flow for JoyC controller and manipulator system 46

5.9 Internal parts and data flow diagram of JoyC controller 47

6.1 Robotic toolbox visualisation for simple pick and place task 51

6.2 Graph of parameter values for pick and place task over time 52

6.3 The arm position for pick and place task in selected times 53

List of Acronyms

AHRS Attitude and Heading Reference System
API Application Programming Interface
D-H Denavit-Hartenberg
DIY Do It Yourself
GUI Graphical User Interface
GPIO General Purpose Input/Output
I2C Inter-Integrated Circuit
I2S Integrated Inter-IC Sound
IMU Internal Measurement Unit
OLA OpenLog Artemis
SPI Serial Peripheral Interface
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus
SCARA Selective Compliant Articulated Robot for Assembly
FABRIK The Forward And Backward Reaching Inverse Kinematics
IK Inverse Kinematics
DOF degrees of freedom
MEMS Micro electro-mechanical systems
GPS Global Positioning System
STL STereoLithography
PLA polylactic acid
LiPo Lithium Polymer
BLE Bluetooth Low Energy
IoT Internet of things
ADCs analog-to-digital converter
DACs digital-to-analog converter
SPI Serial Peripheral Interface
RMII Reduced Media-Independent Interface

xii LIST OF FIGURES

PWM pulse width modulation
LCD Liquid Crystal Display
WLAN Wireless Local Area Network
CSV Comma-separated values

Chapter 1

Introduction

According to the Robotics Institute of America (RIA): "A robot is a reprogrammable
multifunctional manipulator designed to move material, parts, tools, or specialized
devices through variable programmed motions for the performance of a variety of
tasks." A manipulator is a mechanical structure consisting of links connected with
revolute(rotatory) or prismatic(sliding) joints forming a kinematic chain. A manipulator
is considered a robot after the gripper and the wrist are attached and the control
system is up and running. Manipulators are intended for moving and grasping objects,
typically in several degrees of freedom. The last link that actively interacts with
its environment is called the end effector. There are various types of end effectors
depending on what is the manipulator used for (for example: grippers, spray paint
guns, weld guns, etc.) Control is carried out by the operator, programmable controller,
or logic system. The position and orientation of robotic manipulator is achieved
by changing the links’ configuration through actuators. Servo motors are used for
rotational joints and linear actuators for prismatic ones. Position of arm and external
control interventions are measured by sensors (internal and external).[5]

1.1 Applications
Remotely operated manipulators date back to the 1950s when the need for remote
control became a necessity with the first industrial applications of radioactive materials.
This types of manipulators is very useful for applications that call for highly complex
and responsible performance while operating in extreme environments. These tasks
belong to one of the most pressing matters modern robotics deals with [6]. Various
applications are explained in detail in Jean Vertut, Philippe Coiffet: Teleoperation
and Robotics: Applications and Technology[7], where are remote manipulator referred
to as teleoperators. We’re going briefly to mention a few of them. There are six main
groups of teleoperator applications:

2 Introduction

• nuclear

• underwater

• outer space

• medical field

• industry

Nuclear applications
In this field, mechanical master-slave manipulators have been widely used performing
in the laboratory with the operator behind a protective shield, involved in tests
that require delicate movements. These manipulators are also used to dismantle or
assemble equipment in these laboratories as well as their maintenance. Manipulators
are also widely used in various nuclear facilities. They perform maintenance on
particle accelerators as well as all the necessary tasks involving experimental reactors.
Manipulators are also used on a bigger scale such as industrial nuclear facility reactors
anywhere from inspection and repair to decommissioning and emergency interventions.

Underwater applications
Teleoperation is used as a survey tool in underwater applications. Manned submarines
and free-swimming underwater devices help in the exploration of sea beds before the
sub-aquatic systems are deployed. It is also in the construction and maintenance of
mentioned structures or accident scenarios of already existing underwater systems.
Other applications involve underwater mining and cable and pipeline placement. To
determine if a certain sea bed is suitable for underwater mining the sample extraction
is necessary. These samples are collected from great depths where humans would have
difficulty to access therefore the use of a remotely controlled device is necessary. The
first of many important underwater embedding tasks was telephone line placement.
Since then several different cables and pipelines have been installed at the sea beads.
The embedding, as well as maintenance of these cables, is performed by specialized
machines that are trawled and controller remotely.

Applications in outer space
With a growing interest in outer space exploration also grew the need for remotely
operated system development. Various demands are put on teleoperators in outer space.

1.1 Applications 3

They are used in planetary exploration missions, as satellite maintenance devices, and
in the construction and maintenance of space stations.

Applications in medical field
The teleoperators could be applied in various medical sectors. In direct hospital
care, they are used for patient handling and transport. Another use can be found
with improving the quality of life for people with motor disabilities. Arm and hand
prostheses are basically equivalent to remote manipulators. While respecting the
structural form of lost appendage they provide a controllable replacement. Cases,
where is manipulator and operator in physical contact, are similar to mechanical
master-slave systems. In cases where the limb is intact but paralyzed, they are used
for movement training therapy and assisted walking. Teleoperators are also used as
operation rooms, bilateral remote manipulation with scale reduction of one-tenth and
one-hundredth for endoscopic surgeries.

Industrial applications
There is huge variety of tasks manipulators are needed for in industrial plants. They are
mostly used in hostile environments or in applications where process calls for amplified
force with high dexterity and manipulator is controlled manually. In metallurgy and
forging are used for free forging, to create various rough shapes. Some machines used in
public works can also be included into the teleoperator category, for example bulldozer
with blade that is controlled by a laser beam. Application in hostile environments
include high voltage power lines maintenance and mining works.

Security and civil protection
Hostile and dangerous situations are prominent in police work, firefighting, and general
public safety emergencies. In these types of situations, teleoperators carry out life-
threatening tasks that previously had to be done by people. The first remotely
controlled vehicles equipped with fire hoses to fight fires. Simple remotely controlled
vehicles with the mounted manipulator are mostly used in the USA to handle and
dispose of unsafe munitions as well as defusing explosives of terrorist activities. Legged
locomotion, remotely controlled vehicles intended for traversing uneven terrain are
used in military and rescue missions.

4 Introduction

1.2 Motivation
A previous project that I’ve worked on sparked in me a great interest in hardware
and robotics therefore I wanted to work on something in these fields but slightly on a
bigger scale. Thus further expanding my knowledge on these topics. Another great
motivation was that a fully functioning platform like this can act as a learning platform
for other students for robotic control testing, that have similar interests as me, since
there isn’t any like that right now available at our institute.

Chapter 2

Goals of the Thesis

The goal of this project is to create a functioning system of a manipulator with a
remote controller. That includes the design and creation of the controller’s casing and
the selection of suitable electronics. Creating the kinematic model and deriving of the
forward kinematics equation as well as testing of their functionality. Implementing
inverse kinematics to the manipulator, assigning appropriate functionalities to sensor
data, and implementing commercial controller to our system. Individual tasks can be
summarized accordingly:

1. Study and control of the robotic arm.

• control of arm’s movement with microcontroller

• finding physical constrains for every joint

2. Study and application of general kinematics

• how to create a kinematic diagram

• what are the main rules for kinematic calculations

• forward kinematics and practical testing

• inverse kinematics

3. Controller design

• getting acquainted with Autodesk 360 and creating controller casing

• selecting appropriate electronics and cabling management

• installing magnets for controller closing

4. Establishing Xbee module communication

5. Implementing calculations for acquiring heading and position of controller

6 Goals of the Thesis

6. Creating serial data buffer and parser

7. Applying inverse kinematics and its testing

8. Getting acquainted with commercial controller and implementing it to our system

• editing open-source software
• applying functionalities to individual controller parts

Chapter 3

Kinematics of Robotic Arm

This chapter deals with the physical parts of a robotic arm and derivation of its
mathematical model that allows us to plan and control robot motion. Further, we’re
going to define some basic kinematic terms used in these models and the most common
kinematic model configurations. The theory that is necessary for achieving appropriate
manipulator movement mainly consists of a kinematic model, derivation of forward
kinematics equations as well as inverse kinematics ones.[9]

3.1 General symbolism of manipulator models
Configuration space
The term configuration of manipulator includes designating a specific location to every
manipulator point. The whole set of these configurations is referred to as configuration
space. Any point of the manipulator can be deduced if the joint variables are known.

Manipulator workspace
The set of points that the end effector reaches as every possible configuration of a
manipulator is executed is called manipulator workspace. Mechanical joint constraints
and manipulator geometry restrict the workspace. For instance, none of the servo
motors in the robotic arm we are using is capable of 360◦ rotation. This workspace
can be divided into dexterous and reachable. The reachable one, as the name suggests,
consists of all the points that manipulator can reach. The dexterous workspace is
made of points that are reachable by manipulator with the arbitrary orientation of the
end effector. The dexterous space falls under the reachable one.[9]

8 Kinematics of Robotic Arm

Typical kinematic configurations
In theory, kinematic chains can be built from joints in various ways. However, most
manipulator robots used in industry can be described by one of the following kinematic
configurations: [9]:

• articulated manipulator (RRR)1- contains three revolute joints, usually referred
to as waits, shoulder, and elbow

• spherical manipulator (RRP) - similar to the articulated one but the last joint is
prismatic

• SCARA (Selective Compliant Articulated Robot for Assembly) manipulator(RRP)
- designated for "pick-and-place" and montage tasks. Uses the same general con-
figuration as spherical manipulator except for spherical one all joints are mutually
perpendicular to each other and the SCARA has joints parallel to each other.

• cylindrical manipulator (RPP) - the first joint is revolute and handles rotation
around the base, while the other two joints are prismatic

• cartesian manipulator (PPP) - manipulator with first three joints that are
prismatic. The name derives from the fact that joint variables match the end
effector’s Cartesian coordinates.

• parallel manipulator - base and end effector are connected with at least two
kinematic chains

1Acronym in brackets denotes the number and order of revolute(R) or prismatic (P) joints in a
specific configuration

3.2 Robotic Arm 9

3.2 Robotic Arm
In this project, we are using TinkerKit Braccio robotic arm that is depicted in Fig. 3.1.
This arm has a similar kinematic configuration as some of the industrial manipulators.
The Arm is made out of plastic and has six servo motors as actuators and a wooden
base with a circle that has marked servomotor angles of the base. This robotic kit
contains three main parts:

• Robotic arm that consists of:

1. base that enables rotation of the robot around vertical axis

2. shoulder is the second link of manipulator, it controls vertical and for-
ward/backward movements of manipulator

3. forearm controls the movement in the same axes as shoulder

4. vertical wrist controls arm’s attack angle at which are objects picked up

5. rotatory wrist that handles the rotation of the gripper around the X axis

6. gripper is the part of arm that interacts with its surroundings this particular
one has jaws for picking and moving objects

• Braccio shield

– connects to the Arduino board and enables to control servos directly from
Arduino board

– compatible with Uno,Mega,Yun,Tian etc. Arduino boards

– requires 5V power source

• microcontroller board

– programmable circuit board where the control code runs

10 Kinematics of Robotic Arm

Figure 3.1: Robotic arm

3.3 Kinematic diagram 11

3.3 Kinematic diagram
Kinematic diagram is necessary for derivation of kinematic equations and it is assembled
according to the physical appearance of a specific robotic arm. In robotic models, links
are rigid parts of a manipulator and are connected by joints, the moveable parts of a
manipulator. These parts are connected into the kinematic chain. We are denoting
joint variables as θ if the joint is rotational and d if the joint is prismatic. The joints
themselves are denoted R for rotatory (revolute) and P for linear (prismatic). A
revolute joint enables relative rotation among two links. The prismatic one handles
relative linear motion in one specific axis between two links.[9]

Figure 3.2: Example of schematic for joints: revolute joint(left) prismatic joint(right)

Four main rules need to be followed while creating kinematic diagrams which allow
us to make shortcuts in deriving the mathematical equations for kinematic models.
Those four rules are part of the Denavit-Hartenberg method[8]:

1. The Z-axis is always the axis of rotation for a revolute joint or direction of motion
for a prismatic joint.

2. The X-axis must be perpendicular both to its own Z-axis as well as the Z-axis of
the previous frame.

3. All frames must follow the right-hand rule.2
4. Each X-axis must intersect the Z-axis of the frame before it.

It’s also important to label the direction of positive rotation on revolute joints that will
match joints of a physical device. This direction is determined by another right-hand
rule.[8]3

2Right-hand rule is used to assign coordinate frames. While using the right hand, the fingers
should point in the direction of the X-axis, the thumb goes in the direction of the Z-axis and the palm
indicates the direction of the Y-axis.

3Thumb of the right-hand shows the direction out of servo horn, then the direction fingers curl
shows the positive rotation direction.

12 Kinematics of Robotic Arm

The final product of this procedure for Braccio manipulator can be seen in Fig. 3.3

Y0

a1

a2 a3 a4

X0

Z0

Y1

X1

Z1

Y2

X2

Z2

Y3

X3

Z3 Y4

X4
Z4

Θ1

Θ2 Θ3 Θ4 Θ5

Figure 3.3: Kinematic diagram of Braccio manipulator

where:

• an n = 1, ..., 4 are physical link lengths, a1 is the link between base and shoulder
with length 76 mm, a2 connects shoulder and elbow and measures 126 mm, a3
is the link that connects elbow and vertical wrist and has the same length as
previous link 126 mm, a4 connects elbow and vertical wrist and has a length of
62 mm, the last link is considered to be between vertical wrist and between the
gripper’s jaws at their middle length (we’re combining the last two links between
joints: vertical wrist ↔ rotational wrist and rotational wrist ↔ gripper into one
since rotational wrist doesn’t affect end-effector position)

• theta0, ..., thetan+1 represents the direction of a positive rotation of each joint
• axis Zn−1, Yn−1, Xn−1 represent coordinate frame assigned for each joint

Manipulator movement affects the position and rotation(orientation) of the end-effector.
In robotic theory, the position is represented by displacement vectors and rotation by
rotation matrices. Rotation matrix for each frame is created by comparing the first
frame to the next frame, specifically, how is the second one rotated considering the
position of the first one. The individual elements represent the projection of each axis
to every axis of the previous frame[8]. For example let’s take a look at two frames in
Fig. 3.4, that differentiate in rotation around the Z-axis.

3.3 Kinematic diagram 13

Z0

Y0

X0

X1

Z1 Y1

cos Θ

si
n
 Θ

Figure 3.4: Two frames comparison with projection of X-axis

After projections for every axis (in the same way that the projection into X-axis is
depicted in Fig. 3.4), we are going to get a matrix.4 This type of matrix is called the
Z-rotation matrix(in reference to frame rotation around Z-axis)[8]:

RZ = R1
0 =

X1 Y1 Z1
X0
Y0
Z0

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (3.1)

Each projection is represented by a goniometric function. In cases where axes are
identical the projection will have values of 1, if axes are perpendicular to each other
the value will be 0. We can similarly derive X and Y-rotation matrices[8]:

RX =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 (3.2)

RY =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 (3.3)

Every possible frame rotation is created by various combinations of rotations around
X,Y and Z axis. For example rotation in Fig. 3.5 was created by firstly rotating frame
around Z axis and secondly around X1 axis.

4Each axis is assumed to have a length of 1.

14 Kinematics of Robotic Arm

Z0

Y0

X0
Z1 X1

Y1

Figure 3.5: Two frames comparison with two rotation difference

We are able to determine rotation axis simply by multiplying Z and X rotation matrices
together.5

R =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 (3.4)

While creating the individual rotation matrices we usually start with one of the basic
matrices(RZ , RX , RY) and left multiply it by another matrix that tells the rotational
difference between two studied frames while joint angle is zero. If there is no rotation
different we are going to multiply it by Identity matrix in equation 3.5.

I =

1 0 0
0 1 0
0 0 1

 (3.5)

Final goal is to derive the rotation matrix of the end-effector in reference to the base
frame, throughout each frame in kinematic diagram in Fig. 3.1.

R0
4 = R0

1R
1
2R

2
3R

3
4 (3.6)

Rotation matrix in equation 3.6 a 3x3 matrix in which elements are a combination of
goniometric functions for theta angles considering the kinematic diagram.

R0
4 = [f(θi)] (3.7)

5Theta is unique for each individual rotation.

3.4 Denavit-Hartenberg table method 15

The next step is to derive displacement vectors (size 3x1) which general form is shown
in equation 3.8.

dmn =

fx(ai−1, θi)
fy(ai−1, θi)
fz(ai−1, θi)

 (3.8)

Displacement vectors are created by redrawing the kinematic diagram from the top
→ down view and its elements are represented by lengths of the manipulator links ai
multiplied by the projection of the link to respective axes or have the value of 0 if
there’s no displacement between frames in the direction of the respective axis[8]. We
are able to derive displacement vectors through each frame pair except for d0

4 (between
end-effector and base frame). In order to derive vector d0

4 we need to combine rotation
matrices and displacement vectors and therefore derive homogeneous transformation
matrix. This matrix describes the position and rotation of one frame n relative to the
another frame m. The rotation matrix is a 3x3 matrix and the displacement vector
is a 3x1 vector. That would make created matrix not square which would prevent
multiplication of matrices, so we have to append the last row like this [8]:

Hm
n =

[
Rmn dmn

0 0 0 1

]
(3.9)

By multiplying homogenous transformation matrices for each frame pair we are able
to derive a homogenous transformation matrix between end-effector and base frame,
which contains d04 vector.

d4
0 =

fx(ai, θi)
fy(ai, θi)
fz(ai, θi)

 (3.10)

Functions in equation 3.10 represent end-effector 3D position(X, Y and Z-axis) based
on servo angle values.

3.4 Denavit-Hartenberg table method
Another faster approach to deriving forward kinematic equations is to create a Denavit-
Hartenberg table for a given kinematic model. This method was used in our project
and tested with a Robotic toolbox in Matlab. It consists of three main steps:

1. Creating kinematic diagram according to the four D-H (Denavit-Hartenberg)
rules.

2. Finding the D-H (Denavit-Hartenberg) parameter table 3.1, where:
• number of table’s rows is one less than number of kinematic model’s frames

16 Kinematics of Robotic Arm

• Table contains four columns. Two rotation columns and two displacement
columns.

3. Obtaining the homogenous transformation matrix.

Parameters definition
micro table contains four variables: θ and α are used for rotation, a and d are used for
displacement.

• Parameter θ represents the angle of rotation that is necessary to get xn−1 axis
to orientation of xn around zn− 1 axis.

• Parameter α is the angle that n− 1 frame needs to be rotated around xn axis to
get Zn−1 in the same orientation as Zn.

• Parameter a represents the distance between origins of n− 1 frame and n frame
along the xn axis.

• Parameter d is distance between xn−1 and xn axes along the Zn−1.

micro table for Arduino Braccio can be seen in table 3.1.

Joint i θi(deg) αi(deg) ai(cm) di(cm)
1 θ1 a1 0 pi

2
2 θ2 0 a2 0
3 θ3 0 a3 0
4 θ4 0 a4+a5 0

Table 3.1: D-H parameters table for Arduino Braccio robotic arm

After obtaining the D-H (Denavit-Hartenberg) table parameters, we get partial ho-
mogenous transformation matrices between individual frames using formula 3.11:

Hn
n−1 =

cos(θn) − sin(θn) cos(αn) sin(θn) sin(αn) rn cos(θn)
sin(θn) cos(θn) cos(αn) − cos(θn) sin(αn) rn sin(θn)

0 sin(αn) cos(αn) dn
0 0 0 1

 (3.11)

After containing all homogenous transformation matrices between all the adjacent
frames, the matrices are multiplied and the homogenous transformation matrix between
base and end-effector is obtained. If the procedure is correct the matrix from this
method should be identical to the one from the previous approach.

3.5 Inverse Kinematics 17

3.5 Inverse Kinematics
In order to control the manipulator we need to find respective joint variables that
would move end effector to desired position. The task of finding the joint variables
is an inverse problem to the one that the forward kinematics deals with, therefore
it is called Inverse Kinematics (IK). This procedure can be demonstrated on planar
two-link manipulator shown in Fig. 3.6a.

a1

a2

x

y

B Θ1

Θ2

(x,y)

(a) Two link manipulator

Θ1

Θ2
r α
β

(x,y)

Φ
(b) Kinematic model

Figure 3.6: Planar arm example model

Forward kinematics for the model in Fig. 3.6b can be determined by plane geometry
in equations 3.12 and 3.13.

x = l1cosθ1 + l2 cos(θ2 + θ1) (3.12)

y = l1cosθ1 + l2 cos(θ2 + θ1) (3.13)

For inverse kinematics we need to solve for θ1 and θ2, while x and y are known variables.
Standard method uses polar coordinates (r,φ) in Fig. 3.6b and θ2 is determined using
the law of cosines:

θ2 = π ± α (3.14)

α = cos−1(l
2
1 + l22 − r2

2l1l2
) (3.15)

θ2 has two possible values if α 6= 0. Second θ2 solution is on dashed lines in 2.6 b,
commonly called the "flip solution". Next step is to calculate φ (equation 3.16) and

18 Kinematics of Robotic Arm

solving for θ1 (equation 3.18)

φ = arctan 2(x, y) (3.16)

β = arctan 2(x, y) (3.17)

α = cos−1(r
2 + l21 − l22

2l1r
) (3.18)

Inverse kinematics is getting more difficult with the number of non zero parameters
of D-H (Denavit-Hartenberg) matrix. It is generally harder to solve than forward
kinematics and can be solved through different approaches which are separated into
two groups: closed-form and numerical solutions.

Closed-form Inverse Kinematics
Closed-form solutions, including the one in the example above, offers fast calculations
of joint angles considering end effector position. They are efficient and relatively easy
to implement, which is the reason why they are used in most industrial manipulators.[9]

Decoupling technique
Decoupling technique belongs to the one of the methods for obtaining inverse kinematic
equations. Let’s consider that homogenous transformation matrix Hn

0 in equation 3.19
is given as a function of joint variables θ1,θ2,θ3, ...,θn.[10]

H0
n = H0

1 (θ1)H1
2 (θ2)H2

3 (θ3)...Hn−1
n (θn) (3.19)

Manipulators are usually moved using joint variables, but manipulated object’s position
are expressed in global Cartesian coordinates, therefore kinematic transformation
between these two spaces(joint↔Cartesian) is necessary.[10] In order to solve the
inverse kinematics problem for 6 DOF (degrees of freedom) robot we’re going to take
4x4 homogenous transformation matrix from forward kinematics:

H6
0 = H1

0H
2
1H

3
2H

4
3H

5
4H

6
5 =

h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
0 0 0 1

 (3.20)

where first three rows contain trigonometric functions with six joint variables. As
mentioned before, upper left submatrix (3x3) is equation 3.20, is a rotation matrix,

3.5 Inverse Kinematics 19

there are only three independent elements because of orthogonality condition6. Only
six equations are independent(out of twelve). Since the trigonometric functions give
multiple solutions, solving these six equations will provide multiple robot configurations.
The problem of inverse kinematics can be decoupled into two parts: inverse orientation
and inverse position kinematics. This will allows us to break the initial problem into
two independent ones. Each of these problems has only three unknowns. Applying
this principle to a homogenous transformation matrix will decompose it into the
translational and rotational parts.[10]

H6
0 =

[
R6

0 d6
0

0 1

]
= D6

0R
6
0 =

[
I d6

0
0 1

]
=
[
R6

0 0
0 1

]
(3.21)

The translation matrix D6
0 represents end-effector’s position in reference to base frame

and contains only three manipulator variables. If we solve for D6
0 we’re going to get

manipulator’s position variables. The rotation matrix D6
0 represents end-effector’s

orientation in reference to base frame and involves three joint wrist variables. Solving
for R6

0 will get us manipulator’s orientation variables.[10]

Inverse Transformation Technique
Another possible method for solving inverse kinematics is the inverse transformation
technique. This method also starts from a homogenous transformation matrix in
equation 3.20 for the end effector in reference to the base frame.[10] Considering that
the individual transformation matrices in 3.22 are functions of joint variables.

H1
0 (θ1), H2

1 (θ2), H3
2 (θ3), H4

3 (θ4), H5
4 (θ5), H6

5 (θ6) (3.22)

We can solve these equation and gain joint variables.7

H6
1 = H1−1

0 H6
0 (3.23)

H6
2 = H2−1

1 H1−1
0 H6

0 (3.24)

H6
3 = H3−1

2 H2−1
1 H1−1

0 H6
0 (3.25)

H6
4 = H4−1

3 H3−1
2 H2−1

1 H1−1
0 H6

0 (3.26)

H6
5 = H5−1

4 H4−1
3 H3−1

2 H2−1
1 H1−1

0 H6
0 (3.27)

I = H6−1
5 H5−1

4 H4−1
3 H3−1

2 H2−1
1 H1−1

0 H6
0 (3.28)

This technique is sometimes also called the Pieper technique.[10]
6Orthogonality of matrix comes from the fact that it represents projection of an orthogonal

coordinate frame to another orthogonal coordinate frame.
7More details for this method as well as example can be found in [10].

20 Kinematics of Robotic Arm

3.6 Numerical Inverse Kinematics
The previous approaches derive a closed-form solution. Another method is to use
numerical, iterative algorithms. Numerical methods are mostly used when closed-form
solution doesn’t exist or in cases of redundant manipulators.

3.6.1 Jacobian Inverse Method
One of the most commonly used numerical methods for deriving inverse kinematics is
Jacobian Inverse method. Considering that xd is desired robot position and f(θ) is
forward kinematics function, the f(θ) gets expanded in a Taylor series.

f(θ) = f(θd) + J(qd)(q − qd) + h.o.t. (3.29)

In the next step the analytic Jacobian is taken and neglecting the higher-order terms
(h.o.t), the equation is transformed:

θd − θ = J−1(θ)(xd − f(θ)) (3.30)

Note that Jacobian is square and invertible. Solution for θd involves initial guess θ0
and formation of a successive estimates θ0, θ1, etc as:

θk = θk−1 + αkJ
−1(θk−1)(xd − f(θk−1)) k = 1, 2... (3.31)

where αk > 0 is step size, which is used to aid convergence. It can be constant or a
function of k, a scalar or diagonal matrix.[9]

Jacobian Transpose Method
Another numerical method that can be used for solving inverse kinematics is Jacobian
Transpose method. This method begins with defining of the optimization problem.

min
θ
F (θ) = min

θ

1
2(f(θ)− xd)T (f(θ)− xd) (3.32)

where xd is again desired configuration and f(θ) stands for forward kinematics equations.
The cost function F (θ) has gradient.

∇F (θ) = JT (θ)(f(θ)− xd) (3.33)

After that the gradient decent algorithm is applied.

θk = θk−1 − αk∇F (θk−1) = θk−1 − αkJT (θk−1)(f(θk−1 − xd))αk > 0 (3.34)

This method is more convenient since the Jacobian transpose is easier to calculate
than the Jacobian inverse and configuration singularities don’t occur. However the
convergence might be slower for this method.[9]

3.7 Micro electro-mechanical devices 21

3.7 Micro electro-mechanical devices
Micro electro-mechanical systems (MEMS) are one of the primary technologies that
involve sensor applications and belong to one of the most advanced sensor technology
created by humans. MEMS technology involves the miniaturization of electromechanical
and electrical systems. These devices are often contained inside smartphone sensors,
autopilot units, and automotive systems. The most frequently used are gyroscope,
accelerometer, magnetometer, Hall-effect sensor, barometric pressure sensors, etc. The
majority of MEMS have some kind of inertial feature. Sensors convert and transfer
the physical motion of the sensor’s body into the quantifiable signal quantity. Very
often the forces exerted to the sensor get converted to the scaled linear voltage output
with specific sensitivity. These sensors are usually tiny, cheap, and provide precise
performance. They are fabricated on a mass scale and polycrystalline silicon is used to
achieve a thickness of a micron. Low cost however means a trade-off between cost and
sensitivity.[12]

MEMS accelerometer
The structure of the accelerometer in Figure 3.7 contains core proof mass stretched
between an anchor and a dashpot. When the acceleration is applied to the sensor, the
spring stretches under the inertial mass position shift.[12]

Figure 3.7: Internal model of simple accelerometer[1]

22 Kinematics of Robotic Arm

The most common types contain mass suspended between two plates of a capacitor.
Applied acceleration results in charge density change and is later processed and
amplified by the electronic circuit. Another possible method utilizes a piezo-resistor to
monitor any stress applied to the string of inertial mass.[12]

MEMS gyroscope
The angular rate gyroscope in Figure 3.8 contains a moving frame(gimbal) that has a
vibrating mass in its core. The mass oscillates at a certain velocity inside of a fixed
reference plane. While this frame rotates, the Coriolis force is formed. This results in
the Coriolis acceleration that causes the mass’ displacement and spring’s tension is
measured and further processed into the final measurement.[12]

Figure 3.8: Internal model of gyroscope[2]

MEMS magnetometer
A magnetometer measures the direction and strength of a magnetic field. Most mag-
netometers measure magnetic fields using magnetoresistance and contain permalloys
that have variable resistance based on magnetic field changes. The magnetic field is
typically a combination of Earth’s magnetic field and magnetic fields generated by
objects in the sensor’s surroundings.[1]

3.8 Internal measurement units 23

3.8 Internal measurement units
Individual sensors are only able to measure along a single axis. In order to achieve a
three-dimensional measurement, an orthogonal cluster of three inertial sensors needs
to be created. This cluster is also known as the triad. This sensor set is usually
referred to as a 3-axis sensor, since the cluster provides measurement along three axes.
Similarly, a set of 3-axis gyroscope, 3-axis accelerometer, and 3-axis magnetometer
create a 9-axis IMU system. An IMU (Internal Measurement Unit) is a device capable
of monitoring and reporting specific angular rate and acceleration of an object it
is mounted on. IMU usually contains a gyroscope that measures angular rate, an
accelerometer measuring specific force or acceleration, and optionally a magnetometer
that measures the magnetic field that surrounds the system. There are four IMUs
performance-based categories: consumer/automotive, industrial, tactical, navigational.
These grades differ in price ranges and in-run bias stability of sensors. The incorporation
of a magnetometer and filter algorithms for establishing the orientation of the device
is called the Attitude and Heading Reference System (AHRS). In AHRS the sensor
fusion from accelerometer, gyroscope, and magnetometer is performed creating the
system’s orientation estimate, usually using a Kalman filter. Kalman filter calculates
the gyroscope’s drift on top of the attitude values. Gyroscope’s drift is then used
to determine raw gyroscope values. Applying the Kalman filter to each sensor, the
unbiased high-rate attitude values can be obtained. There are still some challenges that
create inaccurate orientation values. The most common ones are sustained dynamic
acceleration, external and internal magnetic field disturbances, and transient and AC
disturbances within accelerometer and magnetometer.[1]

IMU applications
IMUs are frequently utilized in navigational devices or as navigational equipment
components such as manned and unmanned aircrafts, GPS (Global Positioning Sys-
tem)(when a vehicle loses connection to the satellite), smartphones and tablets, sport
training applications, segways, and hoverboards.

24 Kinematics of Robotic Arm

Chapter 4

Handheld Controllers

In order to monitor hand movement in 3D space, we need some kind of device that would
measure and record hand position movements. This chapter deals with an overview of
the designed handheld controller and commercial controller. The individual part of
controllers is described in detail with their functionalities described.

4.1 DIY controller
The first approach to manipulator arm control was designed ergonomic handheld
wireless controller that continuously senses the heading of the user’s hand. According
to the user’s hand orientation, the manipulator’s base and rotational wrist servo motors
angles are controlled. The controller also has a built-in simple button that functions
as a gripper trigger. The controller’s casing was designed in Autodesk Fusion 360, a
program used for 3D printing and other technical applications. The main goal was to
create an ergonomic professional-looking controller that would fit any hand. The final
3D design in Fig. 4.1 was then exported in STL (STereoLithography) mesh format
into the slicer, where it was converted to G-code. The final format, which can be seen
in Fig. 4.2 was printed on a 3D printer from PLA (polylactic acid) material.

26 Handheld Controllers

Figure 4.1: Cross section of designed controller

Figure 4.2: 3D printed controller cross section

All the electronics are placed into the slidable slot(designed version in Fig. 4.3) for
easy access for maintenance. As we can see in Fig. 4.4 the electronics are placed in

4.1 DIY controller 27

order from left to right as follows: the OpenLog Artemis (OLA) board that monitors
the controller’s movement in 3D space and has two pins connected to the button for
hardware interrupt monitoring when the button is pressed; the lithium battery that
that powers the OLA board, therefore, securing the wireless nature of controller; and
the Xbee module that receives data from OLA board and sends it wirelessly to the
other paired Xbee.

Figure 4.3: Desing of the slot containing all the electronics

Figure 4.4: Physical 3D-printed slot

The closing lid in (Fig. 4.5) of the controller is attached to the controller’s body via
set of small neodymium magnets. This mechanism allows an easy access to controller’s
internal parts.

28 Handheld Controllers

Figure 4.5: Controller cover side

4.1 DIY controller 29

Lithium Ion Battery
Since the DYI controller is designed as a stand-alone device that contains active
electronics(microcontroller and Xbee module), it requires an independent power delivery
solution. For this purpose, we have chosen a compact Lithium Polymer (LiPo) battery
(Fig. 4.6). This battery has nominal voltage of 3.7V and 400 mAh capacity. The
battery is connected directly to microcontroller board that also contains a charging
circuit.

Figure 4.6: Lithium battery

Battery includes built-in protection against over voltage, over current, and minimum
voltage[13].

SparkFun OpenLog Artemis
The main electronic part of the handheld controller is SparkFun OLA (OpenLog
Artemis) shown in Fig. 4.7 (top view) and Fig. 4.8 (bottom view). This device
provides several important functions that makes the controller operational. The OLA

30 Handheld Controllers

board contains programmable microcontroller that can run a user defined program.
It also has integrated an IMU unit that is essential for sensing hand movements.
Additionally, the board has several exposed General Purpose Input/Output (GPIO)
that can be used to connect additional peripherals. In the case of DIY (Do It Yourself)
controller, this signal interface was used to connect an Xbee module and button to the
board.
The SparkFun OpenLog Artemis (OLA) is open source preprogrammed data logger
that automatically logs various data from a large number of sensors. OLA contains
Apollo 3ARM Cortex-M4F that runs at 48MHz which despite being powerful has low
power consumption. It comes with built-in Bluetooth Low Energy (BLE) wireless
communication that transmits data up to 70 m. Every OLA board has built-in an
Internal Measurement Unit(IMU) that measures and logs data from a triple-axis
accelerometer, gyroscope and magnetometer. OLA uses ICM-20948, the world’s lowest
power 9-axis motion tracking device, that can log data at nearly 250Hz frequency.[1]

Figure 4.7: IMU board parts top overview

4.1 DIY controller 31

Figure 4.8: IMU board parts bottom overview

Device can output various values, such as:

1. linear acceleration
2. angular rotation
3. velocity
4. magnetic field vectors

This data can be used to determine position and orientation of device. First step is
to determine euler angles, also know as roll, pitch and yaw, using attitude heading
reference systems (AHRS). There are various power-related connectors and pins that
all have regulated voltage down to 3.3V:

32 Handheld Controllers

• USB-C
• Lipo Battery connector
• 3V3 Pin
• VIN

USB-C port can be used as a serial communication port for connection to the computer
and board programming. This can also be used for connecting the power supply to
the board or charging the Lipo battery. The battery connector enables "on the move"
data logging and has a built-in charger. OLA comes with a built-in temperature
sensor. In addition to a pair of ICs, the board contains a microSD card socket, LiPo
battery charging port, power-control switch, and a host of I/O breakouts for project
expansion. It comes preprogrammed with example firmware and an Arduino-compatible
bootloader, which enables the firmware customization and code upload over a USB
connection[1]. The controller has additionally attached one push button that was
reused from an old computer mouse and works as an on/off switch as well as a robotic
claw close trigger. It is connected to the OLA board that has designated pins, one as
input with software pull-up resistor the other as software ground. We have encountered
several implementation issues which are described in detail in the discussion chapter.

4.2 JoyC Omni-directional Controller
The second approach has been proposed and tested with JoyC controller(Fig. 4.9)
which would provide not only wireless but also truly remote control of manipulator
through Wi-Fi. JoyC is a module for the M5StickC IoT (Internet of things) board.
JoyC controller supports the two-handed operation and is intuitive to use. It comes
with an STM32F030F4 control chip with I2C (Inter-Integrated Circuit) communication
and host M5StickC for data transmission. The control module comes with two joysticks
and it’s powered by a rechargeable lithium battery with a 700mAh capacity.

4.2 JoyC Omni-directional Controller 33

Figure 4.9: JoyC controller

Each joystick moves in two axes to both sides and uses potentiometers to provide
analog values of displacement. These values are mapped to an analog range of 0-200
with the 100 value in the middle and therefore providing omnidirectional movement.
Additionally, both joysticks double up as buttons.[14] To ensure the communication of
JoyC controller with microcontroller of manipulator and Xbee module is used. This
module is attached to the JoyC via Grove connector port(Fig. 4.9).

M5StickC ESP32-PICO Mini belongs to the M5Stack microcontroller series. It is
portable, user-friendly, and comes with open-source software. M5StickC has integrated
ESP32 which is a low-powered chip containing 32-bit dual-core microprocessor with a
240MHz clock rate and 520KB SRAM. This chip supports Wi-Fi and dual-mode Blue-
tooth. There are three hardware serial ports on the ESP32, one for programming the
other two are free. Chip also has manny peripherals namely: capacitive touch, ADCs
(analog-to-digital converter), DACs (digital-to-analog converter), I2C (Inter-Integrated
Circuit), UART (Universal Asynchronous Receiver/Transmitter), SPI (Serial Periph-
eral Interface), I2S (Integrated Inter-IC Sound), RMII (Reduced Media-Independent
Interface), PWM (pulse width modulation) and many other. M5StickC also contains
a built-in 6-axis IMU, infrared transmitter, microphone, button, LCD (Liquid Crystal
Display), and built-in Lipo battery.[15]

34 Handheld Controllers

Functionality
The detailed functionality of specific JoyC controller parts is shown in Fig. 4.10 The
left-hand side joystick controls vertical position (Z-axis coordinate) of imaginary point
in 2D space (Z and X-axis), which is represented by vertical left-hand side joystick
movement and gripper opening/closing , which is controlled by horizontal left-hand side
joystick movement. The right-hand side joystick controls position of imaginary point
in X for horizontal right-hand side joystick movement. The base rotates imaginary
point around Z-axis, base rotation is represented by vertical right-hand side joystick
movement. The controllers roll values control rotation of robotic arm wrist and pitch
values control grippers attack angles. The right-hand joystick button is used to return
arm to it’s home position, the left-hand one resets the gripper and the last button
starts the controller → arm communications.

x

z

(xE, zE)

end-effector
position in
2D plane

2D plane rotates
with base

attack
angle

Rotating
2D plane

ϴs

ϴe

ϴw
computed by

inverse
kinematics

wrist
rotation

roll

pitch

X-coordinate

base/plane rotation

Z-coordinate

gripper control

Figure 4.10: JoyC functionality visualisation in reference to the robotic arm control

The servo angles θs (shoulder), θe (elbow) and θw (wrist-vertical) move end effector
to the desired X and Z coordinates, these servo angles are calculated using inverse
kinematics solver FABRIK (The Forward And Backward Reaching Inverse Kinematics).
For code simplification and more interactive control, the simplified kinematic model
has been used. The model contains only three links, the base joint and the vertical
wrist joint are neglected since they are controlled directly by user.

4.3 Wireless communication module 35

4.3 Wireless communication module
Various wireless communication technologies are used in projects that require wireless
data transfer between its components, namely: WLAN (Wireless Local Area Network),
Bluetooth, Zigbee, etc. In this project, we are using Xbee modules that use Zigbee
communication protocol. Zigbee operates on low data rates (10-115.2kps) and has
low power consumption. The protocol is very reliable and secure and offers a suitable
network topology for control applications and multisensor monitoring.[16]

4.3.1 Xbee
XBee modules manufactured by Digi International that support peer-to-peer as well
as multi-point network communication with data rates up to 250 kbits/s.[17] Modules
cannot edit sent data, only transfer it. However, serial interface communication with
other devices is possible.
The communication between two, such as computers or microcontrollers, can be
described as follows. The first module takes data sent through the serial input,transmits
it through the air to the other side where receiving Xbee module listens for any data
transmission on the network. After successful reception, the module writes the data
into its serial output. Whether connected to PC or microcontroller, Xbee can be
configured and used for data transfer using serial interface[3]. Configuration is a vital
step for enabling communication between Xbee modules. Modules are configured using
XCTU software by setting DH and DL parameters (destination high and low addresses)
of each module that matches the SH and SL parameters (serial low and high numbers)
of the other module[18]. There are two types of data transmission as can be seen in
Figure 4.11 that take place in a module[3]:

1. Wireless communication: It takes place between Xbee modules. In order to have
working communication we need to have modules part of the same network that
operate on the same radio frequency. Multiple modules can communicate in such
network as long as they meet such requirements.

2. Serial communication: Communication between the Xbee module and the intelli-
gent device connected to it through the serial interface.

4.3.2 Xbee operating modes
The operating mode determines how the host device communicates with an Xbee
module through the serial interface. There are two operating modes supported by
Xbee:

36 Handheld Controllers

Figure 4.11: Types of data transmission in an XBee communication process[3]

• transparent - the module passes information in the same way as it receives it.
The serial data from an intelligent device, received by the radio module, is sent
wirelessly to a remote Xbee module. The other module receives the data and
sends it out through the serial port exactly as it was received.

• API (Application Programming Interface) mode is an alternative to transparent
mode. When using API mode, a protocol determines the way information is
transferred. Data is sent in packets (called API frames). API mode allows us to
form larger networks and is more suitable for creating sensor networks to collect
data from multiple locations[19].

Chapter 5

Robotic Arm Hardware in Detail

This chapter deals with hardware parts of the robotic arm, their technical description,
and how they operate. The robotic arm contains servo motors that act as actuators
and carry out all of the arms movement (these are the joints from a kinematic point of
view), a Braccio shield that acts as an interface for microcontroller and contains six
outputs for servo control, and microcontroller Romeo V2 on which the control code
runs.

5.1 Servo motors
The arm itself contains 6 servo motors that handle rotations or movement at each
given place. Since the last servo controls the opening and closing of the gripper we’re
considering the Braccio manipulator to have five degrees of freedom in terms of end
effector position.

Term servo can be used to describe various different machines. Servo is basically any
system containing a motor with built-in position feedback control. Servos can be found
in:

• heavy machinery
• power steering in vehicles
• robotics
• wide variety of electronics

5.1.1 Servo operation principle
Standard servo motor (Fig. 5.1) contains three main components:

38 Robotic Arm Hardware in Detail

• DC/AC motor
• controller circuit
• potentiometer(or other feedback mechanism)

Figure 5.1: Cross section of standard servo motor[4]

The motor is attached to the gearbox and drives a shaft. The control circuit interprets
position command sent from the controller, and the potentiometer monitors the output
shaft’s position which is feedback for the controller. Most of the standard servo motors
are powered and controlled through a standard three-pin connector. The color coding
varies between brands but the pins’ position is mostly universal. Through these three
wires, the servo can be powered and the output shaft’s direction, speed, and position
can be controlled.[4]

Servo control
Servo is controlled by signals that are precisely timed. Standard servo motors are
controller by pulses in 20ms time periods where position is determined by pulse width.
A control signal shaped like this is often called PWM. Controller inside of servo takes
inputs from other hardware components such as potentiometer, joystick or sensor
feedback and sets position command for servo. Other control options are PWM-capable
pins on the microcontroller that send signals straight to the servo.[4]

Powering servo
Input voltage for servos varies depending on it’s size and torque output but servos,that
are designed for low-torque and DIY applications, run on 5V. The current draw when

5.1 Servo motors 39

servo is moving with attached load is very important. The majority of servos when
unloaded pull around 10mA, however larger servos with load are able to pull more
than Ampere.[4]

Servo types
A standard (closed-loop) servo (Fig. 5.2) have range of movement from 90 to 180
degrees (or greater/lesser range). Standard servo sends feedback over the control signal
wire to the controller for position monitoring. This allows for precise servo positioning
with the correct length pulse send from controller.

Figure 5.2: Standard servo movement range

Continuous rotation (open-loop) servos (Fig. 5.3) have full 360 degrees movement
range, but position is not controlled through generated control signals, only direction
and speed. There’s no position feedback, therefore they aren’t suitable for applications
that call for movement between exact rotation arc’s points.[4]

40 Robotic Arm Hardware in Detail

Figure 5.3: Servo with continuous rotation movement range

Driving a servo
There are multiple ways to control servo. Two main ones are using a direct servo
controller or PWM pin on the microcontroller. If we want to control the servo through
a microcontroller we need to use a circuit board that has at least one PWM-capable pin.
Using controller, of course, requires intermediate programming knowledge in Arduino,
Python, or other programming languages suitable for microcontroller boards. Using a
microcontroller is suitable when we want to bind servo movement to a specific event
such as a change in sensor data. One drawback is that without a proper code there’s no
direct way to control the servo unless we convert the microcontroller to the servo driver.
Using a servo driver: A dedicated driver for servo usually comes pre-programmed with
a microcontroller for interpreting external inputs such as a button, potentiometer,
or received serial data. Servo driver enables direct user interaction with direction,
position, and speed of servo motor and is suitable for projects that require direct
position control.[4]

5.2 Braccio shield 41

5.2 Braccio shield
Shield enables direct servo control from microcontroller and is powered by 5V. Shield
sit directly above the microcontroller and acts as direct electrical control interface. It
extends all the pins from microcontroller and has similar form as standard Arduino
shields, therefore it can be extended by various other shields (Fig. 5.4)1.

Figure 5.4: Braccio shield demonstration of stack-ability with marked outputs for
servo control

5.3 RoMeo V2 board
Romeo V2 board (Fig. 5.5) is alternative to Arduino Uno that comes with the Braccio
shield mainly because it has two hardware serial communication lines. Arduino Uno
has only one hardware serial line. It’s possible to use software serial communication and
assign specific pins for it but it’s not very reliable. RoMeo V2 is Arduino compatible
microcontroller suitable for robotic applications. Board is supported by numerous open
source codes and can be expanded by various extension shields of Arduino form factor.
Board comes with integrated two-way DC motor driver and Xbee socket. RoMeo V2
is equipped with Atmel ATmega32u4 chip and an Arduino Leonardo bootloader. It
can be powered through USB (Universal Serial Bus) port or via power connector (6-23
Vdc). The board provides 20 GPIO pins, of which 12 have analog input capability and

1Ethernet shield is used only for stack-ability demonstration. It isn’t used in project.

42 Robotic Arm Hardware in Detail

7 can be configured as 8-bit PWM outputs. There are various interfaces supported on
the board, namely: SPI, I2C/TWI and UART.

Figure 5.5: Romeo V2 pinout

5.4 Description of Operation 43

5.4 Description of Operation
DIY controller
Implementation of arm’s control for DIY controller required the 9-DOF AHRS library,
accelerometer and gyroscope calibration, and gravity compensation for roll, pitch
and yaw values. The user holds the on/off the button and starts the roll, pitch,
yaw, and button state data reading and serial communication. OLA board reads
accelerometer and gyroscope data, these values are scaled and roll, pitch and yaw
are calculated. Further, the gravity compensation is calculated. Heading and button
state values are forwarded to the Xbee module. Xbee sends data to another paired
Xbee module. On the manipulator side, Romeo V2 listens for any data from serial
communication. The servo motors are controlled according to heading values and the
gripper is opened/closed according to the current button state. Control command is
sent through the Braccio shield to the manipulator. Data flow can is visualised for
better understanding in Fig.5.6 and Fig. 5.7.

User side

Handheld controller

roll,pitch,yaw
button status

Xbee 1
hardware
serial comunication

wireless
comunication

roll,pitch,yaw
button status

Manipulator side
Xbee 2 Romeo V2

Braccio shield
servo positions

command

roll,pitch,yaw
button status

Figure 5.6: General data flow for DYI controller and manipulator system

44 Robotic Arm Hardware in Detail

User side

ICM-20948
DIY
controller

roll,pitch,yaw
button status

Accelerometer

Gyroscope 3-axis
angular velocity

3-axis
accelerations

roll, pitch,yaw
(with gravitational

acceleration influence)

AHRS

gravity
compensation

roll, pitch,yaw
(without gravitational
acceleration influence)

Button
button status

Figure 5.7: Diagram of some of the OLA boards internal parts and data flow within
them

5.4 Description of Operation 45

JoyC controller
In the case of JoyC controller, all the necessary calculations are carried out at the
controller side and only the servo control message is sent to the manipulator. Every
movement of vertical joystick movement (right or left side) results in a relative increment
in the X or Z axis and it is added to desired position of the point that represents the
end effector of the arm. The absolute end effector position at the beginning matches
the arm’s home position. The horizontal movement of the right-hand side joystick
controls the rotation of the arm’s base. The values in the X and Z axes are used to
calculate servo angles using Fabrik solver[20] which we have implemented in the code.
These servo motor values are constrained so they wouldn’t exceed the physical limits
of servos. The horizontal left-hand side joystick servers as gripper opening/closing
control. Integrated IMU has ahrs included and transforms raw sensor data to roll and
pitch values, we are using roll for rotational movement of robotic wrist and pitch for
"attack angle". The left button serves as manipulator position reset and sends the
manipulator back to the home position, the right one resets the gripper to the initial
position.

Inverse kinematics implementation
The Forward And Backward Reaching Inverse Kinematics (FABRIK) solver[11] provides
a fast solution based on iterative calculations. Each joint position is found by locating
a point on a line. Solver supports all chain classes, has an option for fixed end-effector
orientation, and can be applied to highly complex systems. The designed algorithm is
efficient whether applied to simple or complex problems while requiring fewer iteration
steps and shorter processing time compared to other sophisticated methods. The
FABRIK algorithm can be found in[20].

Solver has been implemented directly into the JoyC controller’s microcontroller with
consideration of a simplified kinematic model with only three links.

46 Robotic Arm Hardware in Detail

User side

JoyC controller

servo control

Xbee 1
hardware
serial comunication

wireless
comunication

servo control

Manipulator side
Xbee 2 Romeo V2

servo
control

Braccio shield
servo positions

command

Figure 5.8: General data flow for JoyC controller and manipulator system

5.4 Description of Operation 47

User side

M5StickC
JoyC
controller

Accelerometer

Gyroscope 3-axis
angular velocity

3-axis
accelerations

roll, pitch

AHRS

Joysticks

FABRIK

raw data

absolute Y,Z
values

servo values

base servo
value

gripper
value

Increment
logic

Figure 5.9: Internal parts and data flow diagram of JoyC controller

48 Robotic Arm Hardware in Detail

Chapter 6
Demonstration of functionality on a

pick and place task

We can verify whether our kinematic equations are correct by demonstrating some
simple movements on the physical robotic arm. We are going to calculate these
equations with selected series of different theta values which will give us X, Y, and
Z-axis values for the position of the end-effector. Next, we are going to set servo
motor positions of the physical arm to the same theta values. If the position of the
end-effector in the physical arm matches the values from kinematic equations the
equation was assembled correctly. The X, Y, and Z coordinate values need to be
measured by ruler or some other measuring tool, or the arm needs to be placed into
the environment with graph paper surfaces and values need to be measured manually.
The more practical approach is to use a robotic toolbox[11] in Matlab. That provides
interactive kinematic model visualization that changes θ values according to user’s
inputs and outputs the X, Y, and Z-axis end effector positions values. This model
needs to be first also tested by comparing it with the physical arm. After testing, the
model replaces the physical arm for all the other testing such as inverse kinematic
equations testing. This virtual model is more practical since it immediately outputs
end effector position values and doesn’t require the physical arm.1 The process itself
needs to be tested for different end-effector positions. In figures below is depicted the
"pick and place" task for inverse kinematic and overall functionality test of JoyC ↔
Braccio robotic arm system. The process reqiured this steps:

• picking up and placing of an object with arm using JoyC controller (Fig. 6.3)

• outputting data during this tasks to serial line, namely: raw joystick data, roll
and pitch values from the gyroscope, X and Z-axis position values of end effector,
and joint angle values calculated using inverse kinematics

• saving the data in CSV (Comma-separated values) format into the file
1Considering the restricted access to university due to the world pandemic.

50 Demonstration of functionality on a pick and place task

• loading the data into Matlab and plotting the graphs (Fig. 6.2)

• movement recreation with the model in the Robotic toolbox at specific selected
times (Fig. 6.1)

• comparing the results (It’s important to note that the real-life arm and its
model are depicted from different angles and the model has Y-axis converted.
Therefore they might not look the same even though they are performing the
same movement.)

51

Figure 6.1: Robotic toolbox visualisation for simple pick and place task

52 Demonstration of functionality on a pick and place task

-1

0

1
Normalized joystick inputs

In
p
u
t

0

20

40

A
n
g
le

 (
d
eg

)

140

160

180

200

D
is

ta
n
ce

 (
m

m
)

0

20

40

60

D
is

ta
n
ce

 (
m

m
)

-50

0

A
n
g
le

 (
d
eg

)

100

120

140

A
n
g
le

 (
d
eg

)

-80

-60

A
n
g
le

 (
d
eg

)

0 5 10 15 20 25
time (seconds)

-100

-80

-60

A
n
g
le

 (
d
eg

)

1 2 3 4 5 6

0 5 10 15 20 25

base rot. point X gripper point Z

Controller's pitch (end effector's attack angle) and roll (wrist rotation)

0 5 10 15 20 25

X-coordinate of manipulator's end effector

0 5 10 15 20 25

Z-coordinate of manipulator's end effector

0 5 10 15 20 25

Base rotation angle

0 5 10 15 20 25

Shouler joint rotation angle

0 5 10 15 20 25
80

Elbow joint rotation angle

0 5 10 15 20 25
-100

Wrist joint rotation angle

-40

-100

-20

pitch roll

Figure 6.2: Graph of parameter values for pick and place task over time

53

1 2

3 4

5 6

Figure 6.3: The arm position for pick and place task in selected times

54 Demonstration of functionality on a pick and place task

Chapter 7

Conclusion and Discussion

Conclusion
The kinematic diagram for Arduino Braccio has been assembled and the forward and
inverse kinematics for Braccio robotic arm has been derived. The DIY controller was
designed, 3D printed, and assembled. Its internal electronics have been configured
and calibrated, and AHRS code has been implemented. In the next step, the inverse
kinematics has been implemented to the commercial controller and to the Romeo
V2 board. Both controllers have implemented the mechatronic system. For both
controllers, the wireless communication has been configured. In the last step, the
system functionality and kinematic equations have been tested with a demonstration
of "pick and place" tasks which has proven to be successful.

Discussion
We have encountered several implementation issues. The first issue was with heading
calculations within the handheld controller. Roll and pitch are easily calculated but
yawn can be accurately determined only by using magnetometer data. In order to get
reliable magnetometer data, two kinds of calibration need to be performed. The first,
standard one is to compensate Earth’s magnetic field from sensor data also known as
hard iron errors and can be affected by nearby electronics and metal objects.

The second, advanced magnetometer calibration compensates hard and soft iron
errors from sensor data output but currently available GUI (Graphical User Interface)
interfaces aren’t compatible with the board we are using. Since we are using strong
magnets as a closing mechanism the magnetometer data is rather unreliable and
therefore cannot be used.

The second one was with position calculation. Accelerometer also requires calibration
and gravitational force compensation which requires accurate sensor orientation esti-

56 Conclusion and Discussion

mate. Since the orientation can never be estimated perfectly some percentage of normal
forces won’t be removed and will be mistaken for physical acceleration. In order to
calculate position, we need to integrate acceleration twice which results in even bigger
errors and these positions drift rapidly over time. Apparently, all low-cost sensors
(below a hundred dollars) will have an error of such magnitude that accelerometer-based
estimates of velocity and position will be useless in most applications. An angle error
of sensor orientation even as small as one degree causes errors of 1.7m/s in velocity
and 17.1meters after only 10seconds and builds up over time to 62kilometres after
10minutes.[21] This issue can be solved by applying advanced compensation algorithms
to the sensor values.

Another problem arose with inverse kinematics implementing not only is gets gradually
difficult to adjust calculations to match frames from control device through a kinematic
model of given inverse kinematics method to the manipulator, but another issue is to
find and implement library or solver that would:

• be compatible with used microcontroller board

• provide solutions that are reliable and feasible in our work frame

This problem can be overcomed by either simplifying the kinematic model or by using
more complex inverse kinematic methods.

The last issues was connected to the fact that the arm, controller and solver had each
differently oriented frames. In order to achieve correct results, the frame unification
during implementing had to be performed.

Bibliography

[1] “Openlog artemis hookup guide.” https://learn.sparkfun.com/tutorials/
openlog-artemis-hookup-guide. Accessed: 12-01-2021.

[2] “What is a gyroscope and how does it work?.”
https://www.youngwonks.com/blog/What-is-a-Gyroscope-and-How-Does-
It-Work.

[3] “How xbee devices communicate.” https://www.digi.com/resources/
documentation/Digidocs/90001942-13/concepts/c_how_xbees_
communicate.htm?tocpath=How%20XBee%20devices%20work%7C_____1. Ac-
cessed: 12-01-2021.

[4] “Servos explained.” https://www.sparkfun.com/servos. Accessed: 03-05-2021.

[5] R. N. Jazar, Theory of Applied Robotics: Kinematics, Dynamics, and Control.
Springer Science and Business Media, 2010.

[6] L. I. Slutski, Remote manipulation systems: quality evaluation and improvement,
vol. 17. Kluwer Academic, 1998.

[7] P. C. Jean Vertut, Teleoperation and Robotics: Evolution and development Robot
technology – Volume 3, pages =.

[8] A. Sodemann, “Robotics 1 2017.” https://www.youtube.com/watch?v=
pLXoDRctwRg&list=PLT_0lwItn0sDBE98BsbaZezflB96ws12b, note = Accessed:
12-01-2020.

[9] M. V. Mark W. Spong, Seth Hutchinson, Robot Modeling and Control, year =.

[10] R. M. Murray, A Mathematical Introduction to Robotic Manipulation, year =.

[11] “Matlab robotic toolbox.” https://www.sciencedirect.com/science/article/pii/S1524070311000178.

https://learn.sparkfun.com/tutorials/openlog-artemis-hookup-guide
https://learn.sparkfun.com/tutorials/openlog-artemis-hookup-guide
https://www.digi.com/resources/documentation/Digidocs/90001942-13/concepts/c_how_xbees_communicate.htm?tocpath=How%20XBee%20devices%20work%7C_____1
https://www.digi.com/resources/documentation/Digidocs/90001942-13/concepts/c_how_xbees_communicate.htm?tocpath=How%20XBee%20devices%20work%7C_____1
https://www.digi.com/resources/documentation/Digidocs/90001942-13/concepts/c_how_xbees_communicate.htm?tocpath=How%20XBee%20devices%20work%7C_____1
https://www.sparkfun.com/servos
https://www.youtube.com/watch?v=pLXoDRctwRg&list=PLT_0lwItn0sDBE98BsbaZezflB96ws12b
https://www.youtube.com/watch?v=pLXoDRctwRg&list=PLT_0lwItn0sDBE98BsbaZezflB96ws12b

58 BIBLIOGRAPHY

[12] D. Bensky, Short-range Wireless Communication: Fundamentals of RF System
Design and Application [Communications Engineering Series]. Communications
Engineering, Independently Published, 2020.

[13] “Polymer lithium ion battery - 400mah (sparkfun prt-10718).”
https://rlx.sk/sk/battery-lipo-li-po-polymer-lithium-ion/
3305-polymer-lithium-ion-battery-400mah-sparkfun-prt-10718.html.
Accessed: 12-01-2021.

[14] “Joyc.” https://docs.m5stack.com/en/hat/hat-joyc?id=easyloader.

[15] “M5stickc esp32-pico mini iot development kit.”
https://shop.m5stack.com/products/stick-c.

[16] N. D. Amartya Mukherjee, Ayan Kumar Panja, A Beginner’s Guide to Data
Agglomeration and Intelligent Sensing. Elsevier, 2020.

[17] “Xbee datasheet.” https://www.sparkfun.com/datasheets/Wireless/Zigbee/
XBee-Datasheet.pdf. Accessed: 12-01-2021.

[18] “Configure the xbee modules.” https://www.digi.com/resources/
documentation/Digidocs/90001456-13/tasks/t_wk_configure_xbees.htm.
Accessed: 12-01-2021.

[19] “Operating modes.” https://www.digi.com/resources/documentation/
Digidocs/90001456-13/concepts/c_transparent_and_api_mode.htm?
TocPath=How%20XBee%20devices%20work%7CWireless%20communication%
7CSerial%20communication%7C_____1. Accessed: 12-01-2021.

[20] A. Aristidou and J. Lasenby, “Fabrik: A fast, iterative solver for the inverse
kinematics problem,” Graphical Models, vol. 73, no. 5, pp. 243–260, 2011.

[21] “Using accelerometers to estimate position and velocity.” http://www.
chrobotics.com/library/accel-position-velocity. Accessed: 25-04-2021.

https://rlx.sk/sk/battery-lipo-li-po-polymer-lithium-ion/3305-polymer-lithium-ion-battery-400mah-sparkfun-prt-10718.html
https://rlx.sk/sk/battery-lipo-li-po-polymer-lithium-ion/3305-polymer-lithium-ion-battery-400mah-sparkfun-prt-10718.html
https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf
https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf
https://www.digi.com/resources/documentation/Digidocs/90001456-13/tasks/t_wk_configure_xbees.htm
https://www.digi.com/resources/documentation/Digidocs/90001456-13/tasks/t_wk_configure_xbees.htm
https://www.digi.com/resources/documentation/Digidocs/90001456-13/concepts/c_transparent_and_api_mode.htm?TocPath=How%20XBee%20devices%20work%7CWireless%20communication%7CSerial%20communication%7C_____1
https://www.digi.com/resources/documentation/Digidocs/90001456-13/concepts/c_transparent_and_api_mode.htm?TocPath=How%20XBee%20devices%20work%7CWireless%20communication%7CSerial%20communication%7C_____1
https://www.digi.com/resources/documentation/Digidocs/90001456-13/concepts/c_transparent_and_api_mode.htm?TocPath=How%20XBee%20devices%20work%7CWireless%20communication%7CSerial%20communication%7C_____1
https://www.digi.com/resources/documentation/Digidocs/90001456-13/concepts/c_transparent_and_api_mode.htm?TocPath=How%20XBee%20devices%20work%7CWireless%20communication%7CSerial%20communication%7C_____1
http://www.chrobotics.com/library/accel-position-velocity
http://www.chrobotics.com/library/accel-position-velocity

	Acknowledgment
	Abstract
	Introduction
	Applications
	Motivation

	Goals of the Thesis
	Kinematics of Robotic Arm
	General symbolism of manipulator models
	Robotic Arm
	Kinematic diagram
	Denavit-Hartenberg table method
	Inverse Kinematics
	Numerical Inverse Kinematics
	Jacobian Inverse Method

	Micro electro-mechanical devices
	Internal measurement units

	Handheld Controllers
	DIY controller
	JoyC Omni-directional Controller
	Wireless communication module
	Xbee
	Xbee operating modes

	Robotic Arm Hardware in Detail
	Servo motors
	Servo operation principle

	Braccio shield
	RoMeo V2 board
	Description of Operation

	Demonstration of functionality on a pick and place task
	Conclusion and Discussion
	Bibliography

