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Abstract: This paper deals with dynamic optimisation of processes. It consists in
searching for optimal profiles of decision variables which optimise a given performance
index under specified constraints. The method of orthogonal collocations on finite
elements has been developed and implemented within MATLAB environment. The
original optimisation problems are then converted into NLP problems which are solved
using appropriate NLP solvers, i.e. SQP methods. The gradients of the performance
index as well as constraints needed in the NLP solver are analytically computed using
formal calculus. Several applications are successfully tested.
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1. INTRODUCTION

The objective of dynamic optimisation is to de-
termine, in open loop control, a set of decision
variable time profiles (pressure, temperature, flow
rate, current, heat duty, . . . ) for a dynamic system
that optimise a given performance index (or cost
functional or optimisation criterion)(cost, time,
energy, selectivity, . . . ) subject to specified con-
straints (safety, environmental and operating con-
straints). Optimal control refers to the determina-
tion of the best time-varying profiles in closed loop
control.

The numerical methods used for the solution of
dynamic optimisation problems may be grouped
into two categories: indirect and direct methods.
In this work only direct methods are considered.
In this category, there are two strategies: sequen-
tial method and simultaneous method. The se-

quential strategy, often called control vector pa-
rameterisation (CVP), consists in an approxima-
tion of the control trajectory by a function of only
a few parameters and leaving the state equations
in the form of the original differential algebraic
equation (DAE) system (Goh and Teo, 1988). In
the simultaneous strategy, both the control and
state variables are discretised using polynomials
(e.g., Lagrange polynomials) of which the coef-
ficient become the decision variables in a much
larger NLP problem (Cuthrell and Biegler, 1987).

In this paper, the method of orthogonal colloca-
tion is developed. Moreover, the finite elements
are used in order to handle sharp variations or
control discontinuities.

In the next section we review the general NLP
formulation for optimal control problems using
orthogonal collocation on finite elements method,
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which is implemented in the dynamic optimisation
package (dynopt). In section 3, we present some
examples which are then solved and discussed in
section 4.

The main aim of this work that is to implement
a user friendly interface to dynamic optimisation
based on orthogonal collocation within the MAT-
LAB environment.

2. NLP FORMULATION PROBLEM

In this paper, it is assumed that the dynamic
model can be described by a set of ordinary
differential equations (ODE).

Consider the following general control problem for
t ∈ [a, b]

min
u(t)

{Ψ[x(b)] +

∫ b

a

G[x(t), u(t)]dt} (1)

such that

ẋ(t) = F [x(t), u(t), t]

x(a) = x0

h[u(t), x(t)] = 0

g[u(t), x(t)] ≤ 0

x(t)L ≤ x(t) ≤ x(t)U

u(t)L ≤ u(t) ≤ u(t)U

where

Ψ[x(b)] – component of objective function evalu-
ated at final conditions,

∫ b

a
G[x(t), u(t)]dt – component of objective func-

tion over a period of time,
h – equality design constraint vector,
g – inequality design constraint vector,
x(t) – state profile vector,
u(t) – control profile vector,
x0 – initial conditions for state vector,
x(t)L, x(t)U – state profile bounds,
u(t)L, u(t)U – control profile bounds.

In order to derive the NLP problem the dif-
ferential equations are converted into algebraic
equations using collocations on finite elements.
Residual equations are then formed and solved
as a set of algebraic equations. These residuals
are evaluated at the shifted roots of the Legen-
dre polynomial. The procedure is then following:
Consider the initial-value problem over a finite
element i with time t ∈ [ζi, ζi+1]:

ẋ = F [t, x(t), u(t)] t ∈ [a, b] (2)

The solution is approximated by Lagrange poly-
nomials over the element i, ζi ≤ t ≤ ζi+1 as follows:

xK+1(t) =

K
∑

j=0

xijφj(t); φj(t) =

K
∏

k=0,j

(t − tik)

(tij − tik)

(3)

in element i i = 1, . . . , NE

uK(t) =

K
∑

j=1

uijθj(t); θj(t) =

K
∏

k=1,j

(t − tik)

(tij − tik)
(4)

in element i i = 1, . . . , NE

ζi−1 ζi ζi+1 ζi+2

∆ζi

xi−1,0xi−1,1 xi−1,2xi,0 xi,1 xi,2 xi+1,0xi+1,1 xi+1,2xi+2,0

ui−1,1 ui−1,2 ui,1 ui,2 ui+1,1 ui+1,2

Fig. 1. Finite-element collocation discretisation
for state profiles, control profiles and element
lengths

Here k = 0, j means that k starts from 0 and
k 6= j, NE is the number of elements. Also xK+1(t)
is a (K + 1)th order (degree < K + 1) piecewise
polynomial and uK(t) is Kth order (degree < K)
piecewise polynomial. The difference in orders
is due to the existence of the initial conditions
for x(t), for each element i. Also, the Lagrange
polynomial has the desirable property that (for
xK+1(t), for example)

xK+1(tij ) = xij (5)

which is due to the Lagrange condition φk(tj) =

δkj , where δkj is the Kronecker delta. This poly-
nomial form allows direct bounding of the states
and controls, i.e., path constraints can be imposed
on the problem formulation.

By using K points of orthogonal collocations on
finite elements as shown in Figure 1, and by defin-
ing the basis functions so that they are normalised
over each element ∆ζi(τ ∈ [0, 1]), one can write the
residual equations as follows:

∆ζir(tik) =

K
∑

j=0

xij φ̇j(τk) − ∆ζiF (tik , xik, uik) (6)

i = 1, . . . , NE

k = 1, . . . , K

where φ̇j(τk) = dφj/dτ , and can be calculated
off-line. Note that tik = ζi + ∆ζiτk. This form
is convenient to work with when the element
lengths are included as decision variables. The
element lengths are also used to find possible
points of discontinuity for the control profiles and
to insure that the integration accuracy is within
the desired numerical tolerance. Additionally, we
enforce the continuity of the states at element
endpoints (interior knots ζi, i = 2, ...,NE), but we
allow the control profiles to have discontinuities
at these endpoints. Here

xi
K+1(ζi) = x

i−1
K+1

(ζi) (7)

i = 2, . . . , NE

or

xi0 =

K
∑

j=0

xi−1,jφj(τ = 1) (8)

i = 2, . . . , NE

j = 0, . . . , K

These equations extrapolate the polynomial x
i−1
K+1

(t)

to the endpoints of its element and provide an
accurate initial condition for the next element and
polynomial xi

K+1(t).

At this point a few additional comments con-
cerning the construction of control polynomials
must be made. Note that these polynomials use
only K coefficients per element and are of lower
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order than the state polynomials. As a result
these profiles are constrained or bounded only at
collocation points. The constraints of the control
profile are carried out by bounding the values of
each control polynomial at both ends of element.
This can be done by writing the equations:

uL
i ≤ ui

K(ζi) ≤ uU
i i = 1, . . . , NE (9)

uL
i ≤ ui

K(ζi+1) ≤ uU
i i = 1, . . . , NE (10)

Note that since the polynomial coefficients of
the control exist only at the collocation points,
enforcement of these bounds can be done by
extrapolating the polynomial to the endpoints of
the element. This is easily done by using:

ui
K(ζi) =

K
∑

j=1

uijθj(τ = 0) i = 1, . . . , NE (11)

and

ui
K(ζi+1) =

K
∑

j=1

uijθj(τ = 1) i = 1, . . . , NE (12)

Adding these constraints affects the shape of the
final control profile and the net effect of these
constraints is to keep the endpoint values of the
control profile from varying widely outside their
ranges [uL

i
, uU

i
]. Note that the (φj(τ), θj(τ)) and

the (φ̇j(τ)) terms (basis functions and their deriva-
tives) are calculated beforehand, since they de-
pend only on the Legendre root locations.

The NLP formulation consists of the ODE model (1)
discretised on finite elements, continuity equation
for state variables, and any other equality and
inequality constraints that may be required. It is
given by

min
xij ,uij ,∆ζi

[

Ψ(xf ) +

NE
∑

i=1

K
∑

j=1

wijG(xij , uij , ∆ζi)

]

(13)

such that

x10 − x0 = 0 (14)

∆ζrij = ẋk+1(τj) − ∆ζiF (xij , uij) = 0, (15)

i = 1, . . . , NE j = 1, . . . , K

xi0 − x
i−1
K+1(ζi) = 0, i = 2, . . . , NE (16)

xf − xNE
K+1(ζNE+1) = 0 (17)

uL
i ≤ ui

K(ζi) ≤ uU
i , i = 1, . . . , NE (18)

uL
i ≤ ui

K(ζi+1) ≤ uU
i , i = 1, . . . , NE (19)

∆ζL
i ≤ ∆ζi ≤ ∆ζU

i i = 1, . . . , NE (20)

c(xij , uij , ∆ζi) = 0 (21)

gf (xf ) ≤ 0 (22)

xL
ij ≤ xK+1(τj ) ≤ xU

ij , (23)

i = 1, . . . , NE j = 0, . . . , K

uL
ij ≤ uK(τj) ≤ uU

ij , (24)

i = 1, . . . , NE j = 1, . . . , K

NE
∑

i=1

∆ζi = ζtotal (25)

where

i – refers to the element,
j – refers to the collocation point,

wij – positive quadrature weights,
∆ζi – finite-element lengths
x0 = x(a) – the value of the state at time t = a,
xf = x(b) – the value of the state at the final time
t = b,

gf – the constraint evaluated at the final time
t = b,

xij , uij – the collocation coefficients for the state
and control profiles,

In this formulation the knot positions, ζi, are
formulated as decision variables and found by
optimisation procedure as points of control pro-
file discontinuities. With the knot positions as
decision variables, we now have an accurate and
efficient strategy to solve very general and difficult
optimal control problems, as long as orthogonal
collocation approximates the state profiles accu-
rately within each element.

Problem (9) can be now solved by any large scale
nonlinear programming solver.

To solve this problem within MATLAB, we used
the optim toolbox which includes several pro-
grams for treating optimisation problems. In this
case function fmincon was choosen. This can min-
imise/maximise a given objective function subject
to nonlinear equality and inequality constraints.
In order to use this function it was neccessary to
create and program additional functions (Čižniar
et al., 2005). The resulting code is called dynopt.

3. CASE STUDIES

In this section we present the examples from
literature sloved by dynopt.

3.1 Example 1a

Consider the following unconstrained problem (Luus,
1991; Rajesh et al., 2001)

min
u(t)

J = x2(tf ) (26)

such that

ẋ1 = u

ẋ2 = x2
1 + u2

x(0) = [1 0]T

tf = 1

where

x1(t), x2(t) – state vectors,
u(t) – control vector.

3.2 Example 1b

Consider the following constrained problem (Luus,
1991; Rajesh et al., 2001)

min
u(t)

J = x2(tf ) (27)

15th Int. Conference Process Control 2005,
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such that

ẋ1 = u

ẋ2 = x2
1 + u2

x(0) = [1 0]T

x1(1) = 0

tf = 1

where

x1(t), x2(t) – state vectors,
u(t) – control vector.

3.3 Example 2

Consider the following nonlinear unconstrained
problem (Luus, 1990; Rajesh et al., 2001)

min
u(t)

J = x4(tf ) (28)

such that

ẋ1 = x2

ẋ2 = −x3u + 16t − 8

ẋ3 = u

ẋ4 = x2
1 + x2

2 + 0.0005(x2 + 16t − 8 − 0.1x3u2)2

x(0) = [0 − 1 −
√

5 0]T

−4 ≤ u ≤ 10

tf = 1

where

x1(t) − x4(t) – state vectors,
u(t) – control vector.

3.4 Example 3

Consider a tubular reactor with following parallel
reaction (Dadeo and McAuley, 1995; Logsdon and
Biegler, 1989; Rajesh et al., 2001):
A → B
A → C

min
u(t)

J = −x2(tf ) (29)

such that

ẋ1 = −[u + 0.5u2]x1

ẋ2 = ux1

x(0) = [1 0]T

0 ≤ u ≤ 5

tf = 1

where

x1(t) – dimensionless concetration of A,
x2(t) – dimensionless concentration of B,
u(t) – control vector

3.5 Example 4

Consider a batch reactor (Dadeo and McAuley,
1995; Rajesh et al., 2001) with the following con-
secutive reactions:

A → B → C

min
u(t)

J = −x2(tf ) (30)

such that

ẋ1 = −k1x2
1

ẋ2 = k1x2
1 − k2x2

x(0) = [1 0]T

k1 = 4000e(− 2500
T

)

k2 = 620000e(− 5000
T

)

298 ≤ T ≤ 398

tf = 1

x1(t) – concentration of A,
x2(t) – concentration of B,
T – temperature.

3.6 Example 5

Consider a catalytic plug flow reactor (Dadeo and
McAuley, 1995; Rajesh et al., 2001) with the fol-
lowing reactions:
A ↔ B → C

max
u(t)

J = 1 − x1(tf ) − x2(tf ) (31)

such that

ẋ1 = u[10x2 − x1]

ẋ2 = −u[10x2 − x1] − [1 − u]x2

x(0) = [1 0]T

0 ≤ u ≤ 1

tf = 12

x1(t) – mole fraction of A,
x2(t) – mole fraction of B,
u(t) – fraction of type 1 catalyst.

4. RESULTS AND DISCUSSION

For all the aformentioned examples, 4 colloca-
tion points and 5 elements have been used to
obtain accurate solution to the fourth decimal
place. Problems (26), (27), and (28) are examples
of purely mathematical systems. The first prob-
lem (26) does not have any constraint and for this
problem a minimum (0.76519) was determined
by Luus (1991). Another optimal value for the
performance index was found by Rajesh et al.
(2001) (0.76238). The solution obtained by dynopt
is shown in Table 1. The control profiles and state
variables are shown in Figure 2.

The problem (27) has a terminal constraint. For
this case the value of the minimum (0.92518) was
obtained by Luus (1991) and (0.92547) obtained
by Rajesh et al. (2001). The solution obtained by
dynopt in this case is shown in Table 2 and Fig-
ure 3.

Problem (28) is a four-state variable system
treated by Luus (1990); Rajesh et al. (2001). For
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Numerical Analytical

optimal value 0.7616 0.7616

number of iterations 43 45

funccount 3570 353

CPU-time (s) 50.5730 18.6770

Table 1. Comparison between gradients
calculated numerically and analytically

for example 1a

0 0.2 0.4 0.6 0.8 1
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−0.2

0

time

u

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

time

x 1, x
2

x
1

x
2

Fig. 2. Control and state profiles obtained by
dynopt for problem (26)

Numerical Analytical

optimal value 0.9243 0.9243

number of iterations 26 23

funccount 2154 193

CPU-time (s) 32.0660 13.6790

Table 2. Comparison between gradients
calculed numerically and analytically

for example 1b

the state variable x4, a value of the minimum
(0.12011) was obtained by Luus (1990). Rajesh
et al. (2001) computed the optimum of x4 at
final time (0.1290). With dynopt in this case we
were able to reach the values shown in Table 3
and Figure 4.

Numerical Analytical

optimal value 0.1217 0.1212

number of iterations 96 126

funccount 12555 586

CPU-time (s) 239.5850 44.8450

Table 3. Comparison between gradients
calculated numerically and analytically

for example 2

Problem (29) is a tubular reactor control prob-
lem where the state variable x2 at final time
has to be maximised. This problem was treated
by Dadeo and McAuley (1995); Logsdon and

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

time

u

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

time

x 1, x
2

x
1

x
2

Fig. 3. Control and state profiles obtained by
dynopt for problem (27)

Biegler (1989); Rajesh et al. (2001) and the op-
timal value (0.57353) was reported by Dadeo and
McAuley (1995); Logsdon and Biegler (1989) and
optimal value (0.57284) was given by Rajesh et al.
(2001). Table 4 and Figure 5 show the optimal
values found by the orthogonal collocation of finite
elements method used in dynopt.

Numerical Analytical

optimal value 0.5727 0.5725

number of iterations 74 68

funccount 5951 370

CPU-time (s) 93.3040 26.3770

Table 4. Comparison between gradients
calculated numerically and analytically

for example 3

The objective in problem (30) is to obtain the
optimal temperature profile that maximizes x2

at the end of a specified time. The problem was
solved by Logsdon and Biegler (1989); Rajesh
et al. (2001) and the reported optimum (0.610775)
was found by Logsdon and Biegler (1989) and
(0.61045) obtained by Rajesh et al. (2001). We
were able to obtain the values described by Table 5
and Figure 6.

Numerical Analytical

optimal value 0.6102 0.6102

number of iterations 9 10

funccount 780 107

CPU-time (s) 13.0380 9.9540

Table 5. Comparison between gradients
calculated numerically and analytically

for example 4

Optimisation of problem (31) has also been ana-
lyzed. This problem was solved by Logsdon and
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Fig. 4. Control and state profiles obtained by
dynopt for problem (28)

Biegler (1989); Rajesh et al. (2001) and the op-
tima (0.476946, 0.47615) were found. Values ob-
tained by using dynopt are shown in Table 6. The
coresponding control and state profiles are shown
in Figure 7
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Fig. 5. Control and state profiles obtained by
dynopt for problem (29)
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Fig. 6. Control and state profiles obtained by
dynopt for problem (30)

Numerical Analytical

optimal value 0.4790 0.4790

number of iterations 36 31

funccount 3474 218

CPU-time (s) 63.7520 23.3360

Table 6. Comparison between gradients
calculated numerically and analytically

for example 5

Note, that all the results obtained by orthogo-
nal collocation on finite elements method imple-
mented within MATLAB-dynopt are only local
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Fig. 7. Control and state profiles obtained by
dynopt for problem (31)

in nature, since NLP solvers are only based on
necessary conditions for optimality.

5. CONCLUSION

The orthogonal collocation on finite elements has
been developed and implemented within MAT-
LAB environment and it has been tested on six
examples from the literature. The details of the
problems are provided in section 3. The exam-
ples were chosen to illustrate the ability of the
dynopt package to treat the problems of varying
levels of difficulty. In all the considered examples,
two different methods of gradients computation
were used: numerical approximation and analyt-
ical computation. The resulting performances of
each method for the case studies are presented
in tables 1, 2, 3, 4, 5, 6. As expected, they show
that the performances of analytical computations
are superior. On the other hand, as mentioned
before, the optima obtained are local in nature,
the coming work will be devoted to the solution of
the resulting NLP problems to global optimality.
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