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Inferential (or soft) sensors infer rarely measured or completely unmeasured variables. The main challenge in designing an inferential sensor is
to select a correct structure represented by sensor input variables. This work is focused on the design of an inferential sensor for an industrial
depropanizer column. We study the effectiveness of various subset selection (SS) methods that consider different model-overfitting criteria.
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Fig. 1: Online process monitoring of a depropanizer column (part of the FCC unit) using an inferential sensor.
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Fig. 2: Principle of subset selection.
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Fig. 3: Inferential sensors design on time series data.

Conclusions

We analyzed the effectiveness of optimal subset selection to design an inferential sensor. The structure of the inferential sensor suggested by S5 with AICc.
BIC and cross-validation is the same. The results indicate accuracy improvement of these inferential sensors compared to Ref sensor by around 15%. Our
further research confirms that SS suggests a less complex inferential sensor than PCA. The performance of 5SS appears to be comparable to LASSO.
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